Yor's conjectures on the structure of filtrations

Martin Barlow¹

¹University of British Columbia

Paris VI, June 2015

Background

1950–1965: Development of rigorous theory of Markov processes, especially the precise formulation of the strong Markov property. (Meyer, Getoor)

1965–1976: Development of stochastic calculus (integration of predictable processes w.r.t. semimartingales) by Meyer and the 'Strasbourg school'.

Context of Meyer's theory: a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$. Here $(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space, and $(\mathcal{F}_t) = (\mathcal{F}_t, t \in [0, \infty))$ is a filtration satisfying the usual conditions: right continuous, i.e. $\mathcal{F}_t = \mathcal{F}_{t+} = \cap_{s>t} \mathcal{F}_s$, \mathcal{F}_0 contains all \mathbb{P} -null sets in \mathcal{F} .

Very often a filtration arises from a stochastic process X, and we write (\mathcal{F}_t^X) for the (usual) filtration generated by X:

$$\mathcal{F}_t^0 = \sigma(X_s, s \le t),$$

$$\mathcal{N} = \{ F \in \mathcal{F} : \mathbb{P}(F) = 0 \},$$

$$\mathcal{F}_t^X = \bigcap_{s > t} \sigma(\mathcal{F}_s, \mathcal{N}).$$

Let $\mathcal{M}^2((\mathcal{F}_t))$ be the space of L^2 martingales w.r.t. (\mathcal{F}_t) .

Martingale representation. We say $\{M^1, \ldots, M^k\} \subset \mathcal{M}^2((\mathcal{F}_t))$ has the martingale representation property (MRP) if for any $N \in \mathcal{M}^2((\mathcal{F}_t))$ there exist predictable processes H^i such that

$$N_t = \sum_{i=1}^k \int_0^t H_s^i dM_s^i.$$

Jacod (1976): connection between MRP and extremal solutions to a martingale problem.

Martingale dimension

Analogous with dimension of vector space in linear algebra: dM_t are vectors and H_t scalars.

Definition. (Davis and Varaiya (1974)). The multiplicity of (\mathcal{F}_t) is the smallest k such that there exists a set of k real valued martingles with the martingale representation property. Write this as $\dim((\mathcal{F}_t))$.

Examples.

- (1) (Itô). If *X* is *d*-dimensional Brownian motion then $\dim((\mathcal{F}_t^X)) = d$.
- (2) If $\mathcal{F}_0 \subset \mathcal{F}$, $F \notin \mathcal{F}_0$ with $0 < \mathbb{P}(F) < 1$ and $\mathcal{F}_1 = \sigma(\mathcal{F}_0, F)$ then

$$dim((\mathcal{F}_0,\mathcal{F}_1))=1.$$

More generally if \mathcal{F}_1 is generated by \mathcal{F}_0 and a partition of Ω into n sets then $\dim((\mathcal{F}_0, \mathcal{F}_1)) = n - 1$.

Early work on filtrations

1. Stricker (1978). If *X* is a semimartingale wrt (\mathcal{G}_t) and *X* is adapted to (\mathcal{F}_t) then *X* is a semimartingale wrt (\mathcal{F}_t) .

He defined 'Condition (R)' for a filtration (\mathcal{G}_t) to be a 'good extension' of a filtration (\mathcal{F}_t) . It holds if either of the following two equivalent conditions holds:

- (1) every (\mathcal{F}_t) martingale is a (\mathcal{G}_t) martingale,
- (2) for all $s < t \mathcal{F}_t$ and \mathcal{G}_s are conditionally independent wrt \mathcal{F}_s . (i.e. \mathcal{G}_s contains no information on the future of \mathcal{F}_t after time s.)
- 2. τ is an end of optional set if there exists an optional process (e.g. adapted, right continous) A such that

$$\tau = \sup\{t : A_t = 0\}.$$

Following ideas of David Williams, Barlow, Jeulin and Yor studied the expansion of a filtration (\mathcal{F}_t) so as to make an end of optional time into a stopping time, by setting $\mathcal{G}_t = \sigma(\mathcal{F}_t, \{\tau \leq t\})$.

Fundamental example (Lévy, Skorokhod)

Set $sgn(x) = -1_{(x \le 0)} + 1_{(x > 0)}$.

Let *X* be a Brownian motion (BM). Set

$$Y_t = \int_0^t \operatorname{sgn}(X_s) dX_s = |X_t| - \frac{1}{2} L_t(|X|).$$

Then *Y* is a martingale with $\langle Y \rangle_t = t$, so is a Brownian motion. $L_t(|X|)$ is the local time of |X| at 0. Since $|X_s| \ge 0$, we have

$$\inf_{s < t} Y_s = -\frac{1}{2} L_t(|X|), \text{ and so } |X_t| = Y_t - \inf_{s < t} Y_s.$$

Thus $\mathcal{F}^Y = \mathcal{F}^{|X|}$; further this filtration is strictly smaller than the filtration \mathcal{F}^X since it is missing the information about the signs of the excursions of X.

Note that $X_t = \int_0^t \operatorname{sgn}(X_s) dY_s$, so that Y (as well as X) has the martingale representation property for \mathcal{F}^X .

3 problems posed by Yor

Three problems posed by Marc in November 1978.

- 1. (A problem relating to Gilat's theorem that every submartingale is equal in law to the absolute value of a martingale.)
- 2. Let $X = X^0$ be a BM. As we saw, if

$$X^1 = \Psi(X^0) = \int_0^t \operatorname{sgn}(X_s) dX_s,$$

then $\mathcal{F}^1 = \mathcal{F}^{X^1}$ is strictly smaller than $\mathcal{F}^0 = \mathcal{F}^{X^0}$. (Also \mathcal{F}^1 is a good extension of \mathcal{F}^0 , ie they satisfy (R)). Set $X^n = \Psi(X^{n-1})$ for $n \ge 1$, and let \mathcal{F}^n be the associated filtrations.

Question. Is

$$\bigcap_{n=0}^{\infty} \mathcal{F}_t^n \quad \text{trivial?}$$

Yor's third question

We have seen that if *X* is a BM then every martingale wrt (\mathcal{F}_t^X) is a stochastic integral of *X*.

Definition. (a) A filtration (\mathcal{F}_t) is Brownian if there exists a (one dimensional) BM X such that $(\mathcal{F}_t) = (\mathcal{F}_t^X)$.

(b) A filtration (\mathcal{F}_t) has the Brownian representation property (BRP) if there exists a BM Y such that every (\mathcal{F}_t) - martingale is a stochastic integral of Y. (Thus (\mathcal{F}_t) is one dimensional in the sense of Davis and Varaiya.)

The Kunita-Watanabe theorem shows that if (\mathcal{F}_t) is Brownian then it has the BRP.

Conjecture 1. If (\mathcal{F}_t) has the BRP then it is Brownian.

Example. Let X be a BM, $\mathcal{F} = \mathcal{F}^X$ and $Y = \int \operatorname{sgn}(X) dX$. Then every (\mathcal{F}_t) – martingale is a stochastic integral of Y, but $\mathcal{F}^X \neq \mathcal{F}^{|X|} = \mathcal{F}^Y$.

Adding information to a filtration

Let (\mathcal{F}_t) be a one-dimensional filtration and $U \sim \mathcal{U}(0, 1)$ be a r.v. independent of \mathcal{F}_1 . Suppose we want to build a good extension (\mathcal{G}_t) of (\mathcal{F}_t) such that $\mathcal{G}_1 = \sigma(\mathcal{F}_1, U)$, and also $\dim((\mathcal{G}_t)) = 1$.

We cannot 'add the information at a fixed time t', by setting

$$\mathcal{G}_s = \mathcal{F}_s, \ s \leq t, \qquad \mathcal{G}_s = \sigma(\mathcal{F}_s, U), \ s > t,$$

since then we will introduce new martingales which jump at time t.

The fundamental example shows one way of doing this if \mathcal{F} carries a BM Y. Write $U = \sum \xi_n 2^{-n}$ where (ξ_n) are iid $\text{Ber}(\frac{1}{2})$ r.v., Let $Z_t = Y_t - \inf_{s \le t} Y_s$, so Z has the law of the absolute value of a BM. Use ξ_n to 'flip' the excursions of Z from 0, to create a BM X. Then

$$\mathcal{F}_1^X = \sigma(\mathcal{F}_1^Y, U),$$

and \mathcal{F}^X is still one-dimensional.

With this procedure the information is added at the last exit times of Z from 0, which are special cases of end of optional times.

For an end of optional time τ (wrt a filtration (\mathcal{F}_t)) we define

$$\mathcal{F}_{\tau} = \sigma(V_{\tau}: V \text{ is an } (\mathcal{F}_t) \text{ optional process}),$$

$$\mathcal{F}_{\tau+} = \bigcap_{t>0} \mathcal{F}_{\tau+t}.$$

For a filtration satisfying the usual conditions we have $\mathcal{F}_T = \mathcal{F}_{T+}$ at a stopping time, but this need not be true at end of optional times.

Example. Let *B* be a BM, and $\tau = \sup\{t < 1 : B_t = 0\}$. Then the sign of the excursion starting at time τ is given by

$$\xi = \lim_{h\downarrow 0} \operatorname{sgn}(B_{\tau+h}) = \operatorname{sgn}(B_1),$$

and we have $\xi \in \mathcal{F}_{\tau+}$ but $\xi \notin \mathcal{F}_{\tau}$.

Walsh Brownian motion (WBM)

Introduced by Walsh (1978). This is a Markov process, state space

$$A = \{0\} \cup \bigcup_{k=1}^{N} \{re^{i\theta_k}, r > 0\}.$$

Here $N \ge 3$, and θ_j are distinct; we may as well take $\theta_j = 2j\pi/N$. Call $A_j = \{re^{i\theta_k}, r > 0\}$ the ray with angle θ_j .

The WBM $Z_t = R_t e^{i\Theta_t}$ moves like a standard Brownian motion on each ray; and when at 0 makes excursions with probability p_j on ray A_j . (We will take $p_j = 1/N$.)

Let $\tau = \sup\{t < 1 : Z_t = 0\}$, so that τ is an end of optional time.

Then $\Theta_1 = \Theta_t$ for $\tau < t \le 1$, and is $\mathcal{F}_{\tau+}$ but not \mathcal{F}_{τ} measurable.

In fact $\mathcal{F}_{\tau+}$ is obtained from \mathcal{F}_{τ} and the events $\{\Theta_1 = \theta_k\}$, $1 \le k \le N$, so

$$\dim(\mathcal{F}_{\tau},\mathcal{F}_{\tau+})=N-1.$$

Let *Z* be a WBM with 3 rays. Then R = |Z| is the absolute value of a BM, and it is not hard to prove that

$$Y = R - \frac{1}{2}L(R)$$

is a BM with the martingale representation property for \mathcal{F}^Z , so \mathcal{F}^Z has the BRP.

Is there a BM W which generates \mathcal{F}^Z ? We could not prove this.

If there were, then the time τ would be a random time such that W has 3 possible types of behaviour immediately after τ .

We could not find such times. (Even for BM in \mathbb{R}^d).

If one is to prove that \mathcal{F}^Z is not Brownian then one has to find an 'invariant' of filtrations which is different for \mathcal{F}^Z and \mathcal{F}^{BM} .

Definition. Call the **splitting multiplicity** of a filtration (\mathcal{F}_t)

$$sp dim((\mathcal{F}_t)) = 1 + \sup_{\tau} dim(\mathcal{F}_{\tau}, \mathcal{F}_{\tau+}),$$

where the sup is taken over all end of optional times τ . For a WBM with N branches, the last exits from 0 show that

$$\operatorname{spdim}((\mathcal{F}_t)) \geq N$$
.

Conjecture 2. sp dim $((\mathcal{F}_t^{BM})) = 2$.

At least one of Conjectures 1 and 2 is false.

For a construction of WBM, and discussion of Conjectures 1-2, see: M.T. Barlow, J. Pitman and M. Yor. On Walsh's Brownian Motions. Sem. Prob. XXIII, 275-293 (1989).

Question for Lévy processes

Conjecture 2 states that for BM the splitting multiplicity is the same for general end of optional times as for last exits from sets, i.e. 2.

One can also ask this for a real Lévy process. Let X be a symmetric stable process, index $\alpha \in (1,2)$. Then 0 is regular for $\{0\}$, so that $\{t: X_t = 0\}$ is \mathbb{P}^0 -a.s. uncountable. Set $\tau = \sup\{t < 1: X_t = 0\}$. Millar proved that

$$\mathcal{F}_{\tau}^{X}=\mathcal{F}_{\tau+}^{X}.$$

(X jumps over 0 infinitely often immediately after τ , so one cannot assign a sign to its excursions from 0.)

Conjecture 3. For the stable process X, sp dim $((\mathcal{F}_t^X)) = 1$.

Remarks. (1) In fact all Lévy processes with infinitely many non-atomic jumps have isomorphic filtrations.

(2) The Davis-Varaiya dimension satisfies $\dim((\mathcal{F}_t^X)) = \infty$.

Dubins, Feldman, Smorodinsky, Tsirelson (1994) disproved Conjecture 1, giving an example of filtration with BRP but which is not Brownian.

Tsirelson (1997) proved that one cannot construct a WBM (with $N \ge 3$) on the filtration of a BM.

He also proved that if W is a BM(\mathbb{R}^d), $A \subset \mathbb{R}^d$ and $\tau = \tau_A = \sup\{t < 1 : W_t \in A\}$ then

$$\operatorname{spdim}(\mathcal{F}_{\tau}^{W}, \mathcal{F}_{\tau+}^{W}) = 2.$$

(So W can 'leave a set in at most 2 ways'.)

Barlow, Emery, Knight, Song, Yor (1998) proved that sp dim $((\mathcal{F}_t^{BM})) = 2$.

Tsirelson's argument

Joining 2 copies of a filtration. Let B = B and B' be two independent BM (on a probability space). Set

$$B^{\varepsilon} = \cos(\varepsilon)B + \sin(\varepsilon)B'.$$

So for each ε the process B^{ε} is also a BM.

Let \mathcal{F}^B_t be the filtration of a BM. If $\xi \in L^0(\mathcal{F}^B_\infty)$ then there exists a measurable function $f:C([0,\infty))\to\mathbb{R}$ such that $\xi=f(B)$. Write $\xi^\varepsilon=f(B^\varepsilon)$.

Lemma 1. Let $\xi \in L^0(\mathcal{F}_{\infty}^B)$. Then $\xi^{\varepsilon} \to \xi$ in probability as $\varepsilon \to 0$. (The Brownian filtration is 'cosy'.)

Lemma 2. Let $\xi \in L^0(\mathcal{F}^B_\infty)$ have a continuous distribution function. Then $\mathbb{P}(\xi = \xi^\varepsilon) = 0$.

Proof of Lemma 2

Lemma 2. Let $\xi \in L^0(\mathcal{F}_1)$ have a continuous distribution function. Then $\mathbb{P}(\xi = \xi^{\varepsilon}) = 0$.

Neveu's hypercontractivity property: there exists $p=p(\varepsilon)<2$ such that if $X\in L^0(\mathcal{F}_1^B)$, $Y\in L^0(\mathcal{F}_1^{B^\varepsilon})$ then

$$E|XY| \le ||X||_p||Y||_p.$$

(Proof – stochastic calculus.)

Choose sets A_i such that $\mathbb{P}(\xi \in A_i) = 1/n$. Then

$$\mathbb{P}(\xi \in A_i, \xi^{\varepsilon} \in A_i) = \mathbb{E}1_{A_i}(\xi)1_{A_i}(\xi^{\varepsilon})$$

$$\leq (1/n)^{1/p} \cdot (1/n)^{1/p} = n^{-2/p} = n^{-1-\delta}.$$

So

$$\mathbb{P}(\cup_i \{ \xi \in A_i, \xi^{\varepsilon} \in A_i \}) \le n^{-\delta}.$$

WBM filtration is not Brownian

Argument by contradiction. Suppose it is, let B and B^{ε} be Brownian motions as above, let Z = F(B) be a WBM (with $N \ge 3$ branches), and let $Z^{\varepsilon} = F(B^{\varepsilon})$. Stop Z and Z^{ε} when they hit $\{|z| = 1\}$. Write

$$Z_t = R_t \exp(i\Theta_t), \quad Z_t^{\varepsilon} = R_t^{\varepsilon} \exp(i\Theta_t^{\varepsilon}).$$

These processes are all on the filtration (\mathcal{F}_t) generated by B and B', and $\lim_{\varepsilon \to 0} Z_1^{\varepsilon} = Z_1$ (in \mathbb{P}) by Lemma 1.

Let $\tau = \sup\{t \le 1 : Z_t = 0\}$, and define τ^{ε} analogously. Then τ and τ^{ε} have a continuous distribution function, so by Lemma 2,

$$\mathbb{P}(\tau = \tau^{\varepsilon}) = 0.$$

Essential idea: if $\tau \neq \tau^{\varepsilon}$ then Z and Z^{ε} make their last exits from 0 at different times, so Z_1 and Z^{ε} cannot not be close.

Let d(x, y) be the shortest path metric on the state space A for the WBM. Stochastic calculus gives:

$$d(Z_t, Z_t^{\varepsilon}) = \text{martingale} + \frac{1}{2} L_t(Z, Z^{\varepsilon}) + \frac{(N-2)}{2N} \int_0^t 1_{(Z_s \neq 0)} dL_s(R^{\varepsilon}) + \frac{(N-2)}{2N} \int_0^t 1_{(Z_s \neq 0)} dL_s(R).$$

Also

$$\mathbb{P}(Z_{\tau^{\varepsilon}} \neq 0) = \mathbb{E} \int_{0}^{\infty} 1_{(Z_{s} \neq 0)} d1_{[\tau^{\varepsilon}, \infty)} = \mathbb{E} \int_{0}^{\infty} 1_{(Z_{s} \neq 0)} dL_{t}(R^{\varepsilon}).$$

Taking expectations (recall Z, Z^{ε} are stopped when they hit the unit circle)

$$\mathbb{E}d(Z_{\infty}, Z_{\infty}^{\varepsilon}) \ge \frac{(N-2)}{2N} \Big(\mathbb{P}(Z_{\tau^{\varepsilon}} \neq 0) + \mathbb{P}(Z_{\tau}^{\varepsilon} \neq 0) \Big)$$
$$\ge \frac{(N-2)}{2N} \mathbb{P}(\tau \neq \tau^{\varepsilon}) = \frac{(N-2)}{2N}.$$

So we cannot have $\lim_{\varepsilon} Z_{\infty}^{\varepsilon} = Z_{\infty}$, which contradicts Lemma 1.

Marc Yor in Helsinki, 1985