Continuous time simple random walk on a graph $\Gamma = (G, E)$.

Let G be an infinite (connected) graph. For $x, y \in G$ let

$$\mu_{xy} = \mu_{yx} = \begin{cases} 1 & \text{if } \{x, y\} \text{ is an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Define the vertex degree $\mu_x = \mu(x) = \sum_y \mu_{xy}$.

Assume $\mu(x) < \infty$ for all $x \in G$, and extend μ to a measure on G. Set $V(x,r) = \mu(B(x,r))$.

Dirichlet form:

$$\mathcal{E}(f,f) = \frac{1}{2} \sum_{x,y} (f(x) - f(y))^2 \mu_{xy}.$$

The CTSRW on Γ is the process

$$Y = (Y_t, t \in [0, \infty), P^x, x \in G)$$

associated with the Dirichlet form $(\mathcal{E}, L^2(G, \mu))$.

Y waits at a point x for an exponential time with mean 1, then moves to $y \sim x$ with probability μ_{xy}/μ_x .

Heat kernel:

$$q_t(x,y) = \frac{P^x(Y_t = y)}{\mu_y}.$$

Laplacian:

$$\mathcal{L}f(x) = \frac{1}{\mu_x} \sum_{y} \mu_{xy} (f(y) - f(x)).$$

Heat equation:

$$\frac{\partial}{\partial t}q_t(x_0, x) = \mathcal{L}q_t(x_0, x).$$

Discrete Gauss-Green:

$$\mathcal{E}(f,g) = (-\mathcal{L}f,g)$$
, where (\cdot,\cdot) is the iner product in $L^2(G,\mu)$.

Random walk on \mathcal{C}_{∞} This is just the CTSRW on the graph $(\mathcal{C}_{\infty}(\omega), \mathcal{O}(\omega)|_{\mathcal{C}_{\infty}(\omega)})$. More precisely, we have two probability spaces:

- 1. (Ω, \mathbb{P}_p) the space for the percolation process.
- 2. Ω' (= $D([0,\infty), \mathbb{Z}^d)$ for example) the space carrying the random walk. For each $\omega \in \Omega$, and $x \in \mathcal{C}_{\infty}(\omega)$ we then have the probabilty law P_{ω}^x for Y started at x. Write $q_t^{\omega}(x,y)$ for the heat kernel of Y.

Brief History

- 1. De Masi, Ferrari, Goldstein, Wick 1989: CLT and ('annealed') invariance principle.
- 2. Grimmett, Kesten, Zhang, 1993: Y is recurrent if d=2 and transient if d>3.
- 3. Benjamini & Schramm (unpublished):

$$\mathbb{E}_p q_t^{\omega}(x, x) \ge ct^{-d/2}.$$

- 4. Benjamini, R. Lyons, Schramm 1999: bounded harmonic functions on \mathcal{C}_{∞} are constant. (Also results on general transitive graphs.)
- 5. Heicklen & Hoffmann (2001–2006):

$$\mathbb{E}_p(q_t^{\omega}(x,x)|x\in\mathcal{C}_{\infty})\leq ct^{-d/2}(\log t)^{\delta_d}.$$

6. Mathieu & Remy (Ann Prob 2004): An isoperimetric inequality on \mathcal{C}_{∞} which implies that \mathbb{P}_p a.s. on $\{\omega : x \in \mathcal{C}_{\infty}(\omega)\}$,

$$q_t^{\omega}(x,x) \le ct^{-d/2}, \quad t \ge t_0(x,\omega).$$

- 7. Benjamini & Mossel (PTRF 2003): spectral gap inequalities for balls in \mathcal{C}_{∞} .
- 8. MB (Ann Prob 2004): Gaussian upper and lower bounds on $q_t^{\omega}(x,y)$.
- 9. Sidoravicius & Sznitman (PTRF 2004), Berger & Biskup (PTRF 2007), Mathieu & Piatnitski (preprint 2005): quenched invariance principle.

Theorem 3.1. Let $p > p_c$. For each $x \in \mathbb{Z}^d$ there exist r.v. $T_x(\omega)$ with

$$\mathbb{P}_p(T_x \ge n; x \in \mathcal{C}_{\infty}) \le c \exp(-n^{\varepsilon_d})$$

and (non-random) constants $c_i = c_i(d, p)$ such that for $x, y \in \mathcal{C}_{\infty}(\omega)$:

$$q_t^{\omega}(x,y) \le \frac{c_1}{t^{d/2}} e^{-c_2|x-y|^2/t}$$
 for $t \ge T_x(\omega) \lor |x-y|$. (GUB)
 $q_t^{\omega}(x,y) \ge \frac{c_3}{t^{d/2}} e^{-c_4|x-y|^2/t}$ for $t \ge T_x(\omega) \lor |x-y|$. (GLB)

Note also

$$q_t^{\omega}(x,y) \ge \frac{c_3}{t^{d/2}} e^{-c_4|x-y|^2/t}$$
 for $t \ge T_x(\omega) \lor |x-y|^{3/2}$. (GLB')

Remarks.

- 1. CTSRW on \mathbb{Z}^d satisfies (GB)= (GUB)+(GLB) with $T_x \equiv 1$.
- 2. We need $t \ge D = |x y|$ for Gaussian behaviour. If $t \ll D$ then (even for \mathbb{Z}^d)

$$P^x(Y_t = y) \approx e^{-cD} P(\operatorname{Poisson}(t) = D) \approx e^{-cD} e^{-cD \log(D/t)}$$
.

3. There exist 'long range' bounds (Carne-Varopoulos, Davies) which give good upper bounds for any infinite graph. These bounds are:

$$q_t(x,y) \le c \exp(-c_1 d(x,y)^2/t).$$

GUB follow if $D^2 \ge at \log t$, or $t < D^2/\log D$. For when a is large enough

$$e^{-c_1 D^2/2t} < e^{-(c_1 a)/2 \log t} = t^{-ac_1/2} < t^{-d/2}$$

4. The real zone of interest for these bounds is when

$$0 \le D \le (ct \log t)^{1/2}.$$

GLB' is $D \le t^{2/3}$ so contains this zone.

- 5. Applications of the bounds often need control on $T_x(\omega)$ as well.
- 6. These bounds also hold (with minor modifications since \mathcal{C}_{∞} is bipartite) for the discrete time walk on \mathcal{C}_{∞} .

A guide to how one proves this is:

Theorem 3.2. (Delmotte, (1999), simplified.) Let Γ be an infinite connected graph. The following are equivalent:

(a) Γ satisfies (V_d) and (famPI):

$$c_1 r^d \le \mu(B(x,r)) \le c_2 r^d$$
 for $x \in G, r \ge 1$.

- (b) $q_t(x,y)$ satisfies GB with $T_x \equiv 1$,
- (c) Γ satisfies Parabolic Harnack Inequality (PHI) and (V_d) .

Note: 1. The more general version of this theorem, uses 'volume doubling' rather than (V_d) .

- 2. (famWkPI) works as well as (famPI).
- 3. Γ satisfies (famPI) if for all B = B(x, r) one has the PI:

$$\int_{B} |f - \overline{f}_{B}|^{2} d\mu \le C_{P} r^{2} \mathcal{E}_{B}(f, f) \tag{PI}$$

- 4. The hard implication is (a) \Rightarrow (b), (c). Delmotte proved (a) \Rightarrow (c) using Moser's argument.
- 5. This extends to graphs earlier work on manifolds (Grigoryan, Saloff-Coste), metric spaces (Sturm).

(V_d) and (famWkPI) on \mathcal{C}_{∞}

Volume. We have

$$\theta(p) = \mathbb{P}_p(|\mathcal{C}(x) = \infty) = \mathbb{P}_p(x \in \mathcal{C}_\infty).$$

So by the ergodic theorem if Q_n is the box side n centre 0,

$$\frac{|\mathcal{C}_{\infty} \cap Q_n|}{|Q_n|} \to \theta(p).$$

Dividing a very big box into big boxes one deduces

$$\mathbb{P}_p(c_1 R^d \le |B_{\omega}(x, R)|) \ge 1 - e^{-cR^{\delta}}.$$

Also $|B_{\omega}(x,R)| \leq cR^d$ always.

Poincaré inequalities. Using the isoperimetric inequality one gets

$$\mathbb{P}_p(\text{ (wkPI) holds for } B_{\omega}(x,R)) \geq 1 - e^{-cR^{\delta}}.$$

Hence by Borel-Cantelli for each x one has (V_d) and (wkPI) for B(x,R) for all $R \geq R_x(\omega)$.