bу

M.T Barlow

Let B be a one-dimensional Brownian motion, with $B_0=0$, and let L(a,t), $a\in \mathbb{R}$, $t\geq 0$ be a continuous version of its local time. We shall show that the process Y, defined by $Y_t=L(B_t,t)$, is not a semimartingale. The essence of the proof is the remark that whereas the paths of a continuous semimartingale satisfy a Holder condition of order $\frac{1}{2}-\epsilon$ almost everywhere, for any $\epsilon>0$, the paths of Y just fail to satisfy a Holder condition of order $\frac{1}{4}$.

For a process or function X set

$$D^{\alpha}(X) = \{t \ge 0 : \lim_{\varepsilon \to 0} \sup_{\varepsilon \to 0} |X_{t+\varepsilon} - X_t| > 0\}$$
.

LEMMA Let $\alpha > 1$, and $f : \mathbb{R}_+ \to \mathbb{R}$ be a function such that $D^{\alpha}(f) = \phi . \quad \underline{\text{Let}} \quad \tau(t) \quad \underline{\text{be an increasing function, and}} \quad g(t) = f(\tau(t)) .$ Then $|D^{\alpha}(g)| = 0$.

Proof By Lebesgue's density theorem, T'(t) exists and is finite almost everywhere. For such a t

$$\lim \sup_{\varepsilon \to 0} \varepsilon^{-1/\alpha} |g(t+\varepsilon) - g(t)|$$

$$= \lim_{\varepsilon \to 0} (\tau'(t))^{1/\alpha} \delta^{-1/\alpha} |f(\tau(t) + \delta) - f(\tau(t))|$$

$$\delta \to 0$$

$$= 0$$

so that $t \notin D^{\alpha}(g)$.

PROPOSITION Let X be a continuous semimartingale. Then for $\alpha > 2$, $|\mathbf{p}^{\alpha}(\mathbf{X})| = 0$. a.s.

<u>Proof</u> Let $X = M + A^+ - A^-$ be the decomposition of X into the sum of a martingale and the difference of two increasing processes. It is plain that $D^{\alpha}(X) \subset D^{\alpha}(M) \cup D^{\alpha}(A^+) \cup D^{\alpha}(A^-)$. By the lemma, setting f(t) = t and $\tau(t) = A_t^+$ or A_t^- , we have $|D^{\alpha}(A^+)| = |D^{\alpha}(A^-)| = 0$.

Now let τ_t be the right-continuous inverse of <M>, and $U_t = {}^M\!\!\!\tau_t$ Then U is a Brownian motion, and ${}^M\!\!\!t_t = {}^U\!\!\!\!t_t$ By Lévy's Hölder condition on the variation of Brownian paths, for $\alpha > 2$, $D^\alpha(U) = \varphi$ a.s., and thus, by the lemma, $|D^\alpha(M)| = 0$ a.s.

THEOREM (i) For each t > 0, $B_t \in D^2(L(\cdot,t))$ a.s.

(ii) D4(Y) is of full Lebesgue measure a.s.

(iii) Y is not a semimartingale.

<u>Proof</u> From the results of Ray [1] on Brownian local time, $0 \in D^2(L(\cdot,t)) \quad \text{a.s.} \quad \text{Let} \quad t \quad \text{be fixed, and} \quad \widetilde{B}_s = B_t - B_{t-s} \quad \text{for}$ $0 \leq s \leq t \quad \text{Then} \quad \widetilde{B} \quad \text{is a Brownian motion, and if} \quad \widetilde{L} \quad \text{denotes its local}$ time, $\widetilde{L}(a,t) = L(B_t-a,t) \quad , \text{ so that} \quad B_t \in D^2(L(\cdot,t)) \quad \text{whenever}$ $0 \in D^2(\widetilde{L}(\cdot,t)) \quad , \text{ establishing (i)}.$

We may restate (i) as follows: there exist B_t -measurable random variables A_n and C with $|A_n-B_t|<1/n$, and C>0 a.s., such that

$$|L(A_n,t) - L(B_t,t)| \ge |A_n - B_t|^{\frac{1}{2}}.C$$
 for all n.

If (a_n) is a sequence converging to 0 , and $T_n = \inf\{t \ge 0\colon \ B_t = a_n\} \ , \ \text{then} \ P(T_n < a_n^2) = k > 0 \ , \ \text{for some}$

constant k . Thus $P(T_n \le a^2_n \mbox{ for infinitely many } n) = 1 \mbox{ by the}$ Borel-Cantelli lemmas, and the Blumenthal O1 law.

Now let $S_n = \inf\{u > t \colon B_u = A_n\}$. By the preceding argument, and the Markov property of B at t ,

$$S_n - t < (A_n - B_t)^2$$
 for infinitely many n, a.s.

Thus

$$\lim_{n \to \infty} \sup (S_{n} - t)^{-\frac{1}{4}} |Y_{S_{n}} - Y_{t}|$$

$$= \lim_{n \to \infty} \sup (S_{n} - t)^{-\frac{1}{4}} |L(A_{n}, t) - L(B_{t}, t)|$$

$$\geq \lim_{n \to \infty} \sup (S_{n} - t)^{-\frac{1}{4}} |A_{n} - B_{t}|^{\frac{1}{2}} C$$

$$\geq C \qquad \text{a.s.}$$

$$\geq 0 \qquad \text{a.s.}$$

Therefore $t \in D^2(Y)$ a.s., and (ii) follows by a Fubini argument. (iii) is an immediate consequence of (ii) and the proposition.

Reference

D.B. Ray: Sojourn times of a diffusion process. Illinois
 J. Math. 7; 615-630. (1963).

Statistical Laboratory, 16 Mill Lane, Cambridge, CB2 1SB England.