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Abstract

These are lecture notes based on a short course on stacks given
at the Newton Institute in Cambridge in January 2011. They form a
self-contained introduction to some of the basic ideas of stack theory.
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Introduction

Stacks and algebraic stacks were invented by the Grothendieck school of
algebraic geometry in the 1960s. One purpose (see [11]), was to give geo-
metric meaning to higher cohomology classes. The other (see [9] and [2]),
was to develop are more general framework for studying moduli problems.
It is the latter aspect that interests us in these notes. Since the 1980s,
stacks have become an increasingly important tool in geometry, topology
and theoretical physics.

Stack theory examines how mathematical objects can vary in families.
For our examples, the mathematical objects will be the triangles familiar
from Euclidean geometry, and closely related concepts. At least to begin
with, we will let these vary in continuous families, parametrized by topo-
logical spaces.

A surprising number of stacky phenomena can be seen in such simple
cases. (In fact, one of the founders of the theory of algebraic stacks, M.
Artin, is famously reputed to have said that one need only understand the
stack of triangles to understand stacks.)

These lecture notes are divided into three parts. The first is a very
leisurely and elementary introduction to stacks, introducing the main ideas
by considering a few elementary examples of topological stacks. The only
prerequisites for this part are basic undergraduate courses in abstract alge-
bra (groups and group actions) and topology (topological spaces, covering
spaces, the fundamental group).

The second part introduces the basic formalism of stacks. The pre-
requisites are the same, although this part is more demanding than the
previous.

The third part introduces algebraic stacks, culminating in the Riemann-
Roch theorem for stacky curves. The prerequisite here is some basic scheme
theory.

We do not cover much of the ‘algebraic geometry’ of algebraic stacks,
but we hope that these notes will prepare the reader for the study of more
advanced texts, such as [17] or the forthcoming book [23].

The following outline uses terminology which will be explained in the
body of the text.

The first fundamental notion is that of symmetry groupoid of a family
of objects. This is introduced first for discrete families of triangles, and
then for continuous families of triangles.

In Sections 1.1 through 1.3, we consider Euclidean triangles up to simi-
larity (the stack of such triangles is called M). We define what a fine moduli
space is, and show how the symmetries of the isosceles triangles and the
equilateral triangle prevent a fine moduli space from existing. We study
the coarse moduli space of triangles, and discover that it parametrizes a
modular family, even though this family is, of course, not universal.
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Sections 1.4 through 1.6, introduce other examples of moduli problems.
In 1.4, we encounter a fine moduli space (the fine moduli space of scalene
triangles), in 1.5, where we restrict attention to isosceles triangles, we en-
counter a coarse moduli space supporting several non-isomorphic modular
families. Restricting attention entirely to the equilateral triangle, in 1.6, we
come across a coarse moduli space which parametrizes a modular family,
which is versal, but not universal.

In Section 1.7, we finally exhibit an example of a coarse moduli space
which does not admit m any modular family at all. We start studying ori-
ented triangles. We will eventually prefer working with oriented triangles,
because they are more closely related to algebraic geometry. The stack of

oriented triangles is called M̃.
In Section 1.8, we make a first few general and informal remarks about

stacks, and their role in the study of moduli problems.
The second fundamental concept is that of versal family. Versal families

replace universal families, where the latter do not exist. Stacks that admit
versal families are called geometric, which means topological in this first
two chapters, but will mean algebraic in Chapter 3.

We introduce versal families in Section 1.9, and give several examples.
We explain how a stack which admits a versal family is essentially equal
to the stack of ‘generalized moduli maps’ (or torsors, in more advanced
terminology).

In Section 1.10, we start including degenerate triangles in our examina-
tions: triangles whose three vertices are collinear. The main reason to do
this is to provide examples of compactifications of moduli stacks. There are
several different natural ways to compactify the stack of triangles: there is
a näıve point of view, which we dismiss rather quickly. We then explain a
more interesting and natural, but also more complicated point of view: in
this, the stack of degenerate triangles turns out to be the quotient stack of
a bipyramid modulo its symmetries, which form a group of order 12. This
stack of degenerate triangles is called M.

We encounter a very useful construction along the way: the construction
of a stack by stackification, which means by first describing families only
locally, then constructing a versal family, and then giving the stack as the
stack of generalized moduli maps to the universal family (or torsors for the
symmetry groupoid of the versal family).

We then consider oriented degenerate triangles, and introduce the Leg-
endre family of triangles which is parametrized by the Riemann sphere. It
exhibits the stack of oriented degenerate triangles as the quotient stack of
the Riemann sphere by the action of the dihedral group with 6 elements.
(In particular, it endows the stack of oriented degenerate triangles with the
structure of an algebraic, not just topological, stack.) We call this stack
L, and refer to it as the Legendre compactification of the stack of oriented
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triangles M̃.
The Legendre family provides the following illustration of the concept

of generalized moduli map (or groupoid torsor). We try to characterize, i.e.,
completely describe the similarity type of an (oriented, maybe degenerate)
triangle, by specifying the complex cross-ratio of its three vertices together
with the point at infinity. However, the cross-ratio is not a single valued
invariant, but rather a multi-valued one: the six possible values of the
cross-ratio are acted upon by the group S3. Thus the stack L of (oriented,
maybe degenerate) triangles is the quotient stack of the Riemann sphere
divided by S3.

In Section 1.11, we explain how to relate different versal families for
the same stack with one another, and how to recognize two stacks as being
essentially the same, by exhibiting a bitorsor for the respective symmetry
groupoids of respective versal families. We apply this both ways: we exhibit
two different versal families for ‘non-pinched’ triangles, and how a bitorsor
intertwines them. Then we construct a bitorsor intertwining two potentially
different moduli problems, namely two potentially different ways to treat
families containing ‘pinched’ triangles, thus showing that the two moduli
problems are equivalent.

In Section 1.12, we introduce another compactification of the moduli
stack of oriented triangles, which we call the Weierstrass compactification,
because we construct it from the family of degree 3 polynomials in Weier-
strass normal form. We denote this stack by W. We encounter our first
example of a non-trivial morphism of stacks, namely the natural morphism
L→W. We also introduce a holomorphic coordinate on the coarse moduli
space of oriented triangles known as the j-invariant.

In Part 2, we introduce the formalism of stacks. This will allow us to
discuss topological stacks in general, without reference to specific objects
such as triangles.

In Sections 2.1 to 2.4 we discuss the standard notions. We start with
categories fibered in groupoids, which formalize what a moduli problem
is. Then come the prestacks, which have well-behaved isomorphism spaces,
and allow for the general definition of versal family. After a brief discussion
of stacks, we define topological stacks to be stacks which admit a versal
family. We discuss the basic fact that every topological stack is isomorphic
to the stack of torsors for the symmetry groupoid of a versal family. This
also formalizes our approach to stackification: start with a prestack, find
a versal family, and then replace the given prestack by the stack of torsors
for the symmetry groupoid of the versal family.

In Section 2.5 we discuss a new idea: namely that symmetry groupoids
of versal families should be considered as gluing data for topological stacks,
in analogy to atlases for topological manifolds. This also leads to the re-
quirement that the parameter space of a versal family should reflect the
local topological structure of a stack faithfully, and conversely, that a topo-
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Figure 1: Some of the stacks we encounter in these notes, and the mor-
phisms between them. Stacky points (coloured blue) are labelled with the
order of their isotropy groups.

logical stack should locally behave in a manner controlled by the parameter
space of a versal family, in order that we can ‘do geometry’ on the stack.

This idea leads to the introduction of étale versal families, and the asso-
ciated stacks, which we call Deligne-Mumford topological stacks, in analogy
with the algebraic case. We prove a structure theorem, that says that every
separated Deligne-Mumford topological stack has an open cover by finite
group quotient stacks.

This shows that all ‘well-behaved’ moduli problems with discrete sym-
metry groups are locally described by finite group quotients. Therefore,
the seemingly simple examples we start out with, in fact turn out be quite
typical of the general case.

We also encounter examples of moduli problems without symmetries,
that nevertheless do not admit fine moduli spaces. For sufficiently badly
behaved equivalence relations (when the quotient map does not admit local
sections), the quotient space is not a fine moduli space.

In Section 2.6, we continue our series of examples of moduli problems
related to triangles, by considering lattices up to homothety. This leads to
the stack of elliptic curves, which we call E, and its compactification E. We
see another example of a morphism of stacks, namely E→W, which maps
a lattice to the triangle of values of the Weierstrass ℘-function at the half
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periods. This is an example of a Z2-gerbe.
As an illustration of some simple ‘topology with stacks’, we introduce

the fundamental group of a topological stack in Section 2.7, and compute
it for some of our examples.

The third part of these notes is a brief introduction to algebraic stacks.
The algebraic theory requires more background than the topological one:
we need, for example, the theory of cohomology and base change. We
will therefore assume that the reader has a certain familiarity with scheme
theory as covered in [16].

We limit our attention to algebraic stacks with affine diagonal. This
avoids the need for algebraic spaces as a prerequisite. For many applica-
tions, this is not a serious limitation. As typical examples we discuss the
stack of elliptic curves E and its compactification E, as well as the stack of
vector bundles on a curve.

Our definition of algebraic stack avoids reference to Grothendieck
topologies, algebraic spaces, and descent theory. Essentially, a category
fibered in groupoids is an algebraic stack, if it is equivalent to the stack
of torsors for an algebraic groupoid. Sometimes, for example for E, we
can verify this condition directly. We discuss a useful theorem, which re-
duces the verification that a given groupoid fibration is an algebraic stack
to the existence of a versal family, with sufficiently well-behaved symmetry
groupoid, and the gluing property in the étale topology.

We include a discussion of the coarse moduli space in the algebraic
context: the theory is much more involved than in the topological case.
We introduce algebraic spaces as algebraic stacks ‘without stackiness’. We
sketch the proof that separated Deligne-Mumford stacks admit coarse mod-
uli spaces, which are separated algebraic stacks. As a by-product, we show
that separated Deligne-Mumford stacks are locally, in the étale topology of
the coarse moduli space, finite group quotients.

We then define what vector bundles and coherent sheaves on stacks are,
giving the bundle of modular forms on E as an example. In a final section
3.6, we study stacky curves, and as an example of some algebraic geometry
over stacks, we prove the Riemann-Roch theorem for orbifold curves. As
an illustration, we compute the well-known dimensions of the spaces of
modular forms.
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1 Topological stacks: Triangles

This first part is directed at the student of mathematics who has taken an
introduction to topology (covering spaces and the fundamental group) and
an introduction to abstract algebra (group actions). Most of the formal
mathematics has been relegated to exercises, which can be skipped by the
reader who lacks the requisite background. The end of these exercises is
marked with the symbol ‘�’.

We are interested in two ideas: symmetry and form, and their role in
classification.

1.1 Families and their symmetry groupoids

Consider a mathematical concept, for example triangle, together with a
notion of isomorphism, for example similarity. This leads to the idea of
symmetry. Given an object (for example an isosceles triangle)

a symmetry is an isomorphism of the object with itself (for example, the
reflection across the ‘axis of symmetry’). All the symmetries of an object
form a group, the symmetry group of the object. (The symmetry group of
our isosceles triangle is {id, refl}.)

To capture the essence of form, in particular how form may vary, we
consider families of objects, rather than single objects (for example, the
family of 4 triangles,

(1)

consisting of three congruent isosceles triangles and one equilateral trian-
gle).

1.1 Definition. A symmetry of a family of objects is an isomorphism of
one member of the family with another member of the family.

1.2 Example. The family (1) of 4 triangles has 24 symmetries: there are
2 symmetries from each of the isosceles triangles to every other (including
itself), adding up to 18, plus 6 symmetries of the equilateral triangle.

If we restrict the family to contain only the latter 2 isosceles triangles
and the equilateral triangle,
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the family has 14 symmetries.

Various types of symmetry groupoids

1.3 Definition. The collection of all symmetries of a given family is called
the symmetry groupoid of the family.

1.4 Example (Set). The symmetry groupoid of a family of non-isomorphic
asymmetric objects

consists of only the trivial symmetries, one for each object. Such a groupoid
is essentially the same thing as the set of objects in the family (or, more
precisely, the indexing set of the family).

1.5 Example (Equivalence relation). The symmetry groupoid of a family
of asymmetric objects

is rigid. From any object to another there is at most one symmetry. A
rigid groupoid is essentially the same thing as an equivalence relation on
the set of objects (or the indexing set of the family).

1.6 Example (Group). The symmetry groupoid of a single object

is a group.

1.7 Example (Family of groups). The symmetry groupoid of a family of
non-isomorphic objects

is a family of groups.
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1.8 Example (Transformation groupoid). Consider again the family of
triangles (1) above, but now rearranged like this:

0

1 2

3

This figure has dihedral symmetry, and so the dihedral group with 6 ele-
ments, i.e., the symmetric group on 3 letters S3, acts on this figure. Each
element of S3 defines 4 symmetries of the family, because it defines a sym-
metry originating at each of the 4 triangles.

For example, the rotation by 2π
3 (or the permutation 1 7→ 3, 3 7→ 2,

2 7→ 1), gives rise to the 2π
3 -rotational symmetry of the equilateral triangle

in the centre of the figure, as well as 3 isomorphisms, each from one isosceles
triangle to another.

The reflection across a vertical line (or the permutation 1 7→ 2, 2 7→ 1,
3 7→ 3) gives rise to reflectional symmetries of the triangles labelled 0 and 3,
as well as an isomorphism and its inverse between the two isosceles triangles
labelled 1 and 2.

The family (1) is in fact so symmetric, that every one of its symmetries
comes from an element of the dihedral group acting on the figure (1).

More formally, let F = (Fi)i=0,1,2,3 be the family of triangles, and Γ
its symmetry groupoid. Then we have a bijection

{0, 1, 2, 3} × S3 −→ Γ (2)

(i, σ) 7−→ φi,σ

where φi,σ : Fi → Fσ(i) is the symmetry from the triangle Fi to the
triangle Fσ(i) induced by the geometric transformation of the whole figure
defined by σ.

The action of S3 on the figure induces an action on the indexing set
{0, 1, 2, 3}, and the symmetry groupoid is completely described by this
group action. The bijection (2) is an isomorphism of groupoids.

Whenever we have an arbitrary group G acting on a set X, we get an
associated transformation groupoid Γ = X ×G.

1.9 Example. Here are three more examples of families of triangles whose
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symmetry groupoids are transformation groupoids:

In the first, we have added 6 scalene (i.e., completely asymmetric) triangles
to the family (1). The indexing set of the family has 10 elements, and the
group S3 acts on this set of 10 elements, in a way induced by the symmetries
of the figure.

In the second case, the family consists of 2 isosceles and 4 scalene tri-
angles. The symmetry group of the figure is the dihedral group with 4
elements (which is isomorphic to Z2 × Z2).

In the last case, the family consists of 4 isosceles triangles, and the
symmetry group of the figure is the dihedral group with 8 elements, D4.

In each of the three case, the symmetry groupoid of the family of tri-
angles is equal to the transformation groupoid given by the action of the
symmetry group of the figure on the indexing set of the family. Note that
in each case, the number of times a certain triangle appears in the family
is equal to the number of elements in the symmetry group of the figure,
divided by the number of symmetries of the triangle.

Removing triangles breaks the symmetry, and leads to families whose
symmetry groupoids are not transformation groupoids any longer:

1.10 Exercise. A groupoid Γ consists of two sets: the set of objects Γ0,
and the set of arrows Γ1. Also part of Γ are the source and target maps
s, t : Γ1 → Γ0, as well as the groupoid operation µ : Γ2 → Γ1, where Γ2 is
the set of composable pairs, which is the fibered product

Γ2
p2 //

p1

��

Γ1

s

��
Γ1

t // Γ0 .

We write µ(α, β) = α∗β, for composable pairs of arrows (α, β) ∈ Γ2, where
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t(α) = s(β).

•
α
((

α∗β

88•
β
(( •

Three properties are required to hold:

(i) (identities) For every object x ∈ Γ0, there exists an arrow ex ∈ Γ1,
whose source and target are x, and such that ex ∗ α = α, for all α
with source x and β ∗ ex = β, for all β with target x.

(ii) (inverses) For every arrow α ∈ Γ1, there exists an arrow α−1, such
that α ∗ α−1 = es(α) and α−1 ∗ α = et(α).

(iii) (associativity) For every triple (α, β, γ) of composable arrows, we have
(α ∗ β) ∗ γ = α ∗ (β ∗ γ).

Using the language of categories, we notice that a groupoid is nothing
but a small category, all of whose arrows are invertible. Often it is more
natural to use categorical notation for the groupoid operation: β◦α = α∗β.

The symmetry groupoid of a family parametrized be the set T has
Γ0 = T .

An isomorphism of groupoids consists of two bijections: Γ0 → Γ′0
and Γ1 → Γ′1, compatible with the composition (and hence identities and
inverses).

1.2 Continuous families

So far, we have considered discrete families. More interesting are continuous
families. For example, suppose given a piece of string of length 2 and two
pins, distanced 1

2 from each other, and draw a part of an ellipse:

(3)

We start with a 3:4:5 right triangle, whose sides have lengths 1
2 , 2

3 , and 5
6 ,

and we end up with a congruent 3:4:5 triangle. This is a family of triangles
parametrized by an interval. To make this more explicit, suppose that we
are in the plane R2, and the two pins have coordinates (− 1

4 , 0) and ( 1
4 , 0).

Let us take the interval [− 1
4 ,

1
4 ] as parameter space, and let us denote

the family of triangles by F . Then every parameter value t ∈ [− 1
4 ,

1
4 ]

corresponds to a triangle Ft, where Ft is the triangle subtended by the
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string when the x-coordinate of the pen point is t.

–1/4 –1/8 0 1/8 1/4

(4)

In (4) we see another view of this family, ‘lying over’ the parameter space.
The five family members F− 1

4
, F− 1

8
, F0, F 1

8
, F 1

4
are highlighted (but, of

course, the mind’s eye is supposed to fill in the other family members).
The group with two elements Z2 acts on the picture (3) by reflection

across the y-axis. This action induces all symmetries of the family F .
The symmetry groupoid of F is given by the induced action of Z2 on
the parameter space [− 1

4 ,
1
4 ] (where the non-identity element of Z2 acts by

multiplication by −1). The symmetry groupoid of the family (4) is the
transformation groupoid [− 1

4 ,
1
4 ]× Z2.

Gluing families

One essential feature of continuous families is that they can be ‘glued’.
The first and last members of the family F of (4) are similar to each other,
and we can therefore glue the two endpoints of the parameter interval to
obtain a circle, and glue the two corresponding triangles to obtain a family
of triangles parametrized by the circle.

First we bend the second half of the family around:

F :

and then we glue the parameter interval and the two end triangles:

F̃ : (5)

(These figures are not to scale.) The new parameter space is the circle

S1. Let us call the family of triangles we obtain in this way F̃ over S1,
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or F̃/S1. This family exhibits an interesting feature: the shortest sides
of all the triangles in the family put together form a Moebius band. The
perimeters of all triangles in the family put together form a Klein bottle.
There is no way to label the vertices of the family members in a consistent
way with labels A, B, C, say. Equivalently, it is impossible to label the
sides of the triangles in the family consistently with labels a, b, c. (On the
other hand, such a consistent labelling is always possible if we only vary
the parameter values inside the circle S1 a little bit, but not too much. We
say that locally we can label the vertices of the family member triangles
consistently.)

1.11 Exercise. As we are studying triangles up to similarity, let us fix
the perimeter of the triangles we consider. We can take any value, but for
aesthetic reasons we will take the value 2.

Formally, let us then define a continuous family of triangles
parametrized by the topological space T to consist of a degree 3 cov-
ering map T ′ → T and a continuous map a : T ′ → R>0. The data
F = (T ′, a) has to satisfy the triangle inequalities for all t ∈ T . More
precisely, for t ∈ T , there are three points of T ′ lying over t, call them
t′1, t

′
2, t
′
3, and three positive real numbers a(t′1), a(t′2), a(t′3). The lat-

ter have to satisfy the three triangle inequalities: a(t′1) + a(t′2) > a(t′3),
a(t′2) + a(t′3) > a(t′1), a(t′3) + a(t′1) > a(t′2). Moreover, for every t ∈ T ,
we require a(t′1) + a(t′2) + a(t′3) = 2. The triangle Ft corresponding to the
parameter value t ∈ T is then the triangle whose sides have lengths a(t′1),
a(t′2) and a(t′3).

Suppose that F/T and G /T are two families of triangles parametrized
by the same space T , where F = (T ′, a) and G = (T ′′, b). Define an
isomorphism of families of triangles φ : F → G to consist of a home-
omorphism of covering spaces f : T ′ → T ′′ (f has to commute with the
projections to T ), such that a = b ◦ f .

Prove that the family F̃ we constructed above (5) is, indeed, a con-
tinuous family of triangles, according to this formal definition. Prove that
families of triangles can be glued, i.e., that they satisfy the following gluing
axiom:

Suppose T = A ∪ B is a topological space with closed subsets A ⊂ T ,
B ⊂ T , and F/A and G /B are continuous families of triangles, and φ :
F |A∩B → G |A∩B is an isomorphism. Then there exists, in an essentially
unique way, a continuous family of triangles H /T , and isomorphisms ψ :
H |A ∼= F and χ : H |B ∼= G , such that φ ◦ ψ|A∩B = χ|A∩B .

1.12 Exercise. A formulation of the gluing principle which has wider ap-
plicability than the one alluded to in the previous exercise, is the following.

Suppose the space T is the union of a family of open subsets Ui ⊂ T , and
over each Ui we have a continuous family of triangles (or other mathemat-
ical objects) Fi, parametrized by Ui. Assume that over each intersection
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Uij = Ui∩Uj we are given an isomorphism of families φij : Fi|Uij → Fj |Uij ,
and that over all triple overlaps the compatibility condition (the cocycle
condition) φik|Uijk

= φjk|Uijk
◦ φij |Uijk

holds. (The data ({Fi}, {φij}) are
called gluing data for a continuous family.)

Then there exists a continuous family F , parametrized by T , together
with isomorphisms of families φi : F |Ui → Fi, such that over the overlaps
we have φj |Uij = φij ◦ φi|Uij . (The pair (F , {φi}) is said to be obtained by
gluing from the above gluing data.)

The pair (F , {φi}) is unique, in the following sense: given (G , {ψi}),
solving the same gluing problem, there exists an isomorphism of families
χ : F → G , such that on each open Ui we have ψi ◦ χ|Ui

= φi.
If our notion of continuous family of some type of mathematical object

has this gluing property (i.e. for every space T , and for every gluing data
over T , the solution exists, and is essentially unique in the described way),
then we say that these types of families can be glued.

Prove that families of triangles can be glued.

1.3 Classification

Our goal is to describe the totality of our mathematical objects as a space:
in our example of triangles up to similarity, we would like a space whose
points correspond in a one-to-one fashion to similarity classes of triangles.
Such a space would be called a moduli space of triangles up to similarity,
and it would be said to solve the moduli problem posed by triangles up to
similarity.

In fact, such a space is easily constructed. Every triangle is similar to
a triangle of perimeter 2, say, and every triangle of perimeter 2 is given
(up to congruence) by the lengths of its sides, which we can label a, b, c,
where a ≤ b ≤ c. Thus an example of a space whose points correspond to
similarity classes of triangles is

M = {(a, b, c) ∈ R3 | a ≤ b ≤ c , a+ b+ c = 2 , c < a+ b} . (6)

The space M is a subspace of R3. Every point (a, b, c) in M defines the
triangle whose sides have lengths a, b and c. Every triangle is similar to
one of these. Different points in M give rise to non-similar triangles. This
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is a pictorial representation of M :

M :

(0, 1, 1)

(2/3, 2/3, 2/3)
equilteral triangle

(1/2, 1/2, 1)

b=c

isosceles triangles
a=b

isosceles
triangles

a²+b²=c²
right triangles

a+b=c  degenerate triangles

The space M contains two boundary lines of isosceles triangles, it does not
contain its third boundary line, where the triangles degenerate. The curve
defined by a2 + b2 = c2 is indicated, which is the locus of right triangles.
Above this curve are the triangles with three acute angles, below this curve
are the triangles with one obtuse angle. (The shading corresponds to the
size of the angle opposing the side c.)

In the following sketch of M we have marked a few representative points,
and displayed the corresponding triangles:

(7)

The triangles are displayed with c as base, b as left edge and a as right
edge. Isosceles triangles are highlighted.

This is already quite a satisfying picture: it gives us an overview of all
triangles up to similarity. But now we notice that it does much more: it
also describes continuous families of triangles. A path in M
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gives rise to family of triangles:

This is a family parametrized by an interval:

(8)

The shape of the triangles in the family is determined completely by the
path in M .

Pulling back families

This is an example of pullback of families. It is a basic property of families
of mathematical objects that they can be pulled back, via any map to the
parameter space.

The space M itself parametrizes a continuous family of triangles, which
is sketched in (7), and which we shall denote by M . Our path in M is a
continuous map γ : [0, 1] → M . Via the path γ, we pull back the family
M /M , to obtain a family parametrized by [0, 1], which is denoted by γ∗M .
This family is defined in such a way that

(γ∗M )t = Mγ(t) , for all t ∈ [0, 1].

The family γ∗M /[0, 1] is displayed in (8).

1.13 Exercise. The symmetry groupoid Γ of the family M is a family
of groups, as no distinct family members are isomorphic. As a topological
space, Γ looks like this:

Over the isosceles but not equilateral locus, the fibres of Γ are groups with
2 elements, over the equilateral locus the fibre of Γ is isomorphic to S3.
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The moduli map of a family

Conversely, every continuous family of triangles F/T , parametrized by a
space T , gives rise to a continuous map T → M , the moduli map of F .
The moduli map takes the point t ∈ T to the point (a, b, c) ∈ M , where
the triangle Ft has side lengths a ≤ b ≤ c.

1.14 Example. For example, the moduli map of the family F of (4) is the
path in M , which starts at the 3:4:5 triangle on the curve of right triangles,
follows the line orthogonal to the b = c isosceles edge (this is the line a = 1

2 )
until it reaches this edge, and then retraces itself until it comes back to the
curve of right triangles.

1.15 Example. The moduli map of the family γ∗M over [0, 1], displayed
in (8), is, of course, the path γ : [0, 1]→M , which gave rise to it.

1.16 Exercise. Prove that the moduli map of a family given by T ′/T and
a : T ′ → R>0 is continuous. Continuity of the moduli map T → M is a
local property, so you can assume that the cover T ′ → T is trivial, and
the triangle is given by 3 continuous functions f, g, h on T , representing
the lengths of the sides of the triangles in your family. Then f ≤ g ≤ h
defines a closed subspace of T on which the moduli map is identified with
(f, g, h), and is therefore continuous. Other conditions, such as g ≤ f ≤ h,
give rise to other moduli maps, such as (g, f, h), which are also continuous.
The pasting lemma finishes the proof.

Fine moduli spaces

One may be tempted to think therefore, that M does not just classify trian-
gles, but also thatM classifies families of triangles, in the sense that families
parametrized by T are in one-to-one correspondence, via their moduli map,
with continuous maps T →M . This leads to the following definition.

1.17 Definition. A fine moduli space is a space M , such that

(i) the points of M are in one-to-one correspondence with isomorphism
classes of the objects we are studying,

(ii) (technical condition) for every family F/T , the associated moduli
map T → M (which maps the point t ∈ T to the isomorphism class
of the family member Ft) is continuous,
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(iii) every continuous map from a space T to M is the moduli map of some
family parametrized by T (equivalently, M parametrizes a family M ,
whose moduli map is the identity idM ),

(iv) if two families have the same moduli map, they are isomorphic fami-
lies.

Is our space M from (6) a fine moduli space for triangles up to similar-
ity? We have constructed M so that (i) would be satisfied. The technical
condition (ii) can be checked if one agrees on a formal mathematical defi-
nition of continuous family of triangles (see Exercise 1.16).

Above, we saw how the continuous map γ : [0, 1] → M gives rise to a
family over [0, 1], whose moduli map is γ. We can do the same thing for
any map f : T → M , from an arbitrary space T to M . We can use f to
pull back the family M to a family f∗M , and this family has moduli map
f . Thus Condition (iii) is satisfied.

Note that applying Condition (iii) to T = M and the identity map idM ,
says that the space M parametrizes a family M , such that Mm represents
the isomorphism class corresponding to m by Condition (i), for all m ∈M .
Let us call such a family a modular family. Our family of triangles (7)
is a modular family.

What about Condition (iv)?
Consider, again, the family F/I, where I is the interval [− 1

4 ,
1
4 ], from

(4).
We will now construct another family G /I, parametrized by the same

interval I. The family G is equal to the family F over the first half of
the interval [− 1

4 , 0], but then goes back to the starting point, rather than
continuing on beyond the isosceles triangle in the middle:

For a value t ∈ [0, 1
4 ], the corresponding triangle is subtended by the string

when the pen point has x-coordinate −t.
Now note that the family G has the same moduli map as the family F ,

see Example 1.14.
On the other hand, the two families F and G are not isomorphic. Here

is another representations of the two families, with F on the left and G on
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the right:

b

a

c

b

b

b
c

c

c

a

a

a

(9)

If we label the sides of the initial triangles with a, b and c, in such a
way that a < b < c, and then label all the following triangles in the
respective families in a continuous way, then the two end triangles, which
are congruent, are labelled differently: one in such a way that a < b < c,
the other such that a < c < b. This shows that the two families are
essentially different. We can look at it another way: if you try to construct
a continuous isomorphism between the two families, in the first half of the
interval, [− 1

4 , 0], this isomorphism would simply translate a triangle from F
over to the corresponding triangle in G . In the second half of the interval,
[0, 1

4 ], an isomorphism would have to translate the triangle from F over,
and then reflect it, to map it onto the corresponding triangle in G . In the
middle, at the isosceles triangle, we get two contradicting requirements:
continuity from the left requires us to translate the isosceles triangle over,
continuity from the right requires us to reflect this isosceles triangle across.
There cannot be a continuous isomorphism between the two families F
and G .

We conclude that M is not a fine moduli space, because two non-
isomorphic families of triangles have the same moduli map. In fact, there
does not exist any fine moduli space of triangles. Our two families are
pointwise the same, so define the same moduli map to any potential fine
moduli space.

The family G is obtained by pulling back the modular family M /M via
the common moduli map of F and G . The family F cannot be obtained by
pulling back M : any family pulled back from M can be labelled compatibly
and continuously with a, b and c, such that a < b < c everywhere, because
M has this property.

Of course, it is easy to see who the culprit is: it is the isosceles triangle,
which has a non-trivial symmetry, which allows us to cut the family F in
the middle,

and reassemble it in two different ways. Just gluing it back together we get
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F back:

But flipping the isosceles triangle in the middle while gluing

gives us the family G .

Coarse moduli spaces

As property (iv) is violated, M is not a fine moduli space of triangles, but
it does satisfy the following definition.

1.18 Definition. A coarse moduli space is a space M , such that the
first two conditions of Definition 1.17 are satisfied, and moreover, (technical
condition) M carries the finest topology making Condition (ii) true.

1.19 Remark. There is essentially only one coarse moduli space for any
mathematical notion. It can be constructed as follows: take the set of
isomorphism classes of objects under consideration as points of M , and
then endow M with the finest topology such that all moduli maps of all
continuous families are continuous. This gives a coarse moduli space. Any
other coarse moduli space is necessarily homeomorphic to this one. Thus it
is customary to speak of the coarse moduli space. (This requires the class
of objects to be small enough for isomorphism classes to form a set.)

1.20 Exercise. Any space satisfying the first three conditions of Defini-
tion 1.17 is a coarse moduli space. (The converse is not true, see Section 1.7
for an example.)

1.21 Exercise. A subset U ⊂M of the coarse moduli space is open if and
only if it defines an open condition on continuous families. This means that
for every continuous family F/T , the set of t ∈ T , such that [Ft] ∈ U is
open in T .

1.22 Remark. It is possible for a coarse moduli space to carry several
non-isomorphic modular families. (For an example, see Section 1.5.)
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1.23 Remark. The existence of a fine moduli space implies the existence
of pullbacks of families (they correspond to composition of maps).

1.24 Remark. If M is a fine moduli space, and M is a modular family,
then every continuous family F/T is the pullback of M via its moduli
map, and therefore M is called a universal family. Any other modular
family is isomorphic to the pullback of M via the identity, in other words
isomorphic to M . So there is essentially only one universal family, and one
speaks of the universal family.

To conclude: the coarse moduli space of triangles up to similarity is
isomorphic to the space M from (6), it admits a modular family, but no
universal family, there is no fine moduli space of triangles. Moreover, the
coarse moduli space of triangles is a 2-dimensional manifold with boundary.

Let us consider a few related classification problems.

1.4 Scalene triangles

Here we provide an example of a fine moduli space.
Recall that a triangle is scalene, if all three sides have different length.

Scalene triangles are completely asymmetric: they each have a trivial sym-
metry group. There exists a fine moduli space for scalene triangles. In fact,
remove the boundary from M , to obtain

M ′ = {(a, b, c) ∈ R3 | a < b < c, a+ b+ c = 2, c < a+ b} .

Let us denote the family parametrized by M ′ by M ′/M ′.

We claim that M ′ is a universal family for scalene triangles.
To see this, we have to show that every continuous family of scalene

triangles F/T is isomorphic to the pullback of M ′ via the moduli map of
F .
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The key observation is that in a scalene triangle there is never any
ambiguity as to which side is the shortest, and which side is the longest.
So in a continuous family of scalene triangles we can unambiguously label
the sides with a, b and c, where the shortest side is labelled a, and the
longest is labelled c. (So it is impossible to construct families of scalene
triangles such as F from (4), where the longest side jumps.)

In the family M ′, the sides are already labelled in this way. Therefore,
in the pullback f∗M ′, where f : T → M ′ is the moduli map of F , the
sides are again labelled in this way.

We can now use this labelling of the sides to define an isomorphism

F
∼−→ f∗M ′ , (10)

by sending the side labelled a to the side labelled a, the side labelled b to
the side labelled b, and the side labelled c to the side labelled c. Note that
without the canonical labelling of the sides of F it is impossible to define
(10).

1.25 Exercise. This defines an isomorphism of families, because for every
t ∈ T , the lengths of the sides of Ft are given by the triple of real numbers
f(t) (by definition of the moduli map f), and this triple of real numbers
gives the lengths of the sides of (f∗M ′)t = M ′

f(t), by the definition of

the modular family M ′. Prove that (10) is a continuous isomorphism of
families (i.e., an isomorphism of continuous families).

We conclude that scalene triangles admit a fine moduli space (and a
universal family), which is a 2-dimensional manifold.

1.5 Isosceles triangles

Next we shall see a coarse moduli space with several modular families.
Let us consider all isosceles triangles. These are classified, up to sim-

ilarity, by the angle which subtends the two equal sides. This angle can
take any value between 0 and π. If I /T is a continuous family of isosce-
les triangles, then this angle defines a continuous function T → (0, π), the
moduli map of I . Of course, the interval (0, π) parametrizes a continuous
family of triangles
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which is a modular family, i.e., the triangle over the point γ ∈ (0, π) has
angle γ subtending the two equal sides. Therefore, we see that the interval
(0, π) is a coarse moduli space for isosceles triangles.

But note that there are two further continuous families of isosceles tri-
angles parametrized by (0, π), which are modular:

In fact, these latter two families are isomorphic, via reflection across the
vertical. But they are not isomorphic to the first family, above. For the case
of the first family, the isosceles angles all fit together continuously (they are
always at the top). For the latter two families, the isosceles angle changes
position at the equilateral triangle. This is essentially different behaviour.

The two essentially different families are competing for the title of ‘uni-
versal family of isosceles triangles’. Of course, only one family can carry
this title, so there is no universal family. Each of these two families de-
scribes one possible way a one-parameter family of isosceles triangles can
‘pass through’ the equilateral triangle.

We conclude that the coarse moduli space of isosceles triangles is a
1-dimensional connected manifold, and it admits two non-isomorphic mod-
ular families.

1.26 Exercise. The symmetry groupoids of the two modular families look
like this:
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1.6 Equilateral triangles

Let us restrict attention entirely to equilateral triangles. These are, of
course, all similar to each other, which seems to indicate that the classifi-
cation should be quite trivial.

In fact, the one-point space ∗ is, of course, a coarse moduli space for
equilateral triangles up to similarity. Let us pick an equilateral triangle,
and call it δ. Then the single triangle δ is a continuous family of equilateral
triangles parametrized by ∗, and it is a modular family.

Every family pulled back from δ/∗ is trivial, or constant.
On the other hand, there are families of equilateral triangles which are

not at all trivial. For example, the following family is parametrized by the
circle. It was obtained by taking the trivial family over a closed interval,
and gluing the first and last triangle with a 2π

3 twist.

(11)

The dotted line indicates an attempt to continuously label one (and only
one) vertex in each triangle with A. This is impossible. Instead, the dotted
line defines a degree 3 cyclic cover of the parameter circle.

So δ/∗ is not a universal family, and there exists no fine moduli space
for equilateral triangles.

The symmetry groupoid of δ/∗ is the group S3, the symmetric group
on three letters a, b, c.

1.27 Exercise. In fact, the vertices of any continuous family of equilateral
triangles over a topological space T form a degree 3 covering space of T ,
and, conversely, every degree 3 covering space of T defines a continuous
family of equilateral triangles.

1.7 Oriented triangles

We get an interesting variation on our moduli problem by considering ori-
ented triangles. This means that similarity transformations between tri-
angles are only rotations, translations, and scalings, but not reflections.
In this context, the equilateral triangle is the only triangle with non-trivial
symmetries, all other isosceles triangles have lost their symmetry. The sym-
metry group of the oriented equilateral triangle is the cyclic group with 3
elements.
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For now, let us agree that an oriented triangle is a triangle with a cyclic
ordering of its the edges (or its vertices). Any isomorphism of triangles has
to preserve this cyclic ordering. (There are two ways to cyclically order the
edges of a triangle.)

All scalene triangles have two oriented incarnations, which are trans-
formed into each other by a reflection. For example, the two incarnations
of the 3:4:5 right triangle are the following:

For the one on the left, the cyclic ordering of the edges according to ascend-
ing length is counterclockwise, for the one on the right it is clockwise. There
is no oriented similarity transformation of the plane which makes these two
triangles equal. On the other hand, isosceles triangles have only one ori-
ented version: if two isosceles triangles are similar, they can be made equal
by an oriented similarity transformation, not involving any reflections.

The coarse moduli space for oriented triangles is therefore ‘twice as big’
as the one for unoriented triangles, which we called M . We can construct
it by starting with the space

M̃pre = {(a, b, c) ∈ R3 | a ≤ c, b ≤ c, a+ b+ c = 2, c < a+ b} ,

and gluing together the two boundary lines b = c and a = c of isosceles
triangles, as indicated in the sketch (with the locations of the 3:4:5 and the
4:3:5 triangle marked):

M̃pre :

(0,1,1) (1,0,1)
M

b=c a=c

a+b=c

Let us call the resulting space M̃ . Thus M̃ can be pictured as the surface
of a cone with solid angle 2π

3 steradians at its vertex.

M̃ : (12)

Every oriented triangle corresponds to a unique point in M̃ : given an
oriented triangle, label its sides by a, b, c, in such a way that a, b and c
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appear in alphabetical order, when going around the triangle counterclock-
wise, and such that the longest side is labelled with c. Then rescale the
triangle until it has perimeter 2. The resulting side lengths define a unique
point in M̃ .

Here is the family of triangles parametrized by M̃pre, before gluing:

(13)

We can consider the family F of (4), obtained by drawing an ellipse as in
(3), also as a family of oriented triangles. It is a family starting at the 3:5:4
right triangle and ending at the 3:4:5 right triangle. The corresponding
path in M̃pre looks like this:

3:4:5 3:5:4

We want the oriented family F to define a continuous moduli map
[− 1

4 ,
1
4 ] → M̃ . That is why we have to glue the two boundaries of M̃pre

together. We cannot simply remove one of the edges b = c or a = c,
in defining M̃ , because that would make the moduli map of the oriented
family F discontinuous at the ‘break point’, seen in the sketch.

1.28 Exercise. Formally, define a continuous family of oriented triangles
parametrized by the topological space T to consist of a cyclic degree 3 cov-
ering T ′ → T , and a continuous map a : T ′ → T , satisfying the conditions
of Exercise 1.11. (A cyclic cover of degree 3 is a covering space T ′ → T ,
together with a given deck transformation σ : T ′ → T ′, which induces a
degree 3 permutation in each fibre of T ′ → T .) Isomorphisms of families
of oriented triangles are defined as in Exercise 1.11, with the additional
requirement that the isomorphism of covering spaces has to commute with
the respective deck transformations σ.

Prove that M̃ is a coarse moduli space of oriented triangles.

Does there exist a modular family over M̃? Can different families have
the same moduli map?
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The answer to the second question is ‘yes’. Non-isomorphic families
with the same moduli map can be constructed the same way as before:
take a family F , parametrized by [−ε, ε], such that Ft is non-equilateral
for t 6= 0, and equilateral for t = 0. Then create a new family F ′, by gluing
F |[−ε,0] and F |[0,ε], together at t = 0 by using a non-trivial symmetry of
the equilateral triangle.

In this sketch, the triangles in the second half of the lower family are
obtained by rotating the triangles in the second half of the upper family
by 2π

3 clockwise. Then the families are glued together along the central
equilateral triangles. The two families have the same moduli map, which is
a path in M̃ connecting the 4:3:5 right triangle with the 3:4:5 right triangle,
passing through the ‘vertex’ of M̃ , at the equilateral triangle:

3:4:5 3:5:4

Yet, the two families are essentially different: in one of them, the longest
side ‘jumps’, in the other it does not. Any isomorphism between the two
families would consist of a family of translations for t ∈ [−ε, 0], and a family
of translation-rotations for t ∈ [0, ε]. This family of isomorphisms is not
continuous at t = 0, and so our two families are different as continuous
families (as discrete families, they would, of course, be isomorphic, because
they are isomorphic pointwise at each parameter value).

One reason to introduce oriented triangles at this point is that they
provide an example where there exists no modular family over the coarse
moduli space.

To see this, we proceed by contradiction. Suppose that there exists a

continuous modular family of oriented triangles M̃ /M̃ . Then, very close to

the vertex point of M̃ (i.e., in some, maybe very small, open neighbourhood

of this point), we can consistently label the vertices of the family M̃ in some

way. Hence, when we restrict M̃ to small enough loops around the vertex
of M̃ , these restricted families can also be consistently labelled.
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Consider such a loop around the vertex of M̃ :

Because this loop avoids all oriented triangles with symmetries, it corre-
sponds to a unique continuous family parametrized by the circle S1. The
family parametrized by the open circle in M̃pre would look something like
this:

Of course, if the path in M̃pre is very close to the vertex, the triangles in
the family will be very close to equilateral. For clarity, we have depicted
the family corresponding to a path further form the vertex. Notice how
following along a path in (13) from the left equilateral edge to the right
equilateral edge gives rise to a family as displayed here. The induced loop
in M̃ parametrizes the family obtained by gluing together the two triangles
at the end (here implemented by bending the two ends downward):

(14)

Examining this family, we see that it does not admit an unambiguous
labelling. Rather, any attempt at such a labelling will run up against a
cyclic degree 3 cover of the parameter circle, just like for (11).

No matter how close the loop in M̃ is to the vertex, the corresponding
family will always have this feature. So there is no way that any putative

modular family M̃ could have a consistent vertex labelling, even in a tiny

neighbourhood of the equilateral vertex. So M̃ cannot exist.
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Non-equilateral oriented triangles

To look at M̃ another way, we can flatten out the cone, until M̃ becomes
a disc. Alternatively, we can bend the two isosceles edges of M̃pre around,
shortening them, and then glue them to get this view of M̃ :

If we follow along with the family parametrized by M̃pre, see (13), we get

and we see that it is impossible to glue this family together in a consis-
tent way. The equilateral triangle in the middle forces the acute isosceles
triangles into this incompatible position.

If we remove the central point and the equilateral triangle, we can rotate
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all the remaining triangles a little, and then we can glue successfully:

(15)

There is no way to put the equilateral triangle back into the centre of this
picture, in a way compatible with the neighbouring triangles, because the
neighbouring triangles exhibit rotation behaviour when going around the
centre in small loops, as we saw above (14).

Notice that (15) is the universal family of non-equilateral oriented tri-
angles.

Recall that the universal family (and therefore every family) of sca-
lene unoriented triangles admits a global consistent labelling of vertices.
The universal family of non-equilateral oriented triangles does not admit a
global labelling, as there are families of such triangles which contain twists.
Notice how even after removing the symmetric object, the universal family
still retains some properties of this object: the universal family contains a
twist by the symmetry group of the central object.

1.8 Stacks

Stacks are mathematical constructs invented to solve the various problems
we encountered when studying moduli problems. Stacks are more general
than spaces, but every space is a stack.

There exists no fine moduli space for triangles, but there does exist
a fine moduli stack of triangles (although in the stack context the word
‘fine’ is usually omitted). The moduli stack of triangles, let us call it M,
parametrizes a universal family U /M of triangles. Every family of triangles
F/T is isomorphic to the pullback of U /M via a continuous map T →M,
which is essentially unique. The word ‘essential’ is key. An important
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difference between stacks and spaces is that for a stack such as M, the
continuous maps T →M do not form a set, but rather a groupoid, and, in
fact, the groupoid of maps T →M is equivalent to the groupoid of families
over T (for all T , in a way compatible with pullbacks of families).

Over the locus of scalene triangles, there is no difference between the
coarse moduli space M and the fine moduli stack M, because over the
scalene locus, M is a fine moduli space. But the isosceles locus consists of
so-called ‘stacky points’ of M. There are two ways a path can pass through
a stacky point representing an isosceles triangle, and six ways it can pass
through the stacky point representing the equilateral triangle.

M :

order 6 
stacky point

order 2 stacky points

order 2
stacky points

ordinary points

Let us call the stack of oriented triangles M̃. It has one stacky point of
order 3 in the centre:

M̃ : (16)

The mathematical definition of the notion of stack is a stroke of genius,
or a cheap copout, depending on your point of view: one simply declares
the problem to be its own solution!

The problem we had set ourselves was to describe all continuous families
of triangles. We saw that this problem would be solved quite nicely by a
universal family, if there was one. But there isn’t one. So instead of trying
to single out one family to rule all others, we consider all families over all
parameter spaces to be the moduli stack of triangles.

Thus, the notions of moduli problem and stack become synonymous.
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The challenge is then to develop techniques for dealing with such a stack
as a geometric object, as if it were a space. For this to be successful, we
will need the existence of versal families. These fulfill a dual purpose: they
allow us to do geometry with the moduli stack, and we can describe all
families explicitly in terms of a versal family.

There are two difficulties with this:

(i) the description of the stack of all triangles in terms of a versal family is
more complicated than the description in terms of a universal family,

(ii) there are many versal families, and so we have to also study how
different versal families relate to each other.

But these problems cannot be avoided if the objects we are studying are
symmetric.

1.9 Versal families

Consider, again, the family F/I from (4). The behaviour of this family
near the isosceles triangle is not modelled anywhere by the modular family
M over the course moduli space M . So to describe all possible families
(even locally) we need to enlarge M . Here is a better family. The parameter
space is

N = {(a, b, c) ∈ R3 | a+ b+ c = 2, a, b, c < 1}.

N :

(0,1,1) (1,0,1)

(1,1,0)

M

a=b

isosceles
triangles

b=c

isosceles
triangles a=c

isosceles
triangles

equilateral
triangle

The members of the family N /N have their vertices labelled with the
letters A, B, and C, in a consistent way, and the side lengths of N(a,b,c),
for (a, b, c) ∈ N , are such that the side opposite the vertex A has length a,
the side opposite the vertex B has length b, and the side opposite C has
length c. (It is easy to check that the conditions on a, b and c imply the

33



three triangle inequalities.)

N : (17)

Note that the most symmetric of all triangles, the equilateral one, appears
only once in N , the isosceles triangles (except the equilateral one) appear
three times each, and the scalene triangles appear six times each. In fact,
the number of times a given triangle appears is inversely proportional to
the number of its symmetries.

The key feature of the family N /N is that it models all possible local
behaviours of continuous families of triangles, as we shall see below.

Let us examine the symmetry groupoid of the family N /N . Notice that
(17) looks very much like a more elaborate (in fact continuous) version of
Example 1.8. The symmetry group of Figure (17) is the dihedral group
with 6 elements, i.e., S3. Every element σ ∈ S3 defines a transformation
σ : N → N , as well as, for every n ∈ N , an isomorphism Nn → Nσ(n). (In
fact, these isomorphisms combine into an isomorphism of families N →
σ∗N .) Every similarity of some triangle Nn with another triangle Nn′ in
(17) comes about in this way. Therefore, the symmetry groupoid of the
family N /N is equal to the transformation groupoid N × S3, given by
the action of S3 on the parameter space N . (The geometric action via
rotations and reflections on Figure (17) induces the permutation action on
the components of the points of N .)

1.29 Exercise. Define the canonical topology on the symmetry groupoid
Γ ⇒ T of a continuous family F , parametrized by the space T , to be the
finest topology on Γ with the following property: for any space S, and any
triple (f, φ, g), where f : S → T and g : S → T are continuos maps, and
φ : f∗F → g∗F is a continuous isomorphism of families, the induced map
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S → Γ, is continuous. (The induced map S → Γ maps s ∈ S to the element
φs : Ff(s) → Fg(s) in Γ.)

Define the tautological isomorphism over Γ to be the isomorphism φ :
s∗F → t∗F , such that for every γ ∈ Γ, the isomorphism φγ : Fs(γ) →
Ft(γ) is the isomorphism given by γ itself.

Prove that the canonical topology on the symmetry groupoid of the
family N /N is the product topology on N × S3. Prove that the tautolog-
ical isomorphism over Γ is a continuous isomorphism of families (i.e., an
isomorphism of continuous families).

1.30 Exercise. Prove that N is a fine moduli space of labelled triangles.
A labelled triangle is a triangle together with a labelling of the edges, with
the labels a, b, c. A scalene triangle such as the 3:4:5 right triangle has
six different labellings. An isosceles but not equilateral triangle has three
essentially different labellings, but the equilateral triangle has only one.

Generalized moduli maps

As individual triangles appear multiple times in N , the moduli map of a
family of triangles is multi-valued. For example, a loop of scalene triangles
will have a 6-valued moduli map, which may look something like this:

(0,1,1) (1,0,1)

(1,1,0)

T

π

T'

f

N

The group S3 acts on the six image loops in N , and it therefore also acts
on T ′, which is, in this case, a disjoint union of 6 copies of the parameter
space T = S1. Each component of T ′ corresponds to one way of labelling
the triangles in the family.

More interesting is the moduli map of a Moebius family such as F̃/S1
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from (5):

(0,1,1) (1,0,1)

(1,1,0)

T

π

T'
f

N

(18)
For this figure, we have deformed the family a little bit: in the part before
the equilateral triangle, we have made the triangles a little more acute
(lengthened the string), afterwards a little more obtuse (shortened the
string). This is to avoid the moduli map collapsing to three lines in N ,
rather than three figure eights.

The image of the moduli map in N consist of six paths, which are joined
head to tail in pairs. Technically, the 6-valued moduli map T → N consists
of a degree 6 covering π : T ′ → T and a continuous map f : T ′ → N . The
space T ′ can be viewed as the space of all labellings of the triangles in our
family: for t ∈ T , the preimage π−1(t) consists of the six different ways
the vertices of the triangle Ft can be labelled with the letters A, B, and
C. The map f : T ′ → N , then maps a labelled triangle to the triple of
lengths of its sides (because the vertices are labelled, the side lengths form
an ordered triple, which is a well-defined point in N).

The covering π : T ′ → T decomposes into three components: one com-
ponent consists of those labellings where A is opposite the shortest side
(recall that only the shortest side is globally consistent in F/T , the two
others swap). Another component consists of labellings where B is oppo-
site the shortest side, and the last components consists of labellings where
C is opposite the shortest side. In this way, the three components of T ′ are
labelled with A, B, and C, too.

An important part of the structure of the moduli map (T ′/T, f) is the
action of the group S3 on T ′ and N , and the fact that f respects these
actions (f is S3-equivariant). On T ′ the group S3 acts by changing the
labelling. For example, the permutation which transposes A and B swaps
the two components of T ′ called A and B, and induces the branch swap on
the component labelled C. The same permutation acts on N by swapping
a and b (it is the reflection across the vertical axis), and exactly mirrors
the action on T ′.
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As another example, consider a family with a 2π
3 -twist, such as (14).

Its moduli map (T ′/T, f) might look something like this:

(0,1,1) (1,0,1)

(1,1,0)

T

π

T' f

N

This procedure is general: every continuous family of triangles F over
some parameter space T gives rise to an S3-covering T ′ → T , namely the
space of labellings of F , and an S3-equivariant map f : T ′ → N , given
by the triple of the lengths of the labelled sides. The structure (T ′/T, f)
replaces the concept of moduli map.

1.31 Exercise. Using the formal definition of continuous family of tri-
angles from Exercise 1.11, we construct the generalized moduli map as
follows. Let T ′ → T be a degree 3 covering map without structure group,
and a : T ′ → R>0 a continuous map. Then define T ′′ to be the space of all
maps ` : {A,B,C} → T ′, which are bijections onto a fibre of T ′ → T . Then
T ′′ → T is a covering space of degree 6, endowed with a right S3-action,
hence a covering map with structure group. The map f : T ′′ → N de-
fined by f(`) =

(
a`(A), a`(B), a`(C)

)
is S3-equivariant, and (T ′′, f) is the

generalized moduli map of the continuous family of triangles (T ′, a).

Reconstructing a family from its generalized moduli map

One of the problems with the coarse moduli space M was, that we were not
able to reconstruct a family from its moduli map. This problem we have
now solved! Any family of triangles F/T is, in fact, completely determined
by its generalized moduli map (T ′/T, f).

Consider, for example, a family F̃/S1 with a Moebius twist, whose
moduli map is displayed in (18). The way to obtain this family by gluing
as in (5), is completely encoded by (T ′/T, f). To see this, notice that you
can pick a closed interval I ⊂ T ′, which maps down to T = S1 in a one-to-
one fashion, except that the two endpoints t0, t1 get glued together by the
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map π.

(0,1,1) (1,0,1)

(1,1,0)

T

π

T'

f

N

I

The two points f(t0) and f(t1) in N are related by a unique element σ ∈
S3, (in this case the reflection across the vertical) and this σ defines an
isomorphism between the triangles over these two points, which are Nf(t0)

and Nf(t1). Pull back the family N to obtain f∗N |I . This family on
I can be glued together to a family over T = S1, using the isomorphism
σ : Nf(t0) → Nf(t1) of the two end triangles. The family obtained in this

way is isomorphic to the family F̃ which gave rise to the generalized moduli
map (T ′/T, f) in the first place.

1.32 Exercise. Using the formal definition of family of triangles from
Exercise 1.11, we construct a family of triangles from a generalized moduli
map as follows. Let T ′′ → T be a covering map with structure group S3

and f : T ′′ → N an S3-equivariant continuous map. Construct the degree
3 cover without structure group T ′ → T as T ′ = T ′′ ×S3

{A,B,C}. This
notation means that T ′ is the quotient of T ′′×{A,B,C} by the equivalence
relation (`σ, L) ∼ (`, σL), for all σ ∈ S3, and (`, L) ∈ T ′′×{A,B,C} (which
amounts to a quotient of T ′′×{A,B,C} by an action of S3). Then define the
continuous map a : T ′ → R>0 by a[`, L] = prL f(`). Here prL : N → R>0

denotes the projection onto the L-th component, and [`, L] ∈ T ′ is the
equivalence class of (`, L) ∈ T ′′ × {A,B,C}.

Prove that the procedures described here and in Exercise 1.31 are in-
verses of each other.

Versal families: definition

The features of the family N /N , which allow for generalized moduli maps
to exist, and for us to reconstruct any family from its generalized moduli
map are listed in the following definition:
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1.33 Definition. A family N /N is a versal family, if it satisfies the
following conditions:

(i) every family F/T is locally induced from N /N via pullback. This
means that for every t ∈ T , there exists a neighbourhood U of t in
T , and a continuous map f : U → N , such that the restricted family
F |U is isomorphic to the pullback family f∗N .

(ii) (technical condition) endowing the symmetry groupoid Γ ⇒ N of
the family N /N with its canonical topology (see Exercise 1.29), the
source and target maps s : Γ → N and t : Γ → N are continuous,
and the tautological isomorphism of families φ : s∗N → t∗N is
a continuous isomorphism of families (of whatever objects we are
studying).

Our family N of triangles is a versal family. To see that Condition (i)
is satisfied, it is enough to remark that in a small enough neighbourhood U
of any parameter value t ∈ T , the family of triangles F can be consistently
labelled. And once a family over U is labelled, it is completely determined
by the three continuous functions a, b, c : U → R>0 giving the lengths of the
three sides. (To even talk about these three functions, we need labels on
the edges of the triangles.) The three functions a, b, c define a continuous
map f : U → N , making the family over U isomorphic to f∗N .

Condition (ii) was checked in Exercise 1.29.

1.34 Exercise. Suppose you have a moduli problem satisfying the gluing
axiom (see Exercise 1.12), and N /N is a versal family for this moduli
problem, whose symmetry groupoid is a transformation groupoid N × G,
for a (discrete) group G.

Associate to a family F/T a generalized moduli map by endowing the
set of isomorphisms

T ′ = {(n, φ, t) | n ∈ N , t ∈ T , and φ : Nn → Ft is an isomorphism}

with the structure of a covering space T ′ → T and a G-action, and then
defining a continuous G-equivariant map f : T ′ → N by f(n, φ, t) = n.

Conversely, assume given aG-cover T ′ → T and aG-equivariant map f :
T → N , construct a family F/T whose generalized moduli map is (T ′, f),
as follows: choose local sections of T ′/T , i.e., choose an open covering
T =

⋃
i Ui, and continuous sections si : Ui → T ′, so that π ◦ si is equal to

the inclusion Ui → T . Pull back the family N via each f ◦ si, to a family
Fi over Ui. Over the intersections Uij = Ui ∩Uj , you have two sections of
π, namely si|Uij , and sj |Uij , so there is a continuous map σij : Uij → G,
such that si = sjσij , because T ′ → T is a G-covering. Then σij defines an

isomorphism of restricted families σij : Fi|Uij

∼−→ Fj |Uij
, because G acts

by symmetries on the family N . Then ({Fi}, {σij}) is gluing data for the
family F/T .
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1.35 Exercise. (For families of triangles.) Prove that the coarse moduli

spaces M and M̃ are quotient spaces M = N/S3 and M̃ = N/Z3.
(For families of arbitrary mathematical objects.) Prove that if N /N is

a versal family whose symmetry groupoid is the transformation groupoid
N × G ⇒ N , for a (discrete) group G, then the quotient space N/G is a
coarse moduli space.

Isosceles triangles

We exhibit versal families for the other moduli problems related to triangles,
that we studied above.

Recall that the course moduli space of isosceles triangles, the interval
(0, π), admitted two distinct modular families. They both exhibit essen-
tially different behaviour at the equilateral triangle, so neither of them is
versal. To obtain a versal family of isosceles triangles, we can restrict the
versal family of triangles N /N to the isosceles locus in N :

(0,1,1) (1,0,1)

(1/2, 1, 1/2) (1, 1/2, 1/2)

(1/2, 1/2, 1)

(1,1,0)

The description of generalized moduli maps is essentially the same as in
the case of general triangles.

This versal family of isosceles triangles is not a manifold, it has a sin-
gularity at the equilateral triangle point. (In fact, the stack of isosceles
triangles is singular.)

Equilateral triangles

The modular family consisting of one equilateral triangle δ/∗ is, in fact, a
versal family. To see this, first let us recall that a family is constant if it is
obtained by pullback from a family with one member, such as δ/∗. Then
note that if a family of equilateral triangles can be consistently labelled,
(here indicated by consistent colouring of the vertices)
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then it is isomorphic to a constant family:

(In this example, we can imagine the three coloured strings being pulled
taught, which will rotate the individual equilateral triangles, and rescale
them, if they have different size. We get an isomorphic family this way.)

So because every family of equilateral triangles can be locally consis-
tently labelled, every family of equilateral triangles is locally constant. Thus
δ/∗ satisfies the first property required of a versal family.

1.36 Exercise. Complete the proof that δ/∗ is a versal family by proving
that the canonical topology on the symmetry group S3 of δ is the discrete
topology.

For a family of equilateral triangles, the generalized moduli map
(T ′/T, f) consists only of the S3-covering T ′/T , there is no information
contained in f : T ′ → ∗, because there is always a unique map to the
one-point set from any space.

For a family of equilateral triangles F/T , the associated S3-cover is the
space of all labellings of F . Conversely, an S3-covering T ′/T of a space
T , encodes gluing data for a family of equilateral triangles, because the
symmetry group of the equilateral triangle is S3.

Note that δ/∗ is a unique modular family (up to isomorphism), which
is nevertheless not universal.

Oriented triangles

The same family N /N from above (17) is also a versal family for oriented
triangles. Simply declare all triangles in N /N to have the alphabetical
cyclic ordering on their edges. This makes N /N a family of oriented trian-
gles. Any family of oriented triangles can locally be labelled alphabetically,
and is therefore locally a pullback from the oriented N .

The difference to the unoriented case is that the symmetry groupoid of
the oriented N consists only of the cyclic subgroup with three elements
Z3
∼= A3 ⊂ S3 acting on N . Therefore, generalized moduli maps of oriented

triangles consist of pairs (T ′/T, f), where T ′/T is a cyclic cover of degree
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3, and f : T → N is an A3-equivariant continuous map. Examples:

(0,1,1) (1,0,1)

(1,1,0)

T

π

T' f

N

(0,1,1) (1,0,1)

(1,1,0)

T

π

T'
f

N

1.10 Degenerate triangles

For many reasons it is nice to have a complete (i.e. compact) moduli space.
(Completeness is needed, for example, for the Riemann-Roch theorem, and
intersection theory in general.) The coarse moduli spaces M of triangles

and M̃ of oriented triangles, are not compact, because they do not contain
the boundary line of degenerate triangles.

So let us consider degenerate triangles. Things get very interesting now,
because there are many ways to think of degenerate triangles, all giving rise
to different compactifications of the moduli stack M.

Let us return to our very first continuous family of triangles (4), which
was obtained by drawing part of an ellipse. When the pen hits the hori-
zontal line through the two pin points, the vertices of the triangle become
collinear, and the triangle becomes degenerate. (The triangle inequality
becomes an equality.) So drawing the ellipse to this point or beyond does
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not define a family of triangles.

Therefore, we will broaden our point of view, and include such degenerate
triangles in our moduli problem. We would like to do this in such a way
that drawing the complete ellipse leads to a continuous family of degenerate
triangles.

On the level of the course moduli space, not much happens: we are
just adding the boundary. In fact, one representation of the coarse moduli
space of degenerate triangles is

M = {(a, b, c) ∈ R3 | a ≤ b ≤ c, a+ b+ c = 2, c ≤ a+ b}

M :

(0, 1, 1)

(2/3, 2/3, 2/3)

(1/2, 1/2, 1)

Note that this also adds the triangle (0, 1, 1), which is not only collinear,
but also has two of its vertices coinciding. Let us call this the pinched
triangle. The symmetric degenerate triangle ( 1

2 ,
1
2 , 1) we call the bisected

line segment. The coarse moduli space M is compact.
There are several natural stack structures over this coarse moduli space.

They depend on what we mean exactly, by a continuous family of degen-
erate triangles. We will cover three approaches.

Lengths of sides viewpoint

In this scenario, a degenerate triangle is a set of three real numbers {a, b, c},
which are not required to be distinct or strictly positive, and which satisfy
weak versions of the triangle inequality. More precisely,

(i) a ≥ 0, b ≥ 0, c ≥ 0, but not all three are equal to 0,

(ii) a+ b ≥ c, a+ c ≥ b, and b+ c ≥ a.

We exclude the degenerate triangle whose sides all have length 0, because
it is not represented in the coarse moduli space M (it cannot be rescaled to
have perimeter 2). (It also has infinitely many symmetries, as all rescalings,
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rotations and reflections preserve it, and we do not need it to compactify
M. See, however, Exercise 1.59) Let us denote the stack of degenerate

triangles obtained in this way by M
näıve

.

M
näıve

:

order 6 
stacky point

order 2 stacky points order 2
stacky points

ordinary points

order 2 stacky point
order 2 stacky point

Up to similarity, we have added triangles with (a, b, c) = (a, 1 − a, 1),
with 0 ≤ a ≤ 1

2 . None of these have any symmetries, except the two isosce-
les ones, (0, 1, 1) and ( 1

2 ,
1
2 , 1), which have two symmetries each, namely

the swap of the two equal sides.
The closure N of N inside R3 supports a versal family, N , whose

symmetry groupoid is N ×S3, so the behaviour of M
näıve

is quite similar to
that of M: families of degenerate triangles are essentially the same thing
as S3-covering spaces together with S3-equivariant continuous maps to N .

N : (19)

The oriented version is very similar, we only replace S3 by Z3. (In
this scenario, an oriented triangle is a set of three numbers satisfying weak

44



triangle inequalities with a cyclic ordering on the three numbers.)
This ‘näıve’ point of view on the stack of degenerate triangles has the

advantage of being no more complicated than the stack of non-degenerate
triangles, and it leads to a ‘compact’ moduli stack. Disadvantages are: the
stack is a stacky version of manifold with boundary, and it also does not
capture correctly the geometric nature of families of triangles:

Let us consider two (unoriented) families obtained by drawing part of
the ellipse:

F : G :

Both are parametrized by an interval, start and end at the 3:4:5 right
triangle, and have a degenerate triangle in the middle. It is instructive, to
compare these two families with the two families we considered above, (9),
which had an isosceles triangle in the middle, rather than a degenerate one.
(It is of no consequence for what we are saying here, that this degenerate
triangle is also isosceles. Everything would be the same if we shortened or
lengthened the string giving rise to our two families a little.)

These two families are completely identical families if all we take into
account are the lengths of the three sides. If we label their edges consis-
tently, the two labelled families have the same moduli map to N . The
generalized moduli maps of the unlabelled families to N are identical. (All
this is in stark contrast to the two families from (9) crossing the equilateral
locus, rather than the degenerate locus.)

G :

F :

c

b
a

c

c

c

b

b

b

a

a
a

(20)

Yet, the two families are essentially different: an isomorphism between the
two families would have to be the identity on the first part of the parameter
interval and the reflection across the horizontal for the second half of the
parameter interval. So the two families are not continuously isomorphic, if
we require isomorphisms to be geometric similarity transformations of the
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plane the triangles are embedded inside, rather than just permutations and
rescalings of the three lengths of the sides.

The difference between the degenerate triangle and the isosceles triangle
is that the reflectional symmetry permutes the labels in the latter case, but
cannot be detected by labels in the former case. Therefore, the point of
view of a triangle as a collection of three numbers giving the lengths of
the sides is inadequate for degenerate triangles. This näıve point of view
cannot capture the reflectional symmetry of the degenerate triangles, which
is present as a consequence of the fact that the two families F and G of
(20) are different.

If we consider the two families F and G as families of oriented triangles,
they are plainly different: F connects the anticlockwise 3:4:5 triangle with
the clockwise one, whereas G has the anticlockwise one on both ends. But
for these statements to hold true, we need ‘orientation’ to be a structure
on the ambient plane, not any structure defined on the unordered triple of
the sides of the triangles.

We therefore have two notions of orientation on a degenerate triangle: a
cyclic ordering on the sides (or vertices), or an orientation on the ambient
plane. We call the latter an embedded orientation. In the case of non-
degenerate triangles, these two kinds of orientations determine each other.
In the case of degenerate triangles, neither determines the other. (An
orientation on the plane can be specified by a cyclic ordering of the edges
of an embedded non-degenerate triangle, or by a parametrized circle in the
plane.)

Embedded viewpoint

We will now describe the second compactification of the stack of triangles,
M, which we call the stack of (degenerate) embedded triangles, if it needs
emphasizing. We will do this by agreeing on what such families of triangles
look like locally, and exhibiting a versal family. Then the theory of gener-
alized moduli maps gives an explicit description of all continuous families
globally.

To tell the difference between the two families F and G from (9), it was
sufficient to label the sides of the families consistently. Labels on the sides
are not sufficient to tell the difference between the two families F and G
from (20). Therefore, we introduce extra structure: This extra information
is an orientation on the plane the triangles are contained in. Once we fix
such an orientation (in addition to the labels), it is easy to tell the difference
between the two families. For G , the alphabetical orientation of the labels
on the sides of the triangle and the given orientation on the plane disagree
everywhere. For F , the alphabetical orientation on the edges disagrees up
to the degenerate triangle, but agrees afterwards.

We obtain a versal family by considering triangles with labelling and
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orientation on the ambient plane. Since there are two orientations on the
plane (counterclockwise and clockwise), this means to take two copies of

N , which we shall call N
+

and N
−

, and glue them together along their

boundary. The result, which we shall denote N
±

is here sketched as the

surface of a bipyramid (N
+

is in the front, N
−

in the back):

N
±

: (21)

We agree that over N
+

the plane is oriented in such a way that the alpha-

betical order on the triangles is counterclockwise, and over N
−

, clockwise.
Consider the family F with marking and orientation as in (20). Its

moduli map to N
±

is displayed on the left hand side in the sketch below.

The first half is in N
−

, the second half in N
+

. (The corresponding moduli
map for G would coincide with the one for F for the first half of the
parameter interval, and then would retrace itself for the second half of the
parameter interval.) On the right hand side, we have displayed the moduli
map of a (marked and oriented) family obtained by drawing the complete
ellipse.

We see how the requirement that these moduli maps be continuous, tells
us how to glue the two copies of N together.

To construct a versal family N
±

parametrized by the bipyramid N
±

,

we glue together the two families of marked and oriented triangles N
+

parametrized by N
+

, and N
−

, parametrized by N
−

. Here N
+

is the
labelled family N of (19), endowed with the embedded orientation making

the labels counterclockwise, and N
−

is the labelled family N endowed
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with the clockwise embedded orientation. When gluing, we use the unique
isomorphism of labelled embedded-oriented triangles which exists over the

locus of degenerate triangles. (If we think of both N
+

and N
−

as iden-
tical copies of N , this amounts to gluing the two copies of N using the
reflectional symmetry of the degenerate triangles, which swaps the ambi-
ent orientation, but preserves the labels.) See Figure 2 for an attempt at

depicting N
±

.

1.37 Exercise. (More advanced.) The family N
±

is a universal fam-
ily of labelled degenerate embedded-oriented triangles. (Define a family
of labelled degenerate embedded-oriented triangles, parametrized by the
topological space T , to consist of a complex line bundle L /T , together
with three sections A,B,C ∈ Γ(T,L ), such that A + B + C = 0, and no
more than two sections ever agree anywhere in T . Isomorphisms consist of
isomorphisms of line bundles preserving the three sections.)

1.38 Exercise. The symmetry groupoid of the family N
±

is the trans-
formation groupoid given by the group of symmetries of the bipyramid,
which consists of the identity, two rotations by 2π

3 , three rotations by π,
four reflections and two rotation-reflections. This group of symmetries of
the bipyramid is isomorphic to S3×Z2, where S3 acts as before, preserving

N
+

and N
−

, and Z2 acts via the reflection across the common base of the
two pyramids making up the bipyramid.

1.39 Exercise. Retaining of the family N
±

only its orientation circle
bundle, we obtain a Hopf fibration. More precisely, for every family member

of N
±

construct a circle whose centre is at the centroid of the triangle,
and whose circumference is equal to the perimeter of the triangle (e.g. 2,
in our conventions). Consider these circles together with the action of the
circle group S1: it acts via rotations. The embedded orientations of the
triangles tell us in which direction S1 acts on these circles. The union of all

these circles forms a topological space P → N
±

, together with an action

of the group S1 on P , in such a way that N
±

is the quotient of P by this
S1-action. In other words, we have constructed a principal homogeneous

S1-bundle P over N
±

.
In Figure 2 we have indicated this circle bundle. Above is the family

N
+

, below the family N
−

. Both are displayed such that the orientation
on the circles is counterclockwise. The labels are indicated by different

colours on the vertices of the family members. The two halves of N
±

are displayed as discs, rather than triangles. When gluing together these
two half families, the circles on the boundary complete a rotation by 2π.
Another way to say this is that gluing data for the principal bundle P is
given by a map S1 → S1, which has winding number ±1.
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Figure 2: The Hopf fibration over N
±
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This shows that P → N
±

is homeomorphic to the Hopf fibration S3 →
S2. Since the Hopf fibration is topologically non-trivial, there is no way to

embed all the triangles in N
±

into the plane in a compatible way, just as
it is impossible to consistently label the Moebius family (5).

The following is a qualitative sketch of a small neighbourhood of the

pinched triangle in the family N
±

. Note how a line of isosceles triangles
and a line of degenerate triangles intersect at the pinched triangle.

(22)

We claim that N
±

is a versal family of degenerate triangles. To prove
this, all we need is an understanding of what a family of degenerate triangles
looks like locally. Thus, let us agree that locally, every family of degenerate
triangles can be labelled consistently and embedded into one fixed oriented
plane, which we will take to be C (recall that the complex number plane is
oriented).

1.40 Definition. If F is a continuous family of degenerate embed-
ded triangles parametrized by the topological space T , then for every
point t0 ∈ T , there exists an open neighbourhood t0 ∈ U ⊂ T of t0, and
three continuous functions A,B,C : U → C, determining the restriction
F |U . At every point of U , no more than two of the three functions A, B,
C are allowed to agree. For t ∈ U , the points A(t), B(t), C(t) ∈ C are the
three vertices of the triangle Ft.

If two such families are given over all of T by (A,B,C) : T → C
and (A′, B′, C ′) : T → C, then they are isomorphic if, after relabelling
of the three functions, there exist continuous functions R : T → C and
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S : T → C∗, such that (A′, B′, C ′) = (SA + R,SB + R,SC + R), or
(A′, B′, C ′) = (SA+R,SB +R,SC +R).

1.41 Exercise. Deduce from the result of Exercise 1.37 that N
±

is a
versal family of degenerate embedded triangles. An approach avoiding
Exercise 1.37, follows below.

To prove that N
±

is a versal family, assume that a family of (degen-
erate, embedded) triangles is given over the whole parameter space T by
three functions A,B,C : T → C. We extract from A,B,C the functions
a, b, c : T → R≥0, and ε : T → {+1, 0,−1}, where a = |B−C|, b = |C−A|,
c = |A−B|, and ε = 0 where A,B,C are collinear, ε = +1, where A,B,C
are in counterclockwise position, and ε = −1, where A,B,C are in clock-
wise position. We define a map

f : T −→ N
±

t 7−→

{
2

a+b+c

(
a(t), b(t), c(t)

)
∈ N+

if ε(t) ≥ 0
2

a+b+c

(
a(t), b(t), c(t)

)
∈ N− if ε(t) ≤ 0

The map f is continuous by the pasting lemma. We have to prove that the
family given by A,B,C : T → C is, at least in a neighbourhood of a base

point t0 ∈ T , isomorphic to the one given by f∗N
±

.

Let us explain how f∗N
±

gives rise, at least locally, to a family
of embedded-oriented triangles given by three continuous functions, say

A′, B′, C ′, to C. In the case of f∗N
±

, the family of triangles is described
by three continuous functions a, b, c : T → [0, 1], and two closed subsets
T+ and T−, where T+ ∩ T− = {a = 1} ∪ {b = 1} ∪ {c = 1}. To this
data, we associate A′, B′, C ′ as follows: over the locus where c 6= 0, de-
fine A′(t) = 0, B′(t) = c(t), and C ′(t) in such a way that |C ′(t)| = b(t),
|C ′(t) − B′(t)| = a(t), and C ′(t) is in the upper half plane if t ∈ T+, and
in the lower half plane if t ∈ T−. Similar constructions can be made over
the locus where a 6= 0, or b 6= 0, respectively.

Now it is not hard to see that, after relabelling, if necessary, the func-
tions A′, B′, C ′ are related to the functions A,B,C by a similarity trans-
formation of C, which depends continuously on t ∈ T . This proves that,
indeed, all families of triangles can locally be described as pullbacks from

N
±

.

1.42 Exercise. Prove that the technical condition on the symmetry

groupoid of N
±

is satisfied, i.e., verify that with our current local de-
scription of families of triangles, a continuous isomorphism φ : (A,B,C)→
(A′, B′, C ′) gives rise to a continuous map T → N

± × S3 × Z2, and that
the tautological isomorphism is continuous.
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As we now have a versal family, and we know its symmetry groupoid, we
know what families of degenerate triangles look like globally. The relevant
result was stated in Exercise 1.34.

As the symmetry group S3 × Z2 is a product, an S3 × Z2-cover is the
same thing as a pair consisting of an S3-cover and a Z2-cover. Thus we
have:

1.43 Proposition. Globally, a family of degenerate embedded triangles
over T is a pair (T ′, f), (T ′′, g), where T ′ → T is an S3-cover and T ′′ → T

is a degree 2 cover, and f : T ′ → N
±

and g : T ′′ → N
±

are equivariant
maps. The S3-cover T ′ gives all labellings on the family and the degree 2
cover T ′′ gives all embedded orientations.

The stack of embedded triangles, which we shall call M, looks like this:

M :

order 6 
stacky point

order 2 stacky points order 2
stacky points

ordinary points

order 4 stacky pointorder 4 stacky point order 2 stacky points

(23)

As embedded triangles, the pinched triangle, as well as the bisected line
segment have an order 4 symmetry group. In the case of the bisected line
segment, this group consists of the rotation by π, and two reflections. In the
case of the pinched triangle, there is the reflectional symmetry, the swap of
the two coinciding points, and the composition of these two symmetries.

Complex viewpoint

There is a canonical family of degenerate embedded triangles parametrized
by the complex plane C. It is customary to write the parameter as λ ∈ C, in
honour of Legendre. Figure 3 shows a picture of the λ-plane. The family of
triangles is given by the three functions A(λ) = 0, B(λ) = 1, and C(λ) = λ.
The 12 locations of the 3:4:5 triangle have been marked. The locus of acute
triangles is shaded. The family is shown in the lower part of Figure 3. As

it is labelled and oriented, it induces a map f : C→ N
±

, which is given by

f : C −→ N
±

λ 7−→


(

2|λ−1|
1+|λ|+|λ−1| ,

2|λ|
1+|λ|+|λ−1| ,

2
1+|λ|+|λ−1|

)
∈ N+

if Imλ ≥ 0(
2|λ−1|

1+|λ|+|λ−1| ,
2|λ|

1+|λ|+|λ−1| ,
2

1+|λ|+|λ−1|

)
∈ N− if Imλ ≤ 0 .
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–1 0 1/2 1 2

Figure 3: The λ-plane (above), and the versal family over it (below)
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This is a homeomorphism onto the complement of the point (1, 1, 0) in N
±

,

so it identifies N
±

with the one-point compactification C ∪ {∞} of C.
We also see that this family parametrized by C extends to a family

parametrized by the Riemann sphere C ∪ {∞}, by pulling back the family

N
±

via the homeomorphism C ∪ {∞} → N
±

.

So C ∪ {∞} is just as good a versal parameter space as N
±

. In fact, it
is better: it has the structure of a Riemann surface! (It endows the stack
M with the structure of real analytic stack.)

0

1/2 1

2

–1 ∞

ω

(24)

In this viewpoint, the action of S3 is given by the reflections in the three
great circles passing through the sixth root of unity ω, and rotations by
multiples of 2π

3 around the axis through ω. The group Z2 acts by reflection
across the great circle representing the real values of λ.

Notice how Figure 3 exhibits, in a neighbourhood of the locus where λ

is real, the behaviour of the family N
±

near where it has been glued. At
the centre of Figure 3, for example, is a bisected line segment, and close
by, isosceles triangles, as well as degenerate triangles appear twice, whereas
scalene triangles appear four times, reflecting the fact that the bisected line
segment has 4 symmetries.

Oriented degenerate triangles

An oriented (degenerate, embedded) triangle is a set of three points in the
plane (or rather an unordered triple of points in the plane), no more than
two coinciding, together with an orientation on the plane, i.e., a notion of
counterclockwise and clockwise. Of course, for non-collinear triangles, such
an orientation is the same thing as a cyclic ordering on the vertices, but
we have seen that for degenerate triangles the current notion is superior.

Isomorphisms, or similarity transformations, are now required to pre-
serve the orientation, i.e., they are not allowed to be reflections or glide
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reflections.
Of course, a continuos family of oriented triangles can, at least locally,

be endowed with a labelling, if we do not make any requirements about
the alphabetical ordering of the labelling agreeing with the counterclock-
wise orientation on the ambient plane. In other words, just as families of
unoriented triangles could be described locally by three complex valued
functions on the parameter space, the same is true for oriented families.
The difference is only in when families are considered isomorphic. (In fact,
we can use Definition 1.40 verbatim, adding only the word ‘oriented’, and
deleting the last ‘or’ involving complex conjugation.)

Therefore, N
±

is a versal parameter space, and N
±

is a versal family.

The symmetry groupoid of N
±

as a family of oriented triangles is a sub-

groupoid of the symmetry groupoid of N
±

as family of triangles. In fact,
it is the transformation groupoid of the subgroup of oriented symmetries
of the bipyramid. This group consists of the rotations by 2π

3 about the
axis through the two pyramid vertices, and the three rotations about the
axes through the vertices of the common base of the two pyramids. This
group is, again, isomorphic to S3, although it is a subgroup of S3 × Z2 in

a different way than the copy of S3 which acts on N
+

and N
−

.

In the Legendre picture, where we have identified N
±

with the Riemann
sphere C ∪ {∞}, this symmetry groupoid acts by the six linear fractional
transformations

λ 7−→ λ ,
1

λ
, 1− λ , λ

λ− 1
,

1

1− λ
,

λ− 1

λ
. (25)

We will write Λ for the Riemann sphere, endowed with the action of S3 by
these six transformations.

1.44 Exercise. Deduce from Exercise 1.34, that a family of degenerate
oriented embedded triangles parametrized by the space T is given by an
S3-covering space T ′ → T and an S3-equivariant map T ′ → Λ = C ∪ {∞}.

1.45 Exercise. Prove that for every family of oriented triangles F/T ,
the corresponding generalized moduli map to Λ = C ∪ {∞} is given by
the cross-ratio of the three vertices and ∞. More precisely, the six-valued
function T ′ → C ∪ {∞} is given by the six cross-ratios of the vertices and
∞. Moreover, the action by S3 on T ′ is compatible with the action of S3

on the six cross-ratios.

For example, consider a family parametrized by the figure eight, such
as the following: over the left loop of the figure eight, this family contains
a degree 3 cyclic cover, such as the family (14). Over the right loop of the
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figure eight, the family contains a degree 2 cover (a Moebius band).

The generalized moduli map of such a family will look like this:

T

π

T'

f

In fact, the image of the moduli map is the Cayley graph of the group S3.
The two cycles of length 3 cover the left loop of the figure eight, and the
three cycles of length 2 cover the right loop of the figure eight.

Let us denote the stack of degenerate embedded oriented triangles by L.
In the sketch of L, below, the front represents triangles oriented according
to ascending length of sides, the back represents triangles oriented according
to descending length of sides. Identifying front and back, making the sphere
flat, we get the picture of M from (23).
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order 3 stacky point
(equilateral triangle)

order 2 stacky point
(bisected line segment)

order 2 stacky point
(pinched triangle)

degenerate
 triangles

acute isosceles triangles

obtuse isosceles triangles

1.11 Change of versal family

There can be only one universal family, but there are many versal families.
To see examples, let us restrict to oriented triangles. So far we have seen one

versal family, with parameter space C∪{∞} ∼= N
±

, and symmetry groupoid
given the action of S3 on this parameter space, by oriented symmetries of
a bipyramid.

Oriented triangles by projecting equilateral ones

Let us construct another versal family of oriented degenerate triangles. Fix
a sphere S positioned on a horizontal plane, such that the South pole of
the sphere coincides with the origin of the plane. The parameter space will
be

E = {great circle equilateral triangles on S} .

(The vertices or edges of the elements of E are not labelled.)

1.46 Exercise. Prove that E is a 3-dimensional manifold. (In fact, it is the
quotient of the 3-dimensional Lie group SO3 of 3× 3 orthogonal matrices
with determinant 1, by a discrete subgroup isomorphic to S3.)

The family of degenerate triangles parametrized by E, which we shall
call E , is given by stereographic projection from the North pole of S onto
the plane. In other words, Et = p(t), for all t ∈ E, where p is the stere-
ographic projection. In the following sketch, a great circle triangle is dis-
played, as well as its stereographic projection into the plane. Thus, this
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sketch displays just one family member of E (as the parameter space is
3-dimensional, it is hard to sketch the the entire family).

Note that this never produces any triangles whose vertices coincide,
instead it produces triangles with a vertex at ∞ (when one of the vertices
of the great circle equilateral triangle is at the North pole). Thus, this
family takes a different point of view on the ‘pinched triangles’, than the

one parametrized by C ∪ {∞} = N
±

.
The group of oriented similarity transformations, which consists of

translations, rotations and scalings, is isomorphic to the semi-direct prod-
uct C+ oC∗. The subgroup of translations, C+, is a normal subgroup, and
the subgroup of scaling-rotations with centre the origin, is isomorphic to
C∗. The conjugation action of the scaling-rotations on the translations is
the multiplication action of C∗ on C+.

Using the stereographic projection, we can translate any geometric
statement about the plane into a statement about the sphere, and con-
versely. It is, in fact, more convenient to work on the sphere, rather than
the plane, because we can describe everything we need in terms of the group
of conformal symmetries of the sphere. Conformal transformations of the
sphere are transformations that preserve angles, as well as the orientation.

The group of orientation and angle preserving (i.e., conformal) transfor-
mations of the sphere is known as PSL2(C). If (A,B,C) and (A′, B′, C ′)
are ordered triples of distinct points on the sphere, then there exists a
unique P ∈ PSL2(C), such that PA = A′, PB = B′, and PC = C ′. The
oriented similarity transformations of the plane C+ o C∗ correspond via
stereographic projection to the subgroup of PSL2(C) fixing the north pole
∞. The subgroup of PSL2(C) which fixes lengths, as well as angles and
orientation, is the group of rotations of the sphere, SO3 ⊂ PSL2(C). The
intersection of these two groups is the group of rotations about the axis
through the north and south pole. This group is isomorphic to the circle
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group S1.

PSL2(C)

C+ oC∗
+ �

88

SO3

2 R

dd

S1
, �

99

3 S

ff

To explain why the family E is versal, let us work on the sphere S, rather
than the plane. Let us agree, therefore, that a family of degenerate triangles
is locally given by three continuous functions A,B,C : T → S, no two of
which agree anywhere in T . Isomorphisms are locally given by relabellings
and by continuously varying elements of the group C+ × C∗ ⊂ PSL2(C).

To prove that every such family is induced from E , locally, we will prove
that given such a family (A,B,C)/T , we can apply a continuous family of
elements of C+oC∗, making it a family of great circle equilateral triangles.

Let e0 be a fixed great circle equilateral triangle, which we may as well
assume to be labelled, as it is fixed. Firstly, there is a unique continuous
map P : T → PSL2(C), such that P (t)e0 =

(
A(t), B(t), C(t)

)
, for all

t ∈ T (as labelled families of triangles). This follows from the fact that
A,B,C never coincide, and the fact that PSL2(C) acts simply transitively
on the set of ordered triples of distinct points in S. Secondly, there exists
a continuous family of rotations R(t), such that R∞ = P−1∞ (at least
locally in T ). Then R−1P−1(A,B,C) = R−1e0, and R−1P−1∞ = ∞.
Because of the latter property, R−1P−1 is a continuous family of elements
of C+ o C∗, and, of course R−1e0 is a continuous family of great circle
equilateral triangles. This proves what we needed.

To determine the symmetry groupoid of the family E /E, assume that
{A,B,C} ⊂ C ∪ {∞} is a member of the family E , in other words a great
circle equilateral triangle.

Let P ∈ PSL2(C) such that P∞ = ∞ be an arbitrary oriented sim-
ilarity transformation. Assume that P{A,B,C} is another member of
E , i.e., another great circle equilateral triangle. As the rotation group
SO3 ⊂ PGL2(C) acts transitively on the great circle equilateral trian-
gles, there exists a rotation R ∈ SO3 such that R{A,B,C} = P{A,B,C}.
Hence R−1P is in the stabilizer subgroup of {A,B,C} inside PSL2(C).
This stabilizer subgroup consists of 6 rotations, and is isomorphic to S3.
As R−1P is a rotation, it follows that P itself is a rotation. As P fixes the
north-south axis it is in the subgroup S1 ⊂ SO3 ⊂ PSL2(C).

Thus, every symmetry of the family E is induced by an element of S1,
and we see that the symmetry groupoid of the family E is the transforma-
tion groupoid E × S1, where S1 acts by rotations about the North-South
axis of S.
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The following exercise finishes the proof of the versality of E , by proving
that the technical conditions on the symmetry groupoid are satisfied.

1.47 Exercise. Prove that with the manifold structure on E from Ex-
ercise 1.46, and with the local notions of continuous family and continu-
ous isomorphism described above, the canonical topology on the symmetry
groupoid of the family E /E is the product topology E × S1.

Prove that the tautological isomorphism of families over the symmetry
groupoid is continuous.

1.48 Exercise. Explain why we cannot define a global notion of family of
triangles to be given by a degree 3 cover T ′ → T together with a continuous
map T ′ → S.

Now that we have a versal family, and we know its symmetry groupoid,
we can describe all families globally, in terms of generalized moduli maps.
We need a generalization of Exercise 1.34, because the group in our sym-
metry groupoid is not discrete. Therefore, we have to consider principal
bundles, instead of G-covering spaces.

1.49 Definition. Let G be a topological group and T a topological space.
A principal homogeneous bundle over T with structure group G is
given by a topological space T ′, endowed with a continuous map π : T ′ → T ,
and a continuous action by the topological group G. The following two
conditions are required to hold:

(i) π(tg) = π(t), for all t ∈ T ′ and g ∈ G,

(ii) (local triviality) for every t ∈ T , there exists a neighbourhood U of t
in T , and a continuous section σ : U → T ′ of T ′ → T over U , such
that the induced map U ×G→ π−1(U), given by (u, g) 7→ σ(u)g is a
homeomorphism.

Instead of ‘principal homogeneous bundle with structure group G‘, we
often say ‘principal G-bundle’, or simply ‘G-bundle’. The terminology ‘G-
torsor’ is also common.

1.50 Exercise. Using the concept of principal bundle, generalize both
the statement and the results of Exercise 1.34 to the case of a versal family
whose symmetry groupoid is a transformation groupoid T×G with a general
topological group G.

In the case of G = S1, we call principal S1-bundles circle bundles.
Thus, in the present case, a generalized moduli map is given by a circle
bundle T ′ → T , together with an S1-equivariant continuous map T ′ → E.

Given a family of degenerate triangles F/T , we should think of the
circle bundle T ′ → T as the space of all ways the members of F can be
obtained by stereographic projection from great circle equilateral triangles
on S.
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Comparison

Let us now compare our two versal families of degenerate triangles: the

one parametrized by E, and the one parametrized by Λ = C∪ {∞} ∼= N
±

.
(We use the notation Λ for the Riemann sphere, to emphasize its role as
parameter space for the Legendre family of triangles.)

Let us restrict to unpinched triangles, because for those, our two notions
of degenerate triangles agree. Thus no vertices are allowed to coincide, no
vertices are allowed to ‘escape to infinity’. Therefore, we restrict to

Λ0 = C− {0, 1} ∼= N
± − {(0, 1, 1), (1, 0, 1), (1, 1, 0)} ,

and

E0 = E − {great circle triangles in S with a vertex at the North pole} .

Now the family E |E0 has a generalized moduli map to Λ0, and the

family N
±|Λ0 has a generalized moduli map to E0. The key is that these

generalized moduli map are ‘the same’. In fact, consider the space Q0 =

Isom(N
±|Λ0 ,E |E0), of isomorphisms between the two families. It fits into

the diagram:

Q0

S3-equivariant
S1-bundle ��

S1-equivariant
S3-bundle // E0

Λ0

(26)

There are two group actions on Q0, one by S3, one by S1, and these actions
commute with each other. This makes Q0 → Λ0 an S1-bundle, and Q0 →
E0 an S3-bundle. The map Q0 → E0 is S1-equivariant, the map Q0 → Λ0

is S3-equivariant.
Thus, Diagram (26) displays both generalized moduli maps at the same

time. We see that different versal families for the same moduli problem
will always have a common generalized moduli map intertwining the two
parameter spaces in this way.

A key fact is that the converse is true: if you have two a priori different
moduli problems, and a versal family for each, and if you can intertwine the
two symmetry groupoids in this way, the two moduli problems are actually
equivalent. We will discuss this next.

The comparison theorem

Suppose Q is a space with commuting actions by two topological groups,
G and H. Suppose further that the quotient maps π : Q → X = Q/G
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and ρ : Q→ Y = Q/H are principal bundles. Then the quotient maps are
equivariant:

Q

H-equivariant
G-bundle

π

��

G-equivariant
H-bundle

ρ
// Y

X

(27)

1.51 Theorem. In this situation, a G-bundle T ′/T and a G-equivariant

map f : T ′ → Y , is essentially the same thing as a G×H-bundle T̃ ′ → T
and a G×H-equivariant map F : T̃ ′ → Q.

Proof. Given T ′/T and f : T ′ → Y , we let T̃ ′ = Q×Y T ′ be the fibered

product, and F : T̃ ′ → Q the first projection:

T̃ ′ //

F

��

T ′

f

�� ��
Q //

��

Y T

X

Then T̃ ′ → T is a G × H-bundle, because the G and H-actions on T̃ ′

commute, and T̃ ′ → T ′ is an H-bundle.
Conversely, Given T̃ ′/T and F : T̃ ′ → Q, define T ′ = T̃ ′/H to be the

quotient space and f : T ′ → Y the map induced by F on quotient spaces,
noting that Y = Q/H.

One checks that these two processes are essentially inverses of one an-
other.

1.52 Corollary. In this situation, a G-bundle T ′/T and a G-equivariant

map f : T ′ → Y , is essentially the same thing as an H-bundle T̃ → T and
an H-equivariant map g : T̃ → X.

Proof. This follows from the theorem by the symmetry of the situation.

This corollary allows us to prove that moduli problems are equivalent,
by comparing the symmetry groupoids of versal families.

We apply this principle to the two notions of family of degenerate tri-
angles.

Let us fix some more data. Let the sphere S have diameter 1, so that
under the stereographic projection the equator of S corresponds to the unit
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circle in C. Fix e0 to be the great circle equilateral triangle on S, which
lies on the real great circle and has a vertex at the North pole ∞. The
stereographic projection of e0 is the pinched triangle with vertices at − 1

2 ,
1
2 and ∞.

We use the stereographic projection to identify Λ with S.
Now construct the diagram

SO3
ρ //

π

��

E

Λ

(28)

The map ρ is defined by ρ(R) = Re0, for every rotation R ∈ SO3. The
map π is defined by π(R) = AR−1∞, where A : S → S is the similarity
transformation of S, defined by

A //

In the complex plane, A corresponds to the translation z 7→ z + 1
2 , for

z ∈ C ∪ {∞}. Then we claim that

(i) Diagram (28) is a (S3 × Λ, S1 × E)-bibundle,

(ii) restricting to Λ0 and E0, we get Diagram (26).

The first claim says that the two moduli problems are equivalent, the sec-
ond that this equivalence of moduli problems is compatible with the obvious
one for non-pinched triangles. We conclude that E supports a versal fam-
ily of degenerate triangles in the coincident sense, and that its symmetry
groupoid is equal to the transformation groupoid S1 × E.

To see the second claim, note that, by Exercise 1.45, the general-
ized moduli map ρ−1(E0) → Λ of E |E0

is given by R 7→ cr(Re0,∞) =
cr(e0, R

−1∞) = cr(Ae0, AR
−1∞) = AR−1∞.
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1.53 Exercise. Prove that (28) is isomorphic to

SO3
//

��

S3\SO3

SO3/S1

The stack of triangles is a stacky version of the double quotient S3\SO3/S
1,

or equivalently, S3\PSL2C/(C+ oC×).

1.12 Weierstrass compactification

We will now discuss a different way to compactify the stack of oriented tri-
angles. The notion of family containing a pinched triangle will be different.

This new point of view comes about by viewing an oriented degenerate
triangle as the zero locus (in C) of a degree 3 polynomial with complex
coefficients. If a0z

3 + a1z
2 + a2z + a3, with a0, a1, a2, a3 ∈ C, and a0 6= 0,

is a degree 3 polynomial, factor

a0z
3 + a1z

2 + a2z + a3 = a0(z − e1)(z − e2)(z − e3) ,

and the corresponding triangle has vertices at e1, e2, e3 ∈ C. We ask of the
polynomial that not all three roots coincide.

Two polynomials give rise to the same triangle if they differ by an overall
multiplication by an element of C∗, they give rise to similar triangles if one
can be transformed into the other by substituting z with αz+β, for α ∈ C∗,
β ∈ C.

To simplify, we can put degree 3 polynomials into Weierstrass normal
form

4z3 − g2z − g3 , (29)

and consider only polynomials of this form. Factoring this polynomial

4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3) ,

we see that e1 + e2 + e3 = 0, and so the centroid (or centre of mass) of the
triangle is at the origin.

The family of all degree 3 polynomials in Weierstrass normal form is
parametrized by W = C2−{(0, 0)}, where the coordinates in W are named
g2 and g3. The polynomial

4z3 − g2z − g3 ∈ C[z, g2, g3]

can be thought of as a family of degree 3 polynomials parametrized by W .
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1.54 Exercise. We claim that this is a versal family of polynomials. To
prove this, we have to agree on what a family of polynomials is locally, and
what an isomorphism of local families of polynomials is.

Let us agree that a family of degree 3 polynomials without triple root
is locally given by four continuous functions a0, a1, a2, a3 : T → C, where
a0 does not vanish anywhere in T , and the polynomial a0(t)z3 + a1(t)z2 +
a2(t)z + a3(t) does not have a triple root, for any value t ∈ T .

Prove that locally, you can make continuous coordinate changes and
continuous rescalings of the coefficients, to put the polynomial a0z

3+a1z
2+

a2z + a3 into Weierstrass normal form 4z3 − g2z − g3. This takes care of
Definition 1.33 (i).

Now suppose given two continuous families g, f of polynomials in Weier-
strass normal form, both parametrized by the space T . Let us agree that
an isomorphism g → f is given by a continuous map (a, b) : T → C∗ × C,
such that 4z3 − g2z − g3 and 4(az + b)3 − f2(az + b) − f3 differ by an
overall rescaling of the coefficients. Show that this implies that b = 0, and
that (f2, f3) = (a2g2, a

3g3). Conclude that the symmetry groupoid of the
Weierstrass family, with its canonical topology, is isomorphic to the trans-
formation groupoid W × C∗, where C∗ acts on W with weights 2 and 3.
This takes care of Definition 1.33 (ii).

1.55 Corollary. From this exercise, as well as Exercise 1.50, it follows
that a continuous family of degree 3 polynomials, up to linear coordinate
changes, without triple root, is a pair (P, g), where P is a principal C∗-
bundle, and g : P → W is a C∗-equivariant map. Equivalently, it is given
by a complex line bundle L /T with two sections g2 ∈ L ⊗2 and g3 ∈ L ⊗3,
that do not vanish simultaneously.

The question now arises whether or not this point of view using nor-
malized degree 3 polynomials up to linear substitutions is equivalent to the
previous point of view on triangles as a set of three points together with a
map to C, see Definition 1.40 and Exercise 1.44.

In the polynomial picture, the only two symmetric oriented triangles
are the equilateral one, given by 4z3 − g3, and the bisected line segment,
given by 4z3 − g2z. They have 3 and 2 symmetries, respectively. All
other triangles are completely asymmetric in this picture, because C∗ has
nontrivial stabilizers on W only if one of the coordinates vanishes. In
particular, the pinched triangle, given by any polynomial with g3

2 = 27g2
3 ,

is completely asymmetric. (Recall that previously, the pinched triangle
had a non-trivial symmetry given by swapping the two points which map
to identical points in C.)

Thus, the stack W of degree 3 polynomials cannot be isomorphic to the
stack L of oriented degenerate triangles. Let us see if there is at least a
morphism in either direction.
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To define a morphism W→ L would mean to turn any family of degree
3 polynomials into a family of oriented triangles. In particular, we would
have to convert the Weierstrass family of polynomials parametrized by W
into a family of oriented degenerate triangles in the sense of Definition 1.40
and Exercise 1.44. This almost works:

The subspace W ′ ⊂ C×W defined by

W ′ = {(z, g2, g3) ∈ C×W | 4z3 − g2z − g3 = 0}

has a projection map π : W ′ → W , and also a map W ′ → C. In general,
over every point (g2, g3) ∈W , there are 3 points e1, e2, e3 in W ′ lying over
it, and the images of these points in C form the vertices of an oriented
triangle in C. If π : W ′ → W were a topological covering map, this would
be a family of oriented triangles (because in that case we could, locally, label
the three roots of the polynomial by e1, e2, e3). But over the discriminant
locus of W , where

∆ = g3
2 − 27g2

3

vanishes, the covering W ′ →W is ramified, and this is impossible.

1.56 Exercise. Prove that, in fact, W does not support any family of
degenerate oriented triangles in the sense of Exercise 1.44, which restricts
to the Weierstrass family over W \ {∆ = 0}.

So let us try to define a morphism L → W. This would amount to
converting any family of triangles into a family of polynomials. This is,
in fact, possible: a family of oriented triangles is locally given by three
continuous functions A,B,C : T → C, and to these we can associate the
continuous family of polynomials (z−A)(z−B)(z−C), whose (continuous!)
coefficient functions are given by a0 = 1, a1 = −(A + B + C), a2 =
(AB +AC +BC), a3 = −ABC. We also have to check compatibility with
isomorphisms of families. Indeed, if the family of triangles given by A,B,C
is isomorphic to the one given by A′, B′C ′, via r : T → C and s : T → C∗,
as in Definition 1.40, then

s3(z −A)(z −B)(z − C) = (sz + r −A′)(sz + r −B′)(sz + r − C ′) ,

and so, indeed the corresponding families of polynomials are isomorphic.
We have defined a morphism of stacks L→W. We can also get a more

global geometric picture of this morphism by considering the space

Q = C2 \ {(0, 0)} ,

whose coordinates we write as (µ, λ), together with two commuting actions
by the groups S3 and C∗. The group S3 acts by the six substitutions

(µ, λ) 7−→
(µ, λ) , (λ, µ) , (−µ, λ−µ) , (λ−µ,−µ) , (−λ, µ−λ) , (µ−λ,−λ) ,

(30)
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and the group C∗ acts by rescaling: (µ, λ) · α = (µα, λα), for α ∈ C∗. We
have a diagram of continuous maps

Q

S3-equivariant
C∗-bundle ��

g2(µ,λ),g3(µ,λ)

C∗-equivariant
S3-invariant map

// W

Λ

(31)

Here the vertical map Q→ Λ is the map (µ, λ) 7→ λ/µ, and the horizontal
map Q→W is given by the formulas

g2 = 2(λ2 + µ2)− 2

3
(λ+ µ)2 , g3 =

4

9
(λ3 + µ3)− 4

27
(λ+ µ)3 . (32)

The vertical map Q→ Λ is a principal homogeneous C∗-bundle. (It is the
tautological C∗-bundle of the Riemann sphere considered as the complex
projective line.) Moreover, the map Q→ Λ commutes with the S3-actions
on Q and Λ, which one sees by comparing (30) with (25).

The horizontal map is invariant under the S3-action on Q: the formulas
(32) are invariant under the substitutions (30). It is also equivariant with
respect to the C∗-actions on Q and W , because in (32), g2 is quadratic in
µ and λ, whereas g3 is cubic in µ and λ.

1.57 Exercise. Suppose that G and H are topological groups, and that
Q is a space with commuting actions by G and H. Suppose that Q → X
is an H-equivariant G-bundle and Q→ Y is a G-equivariant map which is
H-invariant. Then there is a natural construction which associates to every
pair (P, f), where P is an H-bundle and f : P → X an H-equivariant map,
a pair (P ′, f ′), where P ′ is a G-bundle and f ′ : P ′ → Y is a G-equivariant
map.

So we see that we can associate to every global family of triangles in
the sense of Exercise 1.44, a global family of polynomials in the sense of
Corollary 1.55. So we get another construction of a morphism of stacks
L → W. (Of course, it is the same morphism, because substituting (32)
into (29), and dividing by µ we get z(z − 1)(z − λ), up to normalization.)

In fact, every morphism of stacks comes about in this way:

1.58 Theorem. Suppose that X parametrizes a versal family F for the
stack X, with symmetry groupoid X×H, and Y parametrizes a versal family
G for the stack Y with symmetry groupoid G× Y . Any diagram

Q

H-equivariant
G-bundle ��

G-equivariant
H-invariant map // Y

X
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gives rise to a morphism of stacks X → Y. (It is an isomorphism, if and
only if the H-invariant map Q→ Y is a principal H-bundle.) Conversely,
every morphism of stacks X→ Y comes from such a diagram.

Proof. That such a space Q gives rise to a morphism of stacks was proved
in Exercise 1.57. For the converse, we would need the formal definition of
stacks, see Section 2, so let us just remark for now, that given the morphism
of stacks F : X → Y, we can define Q to be the space of triples (x, φ, y),
where x ∈ X, y ∈ Y , and φ : F (F |x)→ G |y is an isomorphism in Y. The
space Q can be endowed with a canonical topology. The H-action on Q is
given by (x, φ, y) · h =

(
xh, F (h−1 : F |xh → F |x) ∗ φ, y

)
, the G-action is

given by (x, φ, y) · g =
(
x, φ ∗ (g : G |y → G |yg), yg

)
.

This theorem only applies to the case where there exist versal families
whose symmetry groupoids are transformation groupoids. For the general
case, see Exercise 2.36.

We can informally write our morphism L→W as

g2 = 2(λ2 + 1)− 2

3
(λ+ 1)2 , g3 =

4

9
(λ3 + 1)− 4

27
(λ+ 1)3 ,

but we should keep in mind that it is really defined by the diagram (31).
The coarse moduli spaces of L and W are isomorphic. This common

moduli space is another copy of the Riemann sphere, denoted J , and it is
customary to write the coordinate as j, and normalize j in such a way that

j = 1728
g3

2

g3
2 − 27g2

3

= 256
(λ2 − λ+ 1)2

λ2(λ− 1)2
.

The point j = 0 gives the equilateral triangle, the point j = 1728 gives
the bisected line segment, and the point j =∞ corresponds to the pinched
triangle. The real axis in the j-plane contains both the isosceles triangles
(for j < 1728) and the properly degenerate triangles (for j ≥ 1728).

We have seen that both L, the stack of 3 points on the Riemann sphere,
up to affine linear transformations, and W, the stack of degree 3 polyno-
mials up to affine linear substitutions are compactifications of the stack of
oriented triangles. The morphism L → W is an isomorphism away from
the point corresponding to the pinched triangle, or j =∞.

A pictorial representation of the commutative diagram

L //

��

W

��
J

follows:
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order 3
stacky
 point

order 2
stacky
 point

order 2
stacky
 point point

〈g2(λ), g3(λ)〉
//

j(λ)
��

order 3
stacky
 point

order 2
stacky
 point

∞

j(g2, g3)
��

0

1728

∞

If we remove from L or W the line segment corresponding in the j-

sphere to the real segment [1728,∞], we obtain the moduli stack M̃ with
a single order 3 stacky point in the middle, which we obtained from the
length of sides point of view, see (16).

The sphere J can also be viewed as obtained by sewing together the
edge of the cone M̃ of (12). It is the topological quotient of the bipyramid

N
±

of (21) or the sphere (24) by S3.

The j-plane

We have seen that the Riemann sphere is a course moduli space for oriented
triangles. There does not exist a modular family parametrized by the j-
sphere. That is why there are discontinuities in the triangles corresponding
to various j-values of Figure 4.

To see the behaviour near j = 0, we pass to a neighbourhood of j = 0
by removing j = 1728. This corresponds to setting g3 = 1, and going up
to the Riemann surface defined by solving the equation

j = 1728
g3

2

g3
2 − 27

for g2, which is of degree 3 over the j-plane. We obtain Figure 5. The
pinched triangle j = ∞ appears three times in this picture, namely at
g2 = 3e2πin/3, n = 0, 1, 2. No oriented triangle appears more than once
near these points. This corresponds to the fact that the pinched triangle is
asymmetric in this picture.
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Figure 4: The j-plane. The locus of right triangles is a parabola.

Figure 5: The g2-plane
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Figure 6: The g3-plane

To see the behaviour near j = 1728, we pass to a neighbourhood of
j = 1728 by setting g2 = 1. This means going up to the degree 2 Riemann
surface defined by solving

j = 1728
1

1− 27g2
3

for g3. We get Figure 6. This time there are two pinched triangles, at
g3 = ± 1

9

√
3. At the centre is the bisected line segment which has order 2

symmetry group, it appears once in the picture. All other triangles appear
twice in the picture, they are asymmetric.

For further discussion of the g2-and the g3-planes, see Example 2.50.
Note the difference between the neighbourhoods of the pinched triangle

in these pictures, and in the L-picture, (22). In the latter, the three vertices
can be consistently labelled near λ = ∞, but in the current ones, this is
impossible: small loops around the pinched triangles give rise to Moebius
strips and Klein bottles as in (5). So in the polynomial point of view, there
is no local labelling of vertices.

It is a matter of taste, which of the two completions L or W of M̃ one
considers to be the ‘right one’. It also depends on applications, which one
of the two could be more useful.

1.59 Exercise. We can enlarge the stack W to include the triangle whose 3
vertices coincide. In Corollary 1.55, replace W by C2, or equivalently drop
the requirement that the sections g2 and g3 cannot vanish simultaneously.
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The Weierstrass family of polynomials extends to C2, and is versal. It has
symmetry groupoid given by the action of C∗ on C2, rather than W =
C2 \ {(0, 0)}.

The coarse moduli space of this triangle has one more point than the
j-sphere. Every point in the j-sphere is in the closure of this additional
point. Thus, the coarse moduli space is not Hausdorff any longer. This is
the main reason for excluding the triangle reduced to a point.
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2 Formalism

Let us now make the theory we have developed completely rigorous. This
will require some formalism.

2.1 Objects in continuous families: Categories fibered
in groupoids

We will first make precise what we mean by mathematical objects that can
vary in continuous families.

We start with the category T of topological spaces. This category
consists of all topological spaces and all continuous maps. The class of
topological spaces forms the class of objects of T , and for every two
topological spaces S, T , the set of continuous maps from S to T forms the
set of morphisms from the object S to the object T . Every object has an
identity morphism (the identity map, which is continuous) and composition
of morphisms (i.e., composition of continuous maps) is associative.

2.1 Definition. A groupoid fibration (or a category fibered in groupoids)
over T is another category X, together with a functor X → T , such that
two axioms, specified below, are satisfied. If the functor X→ T maps the
object x of X to the topological space T , we say that x lies over T , or that
x is an X-family parametrized by T , and we write x/T . If the morphism
η : x → y in X maps to the continuous map f : T → S, we say that η lies
over f , or covers f . The two groupoid fibration axioms are

(i) for every continuous map T ′ → T , and every X-family x/T , there
exists an X-family x′/T ′ and an X-morphism x′ → x covering T ′ → T ,

x′ // x

T ′ // T

(33)

(ii) the object x′/T ′ together with the morphism x′ → x is unique up to
a unique isomorphism,

x′′

,,
""

x

x′
66

T ′ // T

which means that if x′′ → x is another X-morphism covering T ′ → T ,
there exists a unique X-morphism x′ → x′′, covering the identity of
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T ′, and making the diagram

x′ //

!!

x′′

��
x

in X commute.

If we have a diagram (33), then the family x′/T ′ is said to be the pull-
back, or restriction of the family x/T , via the continuous map f : T ′ → T .
Using the definite article is justified by the fact that x′ is, up to isomor-
phism, completely determined by x/T and T ′ → T . We use notation
x′ = f∗x, or x′ = x|T ′ . Sometimes the word restriction is reserved for the
case that T ′ → T is the inclusion map of a subspace.

The notion of groupoid fibration over T captures two notions at once:
isomorphisms of families, and pullbacks of families. The first axiom
says that restriction/pullback always exists, and the second that restric-
tion/pullback is essentially unique. Note that the axioms also imply that
pullback is associative: f∗g∗x = (gf)∗x. The equality sign stands for
canonically isomorphic.

For isomorphisms of families, see the following exercise:

2.2 Exercise. Let X→ T be a groupoid fibration. Let T be a topological
space. The fibre of X over T , notation X(T ), consists of all objects of X
lying over T , and all morphisms of X lying over the identity map of T .
Prove that X(T ) is a groupoid, i.e., a category in which all morphisms are
invertible.

Suppose x/T is an X-family parametrized by T . Let t ∈ T be a point of
t. If we think of t as a continuous map t : ∗ → T , from the one point space
∗ to T , we see that we have a pullback object xt = t∗x in the category
X(∗). As we vary t ∈ T , the various xt form the family members of x.

2.3 Exercise. For M, the stack of triangles, as formalized in Exer-
cise 1.11, the corresponding category fibered in groupoids has objects
(T, T ′, a), where T is a topological space, T ′ → T is a degree 3 cover-
ing and a : T ′ → R>0 is continuous (such that the triangle inequality is
satisfied). A morphism in M from (S, S′, b) to (T, T ′, a) is a pair (f, φ),
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where f and φ are continuous maps making the triangle in (34) commute,

S′

�� φ   

b // R>0

S

f   

T ′

��

a
==

T

(34)

and the parallelogram in (34) a pullback diagram. Composition in the
category M is defined in a straightforward manner, and the functor M→ T
is defined by projecting onto the first component: (T, T ′, a) 7→ T , and
(f, φ) 7→ f .

The fact that M is a groupoid fibration follows from the requirement
that the morphisms in M define pullback diagrams.

2.4 Exercise. It is sometimes convenient to choose, for every x/T and for
every T ′ → T a pullback. (This could be done, for example, by specifying
a particular construction of the pullback family, but in general requires the
axiom of choice for classes.) The chosen pullbacks give rise to a pullback
functor f∗ : X(T ) → X(T ′), for every f : T ′ → T . They also give rise,

for every composition of continuous maps T ′′
f→ T ′

g→ T , to a natural
transformation θfg : (gf)∗ ⇒ f∗ ◦ g∗. The θ have to satisfy an obvious
compatibility condition, with respect to composition of continuous maps.
So a groupoid fibration with chosen pullbacks gives rise to a lax functor
from T to the 2-category of groupoids.

2.5 Exercise. Every topological space X gives rise to a tautological
groupoid fibration X, in such a way that X is the fine moduli space of
X. So X-families parametrized by the topological space T are continuous
maps T → X, and morphisms are commutative triangles

T ′ //

  

X

��
T

The structure functor X → T maps T → X to T .

2.6 Definition. Let X and Y be groupoid fibrations over T . A morphism
of groupoid fibrations F : X → Y is a functor F , compatible with the
structure functors to T . This means that

(i) for every object x of X, lying over the topological space T , the object
F (x) of Y also lies over T ,
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(ii) for every morphism η : x′ → x of X lying over f : T ′ → T , the
morphism F (η) : F (x′)→ F (x) also lies over f .

Therefore a morphism of groupoid fibrations turns X-families into Y-
families, in a way compatible with pullback of families: F (f∗x) = f∗F (x).
(Again, the equality stands for canonically isomorphic).

2.7 Definition. Let X and Y be groupoid fibrations over T , and F,G :
X→ Y morphisms. Then a 2-isomorphism from F to G

X

F
&&

G

88�� θ Y

is a natural transformation θ : F → G, such that for every object x/T ∈ X
the morphism θ(x) : F (x)→ G(x) in Y lies over the identity of T .

The hierarchy (groupoid fibrations,morphisms,2-isomorphisms) forms a
2-category, formally identical to the hierarchy (categories,functors,natural
transformations), with the added benefit that all 2-isomorphisms are in-
vertible.

Two groupoid fibrations X and Y are called isomorphic, or equiv-
alent, if there exist morphisms F : X → Y and G : Y → X, and 2-
isomorphisms θ : G ◦ F ⇒ idX and η : F ◦ G ⇒ idY. In this case, both F
and G are called isomorphisms or equivalences of groupoid fibrations.

2.8 Exercise. Prove that a morphism of groupoid fibrations F : X → Y
is an isomorphism if it is an equivalence of categories. This is the case if F
is fully faithful and essentially surjective.

2.9 Exercise. Let X be a groupoid fibration and T a topological space.
Show that a morphism T → X is the same thing as an X-family x,
parametrized by T , together with a chosen pullback family f∗x, for ev-
ery continuous map f : T ′ → T . So if X is endowed with chosen pullbacks,
as in Exercise 2.4, then a morphism T → X is the same thing as an X-family
over T . Moreover, a 2-isomorphism

T

x
%%

y

99�� θ X

is the same thing as an isomorphism of X-families θ : x→ y.
One should think of the morphism T → X as the moduli map corre-

sponding to the family x/T . Viewing an X-family over T as a morphism
T → X is a very powerful way of thinking, but all arguments can always
be formulated purely in the language of groupoid fibrations and X-families,
no result depends on choices of pullbacks existing.
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Fibered products of groupoid fibrations

Let F : X → Z and G : Y → Z be morphisms of groupoid fibrations over
T . The fibered product of X and Y over Z is the groupoid fibration
W defined as follows: W-families parametrized by T are triples (x, φ, y),
where x/T is an X-family, y/T is a Y-family, and φ : F (x) → G(y) is an
isomorphism of Z-families. A morphism from (x′, φ′, y′) over T ′ to (x, φ, y)
over T , covering the continuous map f : T ′ → T , is a pair (α, β), where
α : x′ → x is a morphism in X covering f and β : y′ → y is a morphism in
Y covering f , such that

F (x′)

F (α)

��

φ′ // G(y′)

G(β)

��
F (x)

φ // G(y)

commutes in Z.
There is a 2-commutative diagram

W
prY //

prX

��

<Dφ

Y

G

��
X

F // Z

This means that φ is a 2-isomorphism from F ◦prX to G◦prY. It is defined
by (x, φ, y) 7→ φ.

Given an arbitrary 2-commutative diagram

U

P

��

Q //

;Cψ

Y

G

��
X

F // Z

(35)

there is an induced morphism U→W to the fibered product, given on ob-
jects by u 7→

(
P (u), ψ(u), Q(u)

)
. The diagram (35) is called 2-cartesian,

if U→W is an equivalence of groupoid fibrations.

2.10 Example. The main example is the symmetry groupoid of a family:
let x/T be an X-family parametrized by T , and assume that its symmetry
groupoid Γ ⇒ T satisfies the technical condition of Definition 1.33. Think
of x as a morphism T → X as in Exercise 2.9. Then there is a 2-cartesian
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diagram of groupoid fibrations

Γ
t //

s

��

;Cφ

T

x

��
T

x // X

(36)

where φ : s∗x→ t∗x is the tautological isomorphism.

2.2 Families characterized locally: Prestacks

We had several examples where we characterized a moduli problem by spec-
ifying what continuous families looked like locally, and what isomorphisms
between families looked like. These were examples of prestacks. Also, it is
in the context of prestacks that symmetry groupoids behave well.

2.11 Remark. For experts we should note that our definition of prestack
is stronger than the usual one: we define a prestack to be a groupoid
fibration with representable diagonal: this implies that all isomorphism
functors are sheaves. In practice, the stronger condition is often verified,
so our non-standard terminology seems justified.

We need some terminology. Let X be a groupoid fibration over T . Let
x/T and y/S be X-families. The space of isomorphisms Isom(x, y) is the set
of all triples (t, φ, s), where t ∈ T , s ∈ S, and φ : xt → ys is an isomorphism
in X(∗). The topology on this space of isomorphisms is, by definition, the
finest topology such that for every pair (U, φ), where U is a topological
space, endowed with maps U → T and U → S, and φ : x|U → y|U is
an isomorphism in the category X(U), the induced map U → Isom(x, y),
defined by u 7→ φu, is continuous.

2.12 Definition. A prestack is a groupoid fibration X over T , such that
for any two objects x/T and y/S, the following conditions are satisfied:

(i) the canonical maps Isom(x, y)→ T and Isom(x, y)→ S are continu-
ous,

(ii) for any continuous map α : U → Isom(x, y), there exists a unique
isomorphism of families φ : x|U → y|U giving rise to α.

For the second condition, it suffices that the tautological isomorphism over
Isom(x, y) is continuous (i.e., occurs in the groupoid fibration X).

2.13 Exercise. If the prestack X has chosen pullbacks, we can think of
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x/T and y/S as morphisms, as in Exercise 2.9. Then the diagram

Isom(x, y) //

��

@H

S

y

��
T

x // X

is 2-cartesian.

2.14 Exercise. Conversely, suppose X is a prestack and F : U → X a
morphism, where U is a topological space. Then there exists a topological
space R, and a 2-cartesian diagram

R

��

//

;C
U

F

��
U

F // X

Moreover R ⇒ U is a topological groupoid. (It is isomorphic to the sym-
metry groupoid of the X-family F (idU ).)

Versal families

The following repeats Definition 1.33:

2.15 Definition. Let X be a groupoid fibration. An X-family x/T is
called versal, if every family can be locally pulled back from x/T , and if
Isom(x, x) satisfies the conditions of Definition 2.12.

So, if X is a prestack, then a family x/T is versal if every family can be
locally pulled back from x/T . The following converse is more useful:

2.16 Lemma. Suppose that a groupoid fibration admits a versal family.
Then it is a prestack.

Proof. Let x/T and y/S be X-families. We have to prove that there exists
a topological space I, and a 2-cartesian diagram

I //

��

T × S

x×y
��

X
∆ // X× X

Because we can glue topological spaces along open subspaces, it is enough
to cover T and S with open subspaces T =

⋃
Ui, and S =

⋃
Vj , and prove
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that there exists a topological space Jij and a 2-cartesian diagram

J ij //

��

U i × V j
x|Ui
×y|Vj

��
X

∆ // X× X

for all i, j. Now we know that there is a 2-cartesian diagram

Γ1
//

��

Γ0 × Γ0

��
X

∆ // X× X

where Γ1 ⇒ Γ0 is the symmetry groupoid of the given versal family. By
the first property of versal family, we can cover T =

⋃
Ui and S =

⋃
j Vj ,

and find 2-commutative diagrams

Ui
fi //

��

<D
Γ0

��
T

x // X

Vj
gj //

��

<D
Γ0

��
S

y // X

Then we define Jij to be the fibered product

Jij //

��

Ui × Vj
fi×gj
��

Γ1
// Γ0 × Γ0

and glue the Jij to obtain I.

2.17 Exercise. For a topological space X, a versal family for the groupoid
fibration X is the same thing as a continuous map f : T → X which admits
local sections, i.e., for every x ∈ X, there exists an open neighbourhood
x ∈ U ⊂ X, and a continuous map s : U → T , such that f ◦ s is equal to
the inclusion map U → X.

The symmetry groupoid of T → X is the fibered product groupoid T×X
T ⇒ T . Such groupoids are called banal groupoids. Banal groupoids are
equivalence relations.

2.3 Families which can be glued: Stacks

2.18 Definition. A prestack is called a stack, if it satisfies the gluing
axiom of Exercise 1.12.
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2.19 Example. In Section 1.10, (see also Definition 1.40) we defined a
groupoid fibration which we shall call Lpre. Objects of Lpre are quadru-
ples (T,A1, A2, A3), where T is the parameter space and Ai : T → C are
continuous functions (no more than two of which are ever allowed to coin-
cide). A morphism from (T ′, A′1, A

′
2, A

′
3) to (T,A1, A2, A3) is a quadruple

(f, σ,R, S), where f : T ′ → T is a continuous map between the param-
eter spaces, σ ∈ S3 is a permutation of {1, 2, 3}, and R : T ′ → C and
S : T ′ → C∗ are continuous maps, such that A′σ(i) = S · (Ai ◦ f) + R, for
i = 1, 2, 3.

This groupoid fibration is a prestack, but not a stack. It is a prestack,
because it admits a versal family, as we had seen in Section 1.10. But it is
not a stack: it is possible to specify gluing data in Lpre which give rise to
families with a twist, even though all Lpre-families are untwisted.

2.4 Topological stacks

2.20 Definition. A stack X, which admits a versal family, is called a
topological stack.

If Γ1 ⇒ Γ0 is the symmetry groupoid of a versal family for X, we say
that Γ1 ⇒ Γ0 is a presentation of X.

All our examples M, M̃, M, L, W, etc., are topological stacks.
In practice the current definition is not strong enough: to be able to ‘do

topology’ on a topological stack, we have to put conditions on the spaces
Γ0 and Γ1, or on the maps s, t : Γ1 → Γ0 of the symmetry groupoid of a
versal family. For example, to do homotopy theory, we need that s and t
are topological submersions, see Section 2.7.

The nicest topological stacks, which are closest to topological spaces
are those of Deligne-Mumford type, see Definition 2.45. In this case s and
t are required to be local homeomorphisms. In particular, all symmetry
groups are discrete. If they are separated (see Exercise 2.40), these stacks
admit the structure of an orbispace, see Theorem 2.49.

Properties of Γ1 → Γ0 × Γ0 are separation properties of X. See for
example Exercise 2.40 or Proposition 2.51.

2.21 Exercise. Note that Definition 1.18 applies to any groupoid fibration.
Prove that if Γ1 ⇒ Γ0 is a presentation of a topological stack X, then the
image of Γ1 in Γ0 × Γ0 defines an equivalence relation on Γ0, and the
topological quotient of Γ0 by this equivalence relation is a coarse moduli
space for X.

Topological groupoids

The main general example of a topological stack is the stack of Γ-torsors,
for a topological groupoid Γ.
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2.22 Definition. A topological groupoid is a groupoid Γ1 ⇒ Γ0, as
in Definition 1.10, where Γ1 and Γ0 are also topological spaces, and all
structure maps s, t, e, µ, φ are continuous. Here e : Γ0 → Γ1 is the identity
map, µ : Γ2 → Γ1 is the composition map, and φ : Γ1 → Γ1 is the inverse
map. Often we abbreviate the notation to Γ• or simply Γ.

A continuous morphism of topological groupoids is a functor φ : Γ→
Γ′, such that the two maps φ0 : Γ0 → Γ′0 and φ1 : Γ1 → Γ′1 are continuous.

2.23 Exercise. The symmetry groupoid of a family in a prestack is a
topological groupoid.

2.24 Exercise. Suppose Γ is the symmetry groupoid of the family x/T in
a prestack, and that f : T ′ → T is a continuous map. Form the fibered
product of topological spaces

Γ′ //

��

T ′ × T ′

f×f
��

Γ
s×t // T × T

Prove that Γ′ is a topological groupoid, and that it is isomorphic to the
symmetry groupoid of the pullback family f∗x over T ′.

This exercise leads to the following definition.

2.25 Definition. Let Γ1 ⇒ Γ0 be a topological groupoid and Γ′0 → Γ0 a
continuous map. The fibered product

Γ′1 //

��

Γ′0 × Γ′0

��
Γ1

// Γ0 × Γ0

defines another topological groupoid Γ′1 ⇒ Γ′0, called the restriction of
the groupoid Γ1 ⇒ Γ0 via the map Γ′0 → Γ0. It comes with a continuous
morphism of groupoids Γ′ → Γ which is fully faithful, in categorical terms.

2.26 Exercise. If G is a topological group acting continuously on the
topological space X, then the transformation groupoid X × G ⇒ X is a
topological groupoid. Note the special cases G = {e} or X = {∗}.

Generalized moduli maps: Groupoid Torsors

2.27 Definition. Let Γ• be a topological groupoid. A Γ•-torsor over
the topological space T is a pair (P0, φ), where P0 is a topological space,
endowed with a continuous map π : P0 → T , and φ : P• → Γ• is a con-
tinuous morphism of topological groupoids. Here P• is the banal groupoid
associated to P0 → T (Exercise 2.17). Moreover, it is required that

82



(i) the diagram

P1
//

��

Γ1

��
P0

// Γ0

(37)

is a pullback diagram of topological spaces,

(ii) the map P0 → T admits local sections, as in Exercise 2.17.

A morphism of Γ•-torsors from (P ′0, φ
′) over T ′ to (P, φ) over T , consists

of a pullback diagram of topological spaces

P ′0 //

��

P0

��
T ′ // T

such that the induced diagram

P ′•

  ��
P• // Γ•

is a commutative diagram of topological groupoids.

2.28 Exercise. The Γ-torsors form a stack. It is called the stack associ-
ated to the topological groupoid Γ.

2.29 Exercise. Show that if the topological groupoid Γ is a transformation
groupoid X × G ⇒ X, then a Γ-torsor over T is the same thing as a
principal homogeneous G-bundle P → T , together with a G-equivariant
map P → X. Note the special cases G = {e} and X = {∗}.

2.30 Exercise. Let Γ be a topological groupoid. Prove that the stack of
Γ-torsors X is a topological stack, by proving that there is a tautological
Γ-torsor over the topological space Γ0. The symmetry groupoid of the
tautological Γ-torsor is the groupoid Γ itself. Thus Γ itself is a presentation
of X. There is a 2-cartesian diagram

Γ1
//

��

<D

Γ0

��
Γ0

// X

(38)

The following theorem generalizes Exercise 1.34, and Exercise 1.50.
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2.31 Theorem. If X is a topological stack, and Γ1 ⇒ Γ0 is the symmetry
groupoid of a versal family x/X0, then X is isomorphic to the stack of
Γ•-torsors.

Proof. As we have studied the proof in detail in special cases, we will
only say that to define the morphism from X to Γ•-torsors, we associate to
an X-family y/T the Γ•-torsor Isom(x, y) (which is the generalized moduli
map of y/T ).

In our examples, we often specified a moduli problem by giving a
prestack, then constructing a versal family for the prestack, and finally
replacing the prestack by the stack of torsors for the symmetry groupoid of
the prestack. This process is known as stackification. We followed it, for
example, when passing from Definition 1.40 to Proposition 1.43, or when
going from Exercise 1.54 to Corollary 1.55.

2.32 Example. If V/∗ is a versal family with only one family member,
so that the symmetry groupoid of V/∗ is just a topological group G, then
families are the same thing as twisted forms of V , i.e., locally constant
families all of whose family members are isomorphic to V . The stack of
twisted forms of V is equivalent to the stack of G-torsors. Often, we say
simply forms, instead of twisted forms.

Change of versal family: Morita equivalence of groupoids

Suppose x/Γ0 is a versal X-family with symmetry groupoid Γ•, and let y/S
be an arbitrary X-family. There is a 2-cartesian diagram (we have stopped
underlining)

P1

����

φ1 // Γ1

����
P0

φ0 //

��

=E
Γ0

x

��
S

y // X

(39)

in the shape of a cube (all 6 sides of the cube are cartesian). The right hand
edge of the diagram abbreviates (36), and (P•, φ•) is the generalized moduli
map of y. Because this diagram is 2-cartesian, we have P0 = Isom(y, x).

Suppose x/Γ0 is a versal family with symmetry groupoid Γ•, and y/Γ′0
is a second versal family with symmetry groupoid Γ′•. Then we can form a
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larger 2-cartesian diagram

P1

����

//// Q //

����

Γ1

����
Q′ ////

��

P0
//

��

<D

Γ0

x

��
Γ′1

//// Γ′0
y // X

We see that P0 is at the same time a Γ•-torsor over Γ′0 and a Γ′•-torsor over
Γ0. We say that P0 is a Γ•-Γ

′
•-bitorsor.

2.33 Exercise. Conversely, if there exists a Γ•-Γ
′
•-bitorsor, then the stack

of Γ•-torsors and the stack of Γ′•-torsors are isomorphic. This is the general
case of Corollary 1.52.

2.34 Definition. Two topological groupoids Γ and Γ′ are called Morita
equivalent if there exists a Γ-Γ′-bitorsor.

Thus we can say that stacks ‘are’ groupoids up to Morita equivalence.

2.35 Exercise. Prove that two topological groupoids Γ and Γ′ are Morita
equivalent if and only if there exists a third topological groupoid Γ′′ and two
morphisms Γ′′ → Γ and Γ′′ → Γ′ which are topological equivalences. Here, a
morphism Γ′′ → Γ of topological groupoids is a topological equivalence
if

(i) (topological full faithfulness) the diagram

Γ′′1 //

��

Γ′′0 × Γ′′0

��
Γ1

// Γ0 × Γ0

is a pullback diagram of topological spaces,

(ii) (topological essential surjectivity) the morphism

Γ′′0 ×Γ0,s Γ1
t // Γ0

admits local sections (see Exercise 2.17).

In fact, the 2-category of topological stacks is a localization of the category
of topological groupoids at the topological equivalences.
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More generally, let X → Y be a morphism of topological stacks, let
X• be a groupoid presentation of X and Y• one of Y. Form the larger
2-cartesian diagram:

P1

����

//// Q //

����

Y1

����
Q′ ////

��

P0
//

��

CK
Y0

��
X1

//// X0
// X // Y

Then P0 is a Y•-torsor over X0, and an X•-equivariant map to Y0.

2.36 Exercise. State and prove the general case of Theorem 1.58.

Quotient stacks

Suppose the topological group G acts on the topological space X. The
associated stack of pairs (P, φ), where P is a G-bundle and φ : P → X
an equivariant continuous map, is usually denoted by [X/G] and called the
quotient stack of X by G. There is a 2-cartesian diagram of groupoid
fibrations (38)

X ×G //

��

X

��
X // [X/G]

We have seen that if a topological stack X admits a versal family whose
symmetry groupoid is the transformation groupoid X ×G⇒ X, then X is
isomorphic to the quotient stack [X/G].

For every (P, φ) as above, parametrized by T , there is a 2-cartesian
diagram (39)

P //

��

X

��
T // [X/G]

If X = ∗ is the one-point space, the quotient stack [∗/G] is denoted by
BG, and is called the classifying stack of G. There is a 2-cartesian diagram

G //

��

∗

��
∗ // BG
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and for every principal G-bundle G/T a 2-cartesian diagram

P //

��

∗

��
T // BG

Therefore ∗ → BG is known as the universal principal G-bundle.

2.37 Exercise. Let G be a topological group acting on the topological
space X, and let P → T be a G-bundle. Then there is a 2-cartesian
diagram

P ×G X //

��

[X/G]

��
T // BG

Therefore, [X/G] → BG is called the universal fibre bundle with fibre X.
For example, there is always a 2-cartesian diagram

X //

��

∗

��
[X/G] // BG

2.38 Exercise. The quotient space X/G admits a morphism [X/G] →
X/G, which turns X/G into the coarse moduli space of [X/G].

2.39 Exercise. Suppose that G acts trivially on X. Then [X/G] = X ×
BG.

Separated topological stacks

Many properties of topological stacks can be defined in terms of presenting
groupoids, if these properties are invariant under Morita equivalence. The
following exercise treats an example.

2.40 Exercise. We call a topological groupoid Γ separated, if the map
Γ1 → Γ0×Γ0 is universally closed, i.e., proper in the sense of Bourbaki [5].
Prove that if Γ′ is Morita equivalent to Γ, then Γ′ is separated if and only
if Γ is. Therefore, we call a topological stack separated, if any groupoid
presentation of it is separated. Being separated is the analogue of the
Hausdorff property for stacks. Prove that separated topological stacks have
Hausdorff coarse moduli spaces.

When working with separated topological stacks, additional assump-
tions (such as the parameter space of a versal family being Hausdorff or at
least locally Hausdorff) may be necessary. See, for example, Theorem 2.49.
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2.5 Deligne-Mumford topological stacks

We now introduce the important idea that the parameter space of a versal
family should be thought of as a local model for a topological stack. For
this to hold true, the versal family has to have additional properties. We
introduce the most basic of these in this section. It comes about in analogy
to gluing data for manifolds.

Suppose X is a topological manifold, with an atlas {Ui}i∈I of local
charts Ui → X. The atlas gives rise to a versal family for the groupoid
fibration X (see Exercise 2.17). The parameter space

Γ0 =
∐
i∈I

Ui

is the disjoint union of the charts in the atlas, and the versal family is the
induced continuous map Γ0 → X. The symmetry groupoid Γ1 ⇒ Γ0 has
morphism space

Γ1 =
∐

(i,j)∈I×I

Ui ∩ Uj .

We write Uij = Ui∩Uj . This symmetry groupoid is an equivalence relation.

U
11

U
22

U
12

U
21 U

1

U
2

U
1

U
2

X

2.41 Exercise. The groupoid Γ1 ⇒ Γ0 is the restriction (Definition 2.25)
of the trivial groupoid X ⇒ X via the map

∐
Ui → X. The morphism from

Γ1 ⇒ Γ0 to X ⇒ X is a topological equivalence of topological groupoids
(Exercise 2.35). This expresses the fact that {Ui} is an atlas of the manifold
X in groupoid language. The groupoid

∐
Uij ⇒

∐
Ui encodes the way

that X is obtained by gluing the Ui. Morita equivalence encodes the way
different atlases for the same manifold relate to one another.
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By analogy, a general topological groupoid Γ, presenting a topological
stack X should be thought of as an atlas for X, in fact, atlas is a commonly
used synonym for ‘presentation’.

There are many topological equivalence relations giving rise to X as
associated topological stack: the banal groupoid associated to any contin-
uous map Y → X admitting local sections will do. For example, we could
take a point P : ∗ → X and pass to the equivalence relation Γ′1 ⇒ Γ′0, with
Γ′0 = Γ0 q ∗. But unless X is a manifold of dimension 0, this equivalence
relation Γ′ does not reflect the local structure of X faithfully any more.

The morphism Γ0 → X is a local homeomorphism (every point of Γ0 has
an open neighbourhood which maps homeomorphically to an open neigh-
bourhood of the image point in X). Because Γ0 → X has local sections,
this is equivalent to source and/or target maps Γ1 → Γ0 being local home-
omorphisms.

As another example, consider a discrete group G acting on a topological
space Y in such a way that every point of Y has an open neighbourhood U
such that all Ug, g ∈ G, are disjoint. The quotient map Y → X is a local
homeomorphism, and Y → X is a versal family for X.

The property that Γ0 → X is a local homeomorphism also makes sense
for the morphism Γ0 → X of a groupoid presentation for a topological stack,
and gives rise to the notion of étale versal family:

2.42 Definition. A family x/T is étale at the point t ∈ T , if for every
family y/S, point s ∈ S, and isomorphism φ : ys → xt,

(i) there exists an open neighbourhood U of s in S, a continuous map
f : U → T , and an isomorphism of continuous families Φ : y|U → f∗x,
such that Φs = φ,

(ii) Given (U, f,Φ) and (U ′, f ′,Φ′) as in (i), there exists a third open
neighbourhood V ⊂ U∩U ′ of s, such that f |V = f ′|V and Φ|V = Φ′|V .

The family x/T is étale, if it is étale at every point of T .
A topological groupoid is called étale, if source and target maps are

local homeomorphisms.

2.43 Exercise. Every étale family has an étale symmetry groupoid. Ev-
ery versal family with étale symmetry groupoid is étale. (So most of the
versal families we constructed are étale. Exceptions are the versal family
of oriented triangles parametrized by the space of great circle equilateral
triangles, and the versal family of degree three polynomials parametrized
by W .) Having an étale symmetry groupoid is by itself not sufficient for
being an étale family.

2.44 Exercise. If an X-family x/T is étale, and every object of X(∗) is
isomorphic to xt, for some point t ∈ T , then x/T is versal.
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2.45 Definition. If the topological stack X admits an étale versal family,
it is called a Deligne-Mumford topological stack.

Thus Deligne-Mumford topological stacks ‘look like’ topological spaces,
locally. If Γ is an étale groupoid presentation for X, then X looks locally
like Γ0 (and also Γ1).

2.46 Exercise. Let us make this statement precise.
Surjective local homeomorphisms are local in the base. This means that

if X → Y is a continuous map of topological spaces, and Y ′ → Y is a
continuos map admitting local sections, then X → Y is a surjective local
homeomorphism if and only if the base change X ′ → Y ′, defined by the
pullback diagram

X ′

��

// X

��
Y ′ // Y

is a surjective local homeomorphism.
The morphism Γ0 → X given by an étale versal family for X, is consid-

ered to admit local sections, because for every morphism T → X, the base
change T ×X Γ0 → T admits local sections.

Therefore, the morphism Γ0 → X is considered to be a surjective local
homeomorphism:

Γ1
//

surjective local homeomorphism

��

Γ0

∴ surjective local homeomorphism

��
Γ0

admits local sections // X

2.47 Example. The topological stacks M, M̃, M and L are topological
Deligne-Mumford stacks. We will see below (Example 2.50), that W is of
Deligne-Mumford type, too.

2.48 Example. If X1 ⊂ X0 ×X0 is an étale equivalence relation, where
X1 has the subspace topology of the product topology, then the associated
Deligne-Mumford topological stack is equal to X, where X is the quotient
of X0 by X1 with the quotient topology.

For example, consider the equivalence relation on R, defined by the ac-
tion of Q by translation. If we endow Q with the discrete topology, the
equivalence relation is étale and we obtain a Deligne-Mumford topological
quotient stack [R/Q]. If we endow Q with the subspace topology, we ob-
tain a topological stack not of Deligne-Mumford type [R/Q]′. There are
morphisms

[R/Q] −→ [R/Q]′ −→ R/Q ,
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neither of which are an isomorphism.
In particular, [R/Q] and [R/Q]′ are examples of moduli problems with-

out symmetries, that still do not admit fine moduli spaces.

Structure theorem

Let us call a topological Deligne-Mumford stack separated, if it separated
according to Definition 2.40, and admits an étale versal family with Haus-
dorff parameter space.

2.49 Theorem. Every separated Deligne-Mumford topological stack is lo-
cally a quotient stack by a finite group.

Proof. Let Γ be an étale groupoid presenting the stack X. We may assume
that Γ0 is Hausdorff, and that s × t : Γ1 → Γ0 × Γ0 is proper. Then Γ1 is
Hausdorff, as well. Let P0 ∈ Γ0 be a point, and let G be its automorphism
group. Then G is a compact subspace of the discrete space s−1(P0) ⊂ Γ1,
and is therefore finite.

We start by choosing disjoint open neighbourhoods of the points of
G ⊂ Γ1, which, via s, map homeomorphically to an open neighbourhood
U0 of P0 in Γ0. (This is possible because s is a local homeomorphism, and
G is finite.) This identifies U0×G with an open neighbourhood of G in Γ1.
Hence, we have a commutative diagram

G //

��

U0 ×G

p1

��

// Γ1

s

��
P0

// U0
// Γ0

Now, using the closedness of s × t : Γ1 → Γ0 × Γ0, we choose an open
neighbourhood V0 of P0 in U0, such that V1 = (s×t)−1(V0×V0) ⊂ U0×G ⊂
Γ1. Then V1 ⇒ V0 is a subgroupoid of Γ1 ⇒ Γ0, and the arrows in V1 are
pairs (u, g), with u ∈ V0 ⊂ U0, and g ∈ G.

Consider the diagram

G×G //

µ

��
p1

��

V2
//

µ

��
p1

��

U0 ×G×G //

id×µ
��

id×p1

��

Γ2

µ

��
p1

��
G //

��

V1
//

s

��

U0 ×G //

pr

��

Γ1

s

��
P0

// V0
// U0

// Γ0

There are four vertical cartesian squares in this diagram, and the upper
horizontal arrows are uniquely determined by the lower commutative dia-
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grams. There is, a priori, no reason for

V2
//

p2

��

U0 ×G×G

t×id

����
V1

// U0 ×G // Γ0 ×G

(40)

to commute, although, after projecting onto Γ0, the two induced maps
V2 → Γ0 are equal to the projection onto the ‘middle’ object. Therefore,
the locus in V2, where the two maps to Γ0 × G are equal, is an open
neighbourhood V ′2 ⊂ V2 of G × G. Now, using the closedness of Γ2 →
Γ0 ×Γ0 ×Γ0, we can find an open neighbourhood V ′0 of P in V0, such that
the preimage of V0 × V0 × V0 is contained in V ′2 . Restricting the groupoid
Γ further to V ′0 , we get a subgroupoid V ′ ⊂ V ⊂ Γ, and replacing V with
V ′, we may assume that, in fact, Diagram (40) does commute. This means
that, for all (u, g, h) ∈ V2, we have p1(u, g, h) = (u, g), µ(u, g, h) = (u, gh),
and p2(u, g, h) =

(
ug, h

)
, where we have written ug for t(u, g). In other

words, we have

(u, g) ∗ (ug, h) = (u, gh) , for all (u, g, h) ∈ V2 .

For u ∈ V0, and g ∈ G, define ug = t(u, g). Then let

W0 = {u ∈ V0 | ∀g ∈ G : ug ∈ V0} .

Then W0 is an open neighbourhood of P0 in V0, and for u ∈ W0, we have
(ug)h = u(gh). Restricting our groupoid to W0 ⊂ V0, we see that W is the
transformation groupoid of the G-action on W0, defined above. We have a
morphism of groupoids

W0 ×G //

����

Γ1

����
W0

// Γ1

which induces an open immersion of topological stacks [W0/G]→ X.

2.50 Example. The Weierstrass stack W is a separated Deligne-Mumford
topological stack. An étale versal family is parametrized by the disjoint
union of two copies of C. This family is the union of the two families
4z3 − g2z − 1 and 4z3 − z − g3. A picture of this family is the union of (5)
and (6). The symmetry groupoid of this étale family is the restriction of
the transformation groupoid W × C∗ via the map C q C → W , which is
g2 7→ (g2, 1) on one copy of C, and g3 7→ (1, g3) on the other copy of C. It
is not a transformation groupoid.

Thus, removing the bisected line segment we get W \ BZ2
∼= [C/Z3],

and removing the equilateral triangle we get W \ BZ3
∼= [C/Z2]. We have

W = [C/Z3] ∪ [C/Z2], a union of two open substacks.
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On the other hand, W is not globally a finite group quotient, because
it is simply connected, see Example 2.64.

Orbifolds

Working in the category of differentiable manifolds and differentiable maps
gives rise to the notion of differentiable stack. Care needs to be taken,
because not all fibered products exist in this category (although pullbacks
via differentiable submersions exist, which is sufficient).

In this context, a stack over the category of differentiable manifolds
is said to be differentiable, if it admits a versal family whose symmetry
groupoid is a Lie groupoid. A Lie groupoid is a topological groupoid Γ1 ⇒
Γ0, where both Γ1 and Γ0 are endowed with the structure of differentiable
manifold, s and t are differentiable submersions, and all structure maps are
differentiable.

Different presentations of a differentiable stack give rise to Lie groupoids
which are differentiably Morita equivalent (this means that the structure
maps of a bitorsor have to be differentiable submersions). Lie groupoids
form a classical subject in differential geometry, see for example [18].

By abuse of terminology, we call a differentiable stack an orbifold, if it
admits a presentation by an étale Lie groupoid. (A Lie groupoid is étale,
if its source and target maps are local diffeomorphisms.) An analogue of
Theorem 2.49 (with the same proof) shows that every orbifold is locally
the quotient of a finite group acting by diffeomorphisms on an open subset
of Rn. All the examples of topological Deligne-Mumford stacks we encoun-
tered are naturally orbifolds. There is a vast literature on orbifolds, see for
example [24], [7].

If U ⊂ Rn is open, and endowed with an action by a finite group G,
and if [U/G] is an open substack of an orbifold X, then it is called a local
orbifold chart of X. In the literature, the term orbifold is usually reserved
for those X, which admit orbifold charts [U/G], where G acts effectively on
U .

The language of group actions is not well-suited for the global descrip-
tion of orbifolds. The way different orbifold charts are glued together is de-
scribed by a groupoid presentation as in Example 2.50. Moreover, Morita
equivalence of groupoids encodes what happens when two different orbifold
atlases describe the same orbifold.

The following result shows that the orbifold property for differentiable
stacks is a property of the diagonal, hence a separation property. We say
that a Lie groupoid X1 ⇒ X0 has immersive diagonal, if s × t : X1 →
X0 × X0 is injective on tangent spaces. This property is invariant un-
der differentiable Morita equivalence, and hence gives rise to a separation
property of differentiable stacks.
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2.51 Proposition. Every differentiable stack with immersive diagonal is
an orbifold.

Proof. We have to show that every Lie groupoid with immersive diag-
onal is Morita equivalent to an étale Lie groupoid. The fact that X• has
immersive diagonal allows us to construct a foliation TX0/X ↪→ TX0

, by
taking TX0/X to be equal to the normal bundle NX0/X1

of the identity sec-
tion X0 → X1, and embedding it into TX0

via the difference of the two
maps Ds,Dt : TX1 |X0 → TX0 . Then we take U0 → X0 to be transverse to
the foliation TX0/X and containing each isomorphism class in X(∗) at least
once. Restricting the groupoid X1 via U0 → X0 gives the Morita equivalent
groupoid U1 ⇒ U0, which is an étale groupoid presenting X.

There is a theory of foliations using étale groupoids, see [19].

2.52 Corollary. Every separated differentiable stack with immersive diag-
onal is locally a quotient of Rn by a finite group.

This result explains that finite group actions are, in fact, quite typical
for stacks, and justifies the heavy reliance on them in our examples.

2.6 Lattices up to homothety

We very briefly cover the classical moduli problems of lattices and elliptic
curves, and see how they are related to the moduli problem of oriented
triangles. For a more detailed account, see [15].

A lattice is a subgroup of C+, which is a free abelian group of rank
2, and which generates C as R-vector space. Two lattices Λ1 ⊂ C and
Λ2 ⊂ C are homothetic, if there exits a non-zero complex number φ, such
that Λ2 = φ · Λ1.

A local continuous family of lattices, parametrized by the topological
space T is given by two continuous functions ω1, ω2 : T → C∗, which
are not real multiples of one-another, anywhere in T . The corresponding
family of lattices is Zω1 + Zω2 ⊂ T × C. A homothety between two local
families φ : (ω1, ω2) → (τ1, τ2) is a continuous map φ : T → C∗, such that
Zτ1 + Zτ2 = φ · (Zω1 + Zω2). This defines the prestack of lattices up to
homothety.

Obviously, S = {(ω1, ω2) ∈ (C∗)2 | Rω1 6= Rω2} parametrizes a local
continuous family of lattices, in a tautological fashion: the two functions
ω1, ω2, are simply the coordinate projections. Just as obviously, every local
family of lattices is pulled back from this tautological one. Thus the family
parametrized by S is versal. The symmetry groupoid of this family is the
transformation groupoid of C∗ ×GL2(Z) acting on S.

By Theorem 2.31, i.e., stackifying our prestack, a (global) continuous
family of lattices parametrized by T is a complex line bundle L/T together
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with a rank 2 local system Λ ⊂ L. We will call the stack of lattices up to
homothety E.

To every compact Riemann surface E of genus 1, we associate the lattice

H1(E,Z) −→ Γ(E,ΩE)∗

γ 7−→
∫
γ

It is a lattice in the one-dimensional complex vector space dual to Γ(E,ΩE),
the space of holomorphic 1-forms on E. It is known as the period lattice.

Conversely, to a lattice Λ ∈ C we associate the compact Riemann sur-
face C/Λ. These two processes define an equivalence of groupoids between
elliptic curves (compact Riemann surfaces of genus 1 with a choice of base
point serving as zero for the group law) and lattices up to homothety. We
are therefore justified to declare a continuous family of elliptic curves to be
a continuous family of lattices. Thus we refer to E also as the (topological)
stack of elliptic curves.

2.53 Exercise. The upper half plane parametrizes a versal family of lat-
tices with symmetry groupoid given by SL2(Z) acting by linear fractional
transformations. The lattice at the point τ ∈ H is Z + τZ. The τ -value
of an elliptic curve is the quotient of its two periods. The corresponding
elliptic curve is C/(Z + τZ).

Compactification

Let D denote the open disc in C of radius e−2π centred at the origin. Let
D∗ ⊂ D be the pointed disc. Then D∗ parametrizes a continuous family
of lattices: over q ∈ D∗, the corresponding lattice is Λq = Z + τZ, where
τ ∈ C is any complex number such that e2πiτ = q. The corresponding
family of elliptic curves can also be written as C/Λq = C∗/qZ.

2.54 Exercise. Prove that this is, indeed, a continuous family of lattices.
Prove that for different points in D∗, the corresponding lattices are not
homothetic. Conclude that the the symmetry groupoid of this family of
lattices over D∗ is the family of groups D∗×Z2 over D∗, or, in other words,
the transformation groupoid D∗ × Z2, where Z2 acts trivially on D∗. This
uses the fact that we have restricted to |q| < e−2π, and can be deduced
from Exercise 2.53.

We therefore have a morphism of topological stacks D∗ × BZ2 → E.
This is, in fact, an open substack. We will compactify E by gluing in a
copy of D ×BZ2, along D∗ ×BZ2 ⊂ E.

To make this rigorous, we construct a groupoid as follows: start with
the symmetry groupoid Γ1 ⇒ Γ0 of the family of lattices parametrized
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by the disjoint union H q D∗. This has, as subgroupoid, the symmetry
groupoid D∗×Z2 ⇒ D∗ of the family over D∗. To construct Γ1 ⇒ Γ0 from
Γ1 ⇒ Γ0, take out D∗ × Z2 ⇒ D∗, and replace it by D × Z2 ⇒ D, the
groupoid given by the trivial action of Z2 on D.

2.55 Exercise. The object space Γ0 is the disjoint union HqD, and the
morphism space Γ1 is the disjoint union of H × SL2Z, D × Z2, and four
more components, which are all homeomorphic to D∗ (or the part of H
with imaginary part larger than 1).

Then we let E be the stack associated to Γ1 ⇒ Γ0. This is the stack of
degenerate elliptic curves.

2.56 Exercise. A family of degenerate elliptic curves over T is therefore
given by

(i) a cover of T by two open subsets, U and V ,

(ii) over U , a family of lattices, Λ ⊂ L,

(iii) over V , a continuous map q : V → D, and a degree 2 covering space
V ′ → V ,

(iv) over U ∩V , an isomorphism of families of lattices Λ|U∩V ∼= V ′×Z2
Λq,

with a natural notion of isomorphism.

2.57 Exercise. The disc D parametrizes a family of groups: the quotient
of D×C∗ by the subgroup of all (q, qn) ∈ D×C∗, for q ∈ D∗, n ∈ Z. (The
fibre of this family of groups over the origin is C∗.) The groupoid D × Z2

is a groupoid of symmetries of this family of groups. The stack E supports
a family of groups, the universal degenerate elliptic curve, denoted F.

2.58 Exercise. There is a morphism of stacks E → W, defined by map-
ping a lattice Λ ⊂ C to the triangle ℘( 1

2Λ), where ℘ is the Weierstrass
℘-function corresponding to the lattice Λ. This morphism of stacks induces
a homeomorphism on coarse moduli spaces. The fibres of this morphism
are all isomorphic to BZ2. This means that for every triangle δ, there is a
2-cartesian diagram

BZ2
//

��

=E
∗

δ

��
E //W

We say that E is a Z2-gerbe over W.

2.59 Exercise. Every E-family over T comes with a complex line bundle
L/T . In the notation of Exercise 2.56, this line bundle is equal to L over U ,
and equal to V ′×Z2

C, over V , where Z2 acts by multiplication by −1 on C.
These line bundles assemble to a line bundle L over E. The bundle L ⊗−k
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is called the bundle of modular forms of weight k. Global sections are called
continuous modular forms of weight k. (The term ‘modular form’ is usually
reserved for holomorphic or algebraic modular forms, see Example 3.73.)

Prove that a modular form of weight k is the same thing as a continuous
map f : H→ C which satisfies the functional equation

f
(aτ + b

cτ + d

)
= (cτ + d)kf(τ) ,

for all
(
a b
c d

)
∈ SL2(Z), and which is continuous at Re(τ) =∞.

Pulling back a modular form via D → E gives rise to its q-expansion.

2.7 Fundamental groups of topological stacks

As an example of the topology of topological stacks, we give a brief intro-
duction to the fundamental group. For details, see [22].

Let X be a topological stack that admits a versal family whose symme-
try groupoid X1 ⇒ X0 has the property that both source and target maps
are topological submersions (locally in X1, the map X1 → X0 is homeo-
morphic to a product of the base times another topological space). This
property will ensure that X has the gluing property along closed subsets,
Exercise 1.11.

Let ξ be an object of the groupoid X(∗), where ∗ is the one-point space.
The fundamental group of X with respect to the base point ξ is defined as
follows. Denote the base point of S1 by e.

A loop in X, based at ξ, is an X-family x/S1, parametrized by the circle
S1, together with an isomorphism ξ → xe, where xe is the family member
at the base point e ∈ S1. Equivalently, a loop is a diagram

ξ
α // x

∗ e // S1

Imagine a ‘film’, or a ‘movie’, of a an X-loop as it changes over time.
The film shows the loop varying continuously, as time passes. Throughout
the duration of the film, the family member over the base point e ∈ S1 is
always ξ. Such a film is called a homotopy between the loop depicted on
the first frame of the movie and the loop depicted on the last frame. The
first and last loop shown in the movie are then called homotopic.

Formally, a homotopy from the X-loop (x, α) to the X-loop (y, β), is
a quadruple (h, η, φ, ψ). Here h is an X-family parametrized by I × S1,
where I = [0, 1] is the unit interval in R. Moreover, η is an isomorphism
ξI → (idI , e)

∗h, where ξI is the constant family over I obtained by pulling
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back ξ via I → ∗
ξI

η // h

I
id×e // I × S1

and φ, ψ are isomorphisms x→ (0× idS1)∗h and y → (1× idS1)∗h

x
φ // h y

ψoo

S1 0×id // I × S1 S11×idoo

The two diagrams

ξ

��

α // x

φ

��
ξI

η // h

ξ

��

β // y

ψ

��
ξI

η // h

are required to commute.
The set of homotopy classes of X-loops based at ξ is denoted π1(X, ξ)

and called the fundamental group of X, based at ξ. This is, in fact, a group:
loops can be concatenated, by the gluing property, and homotopies can be
constructed, which prove well-definedness, associativity, and existence of
units and inverses.

The fundamental group of the stack of triangles

Let us compute the fundamental group of the stack M of non-degenerate
non-oriented triangles. Let us take the 3:4:5 right triangle as base point ξ.
Let us label the edges of the base triangle with 3, 4, and 5, according to
their length.

Define a map
p : π1(M, ξ)op −→ S3 ,

where we think of S3 as the group of permutations of the set {3, 4, 5}. For
a given loop, which starts and ends at the 3:4:5 triangle, we define the
corresponding permutation of {3, 4, 5}, by following the labels around the
loop, in the counterclockwise direction. For example, the loop (5) gives rise
to the permutation (45), in cycle notation. Because concatenation of loops
x ∗ y means that x is traversed before y, but composition of permutations
π◦σ means that π is applied after σ, the map p : π1(M, ξ)→ S3 reverses the
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group operation, and is therefore a homomorphism of groups π1(M, ξ)op →
S3, where π1(M, ξ)op is the opposite group of π1(M, ξ).

We claim that p is an isomorphism of groups. To prove injectivity,
assume that x/S1 is a loop leading to the trivial permutation of {3, 4, 5}.

ξ

(41)

This means that the edges can be consistently labelled, by the labels 3, 4, 5.
To make a movie transforming (41) into the trivial family ξS1 (representing
the identity element in π1(X, ξ)), simply deform the triangles continuously
until each side has length equal to its label.

ξ

Then, at the end of the movie, all triangles in the family are 3:4:5 right
triangles, and the family is isomorphic to the trivial family ξS1 , as there
cannot be any non-trivial families of 3:4:5 triangles, the 3:4:5 right triangle
being scalene.

To prove surjectivity of p, suppose σ is a given permutation of {3, 4, 5}.
To construct a loop of triangles, based at ξ, giving rise to this permutation,
take a family parametrized by an interval, which deforms the 3:4:5 triangle
in the middle to two equilateral triangles on either end

ξ σ
(42)
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and then glue according to σ.
As any group is isomorphic to its opposite group, we see that the fun-

damental group of M is S3.

2.60 Exercise. Prove that the fundamental group of the stack of equilat-
eral triangles is S3. (More generally, the stack of forms of a single object
with discrete symmetry group has as fundamental group the symmetry
group of the object.)

2.61 Exercise. The stack M̃ of oriented non-degenerate triangles has
cyclic fundamental group with 3 elements.

More examples

The computation of the fundamental group of M can be generalized to the
following statement:

2.62 Theorem. Suppose that X admits a versal family whose symmetry
groupoid is a transformation groupoid X × G. Suppose that X is con-
nected and simply connected and that G is locally path connected. Then
the fundamental group of X is isomorphic to π0(G), the group of connected
components of G.

Proof. Given an X-loop, its generalized moduli map is a G-bundle P →
S1, together with a G-equivariant continuous map f : P → X. Divide P by
G0, the connected component of the identity, to obtain a π0(G) = G/G0-
cover P → S1. Then going once around the loop inside P gives rise to an
element of π0(G).

This process defines the homomorphism π1(X)op → π0(G).
To prove injectivity, suppose that the element of π0(G) obtained from

P is trivial. This means that the π0(G)-cover P is trivial. Choosing a
trivialization, the space P splits up into components indexed by π0(G).
The component P 0, corresponding to the identity element is then a G0-
bundle over S1.

Note that any H-bundle Q over S1, for a topological group H, can be
obtained by gluing the trivial bundle over an interval with an element h
of H, similarly to (42). If the group H is path connected, then choosing a
path connecting h to the identity element gives us a homotopy between Q
and the trivial bundle.

Applying this to the above G0-bundle P 0, we get a homotopy between
P and the trivial G-bundle. So we may assume, without loss of generality,
that the G-bundle P is trivial.

So then our map f is an equivariant map f : S1×G→ X. Such a map
is completely determined by a continuous map S1 → X, i.e., a loop in X.
Contracting this loop in X gives rise to a second homotopy turning f into
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a trivial map S1×G→ X, given by (s, g) 7→ x0g, for a point x0 ∈ X. Now
our loop in X is trivial.

We leave the surjectivity to the reader.

2.63 Example. The stack of degenerate triangles M has fundamental
group S3×Z2. The stack L of oriented, degenerate triangles in the Legendre
compactification has fundamental group S3.

2.64 Example. The stack W of oriented degenerate triangles in the Weier-
strass compactification is simply connected. The stack of degenerate elliptic
curves E is simply connected.

2.65 Example. The stack of non-degenerate lattices has fundamental
group SL2(Z). The stack of non-pinched oriented triangles has funda-
mental group PSL2(Z).
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3 Algebraic stacks

For algebraic stacks, the parameter spaces are not topological spaces,
but rather algebraic varieties, or other algebro-geometric objects, such as
schemes or algebraic spaces.

Let us work over a fixed base field k. The reader may assume that k is
algebraically closed, or that k = C. Let us take as category of parameter
spaces S the category of k-schemes with affine diagonal. (Group schemes
are affine group schemes over k, and we will always tacitly assume that
they are smooth.)

3.1 Groupoid fibrations

A groupoid fibration will now be a groupoid fibration X→ S . The defini-
tion is the same as Definition 2.1, replacing T by S , ‘topological space’ by
‘k-scheme’, and ‘continuous map’ by ‘morphism of k-schemes’. Morphisms
are defined, mutatis mutandis as in Definition 2.6

3.1 Example. As an example, let k be a field of characteristic neither 2
nor 3, and consider E, the groupoid fibration of elliptic curves. An object
of E is a triple (T,E, P ), where T is a k-scheme, E is a scheme endowed
with a structure morphism π : E → T , and P : T → E is a section of π,
i.e., a morphism such that π ◦P = idT . Moreover π : E → T is required to
satisfy

(i) π is a smooth and proper morphism of finite presentation,

(ii) every geometric fibre of π is a curve of genus 1. This means that for
any algebraically closed field K, and any morphism t : SpecK → T ,
the pullback Et defined by the cartesian diagram

Et //

��

E

��
SpecK

t // T

is a one-dimensional irreducible (complete and non-singular by
the first property) variety of genus 1, i.e., dim Γ(Et,ΩEt) =
dimH1(Et,OEt

) = 1.

A morphism in E, from (T ′, E′, P ′) to (T,E, P ) is a cartesian diagram of
k-schemes

E′
φ //

��

E

��
T ′

f // T

(43)
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such that φ ◦ P ′ = P ◦ f .
The structure functor E→ S maps the object (T,E, P ) to the k-scheme

T , and the morphism (f, φ) to the morphism of k-schemes f .

3.2 Example. To define the groupoid fibration of degenerate elliptic curves
(more precisely: with multiplicative reduction) E, replace in Example 3.1
Condition (i) by ‘π is a flat an proper morphism of finite presentation’,
and Condition (ii) by ‘every geometric fibre of π is of one of two types:
either a smooth curve of genus 1 as in Example 3.1, or an irreducible one-
dimensional scheme, non-singular except for a single node, whose arithmetic
genus is 1, i.e., dimH1(Et,OEt

) = 1. In addition, one needs to require that
P avoids any of the nodes in any of the fibres of π.

3.3 Example. A still larger groupoid fibration is Ẽ, where the fibres are
only required to be reduced and irreducible curves of arithmetic genus 1.
This groupoid fibration will also include an elliptic curve with additive
reduction, i.e., a genus 1 curve with a cusp. (This groupoid fibration is
analogous to the stack of degenerate triangles including the one-point tri-
angle, see Exercise 1.59.)

For more details on E, E and Ẽ, see [8].

3.4 Example. Let X be a fixed smooth projective curve over k. A family
of vector bundles of rank r and degree d over X, parametrized by the k-
scheme T , is a vector bundle V of rank r over X × T , such that, for every
t ∈ T , the pullback of V to Xt has degree d. A morphism of families of
vector bundles from V ′/T ′ to V/T is a pair (f, φ) which fits into a cartesian
diagram

V ′
φ //

��

V

��
X × T ′

id×f //

��

X × T

��
T ′

f // T

Let us denote this groupoid fibration by Vr,d
X .

3.5 Exercise. Let Γ be a groupoid. The mass of Γ is

#Γ =
∑

x∈ob Γ/∼=

1

#Aut(x)
.

The sum is taken over the set of isomorphism classes of objects of Γ. Con-
sider Example 3.4 with k = Fq, the finite field with q elements, and X = P1.

Prove that #Vr,d
P1 (SpecFq) converges and find its value.
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Representable morphisms

Every k-scheme X defines a groupoid fibration X, as follows. An X-family
over T is a k-morphism T → X, and pullbacks are defined by composition.
This groupoid fibration is special: all fibres X(T ) are sets (not groupoids)
and pullbacks are unique (not unique up to unique isomorphism). We may
think of X as the functor represented by X.

This construction makes a groupoid fibration out of every scheme, and
a morphism of groupoid fibrations out of every morphism of schemes. As
one can reconstruct X from X (Yoneda’s lemma), we lose no information
when passing from X to X, and, in fact, we usually identify X with X,
and omit the underscore from the notation.

If a groupoid fibration X is equivalent to X, for a scheme X, via an
equivalence F : X → X, then X is called the fine moduli scheme of X, and
F (idX), which is an X-family parametrized by X, is called the universal
family. In this case, we also say that X is representable by the scheme X.

3.6 Definition. A morphism of groupoid fibrations F : Y→ X is repre-
sentable (more precisely: representable by schemes), if for every X-family
x/T , the groupoid fibration of liftings of x to a Y-family admits a fine
moduli scheme. Thus, there exists a scheme U → T , with a Y-family
y/U , and an isomorphism θ : x|U → F (y) of X-families over U , such that
(U, y, θ) is universal, for liftings of x. The universal mapping property can
be succinctly specified by saying that the diagram of groupoid fibrations

U
y //

��

;Cθ

Y

F

��
T

x // X

is 2-cartesian.

3.7 Definition. A representable morphism of groupoid fibrations is affine
or proper or smooth or flat or unramified or étale or of finite presentation or
finite or an open immersion or a closed immersion (or any other property
of morphisms of schemes, stable under base extension) if the morphism
U → T has this property, for all x/T as in Definition 3.6

3.8 Example. Let F be the groupoid fibration of quadruples (T,E, P, s),
where (T,E, P ) is a family of elliptic curves parametrized by T , and s :
T → E is another section of E → T . Forgetting s defines a morphism of
groupoid fibrations π : F→ E.

Let (E,P ) be an elliptic curve parametrized by T . Then the groupoid
fibration of liftings of (E,P ) to F is represented by E → T (this is more
or less a tautology). Thus π is representable. It is also smooth and proper
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and of finite presentation. Since for every family of elliptic curves (E,P )
the diagram

E
(E×TE,id×P,∆) //

��

F

π

��
T

(E,P ) // E

is 2-cartesian, we call F → E the universal elliptic curve. (The base-point
section of π : F→ E is given by (E,P ) 7→ (E,P, P ).)

Similarly, we can define the universal degenerate elliptic curve F → E.
The morphism F → E is representable, flat, proper and of finite presenta-
tion.

3.2 Prestacks

As we have seen, prestacks are groupoid fibrations where isomorphism
spaces are well-behaved. In the algebraic context there are several nat-
ural conditions which we have to consider.

One of the stronger conditions is the following:

3.9 Definition. The groupoid fibration X → S has scheme-
representable diagonal, if for any two objects x/T and y/U , the
groupoid fibration of isomorphisms from x to y admits a fine moduli scheme.
In other words, there exists a scheme I, with structure maps I → T and
I → U , and an isomorphism of X-families φ : x|I → y|I , such that (I, φ)
satisfies the following universal mapping property:

ψ

%%

��
,,

((
φ

��

//

��

y

��

J

&&

,,

((

x

��

I

��

// U

T

For any scheme J with given morphisms J → T and J → U , and any
isomorphism of X-families ψ : x|J → y|J , there exists a unique morphism
of schemes J → I, such that φ|J = ψ.

The scheme I is called the scheme of isomorphisms from x to y, and
is also denoted by Isom(x, y). The isomorphism φ is called the universal
isomorphism from x to y.
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3.10 Exercise. Prove that there are 2-cartesian diagrams

Isom(x, y) //

��

@Hφ

U

y

��
T

x // X

and
Isom(x, y)

BJφ

//

��

T × U

x×y
��

X
∆ // X× X

If x and y are parametrized by the same scheme T , we can define the
scheme IsomT (x, y), if it exists. It represents, for every T ′ → T , the iso-
morphisms from x to y in the fibre X(T ). Alternatively, it is the pullback

IsomT (x, y) //

��

Isom(x, y)

��
T

∆ // T × T

Prove that ∆ : X → X × X is representable by schemes according to Def-
inition 3.6, if and only if for any two families parametrized by the same
scheme T , the groupoid fibration IsomT (x, y) admits a fine moduli scheme.
Prove that this is equivalent to X having scheme-representable diagonal
according to Definition 3.9.

We can strengthen the condition by requiring the schemes Isom(x, y)
or the morphisms Isom(x, y)→ T ×U to satisfy additional conditions. For
example, we can require Isom(x, y) → T × U to be an affine morphism
of schemes, or a finite morphism of schemes. This leads to the notion of
X having affine diagonal or finite diagonal, respectively. A very common
requirement is that the diagonal be of finite presentation.

We can also weaken the condition to require only that Isom(x, y) be an
algebraic space.

The weakest possible condition is that Isom(x, y) is only a sheaf in
the étale topology. This leads to the notion of prestack in the étale
topology. This is the ‘usual’ notion of prestack.

3.11 Exercise. Let us prove that E is a prestack with finite (hence affine)
diagonal. We will present a proof which applies more generally, to ex-
plain a commonly used method. For a more direct proof see Exercise 3.30
which uses Lemma 3.15. So let (T,E, P ) and (U,F,Q) be families of de-
generate elliptic curves. By passing to the product T × U , we may as-
sume that T = U , and that we want to construct the relative isomorphism
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scheme IsomT

(
(E,P ), (F,Q)

)
. Because we can glue schemes along open

subschemes, the claim that IsomT

(
(E,P ), (F,Q)

)
is representable is local

in the Zariski topology on T . Families of curves can always embedded into
projective space at least locally, so we may assume that E → T and F → T
are projective morphisms.

We can quote a general theorem: Let X → T and Y → T be flat
and projective morphisms of schemes. Then IsomT (X,Y ) is represented
by a k-scheme, which is a (potentially countably infinite) disjoint union of
quasi-projective k-schemes. In fact, the scheme IsomT (X,Y ) is an open
subscheme of the Hilbert scheme of closed subschemes of X ×T Y , via
identifying an isomorphism with its graph. For Hilbert schemes, see [13]
or [10].

Using this fact, and the fact that IsomT

(
(E,P ), (F,Q)

)
is a closed sub-

scheme of IsomT (E,F ), we see that E has scheme-representable diagonal.
In fact E has finite diagonal. To prove this, we can exploit that fact

that E and F are curves: in this case, the condition on a subscheme of
E×F to define an isomorphism is a condition on the Hilbert polynomial of
the subscheme, because it is just a condition on the degrees. Therefore, our
scheme of isomorphisms is projective over T . One checks that fibre-wise
there are only finitely many isomorphisms, and then uses the fact that a
projective morphism with finite fibres is finite.

3.12 Exercise. The groupoid fibration Vr,d
X does not have finite type diag-

onal. For every vector bundle E over X, the automorphism group Aut(E)
is a linear algebraic k-group, but there is no bound on the dimension of
Aut(E), as E varies in Vr,d

X (k).

On the other hand, Vr,d
X can be covered by open subfibrations Vr,d,N

X ,

which are prestacks with affine diagonals of finite presentation. Here Vr,d,N
X

consists of bundles which are Castelnuovo-Mumford N -regular (see[21]). A
family of N -regular bundles E over X × T admits (at least locally in T ) a
resolution

P1
// P0

// E // 0

where the Pi are direct sums of O(n), for n� 0, and O(1) is a very ample
invertible sheaf on X. If F is another family of N -regular bundles over
X × T , then we have an exact sequence

0 // π∗Hom(E,F ) // π∗Hom(P0, F ) // π∗Hom(P1, F )

(44)
where π : X × T → T is the projection. As π∗Hom(Pi, F ) commutes
with arbitrary base change, and is a vector bundle over T , we see that
π∗Hom(E,F ) is representable by an affine T -scheme, namely the fibered
product (44). Similarly, π∗Hom(F,E), π∗ End(E) and π∗ End(F ) are affine
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T -schemes. Finally, Isom(E,F ) is a fibered product of affine T -schemes

Isom(E,F ) //

��

T

��
π∗Hom(E,F )×T π∗Hom(F,E) // π∗ End(E)×T π∗ End(F )

and is therefore an affine T -scheme itself. It is also of finite presentation.

3.13 Example. Let X be a k-variety, and G an algebraic k-group acting on
X. Define a groupoid fibration [X/G]pre as follows: families parametrized
by the scheme T are morphisms x : T → X. Morphisms in [X/G]pre

are pairs (f, φ), where f : T ′ → T is a morphism of parameter schemes,
and φ : T ′ → G is a morphism, such that x′ = x(f) · φ. Hence the fibre
[X/G]pre(T ) is the transformation groupoid of the group G(T ) acting on the
set X(T ). Then [X/G]pre is a prestack with scheme-representable diagonal,
because for x : T → X and y : U → X we have that

Isom(x, y) //

��

T × U

x×y
��

X ×G
pr×σ // X ×X

is a cartesian diagram. We note that the properties of the diagonal of
[X/G]pre are the properties of the morphism X ×G→ X ×X.

Versal families and their symmetry groupoids

The definition of versal family uses étale covers. If we were to use only
Zariski covers, there would not be enough versal families to make the theory
interesting.

3.14 Definition. Suppose that X is a groupoid fibration. A versal family
for X is a family x/Γ0 such that

(i) for every X-family y/T , there exist étale morphisms Ui → T , whose
images cover T , and morphisms of k-schemes fi : Ui → Γ0, such that
y|Ui
∼= f∗i x,

(ii) the symmetry groupoid Γ1 = Isom(x, x) of x is representable.

A useful analogue of Lemma 2.16 in this context is the following.

3.15 Lemma. If a groupoid fibration X admits a versal family whose sym-
metry groupoid Γ1 ⇒ Γ0 has the property that Γ1 → Γ0×Γ0 is affine, then
X is a prestack with affine diagonal.

108



Proof. The proof is analogous to the proof of Lemma 2.16. The mor-
phisms Ui → T and Vj → S will be étale, and the morphisms Jij → Ui×Vj
will be affine. By étale descent of affine schemes, it follows that I → T ×S
is affine.

The theory of descent is about generalizing the construction of schemes
by gluing along open subschemes to gluing over an étale cover (or more
general types of flat covers), as in this proof. For the result needed here,
see Théoreme 2 in [12]. See also [10].

3.16 Example. Consider the groupoid fibration of degree 2 unramified
covers. A family parametrized by the scheme T is a degree 2 finite étale
covering T̃ → T . The one point scheme Spec k parametrizes a trivial family,
which is versal. If we were to insist on Zariski open covers in Definition 3.14,
this would not be the case.

We adapt Definition 2.27 to the present context.

3.17 Definition. An algebraic groupoid Γ1 ⇒ Γ0 is a groupoid in
S , which means that Γ0 and Γ1 are k-schemes, and that all structure
morphisms are morphisms of k-schemes. We will always assume that our
algebraic groupoids also satisfy

(i) the diagonal s× t : Γ1 → Γ0 × Γ0 is affine,

(ii) the source and target maps s, t : Γ1 → Γ0 are smooth.

The notion of Morita equivalence (see Definition 2.34) carries over mutatis
mutandis.

3.18 Definition. Let Γ1 ⇒ Γ0 be an algebraic groupoid. A Γ-torsor over
the k-scheme T is a pair (P0, φ), where P0 is a k-scheme, endowed with a
smooth surjective morphism π : P0 → T , and φ : P• → Γ• is a morphism
of algebraic groupoids, such that (37) is a pullback diagram in S , where
P• is the banal groupoid associated to π : P0 → T . The second axiom in
Definition 2.27 is not necessary: every smooth surjective morphism admits
étale local sections. (If we were to insist on Zariski local sections, we would
get a different notion of torsor.)

If Γ1 ⇒ Γ0 is an algebraic group G⇒ Spec k, then a torsor is also called
a principal homogeneous G-bundle, or G-bundle, for short.

3.19 Exercise. Given an algebraic groupoid Γ1 ⇒ Γ0, and a smooth
morphism of schemes U0 → Γ0. Then the fibered product

U1
//

��

U0 × U0

��
Γ1

// Γ0 × Γ0
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defines an algebraic groupoid U1 ⇒ U0, the restriction of Γ• via the
morphism U0 → Γ0. If U0 → Γ0 is surjective, then U• is Morita equivalent
to Γ•.

3.20 Exercise. Every algebraic groupoid Γ with Γ0 quasi-compact, is
Morita equivalent to an algebraic groupoid Γ′, with Γ′0 and Γ′1 affine, i.e.,
an affine groupoid. This is proved by restricting Γ via

∐
Ui → Γ0, where

Ui is a finite affine open cover of Γ0 and so
∐
Ui is an affine scheme and∐

Ui → Γ0 is an étale surjection.
Because of this, we could work entirely with affine schemes and affine

groupoids to develop the theory of (quasi-compact) algebraic stacks with
affine diagonal. We do not do this, because many interesting versal families
have non-affine parameter space.

3.21 Exercise. Construct the tautological Γ-torsor. It is parametrized by
Γ0 and has Γ itself as symmetry groupoid. It is versal for the groupoid
fibration of Γ-torsors over S .

3.22 Exercise. Let G be an algebraic group acting on the scheme X.
Then a torsor for the algebraic transformation groupoid X×G⇒ X is the
same thing as a G-bundle, together with an equivariant morphism to X.

The analogue of the gluing property (Exercise 1.12) in the algebraic
context is expressed in terms of the étale topology on S and gives rise to
the notion of stack in the étale topology, in analogy to Definition 2.18.

3.23 Proposition. Let Γ be an algebraic groupoid as in Definition 3.17.
Then the groupoid fibration of Γ-torsors is a prestack with affine diagonal,
and it satisfies the gluing axiom with respect to the étale topology (hence it
is a stack in the étale topology).

Proof. The part about the affine diagonal follows from Exercise 3.21
and Lemma 3.15, thus ultimately from descent for affine schemes. The
gluing axiom is similar to the topological case, and uses again descent for
affine schemes. The point is that the scheme P0 → T × Γ0, which is to be
constructed by gluing, is going to be affine over T × Γ0.

3.3 Algebraic stacks

We will only consider algebraic stacks with affine diagonal. Most algebraic
stacks that occur in the literature have this property.

The following definition of algebraic stack avoids explicit reference to
Grothendieck topologies, algebraic spaces, or descent theory.

3.24 Definition. A groupoid fibration X over S is an algebraic stack,
if
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(i) X admits a versal family x/Γ0, whose symmetry groupoid Γ1 ⇒ Γ0

is an algebraic groupoid in the sense of Definition 3.17,

(ii) the tautological morphism of groupoid fibrations

X −→ (Γ-torsors)

y 7−→ Isom(y, x)

is an equivalence.

The groupoid fibration of Γ-torsors, for an algebraic groupoid Γ, is an
algebraic stack, see Example 3.21.

Every algebraic stack is a prestack with affine diagonal, because of
Lemma 3.15.

3.25 Theorem. Suppose a groupoid fibration X satisfies (i) in Defini-
tion 3.24. If X satisfies the gluing axiom with respect to the étale topology
in S , then the tautological morphism X → (Γ-torsors) is an equivalence,
and hence X is an algebraic stack.

Proof. (See also Exercise 1.34.) We have to associate to every Γ-torsor
P/T an X-family over T , whose generalized moduli map is the given torsor
P/T . Over P0 we have an X-family, and between the two pullbacks to P1 we
have an isomorphism of X-families, and the cocycle condition is satisfied. In
other words, we have smooth gluing data for an X-family. To obtain étale
gluing data for the same family, choose an étale surjection U0 → T and
a section σ : U0 → P0. We get an induced morphism of banal groupoids
U• → P•, via which we can pull back our gluing data.

3.26 Definition. Suppose a groupoid fibration X satisfies (i) in Defini-

tion 3.24. Then X̃ = (Γ-torsors) is the stack associated to X. It is an
algebraic stack.

3.27 Exercise. Prove that the tautological functor X→ X̃ is fully faithful.

3.28 Example. Let G be a linear algebraic group acting on a scheme X in
such a way that X×G→ X×X is affine. The groupoid fibration [X/G]pre

of Example 3.13 satisfies (i) in Definition 3.24. The stack associated to
[X/G]pre is [X/G], the stack of torsors for the algebraic transformation
groupoid X ×G⇒ X, Example 3.22.

3.29 Exercise. The groupoid fibration E of degenerate elliptic curves is
an algebraic stack. We have already proved that E is a prestack with
affine diagonal in Exercise 3.11. For the fact that E satisfies the gluing
axiom with respect to the étale topology on S , we can quote descent for
projective schemes, see [10]. Finally, we need a versal family. The general
way to produce versal families uses Hilbert schemes again, see [10] and [13].
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For details, and the proof that moduli stacks of curves and marked curves
of genus other than 1 are algebraic, see [1].

We can also prove that E is algebraic directly, avoiding descent theory
and the use of Theorem 3.25, see 3.55.

If k = C, the topological stack underlying the algebraic stack E is the
stack of degenerate lattices of Section 2.6.

3.30 Exercise. Denote the affine plane over k, with the origin removed,
by W . Denote the two coordinates by g2 and g3. The affine equation

y2 = 4x3 − g2x− g3

with homogenization

Y 2Z = 4X3 − g2XZ
2 − g3Z

3

defines a family of projective plane curves E ⊂ P2
W . Together with

the section P at infinity, (E,P ) is a family of generalized elliptic curves
parametrized by W . Show that it is a versal family for E, and that its
symmetry groupoid is the transformation groupoid of the multiplicative
group Gm acting on W with weights 4 and 6. (Exercise 3.54 will be use-
ful, to prove that the usual procedure for embedding an abstract genus 1
curve into the plane, and putting it into Weierstrass normal form, works in
families, at least locally.)

Conclude that E ∼= [W/Gm]. The quotient stack [W/Gm] is known as
the weighted projective line with weights 4 and 6, notation P(4, 6).

Given the symmetry groupoid Γ1 ⇒ Γ0 of a versal family x of an alge-
braic stack, we obtain a 2-cartesian diagram

Γ1
t //

s

��

<D
Γ0

x

��
Γ0

x // X

The morphism x : Γ0 → X given by the versal family is representable and
smooth. We say that Γ0 → X is a smooth presentation of X. The
scheme Γ0 should be thought of as a smooth cover of X. The stack X ‘looks
like’ Γ0, locally (in the smooth topology). The fact that Γ0 → X is smooth
(which comes from the requirement that s and t be smooth), is essential
for ‘doing geometry’ over X. For example, it makes it possible to decide
when X is smooth:

3.31 Definition. The algebraic stack X is smooth (non-singular), if there
exists a smooth presentation Γ0 → X where Γ0 (hence also Γ1) is non-
singular.
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This definition is sensible, because for schemes, given a smooth surjec-
tive morphisms Y → X where Y is smooth, then X is smooth.

See Exercise 3.56, for another result that requires smoothness (or at
least flatness) of the structure morphism Γ0 → X of a presentation.

3.32 Definition. An algebraic stack is called a separated Deligne-
Mumford stack, if its diagonal is finite and unramified.

Of course, E is a smooth separated Deligne-Mumford stack.

3.33 Exercise. An algebraic groupoid is étale, if its source and target
morphism are étale morphisms of schemes. Prove that every smooth sep-
arated Deligne-Mumford stack X admits a versal family whose symmetry
groupoid is étale, by imitating the proof of Proposition 2.51. Let us remark
that using sheaves of differentials rather than tangent bundles, it can be
shown that the assumption that X be smooth is not necessary, see [17].

3.34 Exercise. Consider the groupoid fibration of ‘triangles with centroid
at the origin’. This is the groupoid fibration of triples (T ′, A,L ), where
T ′/T is a degree three finite étale cover of the parameter scheme T , and
L is a line bundle over the parameter space T . Moreover, A : T ′ → L is
a morphism, with the property that for every geometric point t → T , the
three points A(T ′t ) ⊂ Lt add to 0, and no more than two of them coincide.
Prove that this is an algebraic stack in two ways:

(i) Use descent for coherent sheaves ([12] Théoreme 1), to prove that
Theorem 3.25 applies. Then prove that the family parametrized by P1

(with homogeneous coordinates x, y), where L = O(1) and A is given by
the three sections x, y,−x− y ∈ Γ

(
P1,O(1)

)
, is a versal family. Prove also

that the symmetry groupoid of this family is given by the standard action
of S3 on P1, see (30). Conclude that this stack of triangles is isomorphic
to [P1/S3].

(ii) Prove directly that this stack is isomorphic to [P1/S3] by doing an
algebraic analogue of Exercise 1.45.

Now assume that k = C and conclude that the topological stack asso-
ciated to this algebraic stack is isomorphic to L. Thus, we have endowed
L with the structure of a smooth separated Deligne-Mumford stack.

For general k, we will now denote the algebraic stack of triangles by L.

3.35 Exercise. Prove that the stack of triangles L from Exercise 3.34 is
isomorphic to the stack of triple sections of a rank 1 projective bundle with
a marked section, ∞, where no points are allowed to come together.

3.36 Exercise. Suppose that G is a linear k-group acting on the k-variety
X. If X×G→ X×X is finite, then [X/G] is a separated Deligne-Mumford
stack. If X is smooth, so is the quotient stack [X/G].
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3.37 Exercise. The open substack Vr,d,N
X ⊂ Vr,d

X of N -regular bundles is
algebraic: it satisfies the gluing property with respect to the étale topology
because of descent for coherent sheaves. It has affine diagonal by Exer-
cise 3.12. So all that is left to do is exhibit a versal family with smooth
source and target maps. This is provided by the universal family of the
quot-scheme of quotients of OX(−N)⊕h(N) of Hilbert polynomial h, where
h is the Hilbert polynomial of bundles on X of rank r and degree d. The
fact that this family is versal follows directly from properties of regular-
ity. Once we restrict to the open subscheme of the quot-scheme where the
quotient is N -regular, source and target map of the symmetry groupoid
become smooth, because then the symmetry groupoid is a transformation
groupoid for the group GLh(N). We conclude that Vr,d,N

X is a quotient
stack.

3.38 Exercise. Prove that any 2-fibered product of algebraic stacks is
algebraic.

3.4 The coarse moduli space

3.39 Definition. Let X be an algebraic stack. A coarse moduli scheme
for X is a scheme X, together with a morphism X→ X, which satisfies the
following properties:

(i) X→ X is universal for morphisms to schemes, in the sense that any
morphism X→ Y , where Y is a scheme, factors uniquely through X:

X

��   
X // Y

(ii) for every flat morphism of schemes Y → X, form the 2-fibered prod-
uct

Y //

��

Y

��
X // X

then Y→ Y satisfies property (i).

A course moduli scheme is unique up to unique isomorphism, if it exists.
There is no reason why a coarse moduli scheme should exist in general, or
why, even if it exists, we should be able to prove anything useful about it.

3.40 Example. Suppose G is a finite group acting on an affine k-scheme
of finite type X = SpecA. Then a universal categorical quotient (see [20])
exists. It is given by X = SpecAG. It is a coarse moduli scheme for [X/G].
We use notation X/G for this moduli scheme.
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3.41 Example. Suppose X is a quotient stack X = [X/G], where G is a
reductive k-group, and X is a finite type k-scheme. Suppose further, that
all points of X are semi-stable with respect to some linearization of the
G-action. Then the Geometric Invariant Theory quotient X�G is a coarse
moduli scheme, see [20].

3.42 Example. Suppose that X is a one-dimensional smooth separated
Deligne-Mumford stack. Then we construct a coarse moduli scheme as
follows: Choose an étale morphism from an affine curve U0 → X (Exer-
cise 3.33), and let U1 ⇒ U0 be the corresponding étale groupoid. Restrict
this groupoid to the function field L of U0. The restricted groupoid cor-
responds to a diagram L ⇒ B, where B is a finite étale L-algebra in two
ways. Let K ⊂ L be the equalizer of the two maps L ⇒ B, and let X be
the complete non-singular curve with function field K.

Then given any étale groupoid presentation Y1 ⇒ Y0 of X, both Y1 and
Y0 are smooth curves (not connected), and there is a unique morphism of
groupoids from Y1 ⇒ Y0 to X ⇒ X, and hence a morphism X → X. Let
X ⊂ X be the image of X → X, which is an open subcurve of X. Then
X→ X is a coarse moduli space.

For higher dimensional separated Deligne-Mumford stacks, we have to
enlarge our class of spaces to include separated algebraic spaces.

3.43 Definition. A separated algebraic space is a separated Deligne-
Mumford stack for which every object in every fibre X(T ) over every scheme
T is completely asymmetric.

3.44 Proposition. An algebraic stack is a separated algebraic space if and
only if its diagonal is a closed immersion.

Proof. This follows from the fact that a finite unramified morphism,
which is universally injective on points is a closed immersion.

Algebraic spaces are a generalization of schemes. They behave a lot like
schemes, except that they are not locally affine in the Zariski topology, but
only in the étale topology.

3.45 Definition. Let X be a separated Deligne-Mumford stack. A coarse
moduli space for X is a separated algebraic space X, together with a
morphism X → X, which satisfies the two properties of Definition 3.39,
where Y denotes separated algebraic spaces, rather than schemes.

3.46 Proposition. Every finite type separated Deligne-Mumford stack X
admits a coarse moduli space X, which is a finite type separated algebraic
space. Moreover, if k̄ is the algebraic closure of k, then X(k̄)/∼ → X(k̄) is
bijective.
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Proof. We briefly sketch the proof, because the proof shows that X is étale
locally in X a quotient stack. We try to imitate the poof of Theorem 2.49,
of course, but the main reason why the proof does not carry over is that
the Zariski topology on Γ0×Γ0 is not generated by boxes, like the product
topology, which we used twice in the other proof.

Let Γ1 ⇒ Γ0 be an étale presentation of X, and let P0 ∈ Γ0 be a point
with automorphism group G. We pass to a different presentation of X. In
fact, let Γ′1 ⇒ Γ′0 be the groupoid of ‘stars with #G− 1 rays’ in Γ1 ⇒ Γ0.
Elements of Γ′0 are triples (x, φ, y), where x ∈ Γ0, and y = (yg)g∈G,g 6=1 is
a family of elements of Γ0, and φ = (φg)g∈G,g 6=1 is a family of elements of
Γ1, where for g ∈ G, g 6= 1, we have φg : x→ yg, in the groupoid Γ1 ⇒ Γ0.
Then Γ′1 ⇒ Γ′0 is another étale presentation of X. Replacing Γ1 ⇒ Γ0 by
Γ′1 ⇒ Γ′0, we may assume that there is an embedding Γ0 ×G→ Γ1, which
identifies {P0} ×G with G ⊂ Γ1, and makes the diagram

Γ0 ×G

pr

��

// Γ1

s

��
Γ0

id // Γ0

commute. Replacing Γ0 by the connected component containing P0, and
passing to the restricted groupoid, we assume that Γ0 is connected. (Of
course, this may result in a presentation for an open substack of X, which is
fine, as we only need to construct the moduli space locally, by the claimed
compatibility with flat base change.)

Now, arguing as in the proof of Theorem 2.49, we prove that we obtain
a commutative diagram

Γ0 ×G×G //

���� ��

Γ2

���� ��
Γ0 ×G //

����

Γ1

����
Γ0

// Γ0

This means that we have constructed a group action of G on Γ0 and a
morphism of groupoids from the transformation groupoid of G on Γ0 to
Γ1 ⇒ Γ0. Finally we restrict to an affine open neighbourhood U0 of P0 in
Γ0, such that

(s× t)−1
(
∆(U0)

)
⊂ Γ0 ×G ⊂ Γ1 .

We obtain an étale morphism of stacks [U0/G] → X. The main point is
that this morphism preserves automorphism groups.
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Finally, the various coarse moduli spaces U0/G give an étale presenta-
tion for the coarse moduli space of X. So if X is the coarse moduli space
for X, we obtain a 2-cartesian diagram

[U0/G]
étale //

��

X

��
U0/G

étale // X

which explains that X is, locally in the étale topology on X, a quotient by
a finite group.

3.5 Bundles on stacks

3.47 Definition. A coherent sheaf F over the algebraic stack X consists
of the following data:

(i) for every X-family x/T , a coherent sheaf x∗F over the scheme T ,

(ii) for every morphism of X-families x′/T ′ → x/T an isomorphism of
coherent sheaves (x∗F )|T ′ → (x′)∗F .

The isomorphisms in (ii) have to be compatible with each other in the
obvious way.

If we think of the family x/T as giving a morphism of stacks T
x−→ X,

then x∗F is the pullback of F over X along x. This explains the notation.
The sections of x∗F over T are called the sections of F over T . A

global section of F is a rule that assigns to every x/T a section of x∗F
over T , compatible with pullbacks. We write Γ(X,F ) for the space of
global sections of F .

3.48 Example. The line bundle ω over E is defined by

E∗ω = P ∗ΩE/T ,

for any family of generalized elliptic curves E/T with identity section P :
T → E. Let us denote the dual of ω by t. If k = C, then the line bundle
over the underlying topological stack of E corresponding to t is the ambient
bundle of the tautological degenerate lattice, denoted L in Exercise 2.59.

3.49 Example. The structure sheaf OX of any stack X is defined by
x∗OX = OT , for every X-family x/T .

3.50 Example. For any representable morphism Y → X of stacks, the
sheaf of relative differentials ΩY/X on Y is defined by

y∗ΩY/X = z∗ΩZ/T ,
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for any Y-family y/T . Here Z and z are defined by the cartesian diagram

Z

��

// Y

��
T

z

AA
y
??

// X

3.51 Example. For any morphism of stacks F : X → Y, and coherent
sheaf F on Y, the pullback F ∗F on X is defined by

x∗F ∗F = F (x)∗F ,

for any X-family x/T .

3.52 Example. The line bundle ω on E can also be defined as P ∗ΩF/E,

where P : E→ F is the universal section of the universal generalized elliptic
curve.

3.53 Example. For n > 0, a vector bundle Vn of rank n on E is defined
by

E∗Vn = π∗OE(nP ) ,

for any family of generalized elliptic curves E/T with structure map
π : E → T and section P : T → E. To prove this, first notice that P
defines an effective Cartier divisor on E, so that OE(nP ) is a well-defined
line bundle on E. Then π∗OE(nP ) and R1π∗OE(nP ) are coherent sheaves
on T . Using cohomology and base change (and Nakayama’s lemma), de-
duce from the fact that H1

(
Et,O(nP )

)
= 0, for any fibre Et of E, that

R1π∗OE(nP ) = 0. Then apply cohomology and base change again, to
deduce that the formation of π∗OE(nP ) commutes with arbitrary base
change. Finally, apply cohomology and base change a third time, to de-
duce from the fact that H0

(
Et,O(nP )

)
has dimension n, for every fibre Et

of E, that π∗OE(nP ) is locally free of rank n.

3.54 Exercise. Prove that V1 = OE. Prove that for every n ≥ 2, there is

an exact sequence of vector bundles on E:

0 // Vn−1
// Vn // t⊗n // 0 .

Conclude that, if the characteristic of k is neither 2 nor 3, then for every
nowhere vanishing section θ of t over a scheme T , there exist unique sections
x of V2 and y of V3 over T , mapping to θ2, and 2θ3, respectively, and
satisfying an equation of the form y2 = 4x3 − g2x− g3 in V6 over T . Here
g2 and g3 are regular functions on T , not vanishing simultaneously.

The induced morphism θ 7→ (g2, g3), from the total space of t with its
zero section removed to A2 \0 is Gm-equivariant, if Gm acts with weights 4
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and 6 on A2. Thus, g2 and g3 naturally give rise to global sections g2 ∈ ω⊗4,
and g3 ∈ ω⊗6.

Deduce that every degenerate elliptic curve (E,P ) over a parame-
ter scheme T naturally embeds into P(OT ⊕ ω⊗2 ⊕ ω⊗3). Recall that
P(OT ⊕ ω⊗2 ⊕ ω⊗3) = Proj

(
SymOT

(OT ⊕ t⊗2 ⊕ t⊗3)
)
. There is a nat-

ural homomorphism t⊗6 → Sym3
OT

(OT ⊕ t⊗2⊕ t⊗3) whose image generates
a homogeneous sheaf of ideals which cuts out ET inside P2(OT⊕ω⊗2⊕ω⊗3).
The word ‘natural’ in this context means commutes with pullback of fami-
lies. Naturality implies that the construction is universal, in other words,
the universal degenerate elliptic curve F embeds into PE(OE⊕ω⊗2⊕ω⊗3).

3.55 Exercise. Prove that the morphism θ 7→ (g2, g3) from the total space
of the line bundle t over E minus its zero section to W = A2 \ {(0, 0)} is an
isomorphism.

Deduce that W is a fine moduli space for the stack of triples (E,P, θ),
where (E,P ) is a degenerate elliptic curve parametrized by T , say, and θ
is a global invertible section of E∗t over T .

The morphism of groupoid fibrations E → [W/Gm] given by (g2, g3)
is an equivalence. An inverse is given by mapping a line bundle L , with
sections g2 ∈ L ⊗4 and g3 ∈ L ⊗6 to the elliptic curve in P(O⊕L ⊗2⊕L ⊗3)
with equation y2 = 4x3 − g2x− g3.

This gives another proof that E is the weighted projective line E =
P(4, 6), avoiding Hilbert schemes (for representability of Isom-spaces), and
descent (for the étale gluing property).

3.56 Exercise. If x/X is a versal family for X, with symmetry groupoid
X1 ⇒ X0, then a coherent sheaf over X may be specified by the following
data: a coherent sheaf F0 over X0, and an isomorphism φ : s∗F → t∗F ,
such that µ∗φ = p∗2φ ◦ p∗1φ, where p1, µ, p2 : X2 → X1 are the first projec-
tion, the groupoid multiplication, and the second projection, respectively.
If F is the corresponding coherent sheaf on X, prove that we have an exact
sequence

0 //Γ(X,F ) //Γ(X0,F )
t∗−φ◦s∗ //Γ(X1, t

∗F ) .

For example, a coherent sheaf on the quotient stack [X/G] is the same thing
as a G-equivariant coherent sheaf on X, and global sections over [X/G] are
invariant global sections over X.

3.57 Exercise. A global section of ω⊗n is called a modular form of
weight n. Prove that the ring of modular forms is a polynomial ring over
the field k, generated by g2 ∈ Γ(E, ω⊗4) and g3 ∈ Γ(E, ω⊗6). Thus, we
have an isomorphism of graded rings

∞⊕
n=0

Γ(E, ω⊗n) = k[g2, g3] ,
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where the degrees of g2 and g3 are 4 and 6, respectively.

3.58 Exercise. Let X1 ⇒ X0 be an étale presentation of a smooth sepa-
rated Deligne-Mumford stack X. We get an induced groupoid by passing to
the total spaces of the tangent bundles TX1 ⇒ TX0. Exercise 3.56 shows
that this data gives rise to a vector bundle on X, the tangent bundle of
X, notation TX.

3.59 Exercise. Let X be an orbifold, i.e., a smooth separated Deligne-
Mumford stack whose coarse moduli space is connected, and which has a
non-empty open substack which is a scheme. Prove that the frame bundle
of TX is an algebraic space, and deduce that X is a global quotient of an
algebraic space by GLn, where n = dimX.

3.60 Exercise. Find k, such that TE = ω⊗k.

3.6 Stacky curves: the Riemann-Roch theorem

As an example of algebraic geometry over stacks, we shall briefly discuss
the Riemann-Roch theorem for line bundles over stacky curves. For an
account of some of the basics of stacky curves in the analytic category,
see [4].

We assume that the ground field k has characteristic 0, to avoid issues
with non-separable morphisms and wild ramification. We also assume k
to be algebraically closed. A curve is a one-dimensional smooth connected
scheme over k. Curves are quasi-projective. A complete curve is a projec-
tive curve.

3.61 Definition. A stacky curve is a one-dimensional smooth separated
Deligne-Mumford stack X, whose coarse moduli space X (which is a curve)
is irreducible. The stacky curve X is complete if X is complete. An
orbifold curve is a stacky curve X which is generically a scheme, i.e.,
there is a non-empty open subscheme U ⊂ X of the coarse moduli space,
such that X×X U → U is an isomorphism.

Every dominant morphism Y → X from a curve to a stacky curve is
representable and has a relative sheaf of differentials ΩY/X, and therefore a
ramification divisor RY/X. The closed points of Y have ramification indices
relative X.

Orbifold curves and root stacks

3.62 Definition. Let X be a curve, P a closed point of X and r > 0 an
integer. The associated root stack X = X[ r

√
P ] is defined such that an

X-family parametrized by T consists of

(i) a morphism T → X,

120



(ii) a line bundle L over T

(iii) an isomorphism φ : L⊗r
∼−→ OX(P )|T ,

(iv) a section s of L over T , such that φ(sr) is the canonical section 1 of
OX(P )|T .

Isomorphisms of X-families are given by isomorphisms of line bundles, re-
specting ψ and s.

To construct a versal family for X[ r
√
P ], choose an affine open neigh-

bourhood U of P in X, and a uniformizing parameter π at P , and assume
that the order of π at all points of U − {P} is 0. Then let V → U be the
Riemann surface of r

√
π, its affine coordinate ring is O(V ) = O(U)[ r

√
π].

There is a unique point Q of V lying over P , and the ramification index
e(Q/P ) is equal to r.

The parameter space of our versal family is V q (X − {P}). The line
bundle is OV (Q) on V and the structure sheaf on X − {P}. We see that
the root stack is isomorphic to X away from P , and so we may as well
assume that X = U . Then we can take the family parametrized by V
alone as a versal family. The symmetry groupoid of this family over V is
the transformation groupoid of µr, the group or r-th roots of unity, acting
on V by Galois transformations given by the natural action of µr on the
r-th roots of π. We see that U [ r

√
P ] ∼= [V/µr], and that U = V/µr.

We conclude that the root stack X = X[ r
√
P ] is an orbifold curve. There

is a morphism X→ X, which makes X the coarse moduli space of X, and
is an isomorphism away from P . The fibre of X→ X over P is isomorphic
to Bµr. We can view X as obtained by inserting a stacky point of order 1

r
into the curve X at the point P .

The stack X comes with a canonical line bundle over it, we will write it
as OX( 1

rP ). This line bundle has a canonical section, which we will write
as 1.

Suppose Y → X is a non-constant morphism of curves. Then there
exists a morphism Y → X[ r

√
P ] such that

Y //

""

X[ r
√
P ]

��
X

commutes (such a lift is unique up to unique isomorphism), if and only if
the ramification indices e(Q/P ) of all Q ∈ Y lying over P are divisible by r.
In this case, the ramification index of such a point Q in Y relative to X[ r

√
P ]

is 1
r e(Q/P ). In particular, if the ramification index e(Q/P ) is equal to r,

then the morphism Y → X[ r
√
P ] is unramified at Q. Because ramification

indices are multiplicative with respect to composition of morphisms, it
makes sense to say that X[ r

√
P ] is ramified of order r over X.
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Suppose that X→ X is an orbifold curve together with its coarse moduli
space, and assume that X → X is an isomorphism away from P ∈ X. We
define the ramification index of X→ X over P to be the integer r, such
that for any étale presentation Y → X, and any point Q ∈ Y mapping to P
in X the ramification index e(Q/P ) is equal to r. Then there is a canonical
X-morphism X → X[ r

√
P ], because over any such Y there is a canonical

r-th root of the line bundle OX(P ). This morphism X → X[ r
√
P ] is an

isomorphism, because any such Y → X factors (at least locally) through
the curve obtained from X by adjoining the r-th root of a uniformizing
parameter at P .

We conclude that any orbifold curve with only one stacky point is a
root stack.

By considering n-tuples of line bundles with sections, we can also glue
in stacky points of orders 1

r1
, . . . , 1

rn
at points P1, . . . , Pn into X. If X is

obtained in this way from X, we say that X is the root stack associated to
the effective divisor

∑n
i (ri−1)Pi on X, notation X = X[ r1

√
P1, . . . ,

rn
√
Pn].

(The divisor
∑n
i (ri−1)Pi should be thought of as the discriminant of X/X.)

Over this stack we have line bundles OX( 1
ri
Pi), each with a canonical section

1. For a (not necessarily effective) divisor
∑
i siPi on X, we can form the

tensor product

OX

( n∑
i=1

si
ri
Pi

)
= OX

( 1

r1
P1

)⊗s1 ⊗ . . .⊗ OX

( 1

rn
Pn
)⊗sn

.

In this way, any Q-divisor
∑
i qiPi on X, with qi ∈ Q such that riqi ∈ Z, for

all i, can be thought of as a proper (i.e., integral) divisor on X. All divisors
on X come about in this way. Therefore, we get a canonical bijection
between divisors on X and Q-divisors on X, which become integral when
multiplied by the ri.

We have proved:

3.63 Theorem. Let X be an orbifold curve with coarse moduli curve X.

(i) There is a unique effective divisor
∑n
i=1(ri − 1)Pi on X, such that

X ∼= X[ r1
√
P1, . . . ,

rn
√
Pn].

(ii) The ramification index e(P ) of X at P ∈ X is equal to 1, unless
P = Pi, for some i = 1, . . . , n, in which case it is e(P ) = ri.

(iii) Every divisor on X is the pullback from X of a unique Q-divisor∑m
j=1 qjPj on X, such that e(Pj)qj ∈ Z, for all j = 1, . . . ,m.

We will always identify every divisor on X with the corresponding Q-
divisor on X.

3.64 Theorem. Let X be an orbifold curve with coarse moduli curve X.
Denote by π the structure morphism π : X→ X. Let D be a divisor on X,
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also considered as a Q-divisor on X. Then

π∗OX(D) = OX(bDc) ,

and Riπ∗OX(D) = 0, for all i > 0. Here bDc is the integral divisor on X,
obtained by rounding down all coefficients of D. In particular, we have

Hi
(
X,OX(D)

)
= Hi

(
X,OX(bDc)

)
,

for all i ≥ 0.

Proof. The claim about π∗ is easily deduced from the fact that X is a root
stack. The claim about Riπ∗, for i > 0, requires some basic cohomology
theory for stacks, see, for example, [3]. The main point is that group
cohomology of a finite group with coefficients in k vanishes.

3.65 Corollary (Orbifold Riemann-Roch). Assume that X is a complete
orbifold curve. Let g be the genus of the coarse moduli curve X. We have

χ
(
X,OX(D)

)
= degbDc+ 1− g ,

and
dim Γ(X,OX(D)

)
= degbDc+ 1− g ,

if bDc is non-special, in particular, if degbDc > 2g − 2.

3.66 Example. Consider, for example, the stack W of triangles with the
Weierstrass compactification, and its canonical line bundle L (which con-
tains the universal triangle). This line bundle comes with two sections
g2 ∈ L ⊗2 and g3 ∈ L ⊗3. These sections do not vanish simultaneously.
The quotient g3

g2
is then a meromorphic section of L . Using the coordinate

j on the coarse moduli space P1 of W, we see that the divisor of zeroes of
g3

g2
is equal to

D =
1

2
(1728)− 1

3
(0) ,

because g2 vanishes to order 3 at j = 0, and g3 vanishes to order 2 at
j = 1728. We conclude that

L ∼= OW

(1

2
(1728)− 1

3
(0)
)
,

and deg L = 1
6 . We conclude that all L ⊗n, for n ≥ 0 are non-special, and

hence

dim Γ(W,L ⊗n) = bn
2
c+ b−n

3
c+ 1 =

{
bn6 c if n ≡ 1 mod 6

bn6 c+ 1 otherwise

for all n ≥ 0.
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3.67 Example. Now consider the stack L of triangles, Exercise 3.34, with
its tautological line bundle L . The canonical morphism (g2, g3) : L→W is
given by mapping the universal triple section of L to its second symmetric
polynomial g2 ∈ L ⊗2 and its third symmetric polynomial g3 ∈ L ⊗3.
Hence (g2, g3)∗L = L . Therefore, we have Γ(L,L ) = Γ(W,L ). Note
that OL( 1

2∞) ∼= OL( 1
21728).

Stacky curves

3.68 Definition. For a finite group G, a G-gerbe is a morphism of alge-
braic stacks X→ Y, such that there exists a smooth presentation Y → Y,
such that the pullback X×Y Y → Y is isomorphic to Y ×BG.

3.69 Remark. Usually, the term G-gerbe means something stronger:
namely a G-gerbe together with a trivialization of an associated Out(G)-
torsor, the band of G. For details, see for example [6].

3.70 Example. The morphism E → W (see Exercise 2.58), is described
algebraically as follows: a line bundle ω, with sections g2 ∈ ω⊗4 and g3 ∈
ω⊗6 (Exercise 3.55) is mapped to the line bundle L = ω⊗2, with the
same sections g2 ∈ L ⊗2 and g3 ∈ L ⊗3. Alternatively, it is given by the
morphism of transformation groupoids W ×Gm →W ×Gm, (g2, g3, u) 7→
(g2, g3, u

2).
The morphism E→W is a Z2-gerbe. In fact, one way to think of E is

as the stack of square roots ω⊗2 = L of the tautological line bundle L on
W. Pulling back via the smooth presentation W →W, this turns into the
stack of square roots of the trivial bundle on W . This is W ×BZ2.

Let X be a stacky curve and X1 ⇒ X0 an étale groupoid presentation
of X. Then all connected components of both X1 and X0 are curves. Let
X1 be the normalization of the image of the morphism X1 → X0 × X0.
Then the connected components of X1 are also curves. Moreover, we have
a factorization X1 → X1 → X0 ×X0, where X1 → X1 is finite and hence
surjective. By the functorial properties of normalization, X1 ⇒ X0 is an
algebraic groupoid. Moreover, source and target maps of this groupoid
are unramified and hence étale. We have a morphism of groupoids X1 →
X1, which is also unramified and hence étale, and and the kernel of this
morphism is a finite étale group scheme G→ X0. In fact, we have what is
known as a central extension of groupoids:

G //

��

X1

����

// X1

~~~~
X0
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All three groupoids in this sequence have the same space of objects. Be-
cause X is connected, it follows that G is a twisted form of a single finite
group G0. Let X be the stack associated to X1 ⇒ X0, it is an orbifold
curve. The morphism of groupoids X1 → X1 defines a morphism of stacks
X→ X, and this morphism is a G0-gerbe. We have proved the following:

3.71 Theorem. Every stacky curve X is isomorphic to a gerbe over an
orbifold curve X, hence a gerbe over a root stack. The orbifold X is uniquely
determined by X, and is called the underlying orbifold of X.

3.72 Theorem. Let X be a stacky curve, and π : X → X the morphism
to the underlying orbifold curve. If L is a line bundle on X, then either
L comes from a line bundle L on X via pullback along π, or π∗L = 0.
Moreover, Riπ∗L = 0, for all i > 0. In the first case, we have, for all
i ≥ 0

Hi(X,L ) = Hi(X,L ) ,

in the second case, we have, for all i ≥ 0

Hi(X,L ) = 0 .

Proof. The first claim about π∗ can be checked generically, where it
follows from the fact that a one-dimensional representation of a finite group
is either trivial or has no invariant subspace. The rest is not hard using
some basic cohomology theory of stacks. Just as for Theorem 3.64, the
main point is that group cohomology of a finite group with coefficients in
k vanishes.

Together with Corollary 3.65, this theorem determines the cohomology
of stacky curves with values in line bundles, i.e., the stacky Riemann-Roch
theorem. It shows that the result is not much different than the one for
orbifold curves, so instead of formulating the theorem, we finish with an
example.

3.73 Example. Consider the bundle ω of modular forms over E, the stack
of generalized elliptic curves. The corresponding orbifold curve is W, the
stack of triangles in the Weierstrass compactification. Let L denote the
tautological bundle on W. If n is even, then ω⊗n = π∗L ⊗

n
2 , if n is odd,

then π∗ω
⊗n = 0. It follows that, for all n ≥ 0

Hi(E, ω⊗n) = 0 , for all i > 0 ,

dim Γ(E, ω⊗n) =


0 if n is odd

b n12c if n ≡ 2 mod 12

b n12c+ 1 otherwise .

Note that these dimensions agree with the dimensions that one can read
off from Exercise 3.57
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Chapitres 1 à 4. Hermann, Paris, 1971.

[6] J.-L. Brylinski. Loop spaces, Characteristic classes and geometric
quantization, volume 107 of Progr. Math. Birkhäuser, Boston, 1993.
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[10] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman,
Nitin Nitsure, and Angelo Vistoli. Fundamental algebraic geome-
try, volume 123 of Mathematical Surveys and Monographs. Ameri-
can Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA
explained.

[11] Jean Giraud. Cohomologie non abélienne. Die Grundlehren der math-
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