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This note gives a sketch proof that for the two-dimensional Sierpinski carpet one has

Reff(x, y) � |x− y|dw−df . (0.1)

We work on the infinite pre-SC graph F . (This is the graph denoted Gn on p. 346 of
[1].) We denote Fn = [0, 3n]2 ∩ F . We write ∂LFn and ∂RFn for the left and right sides of
Fn, and ∂TFn, ∂BFn for the top and bottom. We write En for the Dirichlet form in the
graph Fn.

Let Rn be the resistance across Fn, i.e. the resistance between ∂LFn and ∂RFn when
these two sets are wired or shorted. It is proved in [1] that

c−1
1 RnRm ≤ Rn+m ≤ c1RnRm,

from which it follows that there exists ρ such that

c−1
1 ρn ≤ Rn ≤ c1ρ

n. (0.2)

Easy estimates for the standard SC give ρ > 1. We have

dw − df =
log ρ

log 3
. (0.3)

Lower bound. This is straightforward. As in [1] one can construct two functions fn and
gn which satisfy En(h, h) ≤ cR−1

n for h = fn, gn. fn has Dirichlet boundary conditions 1
on ∂LFn, 0 on ∂RFn, and Neumann b.c. on the remainder of the boundary. The function
gn satisfies gn(0) = 1 and gn(z) = 0 for the other 3 corners of Fn, is symmetric about the
line x1 = x2 in R2 and satisfies gn = fn on ∂BFn.

Let x, y ∈ F with |x − y| = r. Choose k so that 3r−4 ≤ r ≤ 3r. Let Qx and Qy be
squares side 3k containing x and y. Using the functions fk and gk one can build a function
ϕ with ϕ = 1 on Qx, ϕ = 0 on every square side 3k which does not touch Qx, and

E(ϕ, ϕ) ≤ 8(En(fn, fn) ∨ En(gn, gn)) ≤ cρ−n.

It follows that
Reff(x, y) ≥ cρ−n ≥ c|x− y|dw−df . (0.4)
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Upper bound. Let x, y ∈ F with 3n � |x− y|. We need to build a unit flow J on F from
x to y with energy

E(J) =
∑

e∈E(F )

|Je|2 ≤ cρn;

Let µL and µR be input/output distributions on ∂LFn and ∂RFbn, with total flux 1,
i.e.

∑
z µL(x) =

∑
x µR(x) = 1. (See figure).

Figure 1: The network F2. The ‘wires’ in the network are marked in red, the input points
are marked with small red circles, and the output points with red squares.

Let In(µ1, µ2) be the minimal energy flow in Fn with input µL and output µR. By [1]
there exists a distribution νn such that

Rn = En(I(νn, νn)).

Set
Qn = max

x∈∂LFn,y∈∂RFn

In(δx, δy).

Note that Q0 = R0 = 1. (The idea of looking at a max of this kind may have come from
[2].) An easy calculation using Cauchy-Schwarz gives for any µL, µR that

En(I(µL, µR)) ≤ Qn.

Now let m,n ≥ 0, and let x ∈ ∂LFn+m, y ∈ ∂RFn+m. We regard Fn+m as being made
up of ‘micro’ squares side 3m, all copies of Fm, arranged according to the pattern Fn.

Let Gx be the micro square containing x. We can build a flow Jx on Gx with input δx
and output νm (appropriately translated) on ∂RQx, with Em(Jx) ≤ Qm. Combining this
with the flow Im(νm, νm), reversed so it goes from right to left, one obtains a flow J ′x on
Gx with input δx, output νm on ∂LGx, and with zero output on the other 3 sides of Gx.
Further

Em(J ′) ≤ cQm.

(We have used here the fact that if we have two flows J1, J2 then Em(J1 +J2) ≤ 2E(J1) +
2E(J2).)
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Look at the macro cube Fn, and let x′, y′ be the points in Fn corresponding to the
squares Gx and Gy. The flow In(δx′ , δy′) has energy

En(In(δx′ , δy′) ≤ Qn.

Using the ‘macro’ flow In(δx′ , δy′) and the micro flow Im(νm) we can as in [1] build a flow
J ′′ on Fn+m with input νm on Gx, output νm on Gy and energy

E(J ′′) ≤ cQnRm.

Combining J ′′ with the flow J ′x and a similar flow J ′y one obtains a flow I on Fn+m with
input δx and output δy. It follows that

Qn+m ≤ c(Qm +RmQn). (0.5)

Set yn = ρ−nQn. Note that y0 = 1. As Rm ≤ cρn we deduce that there exists a constant
a such that for n,m ≥ 0

yn+m ≤ aρ−nym + ayn. (0.6)

Lemma 0.1. Let ρ > 1 and suppose (yn) satisfies y0 = 1 and (0.6). Then there exists
A = A(a, ρ) such that yn ≤ A for all n.

Proof. Choose n so that aρ−n ≤ 1
2
. Set b = amax1≤k≤n yk . (The equation (0.6) enables

us to bound n and b in terms of of a and ρ.) Let H = {k : yk ≤ 2b}. Suppose that m ∈ H.
Then

ym+n ≤ aρ−nym + ayn ≤ 1
2
ym + b ≤ b+ b = 2b.

So m+ n ∈ H. It follows that yk ≤ 2b for all k. �

Since (yn) is bounded, we obtain Qn ≤ cρn for all n. We have constructed a flow across
Fn with energy bounded by cρn, and it follows that

Reff(x, y) ≤ cρn for all x ∈ ∂LFn, y ∈ ∂RFn.

Using the fact that Reff is a metric, the upper bound in (0.1) follows.

Remarks. 1. The sketch above is for the basic S. carpet in Z2. However, the same
argument should work for generalized SC in two dimensions.
2. I do not see any obstacle to using this method for higher dimensional SCs which satisfy
ρ > 1, i.e. dw > df .

Acknowledgment. I wish to thank Takashi Kumagai for asking me about pointwise bounds

of this type. This note was written (in 2021) in response to that question.
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