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Abstract

We explain how to apply the Bott residue formula to stacks of stable
maps. This leads to a formula expressing Gromov-Witten invariants
of projective space in terms of integrals over stacks of stable curves.
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0 Introduction

The course is divided into three lectures. Lecture I is a short introduction
to stacks. We try to give a few ideas about the philosophy of stacks and we
give the definition of algebraic stack of finite type over a field. Our definition
does not require any knowledge of schemes.

Lecture II introduces equivariant intersection theory as constructed by
Edidin and Graham [5]. The basic constructions are explained in a rather
easy special case. The localization property (in the algebraic context also
due to Edidin-Graham [6]) is mentioned and proved for an example. We
set up a general framework for using the localization property to localize
integrals to the fixed locus, or subvarieties (substacks) containing the fixed
locus.

In Lecture IIT we apply the localization formula to the stack of stable
maps to P". We deduce a formula giving the Gromov-Witten invariants of P"
(for any genus) in terms of integrals over stacks of stable curves Mg,n. The
proof given here is essentially complete, if sometimes sketchy. At the same
time these lectures were given, Graber and Pandharipande [12] indepen-
dently proved the same formula. Their approach is very different from ours.
We avoid entirely the consideration of equivariant obstruction theories, on
which [12] relies. The idea to use localization to compute Gromov-Witten
invariants is, of course, due to Kontsevich (see [13], where the genus zero
case is considered).

1 Lecture I: A short introduction to stacks

What is a variety?

We will explain Grothendieck’s point of view that a variety is a functor.

Let us consider for example the affine plane curve y?> = z3. According to
Grothendieck, the variety y? = x? is nothing but the ‘system’ of all solutions
of the equation 42 = z3 in all rings. We restrict slightly and fix a ground
filed £ and consider instead of all rings only k-algebras of finite type (in other
words quotients of polynomial rings in finitely many variables over k). So,
following Grothendieck, we associate to every finitely generated k-algebra
A, all solutions of y? = 3 in A?:

hy : (f.g. k-algebras)
A

(sets)

—
— {(z,y) € A% | y* =2}



Notice that hy is actually a (covariant) functor: If ¢ : A — B is a morphism
of k-algebras and (z,y) € A? satisfies y2 = 23, then (¢(x),¢(y)) € B?
satisfies ¢(z)? = ¢(y)3. This makes precise what we mean by ‘system’ of
solutions: We mean this functor. Grothendieck’s point of view is that the
variety V' C A? defined by y? = x> is this functor hy. At least for affine
varieties this is justified by the following corollary of Yoneda’s lemma.

The (covariant) functor

(affine k-varieties) —— Funct((f.g. k-algebras), (sets))
V — hV

is fully faithful. Here Funct stands for the category of functors: ob-
jects are functors from (f.g. k-algebras) to (sets), morphisms are natural
transformations. Because this functor is fully faithful we may think of
(affine k-varieties) as a subcategory of Funct((f.g. k-algebras), (sets)) and
identify the variety V' with the functor hy .

Note 1 Given an affine variety V there are many ways to write it as the
zero locus of a finite set of polynomials in some affine n-space. So one gets
many functors hy. This is not a problem, because all these functors are
canonically isomorphic to the functor given by the affine coordinate ring
E[V] of V:

hy (A) = Homk—alg(k[v]v A)

For example, the affine coordinate ring of the curve y? = 23 is k[z,y]/(y> —
23), and for every k-algebra A we have

{(x,y) € A2 | y2 = x3} = Hornkfalg(k[x’y]/(y2 - xg)’A)'

Terminology: The functor hy is the functor represented by V.

Once we have embedded the categroy (affine k-varieties) into
Funct((f.g. k-algebras), (sets)) we may enlarge the former inside the latter to
get a larger category than (affine k-varieties), still consisting of ‘geometric’
objects.

For example, every finitely generated k-algebra A, reduced or not, gives
rise to the functor

hspec a : (f.g. k-algebras) — (sets)
R +— Homyj_,,(A,R)



The functor

hspec : (f.g. k-algebras) — Funct((f.g. k-algebras), (sets))
A — hSpecA

is contravariant and fully faithful. This is Yoneda’s lemma for the cate-
gory (f.g. k-algebras). The above corollary of Yoneda’s lemma follows from
this and the equivalence of categories between affine k-varieties and their
coordinate rings. Yoneda’s lemma is completely formal and holds for ev-
ery category in place of (f.g. k-algebras). The proof is a simple exercise in
category theory.

In keeping with Grothendieck’s philosophy of identifying a geometric
object with the functor it represents, we write

Spec A : (f.g. k-algebras) — (sets)

for the functor hgpec 4, and call it the spectrum of A. The full subcategory of
Funct((f.g. k-algebras), (sets)) consisting of functors isomorphic to functors
of the form Spec A is called the category of affine k-schemes of finite type,
denoted (aff/k).

To construct the functor hy for a general k-variety V is a little tricky.
Unless one knows scheme theory. Then it is easy, and we can do it for any
k-scheme of finite type X:

hx : (f.g. k-algebras) — (sets)
A — Homgepemes(Spec 4, X)

It is then slightly less trivial than just Yoneda’s lemma that one gets a
(covariant) fully faithful functor

h: (f.t. k-schemes) — Funct((f.g. k-algebras), (sets))
X +— hx

(This is, in fact, part of what is known as descent theory.)

The largest subcategory of Funct((f.g. k-algebras), (sets)) which still con-
sists of ‘geometric’ objects is the category of finite type algebraic spaces over
k. We will now describe this category (without using any scheme theory).

Algebraic spaces

First of all, to get a more ‘geometric’ picture, we prefer to think in terms
of the category (aff/k) rather than the dual category (f.g. k-algebras).



Thus we replace Funct((f.g. k-algebras), (sets)) by the equivalent category
Funct®((aff/k), (sets)), where Funct® refers to the category of contravari-
ant functors. Grothendieck calls Funct®((aff/k), (sets)) the category of
presheaves on (aff/k).

We start by considering the covariant functor

h: (aff/k) — Funct™((aff/k), (sets))
X — hx |,

where hx(Y) = Homk_schemes(Y, X) = HOmk_alg(k[X], k[Y])

Note 2 The category (aff/k) containes fibered products (the dual concept
in (f.g. k-algebras) is tensor product) and a final object Speck. The same
is true for Funct®((aff/k), (sets)). Given a diagram

VA
lo
X—f>Y

in Funct®((aff/k), (sets)) the fibered product W = X Xy Z is given by

W(SpecR) = X(SpecR) Xy (spec r) Z(Spec R)
= {(z,z) € X(Spec R) x Z(SpecR) |
f(Spec R)(x) = g(Spec R)(2) € Y (Spec R)}

A final object of Funct®((aff/k), (sets)) is the constant functor Spec R —
{@}. Here, of course, any one-element set in place of {@} will do. Moreover,
the functor h commutes with fibered products and final objects. One says
that A is left exact.

Note 3 The category (aff/k) also contains direct sums (called disjoint sums
in this context). If X and Y are affine k-schemes then their disjoint sum Z =
X J]Y has affine coordinate ring Ay = Ax x Ay. Also, (aff/k) contains an
initial object, the empty scheme, whose affine coordinate ring is the zero ring.
We do not consider the corresponding notions in Funct*((aff/k), (sets)), the
functor h does not commute with disjoint sums anyway.

Definition 4 Let X be an object of (aff/k) and (X;);cr a family of objects
over X (which means that each X; comes endowed with a morphism X; —
X). We call (X;)ier a covering of X, if I is finite and the induced morphism
IT;er X; — X is faithfully flat, i.e. flat and surjective.



Remark 5 This defines a Grothendieck topology on (aff/k).

Now that we have the notion of covering, we can define the notion of
sheaf.

Definition 6 A sheaf on (aff/k) is an object X of Funct*((aff/k), (sets))
(i.e. a presheaf), satisfying the two sheaf axioms: Whenever (U;);cr is a
covering of an object U of (aff/k), we have

1. if z,y € X(U) are elements such that z|U; = y|U;, for all i € I, then
x =y, (Here z|U; denotes the image of x under X (U) — X (U;).)

2. if z; € X(U;), @ € I, are given such that z;|U;; = x;|U;;, for all
(i,5) € I x I, (Ujj = U; xy Uj) then there exists an element € X (U)
such that z|U; = x;, for all 1 € I.

It is a basic fact from descent theory that for every (affine) k-scheme of
finite type X, the functor hx is a sheaf on (aff/k). The notion of covering in
terms of faithful flatness is the most general notion of covering that makes
this statement true.

Definition 7 An algebraic space (of finite type) over k is a sheaf X on
(aff/k) such that

1. the diagonal X 2y X x X is quasi-affine,
2. there exists an affine scheme U and a smooth epimorphism U — X.

Let us try to explain the meaning of quasi-affine and smooth epimor-
phism in this context. So let f : X — Y be an injective morphism of
sheaves on (aff/k) (this means that for all objects U of (aff/k) the map
fU): X(U) = Y(U) is injective). If U is an affine scheme and U — Y is a
morphism and we form the fibered product

V—U

L,

X—Y

in Funct*((aff/k), (sets)) then V is a subsheaf of U. Thus it makes sense
to say that V is or is not a finite union of affine subschemes of U. Now
the injection f : X — Y is called quasi-affine, if for all affine schemes U
and for all morphisms U — Y (so equivalently for all elements of Y (U)) the
pullback V' C U is a finite union of affine subschemes of U.



Now let X be a sheaf on (aff/k) such that the diagonal is quasi-affine.
This implies that whenever we have two affine schemes U and V over X,
then the fibered product U xx V is a finite union of affine schemes. Now,
in the situation of the above definition, the morphism U — X is called a
smooth epimorphism, if for every affine scheme V' — X the fibered product
U xx V can be covered by finitely many affine Zariski-open subschemes
W; such that for each ¢ the morphism W; — V is smooth and the induced
morphism [IW; — V is surjective.

Of course all k-varieties and k-schemes are algebraic k-spaces.

Definition 8 A k-scheme is an algebraic k-space X, which is locally in
the Zariski-topology an affine scheme. This means that there exist affine
k-schemes Uy, ... ,U, and open immersions of algebraic spaces U; — X
such that [[U; — X is surjective. (An open immersion of algebraic spaces
X — Y is a morphism such that for every affine scheme U — Y the pullback
X xy U — U is an isomorphism onto a Zariski open subset.)

A k-variety is a k-scheme which is reduced and irreducible, which means
that the U; in the definition of scheme may be chosen reduced and irreducible
with dense intersection.

One can prove that an algebraic space X is locally in the étale topology
an affine scheme. This means that affine schemes Uy, ... ,U, together with
étale morphisms U; — X can be found, such that [JU; — X is an étale
epimorphism. (The notion of étale epimorphism is defined as the notion of
smooth epimorphism, above, using fibered products.)

Using such étale (or smooth) covers, one can do a lot of geometry on
algebraic spaces. A vector bundle, for example, is a family of vector bundles
Ei/Ui, together with gluing data Ez'|Ui,j = Ej|Ui,j-

Groupoids

Definition 9 A groupoid is a category in which all morphisms are invertible.

Examples 10 1. Let X be a set. We think of X as a groupoid by
taking X as set of objects and declaring all morphisms to be identity
morphisms.

2. Let G be a group. We define the groupoid BG to have a single object
with automorphism group G.

3. Let X be a G-set. Then we define the groupoid X to have set of
objects X, and for two objects z,y € X we let Hom(z,y) = {g € G |



gx = y}. This groupoid is called the transformation groupoid given by
the action of G on X.

4. Let R C X x X be an equivalence relation on the set X. Then we
define an associated groupoid by taking as objects the elements of X
and as morphisms the elements of R, where the element (x,y) € R is
then a unique morphism from z to y.

We think of two groupoids as ‘essentially the same’ if they are equivalent
as categories. We say that a groupoid is rigid if every object has trivial
automorphism group, and connected if all objects are isomorphic. Every
rigid groupoid is equal to the groupoid given by an equivalence relation. A
groupoid is rigid if and only if it is equivalent to a groupoid given by a set as
in Example 1, above. A groupoid is connected if and only if it is equivalent
to a groupoid of type BG, for some group G. All these follow easily from
the following well-known equivalence criterion.

Proposition 11 Let f : X — Y be a morphism of groupoids (i.e. a functor
between the underlying categories X and Y ). Then f is an equivalence of
categories if and only if f is fully faithful and essentially surjective.

Remark 12 Groupoids form a 2-category. This means that the category
of groupoids consists of

1. objects: groupoids
2. morphisms: functors between groupoids

3. 2-morphisms, or morphisms between morphisms: natural transforma-
tions between functors.

Note that this is a special type of 2-category, since all 2-morphisms are
invertible. One should think of such a 2-category as a category where for
any two objects X, Y the morphisms Hom(X,Y') form not a set but rather
a groupoid.

Example 13 Another important example of a 2-category with invertible
2-morphisms is the (truncated) homotopy category:

1. objects: topological spaces
2. morphisms: continuous maps

3. 2-morphisms: homotopies up to reparametrization.



One may think of groupoids as generalized sets, or rather a common
generalization of sets and groups. If we replace the category (sets) in the
definition of algebraic space by the 2-category (groupoids), we get algebraic
stacks. This is not a completely trivial generalization because of the com-
plications arising from the fact that (groupoids) is a 2-category rather than
a l-category, like (sets).

We call a groupoid finite, if it has finitely many isomorphisms classes
of objects and every object has a finite automorphism group. For a finite
groupoid X we define its ‘number of elements’ by

1
#(X) =) g

where the sum is taken over a set of representatives for the isomorphism
classes.

Fibered products of groupoids

The fibered product is a construction that is not only basic for the theory
of groupoids and stacks, but is also a good example of the philosophy of
2-categories.

Let
7
lg
X —f>Y

be a diagram of groupoids and morphisms. Then the fibered product W =
X xy Z is the groupoids defined as follows: Objects of W are triples (x, ¢, z),
where z € obX, z € obZ and ¢ : f(z) — ¢g(z) is a morphism in Y. A
morphism in X from (z, ¢, 2) to (¢, ¢', 2') is a pair («, 3), where a : x — =’
and B : z — 2’ are morphisms in X and Z, respectively, such that the
diagram

¢I
f(@") —=g(z")
commutes in Y.
The groupoid W comes together with two morphisms W — X and
W — Z given by projecting onto the first and last components, respectively.



Moreover, W comes with a 2-morphism 6

W—2

L 0
X—f>Y

making the diagram ‘2-commute’, which just means that € is an isomorphism
from the composition W — X — Y to the composition W — Z — Y. The
2-isomorphism 6 is given by 6(z, ¢, z) = ¢. It is a natural transformation by
the very definition of W.

Example 14 If X, Y and Z are sets, then W is (canonically isomorphic
to) the fibered product {(z,y) € X xY | f(z) = g(y)} in the category of
sets.

The 2-fibered product W satisfies a universal mapping property in the
2-category of groupoids. Namely, given any groupoid V with morphisms
V — X and V — Z and a 2-isomorphism fromV - X - Y toV - Z =Y
(depicted in the diagram below by the 2-arrow crossing the dotted arrow),
there exists a morphism V — W and 2-isomorphisms from V' — X to
VoW XandV - W — Z toV — Z such that the diagram

{
- Z

7
w
]
X—Y

f

commutes, which amounts to a certain compatibility of the various 2-
isomorphisms involved. (One should image this diagram as lying on the
surface of a sphere.) The morphism V' — W is unique up to unique isomor-
phism.

Whenever a diagram such as (1) satisfies this universal mapping prop-
erty, we say that it is 2-cartesian (or just cartesian, because in a 2-category,
2-cartesian is the default value). In this case, W is equivalent to the fibered
product constructed above.

10



If X is a G set, then we have two fundamental cartesian diagrams:

X ——npt

| e

Xq¢— BG

~—

and

Gx XTI —X

;]

X ——Xg

Here pt denotes the groupoid with one object and one morphism (necessar-
ily the identity morphism of the object). If we write a set, we mean the
set thought of as a groupoid. By ¢ and p we denote the action and the
projection, respectively.

Diagram (3) is moreover 2-cocartesian'. Hence X satisfies the universal
mapping property of a quotient of X by G in the category of groupoids. Note
that in the category of sets the quotient set X/G satisfies the cocartesian
property, but not the cartesian property (unless the action of G on X is free,
in which case the set quotient X/G is equivalent to the groupoid quotient
X¢). Thus quotients taken in the category of groupoids have much better
properties than quotients taken in the category of sets. For example, we
have

#X
#(Xa) = G
if X and G are finite.

Let X be a groupoid and let X be the set of objects of X and X; the
set of all morphisms of X. Let s : X; — Xy be the map associating with
each morphism its source object, and ¢ : X; — Xy the map associating with
each morphism its target object. Then the diagram

X, —= X,

X0L>X

!The notion of 2-cocartesian is more subtle than one might be led to believe. The
correct definition is not simply the dual notion to the 2-cartesian property explained
above. It involves, instead of a square, a cube. For our purposes it is sufficient to remark
that (3) is cocartesian with respect to test objects which are rigid groupoids, or even just
sets. For such text objects, 2-cocartesian reduces to the usual notion of cocartesian.

11



is cartesian and cocartesian, where 7 : Xg — X is the canonical morphism.
Thus a groupoid may be thought of as the quotient of its object set by the
action of the morphisms.

Algebraic stacks

We will subdivide the definition of algebraic stacks into three steps.

Prestacks

Prestacks are a generalization of presheaves (i.e. contravariant functors
(aff/k) — (sets)).

Definition 15 A prestack is a (lax) contravariant functor X : (aff/k) —
(groupoids). This means that X is given by the data

1. for every affine k-scheme U a groupoid X (U),

2. for every morphism of k-schemes U — V a morphism of groupoids
X(V) = X(U),

3. for every composition of morphisms of k-schemes U — V — W a
natural transformation 6:

(this means that 6 is a natural transformation from the functor
X (W) — X(U) to the composition of the functors X (W) — X (V) —
X(U).

This data is subject to the conditions
1. if U = U is the identity, then so is X (U) — X (U),

2. for each composition U -V — W — Z in (aff/k) a 2-cocycle condi-
tion expressing the compatibilities the various 6 have to satisfy. Using
the examples below as guide, this 2-cocycle condition is not difficult
to write down. We leave this to the reader.

Examples 16 1. Each actual functor (presheaf) (aff/k) — (sets) is a
lax functor (prestack) (aff/k) — (groupoids). All @ are identities in
this case.



2. The following might be thought of as a prototype stack:

Vecty, : (aff/k) — (groupoids)
U +— (category of vector bundles of rank n over U
with isomorphisms only)
(U—V) —— pullback of vector bundles
(U—V = W) +~— 0: the canonical isomorphism of pullback
from W to U directly with pullback in two

steps via the intermediate V.

3. In this example all the @ are trivial again. Let G be an algebraic group
over k and consider the functor

preBG : (aff/k) — (groupoids)

B(G(U))

the morphism of groupoids

B(G(V)) — B(G(U)) induced by the

morphism of groups G(V) — G(U)

Q\_/

NN
U—-V) —

Let us denote the category of contravariant lax functors from (aff/k) to
(groupoids) by Hom*(aff/k, groupoids). It is, of course, a 2-category. Its
objects we have just defined. We leave it to the reader to explicate the
morphisms and the 2-isomorphisms.

Given a lax functor X and an object x of the groupoid X (U), where U
is an affine k-scheme, we get an induced morphism

U—X

of lax functors (i.e., a natural transformation). We denote this morphism

by the same letter:
z:U— X.

The morphism z associates to V' — U the pullback z|V.
A basic fact about Hom*(aff/k, groupoids) is that it admits 2-fibered
products, i.e. every diagram

VA
g
XLY

13



can be completed to a cartesian diagram

W—2

|

9 g
X—f>Y

This is accomplished essentially by defining W (U), for U an affine k-scheme,
simply as the fibered product of X (U) and Z(U) over Y (U).

Stacks

The notion of stacks generalizes the notion of sheaf on (aff/k).

Definition 17 A prestack X : (aff/k) — (groupoids) is called a stack if it
satisfies the following two stack axioms.

1. If U is an affine scheme and z,y € X (U) are objects of X (U) then the
presheaf

Isom(z,y) : (aff/U) — (sets)
V — Isom(z|V,y|V)

is a sheaf on (aff/U).

2. X satisfies the descent property: Given an affine scheme U, with a
cover (in the sense of Definition 4) (U;)icr, and given objects z; €
X (U;), for all ¢ € I and isomorphisms ¢;; : z;|U;; — x;|Us;, for all
(4,7) € I x I, such that the (¢;;) satisfy the obvious cocycle condition
(for each (i,7,k) € I x I x I), then there exists an object 2 € X (U)
and isomorphisms ¢; : x; — z|U;, such that for all (i, j) € U;; we have
$|Uij o ¢ij = ¢ilUsj.-

The data (z;, ¢;j) is called a descent datum for X with respect to the
covering (U;); if (z, ¢;) exists, the descent datum is called effective. So the
second stack axiom may be summarized by saying that every descent datum
is effective.

Examples 18 1. Of course every sheaf is in a natural way a stack. Note
how the stack axioms for presheaves reduce to the sheaf axioms.

2. The prestack Vect,, is a stack, since vector bundles satisfy the decent
property.

14



3. The prestack pre BG is not a stack. A descent datum for preBG with
respect to the covering (U;) of U is a Cech cocycle with values in G.
It is effective if it is a boundary. Thus the Cech cohomology groups
H'((U;),G) contain the obstructions to preBG being a stack. Thus
we let BG be the prestack whose groupoid of sections over U € (aff/k)
is the category of principal G-bundles over U. This is then a stack.
There is a general process associating to a prestack a stack, called
passing to the associated stack (similar to sheafification). The stack
BG@ is the stack associated to the prestack preBG.

Algebraic stacks

This notion generalizes the notion of algebraic space.

Definition 19 A stack X : (aff/k) — (groupoids) is an algebraic k-stack if
it satisfies

1. the diagonal A : X — X x X is representable and of finite type,

2. there exists an affine scheme U and a smooth epimorphism U — X.
Any such U is called a presentation of X.

The first property is a separation property. It can be interpreted in
terms of the sheaves of isomorphisms occurring in the first stack axiom. It
says that all these isomorphism sheaves are algebraic spaces of finite type.
(The definition of representability is as follows. The morphism X — Y of
stacks is representable if for all affine U — Y the base change X xy U is an
algebraic space.)

The second property says that, locally, every stack is just an affine
scheme. Thus one can do ‘geometry’ on an algebraic stack. For example,
a vector bundle F over an algebraic stack X is a vector bundle E’ on such
an affine presentation U, together with gluing data over U x x U (which is
an algebraic space by the first property). For another example, an algebraic
stack X is smooth of dimension n, if there exists a smooth presentation
U — X, where U is smooth of dimension n + k£ and U — X is smooth of
relative dimension k. (Smoothness of representable morphisms of stacks is
defined ‘locally’, by pulling back to affine schemes, similarly to the case of
algebraic spaces, above.) Note that according to this definition, negative
dimensions make sense.

Examples 20 1. Of course, all algebraic spaces are algebraic stacks.

15



2. The stack Vect,, is algebraic. The isomorphism spaces are just twists
of GLy, and therefore algebraic. For a presentation, take Speck —
Vect,, given by the trivial vector bundle k" over Speck. This is a
smooth morphism of relative dimension n?, since for any affine scheme
U with rank n vector bundle E over U, the induced morphism U —
Vect,, pulls back to the bundle of frames of E, which is a principal

G L,-bundle, and hence smooth of relative dimension n?. Note that

this makes Vect, a smooth stack of dimension —n?.

3. Let G be an algebraic group over k. To avoid pathologies assume that
G is smooth (which is always the case if char £ = 0). Then BG is an
algebraic stack. The proof of algebraicity is the same as for Vect,,
after all, Vect,, is isomorphic to BGL,,. Whenever P is a G-bundle
over a scheme X, then we get an induced morphism X — BG, giving
rise to the cartesian diagram

P —— Speck

.

X—BG

Therefore, Speck — BG is the universal G-bundle. Moreover, BG is
smooth of dimension —dimG.

4. If G is a (smooth) algebraic group acting on the algebraic space X,
then we define an algebraic stack X/G as follows. For an affine scheme
U, the groupoid X/G(U) has as objects all pairs (P, ¢), where P — U
is a principal G-bundle and ¢ : P — X is a G-equivariant morphism.
One checks that X/G is an algebraic stack (for example, the canonical
morphism X — X/G is a presentation) and that there are 2-cartesian
diagrams

GxX——X

| | @

X X/G

and

X — Speck

| | ®)

X/G —— BG

16



2 Lecture II: Equivariant intersection theory

Intersection theory

For a k-scheme X let A,(X) = @, Ax(X), where A;(X) is the Chow group
of k-cycles up to rational equivalence tensored with Q. Readers not fa-
miliar with Chow groups may assume that the ground field is C and work
with Ag(X) = HEM(X®*")q instead. Here X*" is the associated analytic
space with the strong topology and BM stands for Borel-Moore homology,
i.e. relative homology of a space relative to its one-point compactification.
Everything works with this A, although the results are weaker.

Let also A*(X) = @, A*(X) be the operational Chow cohomology
groups of Fulton-MacPherson (see [9]), also tensored with Q. If working
with Borel-Moore homology as A, take A¥(X) = H?*(X*")q, usual (singu-
lar) cohomology with Q-coefficients.

The most basic properties of A* and A, are: A*(X) is a graded Q-
algebra, for every scheme X, and A.(X) is a graded A*(X)-module, the
operation being cap product

(7)) — any

Note that A* and A, exist more generally for Deligne-Mumford stacks.
This was shown by A. Vistoli [16]. Deligne-Mumford stacks should be con-
sidered not too far from algebraic spaces or schemes (especially concerning
their cohomological properties over Q). Many moduli stacks (certainly all
M, (X, B)) are of Deligne-Mumford type.

A Deligne-Mumford stack is an algebraic k-stack that is locally an affine
scheme with respect to the étale topology. Thus a Deligne-Mumford stack
X admits a presentation p : U — X (U affine) such that p is étale. This
conditions implies, for example, that all automorphism groups are finite and
reduced.

Equivariant theory

Let G be an algebraic group over k. To work G -equivariantly means to work
in the category of algebraic G-spaces (i.e. algebraic k-spaces with G-action).
Now there is an equivalence of categories

(algebraic G-spaces) — (algebraic spaces /BG) (6)
X — X/G
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Here (algebraic G-spaces) is the category of algebraic k-spaces with G-action
and equivariant morphisms, (algebraic spaces /BG) is the category of al-
gebraic stacks over BG which are representable over BG. So an object of
(algebraic spaces /BG) is an algebraic stack X together with a representable
morphism X — BG. A morphism in (algebraic spaces /BG) from X — BG
to Y — BG is an isomorphism class of pairs (f,7n), where f : X — Y is a
morphism of algebraic stacks and 7 a 2-morphism making the diagram

XL>Y

N

BG

commute. The inverse of the functor (6) is defined using the construction
of Diagram (5).

Defining equivariant Chow groups Af(X) and A% (X), for a G-space X,
is equivalent to defining Chow groups A*(X/G) and A.(X/G) for stacks of
the form X /G, i.e. quotient stacks.

If the quotient stack X/G' is an algebraic space, then A% (X) = A,(X/G)
and A%L(X) = A*(X/G). In the general case, the construction is due to
Edidin-Graham [5]. They proceed as follows. Assume that G is linear (and
separable, to avoid certain pathologies in positive characteristic).

First define Ag (X) = Ap(X/G) for p fixed. Choose a representation
G — GL(V), such that there exists a G-invariant open subset U in the
vector space V on which G acts freely (i.e. such that U/G is a space) and
such that the complement Z =V — U has codimension

codim(Z,V) > dim X —dimG —p

The representation V' of G associates to the principal G-bundle X — X/G
a vector bundle over X/G. It is given by X x¢V = X x V/G, where G
acts on X x V by (z,v) - g = (zg,9”'v). It is not a space, but the open
substack X xq U C X X¢ V certainly is (the morphism X xq U — U/G
is representable and U/G is already a space). Thus we have the following
cartesian diagram.

XxU——=XxV X

o

X xqU—>X xqV —=X/G
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The vertical maps are principal G-bundles, hence smooth epimorphisms.
The inclusions on the left are open immersions with complement of codi-
mension > dim X —dim G — p. The horizontal maps on the right are vector
bundles of rank dim V.

Having chosen V and U C V, we now define

Ap(X/G) = Aptaimv(X xg U),

which makes sense, because for a reasonable theory of Chow groups for
quotient stacks we should have

Ap(X/G) = Apraimv(X xa V),

since the Chow group of a vector bundle should be equal to the Chow group
of the base, but shifted by the rank of the vector bundle, and

Apidimv (X xag V) = Aptdgimv (X xq U),

since the complement has dimension dim X xXg Z < p + dimV, and cycles
of dimension < k should not affect Ay.

This definition is justified by giving rise to an adequate theory. For
example, the definition is independent of the choice of V and U C V, as
long as the codimension requirement is satisfied. This is proved by the
‘double fibration argument’, see [5].

As an example, let us work out what we get for X/G = BG,,. Consider
the action of G, on A", given by scalar multiplication G,, x A" — A",
(t,x) — tzr. A principal bundle quotient exists for U = A" — {0} and
Z = {0} has codimension n. Thus this representation is good enough to
calculate A,(BG,,) for n > —1 —p <= p > —n. Moreover, by definition,
we have for all p > —n

Ap(BGp) = Apin(P").
In particular,

A,(BG,) = 0, forallp>0
A_l(BGm) = An_l(Pnil)
A_5(BG,) = Ap_o(P" 1Y), etc.

To see how these groups fit together for various n, let n’ > n and consider
a projection A" — A". This induces the projection with center ker(An' —
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A") =AM~ from PP ~1 to PRl

U —C> ]P)n’—l

|

Pnfl

Here the vertical map is a vector bundle of rank n’ — n and the horizontal
map is the inclusion of the complement of the center of projection P ~"~1,
Thus we have for all p > —n

’

Ap-l-n(]Pmil) = Ap-l—n-l—n’—n(U) = Ap—l—n’(U) = Ap—l—n’ (" 71)-

So we have independence of A,(BG,,) on the choice of n. This is a special
case of the double fibration argument.

Under the identification Ay, (P"™!) = Ay (P"'=1) the hyperplane [H]
in P! corresponds to the hyperplane [H] in P"~!. The same is true for

all intersections [H]*. We write h = [H] and thus we have for all k € Z
Ap(BG,) = Q'

where we agree that all negative powers of h are 0.

The equivariant cohomology groups Af,(X) = A*(X/G) are defined anal-
ogously to the usual A*, namely by operating on A%(Y"), for all equivariant
Y — X, where Y is a space (or equivalently all representable Y — X/G,
where Y is a stack).

In our example BG,, we get A*(BG,,) = Af_(pt) = Q[c], where c is the
Chern class of the universal line bundle and is in degree +1. Whenever X
is a Gy,-space we get via the standard representation of G, a line bundle
over X/G,, (or equivalently an equivariant line bundle X x Al over X). The
operation of ¢ € A*(BG,,) on A.(X/G,,) is through the Chern class of this
line bundle. We have c¢- h¥ = h¥~1, and so we see that A,(BG,,) is a free
A*(BG,,) = Q[cJ-module on h° € A 1(BG,). We may think of h° as the
fundamental class of BG,, (it corresponds to [P"!] under any realization
Afl(BGm) = Anil(ﬂbn—l).)

More generally, if T is an algebraic torus with character group M, then
A*(BT) = Symgp Mg =: R, canonically. (Note how ¢ comes from the
canonical character id : G,, — G,,.) Moreover, A,(BT) is a free Rp-module
of rank one on the generator [BT] in degree —dim 7.

We shall be only interested in the case where the group G = T is a
torus. Then for all T-spaces X, we have that A%.(X) is an Rp-algebra and
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AT (X) is an Rp-module. Therefore, Ry is the natural ground ring to work
over. As in the usual case (the non-equivariant case, where one passes from
A*(pt) = Z to Q) we want to pass from Rp to its quotient field. However,
so as to not loose the grading, we only localize at the multiplicative system
of homogeneous elements of positive degree, and call the resulting ring Q.
Then we may tensor all A%(X) and AT(X) with Qr. Still better, though,
is to first pass to the completion of Ry at the augmentation ideal, Ry and
then invert the homogeneous elements of positive degree to obtain Qr.

Comparing equivariant with usual intersection theory

For a G-space X, there is a canonical morphism X — X /G, which is smooth
of relative dimension dim G. It is, in fact, a principal G-bundle. Thus flat
pullback defines a homomorphism A% (X) — A,(X) of degree dim G. ‘Usual’
pullback defines A7, (X) — A*(X) preserving degrees.

Lemma 21 The top-dimensional map A§., x_gimc(X) = Adim x (X) is an
isomorphism.

Proof By using the definitions, this reduces to proving that for a G-bundle
of spaces, the top-dimensional Chow-groups agree. |
This isomorphism defines the fundamental class [Xg] of X/G in

Agim X —dim G’(X)
Note 22 If one works with cohomology one gets a Leray spectral sequence
Hg(X, H' (G)) = H'"(X,Q).

Localization

Let X be a T-space and Y C X a closed T-invariant subspace such that on
U = X —Y the torus T acts without fixed points. Then we have the proper
pushforward map

Lt AT(Y) — AT(X)
induced by the inclusion ¢ : Y — X.

Proposition 23 After tensoring with Qr
vt AL(Y) @Ry Qr — AL(X) ®ry Qr

18 an isomorphism.
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Proof Reduces the the case Y = @ and X = U, when the claim is that
AT(X) @R, Qr = 0. For details, see [6]. O

Rather than studying the proof of this proposition, let us study an ex-
ample.

Consider the torus T' = G,,"t" and M = 7', with basis Ao, ... , \n, and
Ar(pt) = A*(BT) = Rr = Q[Xo,... ,A,]. Let us denote the fundamental
class of BT by t. Then we have AT (pt) = A,(BT) = tRr = tQ)o, ... , A\n].
Let X = P" and consider the action of 7" on P" given by

t- {20y xn) = Ao(t)oy- -+, An(t)xn).

Take Y = {Py,...,P,}, where P, = (0,...,0,1,0,...,0), the 1 being in the
ith position. Then localization (Proposition 23) says that

s AR ©Qr — AL (PY) @ Qr
1=0

is an isomorphism. Since everything is smooth, we may translate this into
a statement about cohomology:

n
n @ AUPY © Qr — AR(PY) © Qr
i=0
is an isomorphism of degree +n.
To understand this isomorphism note that P"* /T — BT is a P"-bundle,
namely the projective bundle corresponding to the vector bundle £ on BT
given by the action of T on A"t!. Hence we have

Ap(P") = A*(P"/T)
= A*(BT)[§]/6" — cl(E)E" + ...+ (1) eppa (B)
=Qo, ..., MJ[E]/EM — L+ (=)l (B).

Now FE is a sum of line bundles, each associated to one of the characters

A0y -« - 5 Ap. Hence we have ¢;(E) = g;(Xo, ... ,\,), the symmetric function
of degree i in Ag,... ,A,. In other words,

n+1 - - n

Y DBttt =TE - N,
so that

n

A3(P") = Qo - A€/ (€= o)

1=0
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Hence we have

A7(P") ®ry Qr = Qr[€]/ H(f — i)

H [€]/(€ = i)

by the Chinese remainder theorem. This map

Ar(P") ®ry Qr — HAT ) ®ry QT
1=0

is of degree 0 and induced by ¢*. (Note that £ = ¢;(O(1)) pulls back to A;
at Pj, which is the character of the action of T on the fiber O(1)(F;).) If we
compose with

HAT ®QT—>HAT ) ® Qr

which is division by the tops Chern class of the tangent space (i.e. normal
bundle) we get the inverse of the above map «;. The tangent space Tpn(F;)
has weights (A; — Ai); and so we divide by [, ,;(A; — A;) in the ith com-
ponent.

The residue formula

Let us return to the setup of Proposition 23. Moreover, assume that the
inclusion ¢ : Y — X is T-equivariantly the pullback of a regular immersion
v:V-WwW

Y —=X
’ | (7)
V—=W.

Then we have the self intersection formula

V(o) = e(9" Ny w)a, forall a € AT(Y),
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where e stands for the top Chern (i.e. Euler) class. So if e(¢" Ny /w) €
AL(Y) ® Qr is invertible, we have

]
Vs

" e(g'N)’
and we have identified the inverse of the localization isomorphism ¢,, namely
1 L.ogT T
TAL(X — A (Y .
e(g*N)V *( )®QT *( )®QT

That e(g* N) is invertible, is in practise easily verified, one just has to check
that the weights of ¢* NV at the fixed points of X under T are non-zero. If
X is smooth and ¢ = v, then it is a theorem that these weights are always
non-zero and so e(N) is always invertible.

Let us from now assume that e(g* N) is, indeed, invertible in A7 (Y)®Qr.
Then we have for all g € AT (X)

V'

gL

If X is smooth and © = v, we will want to apply this to [X7] € AT(X):

_, ¥
Xl = *e(NY/X)'
So if a € A%.(X) we have
@]
ol Xr] = . e(Ny/x)

in AT (X).

Now assume that X is moreover proper. Then X/T — BT is proper
and proper pushforward gives a homomorphism deg? : AT(X) ® Qr —
AT (pt) ® Qr = tQ7 and we get

B _ qegT (L)) [ (@)
T/X a = deg” (a[X7]) = deg” ( e(Ny/x) )= T/Y e(Ny/x)’

an equation in AT (pt) ® g, Qr = tQr.
Now consider the cartesian diagram

X——pt

L]

X/T — BT.
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Since flat pullback commutes with proper pushforward, we get an induced

commutative diagram

Au(x) —— Q
T | ®)
AT(X) ——"5 Qs M,
where the homomorphism 6 : tQ[Xg, ... ,A\,] — Q is given by sending t to 1
and the )\; to 0. Diagram (8) fits into the larger diagram
A(x) —=2——0Q
Ta
AT (x) — 2 tRy
| )
AT(X)® Qr e’ tQr
Lo |2 o
AL(Y) ® Qr.

Corollary 24 (Residue Formula) 1. Assume X is smooth and . = v.
If a € AY™MX(X) comes from o € AF™X(X), then

T (@)
——— €tQ
/y e(Ny/x) g
is contained in the submodule tQ and we have
()
a = dega[X] = 0deg? a[X7] = HT/ —_.
/X ] ] Y €(NY/X)

The 0 in this formula only serves to remove the factor of t.

2. General case. Assume 3 € AL(X). Write b for the corresponding
element of A (X). Let a € A%(X) and write a for the corresponding
element of A*(X). Then if degf — degax = —dimT, then degb —
dega =0 and

a:9T/a:9degTaﬂB:0degTozﬂL* v (10)
/b 3 e(g*N)

_ T *(a V!ﬂ =07 -
= Odeg ( ( )me(g*N)> 0 /,/!5 e(g*N)’
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Again, this is to be interpreted to mean that

T e’
€ tQr
/u!ﬂ e(g*N)

s contained in tQ and after removing t we get fba.

Proof This is just a simple diagram chase using (9) and keeping track of
degrees. n

Remark 25 ( )1. Evaluating the rational function of degree zero
T o V; o e
0 fY Ny x) at an element y € MV corresponds to restricting the ac-
tion of T' to the corresponding one-parameter subgroup. For a generic
one-parameter subgroup the fixed locus of T and of the on(e—)parameter
. . T Vv (a
subgroup will be the same and the denominator of fY Ny x)
. T L* (a) .
vanish at . Then fY Ny x) CAn be calculated by evaluating at pu.
This is also how one evaluates in practise.

will not

2. The standard way to ensure that a comes from « is to take polynomials
in Chern classes of equivariant vector bundles.

3. Assume that Y is the fixed locus. Then AT(Y) = A, (Y) ®qg A.(BT)
and A%.(Y) D A*(Y) ®q Rr. If 1" (o) € Ry C A%(Y), then

1, ey =) oy

by the projection formula.

4. Also, if T acts trivially on Y, and Ny, x has a filtration with line bundle
quotients L;, then e(Ny,x) = [[;(c(Li) + A;), where c¢(L;) € A*(Y) is
the Chern class of L; and \; € Ry the weight of T' on L;. This gives
a very explicit form of the Bott residue formula.

Example 26 Let 7 operate on P!, in such a way that 0 and oo are the
fixed points of 7. Let E be an equivariant vector bundle on P'. Then
E(0) and E(oo) are representations of 7. Let Aj..., )\, be the weights
of T on E(0) and py...,u, the weights of T on E(co). Also, let w be
the character through which 7" acts on P!, i.e. ¢ -1 = w(t). Assume that
H'(P',E) = 0. Then we can calculate the weights of T on H°(P!, E) by
equivariant Riemann-Roch: Let aq,... ,a, be these weights. Then we have
(apply Riemann-Roch to P*/T " BT):

ch(H°(PY, E)) = deg! (ch(E) td(T}) N [PX])

26



or

" ch(E() td(Tp1(0) | ch(B(o0)) td(Tpi(0))
2T o) T al)

by localization. Now since td(z) =
w and on Tp1(00) is —w, we get

o= and the weight of T on Tp1(0) is

Xn:eai _ ch{E()) | ch(E(c0))

1—eVw 1—ev

or

L Aj 1
> et = DOLAID DL
i=1

1—eVw 1—ew

in Q7. Note that we have uncapped with [BT.
This determines the a; uniquely. Useful to calculate the «; in this context
is the formula (which holds for all a,b € Z)

et bw

€ _ nw
1—e“’+1—e*“’_ze ’
n

where for a > b+ 1 we set 30 ™ = — Z?;blﬂ e,

3 Lecture III: The localization formula for
Gromov-Witten invariants

Using the localization formula is one of the most useful methods we have
to calculate Gromov-Witten invariants, besides the WDVV-equations (i.e.
the associativity of the quantum product) and its analogues for higher (but
still very low) genus. The idea of applying the Bott formula in this context
is due to Kontsevich [13]. It has been used by Givental [11] to verify the
predictions of Mirror symmetry for complete intersections in toric varieties.

If the variety we are interested in has finitely many fixed points under a
torus action, the Bott formula reduces the calculation of its Gromov-Witten
invariants to a calculation on Mg,n and a combinatorial problem. In this
lecture we will treat the case of projective space P".
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Let the ground field be of characteristic 0. Let M, (P",d) denote the
stack of stable maps of degree d to P, whose source is a genus g curve with
n marked points. For an affine k-scheme U the groupoid

Mg (B, d)(U)

is the groupoid of such stable maps parameterized by U. These are diagrams

o—1opr

)

where 7 : C' — U is a family of prestable curves with n sections and f is a
family of maps of degree d, such that the stability condition is satisfied (see,
for example, [13], [14], [10], [4], [2]). Evaluation at the n marks defines a
morphism

ev: My (P, d) — (P")™
Gromov-Witten invariants are the induced linear maps

AP —Q

a®...0a, — / evi(a; ®...a,).
[Mg,n(PT,d)]

For ¢ > 0 the cycle [My,(P",d)] is the ‘virtual fundamental class’ of
Mg, (P, d) (see [2], [3], [1] or [15]). This is a carefully constructed cycle
giving rise to a consistent theory of Gromov-Witten invariants (i.e., a so-
called cohomological field theory, [14]). The usual fundamental cycle is,
in general, not even in the correct degree, as M, (P",d) may have higher
dimension than expected, because of the presence of obstructions.

Now consider the torus T = G,,"t! with character group M, whose

canonical generators are denoted Ag...,\,. Then Ry = Q[A,... ,A;] and
Qr C Q(Xg,...,A). The torus T acts on P" by
TxPr — P

(t, (zo,-.. ,zr)) —> (Ao(t)xo, ... s Ar(t)zy).
We get an induced action of T on M, (P",d): given t € T(U) and

CLPT‘

|

U
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in M, (P",d)(U) we define - (C, f) = (C,to f), where (C,to f) stands for

oy wpr Lpr

|

U

We leave it as an exercise, to turn this into an action of the group T(U)
on the groupoid M, (P",d)(U), i.e., actions on the morphism and object
sets compatible with all the groupoid structure maps. Compatibility under
change of U gives the action of the algebraic group 7" on the algebraic stack
Mo (P",d).

The same general arguments that allow the construction of the virtual
fundamental class of M, (P",d) give rise to an equivariant virtual funda-
mental class [M,(P",d)r] € AL(M,,,(P", d)), which pulls back to the usual
virtual fundamental class [M g, (P",d)] € A.(M,,(P",d)). We shall apply
Formula (10) with 3 = [M,,(P",d)7] and b = [M,,(P", d)].

If oq,... ,a, € AL(P") and ay, ... ,a, are the corresponding classes in
A*(P"), the induced Gromov-Witten invariants are given by

/ evi(a ®...Q®ap) (11)

[Mg,n(PT,d)]

_ 0 T/ Fevi(an ®...Q ay)
e(g*N) ’

V' [Mgn(P,d)7]

at least if the o; are homogeneous and > | dega; = deg[M gy, (P", d)].
To apply this formula, we need to construct a cartesian T-equivariant
diagram such as (7):

Y “> M. (P, d)
L
14 - w

where v is a regular closed immersion and Y contains all the fixed points of
T in M, ,(P",d). Of course, we get the best results if we take Y as small
as possible, namely equal to the fixed locus of T on M, (P",d). The point
of view of more general Y is still useful, because it lets us decompose the
problem into several steps. We pass successively to smaller Y until we reach
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the fixed locus. The regular immersions v : V. — W will be chosen at each
step in such a way that we can keep track of V![Hg,n(Pr,d)T], ie., we can
follow what happens to the virtual fundamental class.

As we shall see, the fixed locus can be described in terms of stacks of
stable curves M ,. Thus Formula (11) reduces the computation of Gromov-
Witten invariants to a computation on various Mg,n. Since the fixed locus
has many components, the combinatorics turn out to be non-trivial. More-
over, the integrals one has to evaluate on Mg,n are non-trivial, too. Still,
this approach has been very successful in determining Gromov-Witten in-
variants. (See [11], [13], [12] or [7], [8] for more details.)

We shall next determine the fixed locus. The connected components of
the fixed locus are indexed by marked modular graphs (7,d,~y). Thus the
right hand side of (11) is a sum over all marked modular graphs (7,d,y) in-
volved. We can treat the fixed components given by different marked graphs
separately, i.e., we determine for each (7,d,v) the classes V![Mg,n(P’",d)T]

1

and T restricted to the fixed locus component given by (7,d,v). Then

we have

/ evi(a ®...Qap) (13)

[Mg,n(P7,d)]

_ 92 T/ L*GV*(Q1®...®C¥7L).

e(9*N)(r,d,7)
(7,d,7) M gn (P d)T](rd,)

The fixed locus

Recall that modular graphs are the graphs that give the degeneracy type of
prestable marked curves. They consist of a set of vertices V;, a set of flags
F; (which can either be tails or pair up to edges), and non-negative integer
markings of the vertices, giving the vertices a genus. Tails are denoted S,
and edges E;. The set of flags connected with the vertex v is denoted F(v).
A vertex is stable if its genus is at least 2, its genus is one and its valence (the
number of flags it bounds) is at least 1 or its genus is 0 and its valence at
least 3. The stabilization 7% of a modular graph is obtained by contracting
all edges containing unstable vertices. The set of vertices of the stabilization
is equal to the set of stable vertices. For details, see [4].
Let (7,d,7) be a marked modular graph of the following type.

1. 7: a modular graph which is connected and whose stabilization 7° is
not empty. Moreover, the genus g(7) is equal to g and the set of tails
Sris S; ={1,... ,n}.
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2. d:V; — Z>p a marking of the vertices by ‘degrees’, such that

(a) d(v) =0, for every stable vertex v € V5,
(b) Xpev, d(v) = d.

Note that we use the same letter d for the marking of the graph 7 and
the total degree of the graph.

3. 7y consists of three maps:

(a) v: VS = {Py,...,P}, where P, = (0,...,1,...,0), the 1 being
in the i-th position; so v associates to every stable vertex of 7 a
fixed point of 7" on P",

(b)y vy « V¥ = {Lj | 0 < i < j < r}, where L;; =
O,...,2,...,y,...,0) and z is in the i-th, y in the j-th po-
sition; so y associates to every unstable vertex a one-dimensional
orbit closure,

(c) v: Fr = {P,...,P}; soy associates to every flag a fixed point.

These data are subject to the following list of compatibility requirements:

1. Every edge has an unstable vertex, i.e., no edge connects stable ver-
tices,

2. 7 is constant on edges,
3. if v is a stable vertex then y(v) = (1), for all i € F(v),
4. if v is an unstable vertex then

(a) y(i) € y(v), for all i € F,(v),
(b) all y(4), for ¢ € Fr(v) are distinct.

Fix such a marked modular graph (7,d, ). The following stacks will be
important in what follows:

L M(r*) = HUEVTS Mg(v),Fr(v%

2. M(P",1,d), which is defined as the fibered product

M(P",7,d) [oev, My, p. (o) (", d(v))

| T

(Pr)E- = (P x Pr)Er,

where the vertical maps are evaluation maps,
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3. M(P",,d;v), which is the substack of M (IP", 7, d) defined by requiring
that fai)(zi) = v(i) € {Py,..., P}, for all i € Fr. Here (i) is the
vertex incident with i, f5(;) is the stable map indexed by this vertex
and z; is the mark of the source curve of fy(;) indexed by . Clearly,
M (P",7,d;7) is a closed substack of M(P",T,d).

Stacks of type M(P",7,d) are studied in great detail in [4]. Given a
collection (Cy, Zi, fu)vev, icF., representing an element of M(P",7,d), we
can associate a stable map in M, (P",d) by gluing, for every edge {i,i>}
of 7, the curves Cy(;,) and Cy(;,) by identifying z;, with z;,. Doing this in
families defines the morphism

M(P",7,d) — My,(P",d). (15)

In general, a morphism such as (15), giving rise to a boundary component
of My, (P",d) is only a finite morphism. But because of the special nature
of (7,d) in our context, (15) is actually a finite étale morphism followed by
a closed immersion. More precisely:

Proposition 27 Let Aut(7,d) be the subgroup of the automorphism group
ithe modular graph T preserving the degrees d. Then Aut(r,d) acts on
M(P",7,d) and (15) induces a closed immersion

M(P", 7,d)/Aut(r,d) — M y,(P",d).

Proof One has to prove that any stable map in M, (P",d) of degeneracy
type (7,d) or worse, can be written uniquely (up to Aut(r,d)) as the result
of gluing a collection (Cy, x;, fy)vev; ier,.. This is true because every stable
vertex has degree 0 and no edge connects stable vertices. O

Next, we shall construct a morphism M(7%) — M(P",7,d). Let
(Cy,y)vevs be a collection of stable marked curves, z, = (7;)icr, (v), in
other words, a k-valued point of M (7%). Then produce a collection of stable
maps as follows:

1. for v € V; a stable vertex, let f, : C;,, — P" by the constant map to
7(“) € {Pﬂa"' ’PT}a

2. for v € V; unstable, let C,, = P! and f, be
fo: Pl — P =~(w) CP’
z — 24
Then put marks on C, = P': for each i € F,(v) let z; € C, be equal
to 0 = (1,0) or oo = (0, 1), in the unique way such that f,(z;) = ().
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This defines (Cy, 2y, fo)vev., an element of M(P",7,d)(k). Again, this
can be done in families and we obtain the desired morphism M (7%) —
M(P",7,d).

This morphism is also a finite étale covering followed by a closed immer-
sion:

Proposition 28 Let pn = [[,cyu Haw), where pqp is the cyclic group of
d(v)-th roots of 1. Let p act trivially on M(7%). Then we have a closed
immersion

M(7%)/u — M(P",1,d). (16)
O

We can say more, because, in fact, the group Aut(r,d) acts on the mor-
phism (16). More precisely,

Proposition 29 The semidirect product G = pu x Aut(r,d) acts on M(1%)
and (16) induces a closed immersion

M(r%)/G — M(P",1,d)/ Aut(r, d).

Putting Propositions 27 and 29 together, we obtain the composition

P(r.d)
o (17)
H(Ts)/G —>M(]P”", 7,d)/ Aut(r,d) —= M4, (P",d),

which is a closed immersion.

Proposition 30 Consider the group T(k) acting on the set of isomorphism
classes of Mg, (P",d)(k). An element of this set is fived if and only if it
is in the image of ®(;q.)(k), for some marked modular graph (7,d,vy) as
described above. O

In this sense, the image of [ [ ® is the fixed locus of M, (P",d). Thus we
are justified in calling the image of ®(; 4 .y the fized component indexed by
(7,d,7). But if we endow M (7%)/G with the trivial action of T, then @, 4 .
is not T-equivariant. To make it so, we have to pass to a larger torus.

Consider the character group M C Mg = M ®7 Q and let M = M +
ZveV: ﬁA” C Mg, where )\, is the character of T' through which T' acts
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on P! = L;; = y(v). Let T be the torus with character group M. We have
a finite homomorphism T — T. We can view passing from T to T as a way
to make the character \, divisible by d(v).

The torus T acts on Mg,n(l[’”’, d) through T — T. We can now construct
a 2-isomorphism @ in the diagram

~ id ~

T x M(r%) — 2o T 5 M, 0 (P, d)
proj ﬂg la.ction
M(r*) ® M, (P, d).

Let us describe 6 on k-valued points. We negi to define a natural trans-
formation. So for each (¢, (Cy,xz,)) of T(k) x M(7°)(k) we need to define a
morphism @ : t - ®(C,, x,) — ®(C,,x,). Using notation as above, we have

(I)((vaﬂ%)vEVTS) = (Cys Ty, fo)vev, and t- ¢(Cy, x,) = (Cy, 2y, t o f,). Then
1. for v € V?, we let 6, : C,, — C), be the identity,
2. forve V¥ welet 0,:C, = P! — C, = P! be given by

zZ— %(t)z,

which fits into the commutative diagram

= ()d)

. fo=(+) (o) C _pr

o | i
= ()

C L=y () S+

Thus it is better to think of the image of ®(, 4.y as a fixed component of CZN“,
rather than T, acting on M, (P",d).

Going back to Diagram (12), we can now say what Y is. We shall use
Y = ]_[(T,dﬁ) M(7°)/G (7,4)- The integrals on M(7°)/G ;4 will be evaluated

on M (7%). This leads to the correction factor

Lo g
#G(T,d) # Aut(Ta d) vEVE d(U)

We shall next show how to obtain regular immersions v : V. — W as
in Diagram (12). As mentioned above, we can treat each fixed component
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separately. We will proceed in several steps, corresponding to the following
factorization of ®:

M(r%)/G 2 M(P", 7, d;7) /A 2 BI(P", 7,d) /A 55 Dy (P, d),

where A = Aut(7,d). For each step we shall construct a suitable v and then

determine v'[M,(P",d)r] and W.

The first step
We use the following diagram for (12):

M (P, 7,d)/ Aut(r,d) — Mg, (P", d)

: l

M(7)/ Aut(r,d) —= My n

We note that this diagram is not cartesian, but M(P",7,d)/ Aut(r,d) is
open and closed in the cartesian product. Since we are only interested in
the (7,d,~y)-component of the fixed locus at the moment, this is sufficient.
Here 91, , stands for the (highly non-separated) Artin stack of prestable
curves of genus g with n marks. Moreover,

M(r) = [ Mo )
’UEVT

and the morphism (1) — My ,, is given by gluing according to the edges of
7. The vertical maps are given by forgetting the map, retaining the prestable
curve, without stabilizing. The diagram is T-equivariant, if we endow M(7)
and M, with the trivial T-action. We also note that v is not a closed
immersion, but certainly a regular local immersion (for this terminology see
[16]), which is sufficient for our purposes.

It is a general fact about virtual fundamental classes, used in the proof
of the WDV V-equation, that the Gysin pullback along v preserves virtual
fundamental classes:

VMg (P, d)r] = [M(P", 7,d)/Aut(, d)].

(One way to define the virtual fundamental class of M (P",7,d) is to set it
equal to the Gysin pullback via A of the product of virtual fundamental
classes in Diagram 14.)
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The normal bundle of M(7) in M, ,, splits into a direct sum of line
bundles, one summand for each edge of 7. For the edge {i1,i2}, the normal
line bundle is

w7, (W) ® 27, (w"),
where z;, and z;, are the sections of the universal curves corresponding to
the flags i1 and ¢9 of 7 and w is the relative dualizing sheaf of the universal

curve, whose dual, w" is the relative tangent bundle. We use notation c¢; for
the Chern class of the line bundle z}(w) on (7). Then

1 1
—= ] ——— (18)
e(g N) {i1,i2}€E7— _cll - CZZ

The second step

Instead of considering M (P", 7, d; )/ Aut(7,d) — M (P", 7,d)/ Aut(r, d), we
shall consider

M(P", 7,d;y) — M(P",71,d). (19)

We call an edge (flag, tail) of 7 stable, if it meets a stable vertex. Otherwise,
we call it unstable. We shall need to consider stacks of the following type:

Mos(P",d;(S)),
where S is a finite set (we only consider the cases that S has 1 or 2 ele-
ments) and vy : S = {P%,... ,P,} is a map. The stack Mg s(IP",d;y(S)) C

My s(P",d) is the closed substack of stable maps f, defined by requiring
that f(z;) = (i), for all i € S.

Lemma 31 For #S < 2, the stack My s(P",d;v(S)) is smooth of the ex-
pected dimension dim Mg g(P",d) — r#S.

Proof This follows from HY(C, f*Tpr(—z1 — z2)) = 0, for a stable map
f:C =P in My g(P",d;v(S)). O
Note that we have

MP",7,diy) = [[ Myw)r) % [ Mo, @) (P d(v); vF-(v)),
veV;s veVY

and in particular, that M (P", 7, d;~y) is smooth of the ‘expected’ dimension

D dim M) pwy + D dim Mo o) (P, d(v)) = r#tFy'
vEV vEVHE
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Now the morphism (19) fits into the T-equivariant cartesian diagram

M(P", 7,d;7) M(P",7,d) HueVT Mg(v),Fr(v) (P, d(v))

[ | -

a1l (Pr)F? v (PT)Er x (Pr)sr x (PT)V7 Axid

! lq

pt “

The morphism e X p is the product of the evaluation morphism

€: H Hg(v),Fr(v) (P, d(v)) — ([[D?")FT
veV;,

and the projection

I M5, )@, d(v) =

UGVT

I Mo.p, )", d@)) x [T (My),p,0) x P) == (")~
veVH VeV

The morphism A X id is the product of the diagonal
(I[DT‘)E-,— A> (]P;r % IP)?")E-,— — (Pr)FT—S’T

and the identity on (P") x (P")'*. The square to the upper right of (20)
is just a base change of the defining square of M (P", 7,d). The morphism v
is the product of the identity

(PYFE s (P)B2 x (PT)S:
and the morphism
7ipt— (B)5 x (B x ()",
induced by the marking v on the graph (7,d). The morphism g is given
by evaluation at the points corresponding to stable flags and is, in fact,

constant. The morphism ¢ projects out the factors corresponding to stable
flags. Finally, v; is given, again, by +.

37



The stack in the upper right corner of (20) is smooth, but not of the
‘expected’ dimension. It has a virtual fundamental class given by

IT c(H@)" & Ter(y [T 2 P’ d(v))r].  (21)

veVS vEV,

Here H(v) is the ‘Hodge bundle’ corresponding to the vertex v. If 7, : C), —
M (1), F, (v) 18 the universal curve, then H(v) = my,(wc,), where we, is the
relative dualizing sheaf.

It is part of the general compatibilities of virtual fundamental classes
that (21) pulled back via (A x id)" gives the virtual fundamental class of
M (P",7,d). Now because there is no excess intersection in the lower rect-
angle of (20), we get the same class in M (P", 7, d;~) by pulling back (21) in
two steps via (A x id)' and ¢ or in one step via v{. Thus

VM(P",7,d)r] = vi(the class (21)).

But by Lemma 31, the big (total) square in (20) has no excess intersection
either. Thus v} (the class (21)) is equal to

v [M(P",7,d)7]

= H e(H(v)v T]pr(’)’(’l)))) [M(P",7,d;y)r]

veVS
= 10 II & —»e)™ ct(H(©))le 1 [M(P",7,d;7)r].
veVE i£y(v) ()

Because the morphism ¢ in (20) is constant, ¢g*(N) is constant and so
e(g*(INV)) is just the product of the weights of T on ¢*N. Thus

1
22
oG ) 22)
- U cmoon W amoan W aamomn
= X CeTth)) = o(Tr- (7)) o o(To (7(0))
= I 1I g 11 H
JEEXUSY i£~(5 UEVS i#y(v (v)
The third step
We shall consider the morphism
M(r*)/u — M(P",7,d;7) )% [T Mo ) (B, d(0); vF: (0)),

veVY
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which we may insert into the ZN“—equivariant cartesian diagram of smooth
stacks without excess intersection

M(r*) M(7°) % [] Mo,p, () (", d(0); YF: (v))
veVY

g l (23)

11 Buaw) - 11 ™o,r, ) (BT, d(v); v F (v)).

veVE veEVE

It follows that v'[M(P",7,d;y)r] = [M(7%)/p].
To calculate the normal bundle of v, factor v into #V* morphisms and
thus reduce to considering the morphism

Bigwy — Mo p, () (7, d(v); 7Fr (v)).
To fix notation, let us consider a positive integer d and
Bug — Moo(P", d; Py, Py) (24)
(the case of v having valence 1 we leave to the reader). The stack
Moo (P",d; Py, Py) C Myo(P",d)

is defined by requiring the image of the first marked point to be Py € P"
and the image of the second marked point to be P, € P".
The particular stable map

f:Pt — P'=Ly CP (25)

Zi—>2d

(where 71 = 0 and w3 = oo are the marks on P!) is the unique fixed point
of T on My 2(P",d; Py, P) and gives rise to the morphism (24).The normal
bundle to (24) is the tangent space to (25) in Mo 2(P",d; Py, P) and hence
equal to

HO(PY, f*Tpr(—0 — o0)) / HO(P', Tp1 (=0 — 00)). (26)

We calculate the weights of HO(P!, f*Tpr(—0—00)) and HO (P!, Tp1(—0—00))
using Example 26.
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Let () denote the weights of T on HO(P', f*Ter(—0 — 00)). The torus
T acts on P! via the character w = /\1%‘!)‘0. We also need the weights of
f*Tpr(—0 — 00)(0) and f*Tpr(—0 — o0)(c0). To calculate these, note that
Trr(Py) has weights (A; — Ao)io and Tpr-(P;) has weights (A\; — Ay);21. The
same holds after applying f*. Twisting by (—0) and (—oo) changes the
weights by Tp1(0) and Tpi(0o), respectively. But Tpi(0) has weight /\1%;)‘0
and Tpi(0co) has weight )‘O%d/\l. Thus the weights of f*Tpr(—0 — oo) are
(Ai = Ao —w)izo at (0) and (A\; — Ay + w)ix1 at (c0). Then by Example 26
we have

Z o — 1 _1e_w Z Ai—ho—w | - _1€w Z i tw

i#0 i#1

— Ao—A
B VDY e v ew+0 1

all @

1-d)w

( —w
= 1+21:6AH0 <€1—ew + lie_“’>
d—1
=14 Z eri— o Z e
1 n=1
S14Y Y i,

1=0 n+m=d
n,m#0

by the ‘useful formula’ mentioned in Exercise 26.
Similarly, HO (P!, Tp1(—0 — 00)) is one-dimensional and has weight 0, so
that the weights of (26) are
n m
e oY) P
(== peite

n,m>0

We deduce that for the normal bundle N of the morphism v in (23) we
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have

1
e(g*IV)

. 1
I s=m=e

VEVE  i=0 ntm=d(v)

- (27)

|v|=2 n,m#0
v(v)=Lgyp
I | I 1 I 1
_n —_m _n . m
vEVE n+m=d(v) O R ntm=d(v) Ab = gAa = 7N
[v]=1 n,m#0 n#0,1
y(v)=Lgyp

,
1
Il 11 Ai = T — T

i=0 n4+m=d(v)
i#a,b n#0

Conclusion

We have now completed the computation of the right hand side of (13). We
have

v [Mg,n (PT’ d)T](T,d,’Y)
=TT I O =A™ clHE) e )/ Gr]

VEVE iy (v) b

and 1/e(g*N)(r,4,y) is the product of the three contributions (18), (22)
and (27). When pulling back the contribution (18), which is

1

—C
{i1,i2}€E~ i

to M(7%), we replace —c;, for an unstable flag i € F, by the weight of T on
Tp1(z;). This weight is )‘j;/\i, where {4, 7} is the edge containing i.

Thus we finally arrive at the localization formula for Gromov-Witten
invariants of P". Our graph formalism is well-suited for our derivation of
the formula. To actually perform calculations, it is more convenient to
translate our formalism into the simpler graph formalism introduced by
Kontsevich [13]. But this, of course, just amounts to a reindexing of our

sum.
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