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1 Introduction

1.1 General Concepts

First we will give a general introduction to the ideas of this thesis.

The Lefschetz Trace Formula

The classical Lefschetz trace formula reads as follows:

P |HY(X, Q)= Y wp(e)

F(z)=x
Here X is a compact oriented C'*° manifold and

dim X

HY(X,Q)= P H"(X,Q)

is the singular cohomology of X with values in the rational numbers Q). Furthermore, F' :
X — X is a C"™° map having only non-degenerate fixed points. The trace of the Q-linear map
F:O(X,Q)— H*(X,Q) induced by F': X — X on cohomology is by definition

dim X

trF|HY(X,Q)= Y (-1t F | H'(X,Q).

p=0

For a fixed point = (i.e. F(x) = x) we denote by tp(x) = £1 its index.!
If X is a complex manifold and F' is holomorphic, then the index is always positive, so that
we have

tr FF I HY(X,Q)=#{x € X | F(z) = »}.

IMore precisely, ¢z (z) = signdet(DF(z) — 1), where DF(z) : Ty X — Tz X is the Jacobian of F' at z. A fixed
point & is non-degenerate if and only if det(DF(z) — 1) # 0.




There is also an algebraic version of this formula. In the algebraic case, X is a complete
smooth variety over an algebraically closed field &, and F' : X — X is a morphism of varieties
having non-degenerate fixed points. The formula reads:

tr P | H*(Xe, Q) =#{e € X | F(z) = x}.

The only difference from the analytic version is that we use the étale cohomology of X with
values in the f-adic rational numbers Q, instead of singular cohomology.

A very interesting special case arises when the variety X is defined over a finite field: Let IF,
be the field with ¢ elements and let & be an algebraic closure of I[f,. That the variety X over k
is defined over IF; means simply that equations defining X can be found that have coefficients
in IF,. For example, X could be defined by equations with integral coefficients that we reduce
modulo ¢. So in the case that X is defined over IF,, the geometric Frobenius Fy : X — X
acts on X and its f-adic cohomology. The geometric Frobenius F, acts on X simply by raising
coordinates to the ¢"™® power: Fy(z,,...,7,) = (2{,...,2%). Note that the fixed points of F, are
precisely those points of X with coordinates in IF;. The geometric Frobenius automatically has
only non-degenerate fixed points. Hence in this case the trace formula reads:

tr Fy | B (X, Qo) = #X(IF,).

Here X (IF,) is the set of points of X with coordinates in TF,.
For technical reasons we reformulate this formula in terms of the arithmetic Frobenius ®,.
On H*(X..,Q.), ®, acts simply as the inverse of F,. For ®, the trace formula reads:

qdithr@q|H*(Xét,Qz)=#X(Fq)' M

This follows from Poincaré duality. One advantage of (1) is that it remains true if X is assumed
to be a smooth variety that is not necessarily complete?, (without having to pass to cohomology
with compact supports). A rigorous definition of the arithmetic Frobenius is given in Definition
2.4.1. A proof of (1) can be found as Proposition 2.4.3.

Algebraic Stacks

Algebraic stacks relate to algebraic varieties in the same way groupoids relate to sets. A groupoid
is a category all of whose morphisms are isomorphisms. A set X is considered as a groupoid
(also denoted X) by taking for objects the elements of X and for morphisms only the identity
morphisms. A group G is considered as a groupoid (denoted BG) with one object whose auto-
morphism group is G. A G-set X is considered as a groupoid (denoted X¢g or [X/G]) by taking
as objects the elements of X and for the set of morphisms from z to y (z,y € X) the transporter:

Homx (z,y) = Transg(z,y) = {g € G | gz = y}.

For a groupoid X we define
1
#X =D (2)
derm 7 AUt

where the sum 1s taken over the set of isomorphism classes of X, and for an isomorphism class
&, Aut ¢ is the automorphism group of any representative of £. If # Auté happens to be infinite,
we set m equal to zero. In case X = X is a set, #X is just the number of elements of X. If
X= BG, for a group G, we have #BG = % If.% = X¢, for a G-set X, we have #X = i_)G( by
the orbit formula, at least if one of X or & is finite.

2and not even necessarily separated



For an algebraic variety X, the set of morphisms from another variety S into X, denoted
X(S) = Hom(S, X), is simply a set. For an algebraic stack X, X(5) is always a groupoid. Recall
that a variety X over k can in fact be completely described by the collection of sets X(5),
where S ranges over all k-varieties (or more generally k-schemes). Similarly, an algebraic stack
X is defined by the collection of groupoids X(S5), S ranging over all k-schemes. This is the way
in which algebraic stacks arise as a generalization of the concept of algebraic varieties. The
most basic consequence of this definition is that algebraic stacks form a 2-category instead of an
ordinary l-category, as do algebraic varieties.?

Clearly, every algebraic variety X over k is an algebraic k-stack. If GG 1s an algebraic group
we get a corresponding algebraic stack, denoted BG, called the classifying stack of G. For a
k-variety S, BG(S) is the groupoid of principal G-bundles* with base S. On the other hand,
we have a morphism 7 : {pt} — BG, where {pt} = Speck is the one-point variety. 7 is actually
a principal G-bundle, in fact the universal principal G-bundle. Both of these properties are
analogous to the classifying space of a Lie group in homotopy theory; hence the notation BG.
If X is a variety on which the algebraic group G acts via ¢ : G x X — X, then there exists an
algebraic stack X, characterized by the fact that the following diagram is both 2-cartesian and
2-cocartesian:

GxX = X
p2 | |
X 5 Xg

So X can be considered as a quotient of X by G. Here 7 : X — X¢ 18 a principal G-bundle.
The object X¢ always exists as algebraic stack, even if the quotient of X by (' as variety does
not exist at all. Moreover, X¢ is always smooth if X and G are (see [19]). Note that as a special
case, BG is simply the stack associated to the trivial action of G on {pt} = Spec k.

Algebraic stacks are the proper framework for considering moduli problems. Whenever the
objects that one wants to classify by a moduli space have automorphisms, one encounters serious
problems if one restricts oneself to algebraic varieties (or schemes or even algebraic spaces). For
example, let X be an algebraic curve over the algebraically closed field k. If £ = C, the complex
numbers, this just means that X is a Riemann surface. Consider the moduli problem for vector
bundles of rank n and degree d on X. Then a moduli variety exists only for stable vector bundles.
Even if one restricts attention to stable vector bundles it is difficult to construct a universal vector
bundle over the moduli space. In fact, a universal bundle only exists if n and d are coprime.
This comes from the fact that even the stable vector bundles have automorphisms, the trivial
automorphisms coming from multiplication by scalars (elements of k*). Using algebraic stacks,
all these problems disappear: There exists an algebraic stack X such that for any k-scheme 5,
X(S) is the groupoid of families of vector bundles of rank n and degree d on X, parametrized
by S. The algebraic stack X is smooth and a universal vector bundle exists over X.

For the precise definition of algebraic stacks, we refer to [19]. In accordance with [19] an
algebraic stack is an algebraic stack as defined by M. Artin in [2]. The stacks defined by P.
Deligne and D. Mumford in [6] will be called Deligne-Mumford stacks. The significance of
a stack being a Deligne-Mumford stack is that the objects it classifies have no infinitesimal
automorphisms.

The Trace Formula for Algebraic Stacks

Let us return to the situation where £ is an algebraic closure of the finite field IF,. Assume that
we are given a smooth algebraic k-stack X defined over the finite field IF,. I propose the following

3For an Introduction to 2-categories see [9].
*Note that in general, the categories BG(S) and B(G(S)) are not equivalent. Only if H' (S, G) = 0, do we have
equivalence. In fact, BG is obtained by ‘stackafying’ (the analogue of sheafafying) the prestack S — B(G(S)).



trace formula:

Conjecture 1.1.1 The arithmetic Frobenius ®, satisfies the following trace formula:

g @y | H(Xom, Qi) = #X(T, )

Recall that X([F,) is a groupoid so that #X(IF,) is defined as in (2) above. For algebraic stacks
we have replaced the étale cohomology by the smooth cohomology. For algebraic varieties the
smooth cohomology is equal to the étale cohomology, but for algebraic stacks, the étale topology
is not fine enough. Note that Conjecture 1.1.1 is a direct generalization of formula (1) so that
Conjecture 1.1.11s true if X happens to be a smooth algebraic variety. The general problem is to
find reasonable assumptions on X that imply the truth of Conjecture 1.1.1. A very remarkable
feature of this formula is that neither side is necessarily a finite sum. Instead, the formula
asserts the convergence of two series and the equality of their limits. This 1s the main difference
of Conjecture 1.1.1 from formula (1). In this thesis the truth of Conjecture 1.1.1 is established
in some interesting special cases. For example, the main result of Section 2, Theorem 2.4.5,
establishes the trace formula for the case of smooth Deligne-Mumford stacks of finite type. In
this case the sums on both sides of the equation are finite; no limiting process is needed.

The Case X = X

Let G be a smooth algebraic group defined over IF, and let X be a smooth algebraic variety
defined over F,, endowed with a G-action (also defined over F,). Then the algebraic stack
X = Xg is defined over [F,. In the case that G is connected, by Lemma 3.5.6 Conjecture 1.1.1

reduces to £X(F,)
dim X —dim G * q
q tr o H ngm,(@z = V- 3
H*(XG.m, Qy) should be considered as the algebraic analogue of the G-equivariant cohomology
of X. So (3) can be thought of as a Lefschetz trace formula for equivariant cohomology. In this
thesis, the truth of (3) is established if GG is a linear algebraic group. (See Theorem 3.5.7.)

The main ingredient in the proof of Theorem 3.5.7 is the Leray spectral sequence for a
fibering of algebraic stacks (see Theorem 3.3.12). Consider, for example, the case G = G,,, the
multiplicative group and X = {pt} = Speck, so that X = BG,,. We define G,, by the property
that G, (S) = T(S,0g)* for any k-scheme S. In particular, G, (C) = C*. We can think of G,

as the algebraic analogue of the circle group S*. We have:

Q¢ with ®, acting trivially for j =0
Hj(Gm,QZ) =< Q with &, acting via multiplication with % for y =1 (4)
0 otherwise

The Leray spectral sequence for the fibering {pt} — BG,, reads as follows:

i j it ifi+;=0
H(BG, Q) © (60,00 = H¥ ()00 = { ¢ 50HI2
So from this spectral sequence together with (4) we get
HO(BGm,QZ) = Q. with @, acting trivially

HYBG.,Q) = 0

and

HY(BG,, Q1) @ UGy, Q) = HP(BG,,, Q) © H(G,, Qo)



for all 7 > 2. So in general:

Q¢ for i even

Hi(BGm’Q‘):{ 0 foriodd (5)

where @, acts on HY(BG,,,Qy) via multiplication with q,%. This is analogous to the fact that

BS*', the classifying space of S', is the infinite dimensional complex projective space and has
the same Betti numbers as those given by (5). Even though BG,, is of finite type and has finite
dimension (dim BG,, = —1) it has the cohomology of an infinite dimensional space.

This exhibits a fundamental difference between algebraic stacks and algebraic varieties:
Whereas algebraic varieties (just like C'*° manifolds) always have finite dimensional cohomology,
this 1s not necessarily the case for algebraic stacks. This is the main difficulty in proving Conjec-
ture 1.1.1. One has to make sense of the trace of ®, on the infinite dimensional graded algebra
H* (X m, Q).

In the case of BG,, we get from (5):

=1
tr &, |H*(BGm,QZ):ZE.
=0

So in this case tr &, | H*(X..., Q) converges. According to (3) the limit should be

qdim@m ql _ q

#G.(F,)  #F; ¢ 1

which it 1s. This proves the trace formula for the case of BG,,.

In general, we choose an embedding @ — C and consider H*(X,,,,C) = H*(X...,Q¢) ®q, C.
Thus the eigenvalues of the arithmetic Frobenius ®, become complex numbers and we are able
to prove the convergence of the series tr®,|H*(X..., C), at least in the case that GG may be
embedded into G L, for some n. (See Section 3.5.)

Here it also becomes apparent why we use the arithmetic Frobenius instead of the geometric
Frobenius. The trace of the geometric Frobenius does not converge.

1.2 G-bundles over a curve
The Canonical Parabolic Subgroup

Let X be an algebraic curve over the field & (for example a Riemann surface over C). Let G be
a reductive algebraic group over k, for example one of the classical matrix groups. The second
part of this thesis is devoted to the study of the algebraic stack of principal G-bundles on X.
We will denote this stack by (X, G). So for any k-scheme S we have

91X, G)(S) = groupoid of principal G-bundles on X x S.

If, for example, G = GL,, the general linear group, then principal GG-bundles can be thought of
as vector bundles of rank n.

Before we go any further we have to define the degree of a principal G-bundle £ on X. For
a principal G-bundle F, the degree d(F) is the homomorphism

d(E): X(G) — Z
x +— deg(E xg,\ Ox)

where X(() is the character group of G and deg(E X, Ox) is the degree of the line bundle on
X associated to E via the character x. Let §1(X, G) be the stack of G-bundles of degree d.



The final result of this thesis is that Conjecture 1.1.1 holds for X = $L(X, &), modulo a
conjecture which we are able to verify in many cases (see Theorem 8.4.22). Towards that goal
we prove a number of results that are interesting in their own right. The new difficulty in
dealing with the stack (X, G) is that it is not of finite type. This means that not only the left
hand side of the formula of Conjecture 1.1.1 is an infinite series, but the right hand side is also.
There are infinitely many isomorphism classes of G-bundles of degree d, but fortunately, their
automorphism groups grow very large so that the sum

#OLX, O)F)= Y ﬁ@m

EeH}(X,G)(Ty)

converges. Here H1(X,G)(F,) is the set of isomorphism classes of G-bundles of degree d that
are defined over IF,.

The main tool for studying the stack H% (X, G) is a natural stratification on it. Every principal
G-bundle F on X has (besides the degree) two important invariants attached to it: The degree
of instability deg,(F) and the type of instability t;(F). The degree of instability is a non-negative
integer. The type of instability is more complicated. It is also a finer invariant than the degree
of instability, and so the type if instability induces a finer stratification on H}(X, &) than the
degree of instability does.

Let E be a principal G-bundle on X. Then Autg(E) = EXg, 44G), the sheaf of automorphisms
of E, is a reductive group scheme over X. The type of instability of £ only depends on this
reductive group scheme Autg(F). For example, consider the case G = GL(n). The type of
instability of a vector bundle E is then the Harder-Narastmhan Polygon which is defined in
terms of the canonical flag 0 < Fy < ... < FE, = E on E. As noted above, Aut(E) = GL(FE)
is a relative group variety over X. All fibers of Aut(F) — X are isomorphic to GL(n) as
group varieties. The canonical flag defines a subgroup scheme P C Aut(F), by taking those
automorphisms of E respecting the canonical flag. The completeness of the flag variety of E
over X implies that Aut(FE)/P is proper over X, i.e. that P is a parabolic subgroup of Aut(FE).
So the canonical flag can be thought of as being induced by a canonical parabolic subgroup P
of Aut(F). This motivates the study of reductive group schemes over X and their parabolic
subgroups.

Reductive Group Schemes Over A Curve

Let G be a reductive group scheme® over the curve X over the field k. Then the Lie algebra g
of GG is a vector bundle of degree zero on X. For a parabolic subgroup P C G (i.e. a smooth
subgroup scheme such that G/P is proper over X) we define the degree of P to be the degree
of the Lie algebra p of P: deg P = degp, where p is considered simply as a vector bundle over
X. We define the degree of instability deg,(G) of G to be the maximal degree of its parabolic
subgroups.

deg;(G) = max deg P.

parabolic

This is easily seen to be finite. If deg;(G) = 0 we call G semi-stable. For the case of a vector
bundle, the degree of instability turns out to be twice the area of the Harder-Narasimhan polygon.

To GG we have an associated scheme Dyn(G), the scheme of Dynkin diagrams of G, which
is finite étale over X. To fix notation, let {vy,...,0,} be the connected components of DynG.
Every parabolic subgroup P C (G defines an open and closed subscheme of Dyn G, the type®
t(P), so t(P) can be considered as a subset ¢(P) C {v1,...,0,}. To v; € t(P) we can define in a

5@ has now taken the place of Autg(E).
6See Remark 6.2.1



canonical way a vector bundle W (P, v;). Tt can be obtained as a factor of a suitable filtration of
the unipotent radical of P. Tts degree n(P, v;) = deg W (P, ;) is called the numerical invariant
of the parabolic subgroup P with respect to the component of its type v;.

In this thesis we prove that there exists a unique parabolic subgroup P C G satisfying:

1. The numerical invariants of P are positive
ii. P/Ry(P) is semi-stable.

(See Theorem 6.4.4.) Here R,(P) is the unipotent radical of P, the largest unipotent normal
subgroup of P. The quotient P/R,(P) is a reductive group scheme over X. In the case that
G = Aut(F) for a vector bundle E and P is the parabolic subgroup corresponding to a flag
0< By < ...< B = F of E, then P/R,(P) is the automorphism group of the associated
graded object By @ Es2/E1 @®...® E/E,_1. The parabolic subgroup P of Theorem 6.4.4 is called
the canonical parabolic subgroup of G. If P 1s the canonical parabolic subgroup of (G, then the
formal sum
Z n(P,o)o € free abelian group on {oy,...,0,}
vet(P)

is called the type of instability of G.

We also prove that the canonical parabolic subgroup P of (G is the largest element in the
set of parabolics of maximal degree in (G. In particular, the degree of the canonical parabolic
subgroup is the degree of instability of G.

Root Systems and Convex Solids

We prove Theorem 6.4.4 by reducing the study of parabolic subgroups of GG to the study of
parabolic subsets (or in another terminology facets) of the root system of G. First we reduce the
question of unique existence of a canonical parabolic subgroup to the case that G is rationally
trivial. This means that one (and hence any) generic maximal torus of G is split: Let K be the
function field (the field of meromorphic functions) of X. A generic maximal torus is a maximal
torus of the generic fiber G of G. For a generic maximal torus 7' C G'i to be split, means that
T =G, = K*" for some n.

So assume that G is rationally trivial and let 7" C G’k be a generic maximal torus. Then we
get an associated root system ® = ®(G'x,T). The set ® is a subset of the character group X(7')
of T" and can be characterized as follows:

9K = 8Kk,0 D @ 0K, «
aed
where gx o = {4 € gx | Ad()A=a(t)Aforallt €T} and Ad : G — GL(g) is the adjoint
representation of G. Let V be the R-vector subspace of X(T') @z R generated by ®. Then @ is a
root system in V.

Now since G'i is the generic fiber of the reductive group scheme G over X, & = ®(Gg,T)
has an additional structure on it: I have called this structure a complementary convex solid. It
comes about as follows: The Borel subgroups” of G containing 7" are in bijection with the Weyl
chambers® of ®. For any Borel subgroup B of G containing T, let d(B) be the element of V*
(the dual space of V) such that

(o, d(B)) = deg L(B, &)

"Borel subgroups are parabolic subgroups that are solvable. They are minimal parabolic subgroups.

8The Weyl chambers of a root system ® are the facets of maximal dimension. The facets of ® are the
equivalence classes of the equivalence relation on V' defined by the set of hyperplanes (Hq ) o e, where Hq is the
hyperplane orthogonal to «. The facets of ® are in bijection with the parabolic subsets of ® and the parabolic
subgroups of GG containing 7'.



for all @ € ®. Here L(B, «) is a line bundle on X associated to B and « in a canonical way. The
components of the type of B, v1,...,0, are in bijection with the elements of the basis a1, ..., a,
of ® defined by B and in fact L(B, ;) = W(B,v;) for i = 1,...,7. For positive roots o € &+,
L(B,«) is constructed as a factor in a suitable filtration of the unipotent radical R,(B) of B.
To stay within the context of root systems, we index the vectors d(B) by the Weyl chambers of
®. So let € be the set of Weyl chambers of ®. A complementary convez solid for @ is a collection
of vectors (d(c))cce of V* satisfying the following two axioms (see Definition 5.2.1):

1. If A is a fundamental dominant weight with respect to both the Weyl chambers ¢ and 0,
then
(A, d(c)) = (A, d(0)).

ii. If ¢ is a Weyl chamber and « a simple root with respect to ¢ and ? = o4(c) is the Weyl
chamber obtained from ¢ by reflection about the hyperplane orthogonal to «, then

(o, d(c)) < (a, d(v)).

Most of Section 6 is devoted to proving that in the above situation these two axioms are indeed
satisfied.

The convex solid giving rise to the name of this structure is actually the convex hull F' of
the vectors d(c), ¢ € €. The family (d(c¢))ce can be reconstructed from F. We call the root
system with complementary convex solid (®,d) semi-stable if 0 € F'. We also define the degree
and the numerical invariants for any facet of (®,d). Our main result on a root system with
complementary convex solid (®,d) is that (®,d) has a unique special facet P. Tt is the largest
element in the set of facets of maximal degree. (See Corollaries 5.3.15 and 5.3.17.)

For the facet P to be special means that

1. all numerical invariants of P are positive

ii. the reduced root system with complementary convex solid (®p,dp) obtained from (@, d)
by reduction to P 1is semi-stable.

The convexity of F' plays a crucial role in the proof of this result, since the special facet turns
out to be the facet containing the unique point of F' closest to the origin of V*.

If (@, d) is the root system with complementary convex solid associated to the generic maximal
torus T of &, Corollary 5.3.15 gives (via the correspondence between facets of ® and parabolic
subgroups of GG containing 7') a parabolic subgroup P of (&, special (or ‘canonical’) with respect
to T'. The existence of the canonical parabolic subgroup follows easily from this. One of the
main observations that makes this proof work is that any two parabolic subgroups of G contain
in their intersection generically a maximal torus of G.

I would like to point out Conjecture 6.4.7 to the effect that H°(X,g/p) = 0, where p is the
Lie algebra of the canonical parabolic subgroup P of GG. The significance of this conjecture is
essentially that the canonical parabolic subgroup is rigid. The truth of this conjecture would
improve many of the results of Sections 7 and 8.

Families of Reductive Group Schemes

The following results lay the foundation for the stratification of §}(X, ) mentioned above:

i. Let GG be a reductive group scheme over the curve X over the scheme S. (For example, G
could be the automorphism group of a family of vector bundles parametrized by S.) Then
the degree of instability deg;(s) = deg,(G5) is upper semicontinuous on S.
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ii. Let G/X/S be as before and assume that the degree of instability of G is constant on
S. Then, if we pass to a cover of S that is universally homeomorphic to S, there exists
a parabolic subgroup P C G such that for every s € S, P; is the canonical parabolic
subgroup of Gj.

Now let GG be a reductive group scheme over the curve X over the field £. From now on we will
assume that G and all its twists G, for G-torsors E, satisfy Conjecture 6.4.7. In other words,
we assume that G satisfies Condition (§) (see Definition 8.4.7).

Let H4(X,G)<m be the algebraic stack of principal G-bundles of degree d and degree of
instability less than or equal to m. By (i) HL(X,G)<n is an open substack of §}(X,G). We
also prove that $3(X, G)<, is of finite type (Theorem 8.2.6) and even of the form Yy for some
Deligne-Mumford stack Y and a linear algebraic group H acting on Y. Hence the trace formula
Conjecture 1.1.1 holds for (X, G)<m. To prove the trace formula for all of §}(X, ), we use
the exhaustion by the various $%(X, G)<m- To make this process work, we need information on
HL(X,G)pm, the stack of principal G-bundles on X of degree of instability equal to m. By (ii)
HL(X,G),, decomposes as follows:

D3N, ) = [ 95X, G

b

Here H1(X, G)y is the stack of principal G-bundles of type of instability b, the disjoint sum being
taken over all types of intability that give rise to the degree of instability m. We also prove that
HL(X,G)y has the same cohomology as HL (X, G’), for a suitable reductive group scheme G’
on X and degree d’. This group (&' can be obtained by taking G' = P/R,(P), where P is the
canonical parabolic of Autg(F) for any G-bundle F of type of instability v. The groups G’ that
occur in this manner are finite in number, so that we get good control over §4(X, &),,, making
it possible to prove the absolute convergence of tr ®,|H*(H1(X, G).m, C). We obtain a proof of
the trace formula, which reads in this case:

- im x * 1
D DI > vy
EeHY(X,G)(Fy) 4

where g is the genus of the curve X. Note that the cases in which G satisfies Condition (§)
include the following:

i. G = GLy, so that HL(X, G) is the stack of vector bundles of rank n and degree d.
ii. G is rationally trivial and the genus of X is zero or one.

1. Dyn G is connected.

2 Deligne-Mumford Stacks

Introduction

In this section we prove the Lefschetz trace formula for a smooth Deligne-Mumford stack X
of finite type over a finite field F, (Theorem 2.4.5). The proof contains several steps. First
we consider the case of a certain subclass of algebraic [F,-stacks. These are the stacks we call
‘tractable’ (see Definition 2.2.3). This terminology is not standard.

The reason for introducing these ‘tractable’ stacks is the following. If X is a tractable stack,
then the coarse modulispace X of X is very nice (i.e. a smooth variety) and the projection X — X
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is also very nice (i.e. étale). So it is possible to deduce the trace formula for ‘tractable’ stacks
from the trace formula for smooth varieties. The trace formula for smooth varieties is reviewed
in Proposition 2.4.3. The trace formula for tractable stacks is Lemma 2.4.4. The remarkable
fact is that for a tractable stack X, the structure morphism X — X (X the coarse moduli space)
induces an isomorphism on the level of f-adic cohomology (see Proposition 2.2.8). On the other
hand, we have #X(F,) = ZEE[% ¥, m, a resul.t which is due to Serre. This is the contents
of Section 2.3. So both sides ot the trace formula yield the same value for X and X.

To deduce the trace formula for general smooth Deligne-Mumford stacks from that for
tractable stacks, we need two results. First, every non-empty reduced Deligne-Mumford stack
contains a non-empty tractable open substack. Secondly, we need the Gysin sequence (Corollary
2.1.3) for smooth pairs of algebraic k-stacks. The existence of the Gysin sequence is the contents
of Section 2.1.

Note that in the case of a Deligne-Mumford stack X the ¢-adic cohomology algebra H*(X,.., Q;)
1s finite dimensional over Q,. We have Hp(fsm, @¢) =0 for p > 2dim X. So in this case, unlike
for the general case, there is no limiting process needed to make sense of the trace formua.

Let S be a scheme. An algebraic S-stack is an algebraic S-stack in the sense of [19]. Only
concepts not explained in [19] will be reviewed here. Note in particular, that all algebraic stacks
(and hence all schemes and all algebraic spaces) are assumed to be quasi-separated.

2.1 Purity
Let k be a separably closed field.

Definition 2.1.1 Let 3 and X be smooth k-stacks and 7 : 3 — X a closed immersion. We call

the pair i : 3 — X a smooth pair of algebraic k-stacks of codimension ¢ if for every connected
component 3’ of 3, letting X’ be the connected component of X such that i(3’) C X', we have

dim3 +c¢=dimX’.

Let i : 3 — X be a smooth pair of k-stacks and let 4 = X — 3. Let F' be an abelian sheaf on
X.... We denote the p** cohomology of X... with values in F and support in 3 by Hg(%sm,F).
The group Hg(ffsm, F) is the p'™ derived functor of

Fr— ker(T(X,m, F') = T (8, F))
evaluated at F'. We have a long exact sequence
.—>H§(f£sm,F)—>Hp(%5m,F)—>Hp(ilsm,F)—>... (6)
Let j : 4, — X, be the inclusion morphism. Then we denote the right derived functors of
F— ker(F — j.j*F)
by Hg (Xm, F'). The sheaf Hg (Xm, I') is the sheaf on X,,, associated to the presheaf
Uvr— HY (Ui, F|U),
where U ranges over the smooth X-schemes. There is an E5 spectral sequence
HP (X, HY (X, F)) = HETY(X,,, F). (7)

Let A = Z/(n) where n is prime to char(k).
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Proposition 2.1.2 (Cohomological Purity) Let i : 3 — X be a smooth pair of k-stacks of
codimension c. Let F' be a locally constant sheaf of A-modules on X,,,. Then

0 for p# 2¢
P _
H3(x““’ F) = { " F(—c) fori=2c

Proof. Since the isomorphisms whose existence we claim are also claimed to be canonical, the
question of their existence is local on X,,,. So we may pass to a smooth presentation X — X of
X and thus assume that ¢ : 3 — X is a smooth pair of k-schemes of codimension ¢. Then our
proposition follows from [20, VI, Theorem 5.1, Remark 5.2 and Corollary 6.4]. O

Corollary 2.1.3 (Gysin Sequence) Leti: 3 — X be a smooth pair of k-stacks of codimension
c. Let F' be a locally constant sheaf of A-modules on X,,,. Then we have a long exact sequence

o HPT2(3, i F(—c)) — HP (X, F) — HP (U, F) — ...
Proof. From the spectral sequence (7) and purity we get
2¢ ok
HEY (X, F) = HY (3um, i F(—0)).

So the sequence (6) gives us the Gysin sequence. O

2.2 ‘Tractable Stacks’
For an S-stack X we define 2ut(X) to be the S-stack given by the following 2-cartesian diagram

Aut(X) — X
| | a

x L oxxx

Note that the two I-morphisms 2lut(X) = X are 2-isomorphic but not canonically so. Therefore
it is unambiguous to discuss the properties of Aut(X) — X without specifying which of the two
morphisms we mean.

Remark 2.2.1 Let k& be a field and let X be an algebraic k-stack, locally of finite type. If
Aut X — X 1s flat and X — X is the coarse moduli space of X, then X is an algebraic space
locally of finite type and X — X is faithfully flat and locally of finite type (see [19, Corollaire
4.9]).

Let k£ be a field and let X be an algebraic k-stack, locally of finite type. Assuming that Aut X — X
is flat, we define B ®%lut X to be the image of the morphism

N N 3
So we have a faithfully flat, locally of finite type presentation
X — BRlutX

of BAut X making B ut X into an algebraic k-stack, locally of finite type. We clearly have a
diagram
Aut(X) — X
! !
X — BAutX
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which is both 2-cartesian and 2-cocartesian, justifying the notation But X. Letting X be the
coarse moduli space of X we have a diagram

B Q[ut(%) — X
! !
X — X

which is also both 2-cartesian and 2-cocartesian.

Definition 2.2.2 An algebraic S-stack X is called a Deligne-Mumford stack if the diagonal

X2 xxx
1s unramified.

Definition 2.2.3 Let k be any field. Then we call X tractable if it satisfies the following condi-
tions:

1. X is an algebraic Deligne-Mumford stack of finite type over k.
il. Aut(X) — X is finite étale.
1i1. The coarse moduli space of X is a smooth k-variety.

Note 2.2.4 If X is a tractable k-stack then X is smooth integral of finite type over k. If X 1is
the coarse moduli space of X then the natural morphism X — X is étale.

Proof. Since Aut X — X 1s finite étale, the same holds for X — B2ut X. That in turn implies
that BRAut X — X is at least étale. Again by descent, X — X is étale. Since X is smooth, X is
so too. It remains to prove that X is connected. But this is clear because X is a variety. O

Lemma 2.2.5 Let X be an integral normal k-scheme of finite type. Let f 1Y — X be a
separated €tale morphism of finite type. Then there exists a non-empty open subset U C X such
that the induced morphism f: f=H(U) — U is finite étale.

Proof. Without loss of generality we may assume that Y is connected. Then Y is integral. Let
L be the function field of Y and let Y’ be the normalization of X in L. Then Y is naturally an
open subscheme of Y’ (see [20, I, Theorem 3.21]).

y .y
N L
X

Let Z =Y’ —4(Y). Then f’ being finite implies that f/(7) is closed in X. Let U = X — /(7).
Then U is non-empty, because it contains the generic point of X. Since f/~1(U) C i(Y') we have
that f: f=1(U) — U is a base change of f’ and hence finite. O

Proposition 2.2.6 Let X be a non-empty reduced Deligne-Mumford stack, locally of finite type
over the field k. Then there exists a non-empty open substack X' C X which is tractable.

Proof. Let p: Y — X be a smooth presentation, where Y is a k-scheme, locally of finite type.
Since X is reduced, Y is also. So Y contains a non-empty open subscheme Y’ that is a smooth
k-variety. Let X’ C X be the image of Y/ under p. The stack X’ is then an open substack of X
that is smooth and of finite type over k. So upon replacing X by X’ we may assume that X is
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of finite type and has a presentation p : Y — X where Y is a smooth k-variety. Consider the
morphism Aut(p) — Y induced via the following base change:

Aut(p) — Y
| 1y
Aut X — X

The morphism Aut(p) — Y is representable, of finite type and separated. Hence Aut(p) is a
separated algebraic k-space of finite type. By generic flatness ([12, Théoréme 6.9.1]) there exists
an open subset Y/ C Y such that the induced morphism Aut(p’) — Y is flat. Here p’ denotes
the restriction of p to Y'. So upon replacing Y by Y’ and X by the image X’ of p/ we may
assume that Aut(p) — Y is flat. Since X is a Deligne-Mumford stack, A : X — X x X and hence
Aut(p) — Y is unramified. Therefore, Aut(p) — Y is étale and separated. By lemma 2.2.5
there exists an open subset ¥/ C Y such that Aut(p’) — Y is finite étale. So without loss of
generality we may assume that Aut(p) — Y is finite étale. The same holds then for 2ut X — X.

We have now satisfied conditions i and 1. To satisfy condition iii consider the coarse moduli
space X of X. According to Remark 2.2.1 X is an algebraic k-space of finite type. Since
Aut X — X is finite étale, X — X is étale. In particular, X is smooth over k. By [18, II,
Proposition 6.7] there is a non-empty open subspace X’ C X that is a scheme. Restricting X’
even further, we may assume that X’ is a smooth k-variety. Let X’ be the base change

X — X
! !
X — X

Clearly, X' is an open substack of X that satisfies even condition iii. O

Comparison of the Cohomology with the Coarse Moduli Space
Let k be a separably closed field.

Lemma 2.2.7 Let X be a tractable k-stack with coarse moduli variety X. Then there exists a
finite group G and an étale eprmorphism Y — X of k-schemes yielding a 2-cartesian diagram

(BG)y — Y
! !
X — X

Proof. Let Y — X be an étale presentation of X. Let G be the pullback of Aut X to V:

G’ — Y
! !
Aut X — X.

Then G 1s a finite étale group scheme over Y. So after passing to an étale cover of Y, we may
assume that G’ is constant, say equal to Gy, for a finite group G (considered as a finite étale
group scheme over k). Then the following diagram is also 2-cartesian:

(BG)y — Y
! !
ButX — X.

This implies the lemma. O

15



Proposition 2.2.8 Let X be a tractable k-stack with coarse moduli variety X. Then we have
H*(XaQZ) = H*(xa QZ)
Proof. Let m: X — X denote the structure morphism. It suffices to prove that

; ] Qg fore=20
RT*QZ_{O for i > 0,

where we work with Qg-sheaves. This question is local in X, so by Lemma 2.2.7 we may
assume that X = (BG)x, for a finite group G. But then Riw,Q, is clearly constant, equal to
HYBG., Q). But H(BG.., Q) is nothing but the cohomology of the finite group G with
values in the field ;. This proves the proposition. O

2.3 Gerbes Over a Finite Field

Proposition 2.3.1 Let & be an algebraic Fy-gerbe, étale and of finite type over Fy. Then & is
neuter.

Proof. We will use the following cartesian diagram

1=, S -2 SpecFyn
™| |
SpecFyn  —  SpecF,

where for every ¢+ = 1, ..., n the scheme S; is just a copy of Spec[Fy». The morphism 7 is defined
by 7|S; = idspecr,. for all i = 1,...,n. The morphism o is defined by o|S; = Spec(¢') where
¢ : Fgn — Fyn is the Frobenius automorphism defined by ¢(a) = of for o € Fyn.

Since & is étale over Iy, there exists an étale presentation p : Xo — &, such that Xy is a
finite étale IFy-scheme. Let X, be defined by the following 2-cartesian diagram

X 2 X
Pll lp
X, 2= &

The algebraic space X is then also a finite étale IF,-scheme. Hence there exists an n > 0 such
that for every point ¢ of the underlying topological space of X; there exists an z € X1 (Fyn)
factoring through . Now choose an arbitrary [ ~-valued point zg of X;. We will construct a
morphism z : [[_; S; — X; yielding two commutative diagrams (here written as one diagram).

15,8 == SpeclFyn

2] ) @0
Xy == Xo
P

Consider the morphism § = (p1, p2) of Fy-schemes

X1 i>)(0><)(0

which comes via base change from

626 K6,
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Since & is a gerbe, A and hence é 1s an epimorphism. By our choice of n this implies that

5
X1(Fgn) — Xo(Fgn) x Xo(Fgn)
is surjective. So for every ¢ = 1,...,n we may choose z; € X1(Fy») such that 6(z;) = (20,200
Spec ¢'). Defining the restriction of z to S; to be equal to z;, we have constructed z as required.
Using z it is easy to verify that o*(p(zg)) = #*(p(zg)). Thus p(xg) desceds to the required
section of & — IF,. O

Proposition 2.3.2 Let G be a finite élale group scheme over Fy. Then

1
> TAute |

EE[BG(T )]

Proof. The groupoid BG(F,) is the category of finite étale Fy-schemes X endowed with an action
0: X x G — X such that the diagram

XxG =2 X

p1l !
X — T

is cartesian. Let C be the category defined as follows. Objects of C are pairs (X, ¢) where X is
a finite set and ¢ : X — X is a permutation. Morphisms in C are defined by

HOch((X’ ¢)a (Ya ’l/))) — {OZ X =Y | 1/)& = qu/)}
Then we have an equivalence of categories

(finite étale Fy-schemes) — C
(X — Y) — (7 — ?)

Here X = X(Fq), where Fq is some fixed algebraic closure of I, , and ¢ : X —-X is the Frobenius.
Using this equivalence of categories we can reinterpret BG(IF, ) as the groupoid B((G, ¢) of objects
(X, ) of C endowed with an action o : (X, ¢) x (G, ¢) — (X, ) such that the underlying action

of G on X is simply transitive. Now the finite group G acts on its underlying set via
GxG — @ (8)
(9,0) — gag(g)™"

Denote the groupoid defined by this action by G. For an object of é, i.e. an element o of G,
we define an object (Xq, ¢q) of C as follows. The set X, is just the set G and ¥, 0 Xo — Xa
is defined by ¥,(g) = ad(g), for ¢ € G. Now we define a right action of (G, ¢) on (X4, %)
via right translations in G. Let «,3 € G be two objects of G. For a morphism 6 : a« — 3,
i.e. an element @ € Trans(«, ) which is just an element of G satisfying o = 3¢(0) we define
a morphism 0 : (Xo, %) — (Xg,15) by left multiplication with @ inside G. This morphism
respects the (G, ¢)-actions on (Xq, ) and (Xg,15). So we have defined a functor

G — B(G, ¢).

This functor is easily seen to be fully faithful. To prove essential surjectivity, let (X, ) be an
object of C with a right (G, ¢)-action making X a simply transitive G-set. Choose an element
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zo € X and a € G such that zga = ¥(zp). Then g — xog defines an isomorphism of (X, ¥ )
with (X, ). Thus our functor is an equivalence of groupoids and we are reduced to proving that

1
-
2 Fhue
¢ela]
Or in other words, that
1
- =1,
% # Stabz(«)

where the sum is taken over all orbits under the action (8) of G on its underlying set. But this
is simply the orbit equation. O

Corollary 2.3.3 Let & be an algebraic IFy-gerbe, étale and of finite type over ;. Then

1
> TAute |

£€[6(TF 9]

Proof. According to Proposition 2.3.1 & is neuter. So let E be an object of the category &(F,).
Let GG be its sheaf of automorphisms, which can be defined by the following 2-cartesian diagram

G — F,

| |z

& 2 6x6
Since A is representable and étale of finite type, we see that G is a finite étale group scheme
over IF,. Now & is isomorphic to BG and the claim follows from Proposition 2.3.2. O

Corollary 2.3.4 (Serre) Let X be an algebraic Deligne-Mumford stack of finite type such that
Aut X — X 1s étale with coarse moduli space X. Then we have

1
S e = #X(E,).
e,y 7 AULE) q

Proof. Let m: X — X be the structure morphism. Then 7 is étale of finite type. Let # € X (F,)
be a point and let &, be the [F,-gerbe defined by the pullback

6, — Iy
| |«
xr = X

Clearly, &, is an étale IF;-gerbe of finite type. We have a 2-cartesian diagram of set theoretic
groupoids
& (F;) — {2}
1 le
X(F,) — X(IF)

Hence we have

1 1
> FAute 22 #Auté

€e[X(Iy)] T€X () E€[62(Fy)]
= #X(F,)
which finishes the proof. O
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2.4 The Trace Formula for Deligne-Mumford Stacks

Let Iy be the field with g elements. Let Fq be an algebraic closure of IF,. Let X be an algebraic IF,-
stack of finite type, X = X xp_ F,. We want to examine the action of the arithmetic Frobenius
on the cohomology H'(X.., Q). So let ¢, - F, — F,;a — a? be the Frobenius. We get

induced morphisms Spec ¢, : Spec[f; — Spec[F, and idx x Spec ¢, : X — X. Let us abbreviate
idx X Spec g by @, : X — X. The morphism @, induces a morphism of topoi, which we again

denote by &, : X... — 3_,551 Let F' be a s&eaf on X.,. By functoriality of cohomology @, induces a
homomorphism gﬁz N (X, F) — H' (X i, @ZF) Since F' is defined over X, we have QBZF =F
and an induced homomorphism gﬁz : Hi(ism, F)y— Hi(ism, ).

Deﬁnitiqn_2.4.1 The homomorphism thus constructed is called the arithmetic Frobenius act-
ing on H'(X., F') and is denoted by

O, H (X, F) — H (Xom, F).

Taking F' = Z/{"*+'7, passing to the limit and tensoring with Q, we obtain ®, : H(X,.., Q¢) —
HY (X, Q). Taking F' = pignt1 and X = F,, we get @, : fiynt1 — jignt1 which is given by
®,(¢) = ¢?. Passing to the limit and tensoring with s, we see that ®, acts on Q.(1) by
multiplication with ¢. On Q(c) the endomorphism ®, acts by multiplication with ¢°.

Lemma 2.4.2 Let X be an algebraic stack over the finite field Fy. Then for any integer ¢ we
have

HP (X, Qo)) = HY(Xom, Q1) @ Qele)

as Qe-vector spaces with ®4-action. In particular
tr @, | HP (X, Qu(c)) = ¢° tr &, | HP (X, Qy).
Proof. Clear. O
Proposition 2.4.3 Let X be a smooth variely over the finite field Fy. Then we have
¢ X tr @y | H* (X, Q) = #X(F,).

Proof. Let n be the dimension of X. The usual trace formula for the geometric Frobenius F,

reads as follows.
2n

D (=Dt Py HI(X o, Qo) = #X(E,). (9)

i=0

Consider the cup product pairing

H{(X o, Q) x H" 7Y (X .0, Qu(n)) — Qo (10)
&n) — (&n)=tr(EUn)

which is perfect by Poincaré duality. The cup product satisfies F,(§) U Fy(n) = Fy(& U n).
Hence we have (F,&, Fyn) = (£,17). The arithmetic Frobenius ®, acts as the inverse of F, on
HI(X ., Q¢(m)) for any j,m. Hence ®, is the transpose of F|, with respect to the pairing (10).
Since the trace of the transpose of a matrix is the same as the trace of the original matrix, we

get from (9)

2n

D (D) @ |H (X, Qun)) = #X(F,)

i=0
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which is equivalent to
2n

Y (1) @y |H (X, Qo) = #X(F,).

i=0

Since smooth and étale cohomology coincide for X, the proposition follows. O

Lemma 2.4.4 Let X be a tractable Fy-stack. Then we have

qdlmxtrq) |H* (.’fsm,(@z Z #

EE[X(IF )]

Proof. By Proposition 2.2.8 we have for any p > 0

Hp(ysm, QZ) = Hp(gsma QZ)a

where X is the coarse moduli space of X. Since X is a smooth IF,-variety we have by Proposition
2.4.3 the following: . o
g X b @y | H* (X, Q) = #X(F,).
By Corollary 2.3.4 we have
1
> = #X(Fy).
ceteo ¥ # Aut(€)

So together this implies the trace formula for X. O

Theorem 2.4.5 Let X be a smooth Deligne- Mumford stack of finite type and constant dimension
over the finite field ;. Then we have

dim X
q tr @ |H (xsmaQZ Z #Aut )
€e[X(IMy)]

Proof. Let |X]| be the set of points of X. The Zariski topology on |X| is defined by calling U C |X]
open if there exists an open substack 4 C X such that U = |4l|. We then have a bijection between
open subsets of | X| and open substacks of X. The set |X| with the Zariski topology is a noetherian
topological space, because X is of finite type over a field. Let

M = {U C |X]| The theorem holds
for the open substack i corresponding to U}.

Then 9 has a maximal element, say U. Let i be the corresponding open substack of X. We
will prove that { = X.

So assume that 4 # X, and let 3 be the complement of il endowed with the reduced substack
structure. By Proposition 2.2.6 there exists a non-empty open substack 3’ of 3 which is tractable.
Let X’ = 44U 3, which is an open substack of X. If we can prove that the theorem holds for X’
then we have a contradiction to the maximality of 4, thus proving {{ = X and our theorem. So
we may assume that X = X’ and hence 3 = 3'.

So we have a smooth pair i : 3 — X of algebraic [F,-stacks of codimension ¢ = dim X — dim 3
such that 3 is tractable and the theorem holds for {{ = X — 3. By Lemma 2.4.4 the theorem also
holds for 3. Now we consider the Gysin sequence (Corollary 2.1.3):

= HP (B, Qul=€) — P (R, Qo) — HP (L, Q) —
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It follows that
¢ Xt @, | H* (X, Q)
= qdlm 3te tr q)q |H*(3sm’ QZ(_C)) + qdlm . tr q)q |H*(u5m’ QZ)
g™ 3 tr @ |H*(3sm, Qo) + qd““u b @y | H (L, Qo)
_|_
Z # Aut(€) Z # Aut(f)

€E[3(Iy)] gE[Ury)]

= 2 #Aut)

EE[X(Ty)]

Done. O

3 Artin Stacks

Introduction

In this section we prove the Lefschetz trace formula for a smooth algebraic IF,-stack of finite type
X, provided there exists a Deligne-Mumford stack X and a smooth affine algebraic group G over
F,, acting on X, such that X = [X/G]. Letting BG be the classifying stack of &, the principal
G-bundle X — X induces a morphism X — B(. This morphism is the fibering with fiber X
associated to the universal principal G-bundle over BG. The main ingredient in the proof of the
trace formula is the Leray spectral sequence of this fibering X — BG.

The general form of the Leray spectral sequence for morphisms of algebraic stacks is Theorem
3.2.5. Tt rests heavily on the finiteness theorem (Theorem 3.1.6) proved in Section 3.1. In Section
3.3 we examine the special case that the higher direct images of our morphism of stacks are
constant. The result is Theorem 3.3.9. One case in which the higher direct images are constant
is that of a fibration with connected structure group. This result is given in Theorem 3.3.12,
which is the final form of the Leray spectral sequence we will use.

To prove the trace formula for X = [X/(G], we may easily reduce to the case that G = GL,,
by choosing an embedding G — GL,, and noting that [X/G] = [X xg GL,/GL,].

So our proof relies on the spectral sequence of the fribering X — BGL,,, which motivates the
study of BGL, in Section 3.4. Even though the dimension of BGL, is —n?, we call BGL,, the
‘infinite dimensional Grassmannian’ because of the universal mapping property of BGL, and
the analogue with homotopy theory.

The proof of the trace formula is then carried out in Section 3.5. We have to worry about
convergence of the trace in this case. Thus we choose an embedding Q, C C and consider the
trace of the arithmetic Frobenius ®, on H*(ism, C). The result is Theorem 3.5.7.

3.1 A Finiteness Theorem

Throughout this discussion we fix an integer N > 0. If A is a noetherian ring, we say that a
sheaf of A-modules F' on a topos X is noetherian if it is a noetherian object in the category of
sheaves of A-modules on X. If X is a noetherian scheme, then a sheaf of A-modules on X, 1s
noetherian if and only if it is constructible.

Definition 3.1.1 A morphism of topoi 7 : Y — X is said to salisfy the finiteness theorem
with respect to N if for any noetherian ring A such that NA = 0 and any noetherian sheaf of
A-modules F' on Y, Rim,F is a noetherian sheaf of A-modules for all ¢ > 0.

A topos X satisfies the finiteness theorem with respect to N, if the morphism X — pt does,
where pt is the punctual topos.
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Proposition 3.1.2 Ifr:Y — X and p : X — 7 are morphisms of topoi satisfying the finiteness
theorem with respect to N, then pow Y — Z salisfies the finiteness theorem with respect to N
also.

Proof. Let A be a ring annihilated by N. For a noetherian sheaf of A-modules F' on Y consider
the Leray spectral sequence
RPp . Rim.F = RFi(pom).F.

The claim follows from the following fact: If
0—=F —F—=F'—=0

is an exact sequence in an abelian category (in this case the category of sheaves of A-modules
on Z), then F is noetherian if and only if F' and F’ are noetherian. O

Proposition 3.1.3 Let 7 : Y — X be a morphism of topot, where X and Y are quasi-separated
and noetherian. Then the property ‘m satisfies the finiteness theorem with respect to N’ 1s local
on the base X.

Proof. Let A be a noetherian ring annihilated by N. Then the proposition follows immediately
from the fact that the property of being noetherian is local, for a sheaf of A-modules on a
quasi-separated and noetherian topos. O

Lemma 3.1.4 Let 7 : Y — X be a morphism of topoi, and let Yy be an object of Y, covering

Y. Assume that for all p > 0 the induced morphism of topor m, : Y, — X satisfies the finiteness

theorem with respect to N, where Y, = Yy Xy -+ Xy Yy. Then w:Y — X satisfies the finiteness
—_———

p+1
theorem with respect to N also.

Proof. Let A be a noetherian ring annihilated by N. Let F' be a noetherian sheaf of A-modules
on Y. For any object U of X| Yy xy 7*U is a one-element cover of #*U. Consider the E spectral
sequence of this covering:

BV = HUY, xy #°U, F) = H*(7z*U, F).

If we let U vary over all objects of X, then we can consider this as a spectral sequence in the
category of presheaves on X. Applying the associated sheaf functor we get a spectral sequence

EP? = Rim, (F|Y,) = RPHirx F.

Using the fact that the restriction of a noetherian sheaf of A-modules is again noetherian, the
claim follows. O

Lemma 3.1.5 Let 7 : Y — X be a morphism of schemes. Then w., : Y — X satisfies the
finiteness theorem with respect to N if and only if 7. : Vi — X does.

Proof. There is a natural morphism of topoi
Ji X — X

J« 18 the ‘restriction’ of sheaves from the smooth to the étale site, j* extends the embedding of
the étale site into the smooth site. j. is exact (in fact j. even has a right adjoint j', because j*
is not only continuous, but also cocontinuous).
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Let A be a noetherian ring such that NA = 0. Since j,j° = id and j, 1s faithful, we have
for any sheaf of A-modules F' on X,,.: F' is noetherian if and only if j, F is noetherian. This
implies for any sheaf of A-modules G on X,,: G is noetherian if and only if 7*G is noetherian.
The same is of course also true for 5 : Y., — Y.

Let F' be a sheaf of A-modules on Y,,,. For any scheme U, étale over X, we have
HUY (7" U)a, ju ') = HI((7"U Yo, F).

Hence RIm..(juF) = ju(RIM . F'), using the fact that j. commutes with the associated sheaf
functor, which follows from the cocontinuity of j*. So we have

Rimy, o Jx = Jx © Rqﬂ'sm*a

which implies also
Rqﬂ-ét* =js0 Rqﬂ-sm* ° .7*
It follows immediately that 7., satisfies the finiteness theorem with respect to N of 7., does.
For the converse, let F' be a noetherian sheaf of A-moduleson Y,... To check whether Ri7,.,,. F'

is noetherian, it suffices to check whether j, Riw,,.F or equivalently Rim.,j.F is noetherian,
which is now clear. O

Theorem 3.1.6 Let k be a field and let 7w 1Y) — X be a morphism of algebraic k-stacks of finite
type. Then m : ), — X, salisfies the finiteness theorem with respect to N, if the characteristic
of k does not divide N.

Proof. First note that if X is an algebraic k-stack of finite type, then X, is a quasi-separated

noetherian topos. So by proposition 3.1.3 we reduce to the case that X = X is a scheme of

finite type over k. Now choose a presentation Y — ) such that Y is a k-scheme of finite type.

Then Y, =Y Xg -+ Xg Y is of finite type for all p > 0. By lemma 3.1.4 it suffices to show that
—_—

pt1
(Yp)em — X.. satisfies the finiteness theorem with respect to N for all p > 0. From a finiteness

theorem of Deligne [4, th. finitude], we know that (Y, )., — X., satisfies the finiteness theorem
with respect to N. Our theorem now follows from lemma 3.1.5. O

3.2 The (-adic Leray Spectral sequence

In this section we review the construction of the higher direct images for noetherian f-adic

sheaves, and morphisms of topoi satisfying the finiteness theorem. As an application, we prove

the existence of the Leray spectral sequence for morphisms of algebraic stacks of finite type.
First recall the definition of £-adic and A R-¢-adic sheaves [13, Exp. V]:

Definition 3.2.1 Let E be a topos and ¢ a prime number. A projective system F' = (F},)n>0
of abelian sheaves on E is called AR-null if there exists an integer + > 0, such that Fl,4, — F),
is the zero map for all n > 0.

F is called an ¢-adic sheaf (or a Zg-sheaf) if the following two conditions are satisfied:

i. For alln > 0: "+ F, =0.
ii. For all m > n the canonical map F,, /"t F,, — F, is an isomorphism.

Fis called an AR-¢-adic sheaf if condition (i) above is satisfied, and there exists an £-adic sheaf G
and a morphism G — F that is an AR-isomorphism, i.e. a morphism whose kernel and cokernel
are AR-null.

An f-adic (resp. AR-f-adic) sheaf F is called noetherian if for all n > 0 F,, is a noetherian
abelian sheaf on E. The category of noetherian Zssheaves on E is denoted by Zfn(F). If
E = X., i1s the étale topos of a scheme X, we also say constructible instead of noetherian.
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The following result is essentially proved in [13, Exp. V].

Proposition 3.2.2 Let 7 : Y — X be a morphism of topoi, salisfying the finiteness theorem
with respect to £7, for alln > 0. Let F' be a noetherian £-adic sheaf on Y. Then, for any q,

(RiT Fr)n>o is a noetherian AR-l-adic sheaf. In particular, there exists a unique (-adic sheaf
G? on X with an AR-isomorphism G? — (RIm.Fy)n>0.

Definition 3.2.3 Let 7 : Y — X and F be as in the proposition. Then we call the £-adic sheaf
G from above the ¢'" higher direct image of F under m and denote it by Rim, F. If X = pt is
the punctual topos, then Rim,F is denoted HY(Y, F).

Note that in general, (R¢m, F),, # Rim.(F,) and HY(Y, F), # H1(Y, F,). We have defined an
exact é-functor

Remy : Zp-ta(Y) — Zp-n(X).

Proposition 3.2.4 Let # : Y — X and p : X — 7 be morphisms of topoi satisfying the
finiteness theorem with respect to £, for all n > 0. Then for any noetherian {-adic sheaf F' on
Y there is a Leray spectral sequence (functorial in F')

RPp . Rim.F = RFi(pom).F.
Proof. The proof is completely analogous to the proof of proposition 2.2.4. in [13, Exp. VI]. O

Theorem 3.2.5 Let k be a separably closed field, £ # chark. Then for any morphismw : 9 — X
of algebraic k-stacks of finite type and any noetherian Ze-sheaf F on )., we have a spectral
sequence

HP (X, Ri7. F) = HPYU(D),., F)
(in the category of projective systems of finite abelian groups).

Proof. By theorem 3.1.6 7 : Y., — X, and X, — Spec k satisfy the finiteness theorem with
respect to £ for all n > 0. So by proposition 3.2.4 we have a spectral sequence

HP (X, RI7.F) = HY(,., F),

using the fact that k is separably closed, when replacing R? by H?. O

3.3 The Spectral Sequence of a Fibration of Algebraic Stacks
Constant Higher Direct Immages

To prove the next result, we have to pass to (Qg-sheaves. Recall that in the category of f-adic
sheaves morphisms are simply morphisms of projective systems of abelian sheaves. The category
of noetherian f-adic sheaves is a Z-category, which essentially means that all Hom-spaces are
Ze#modules and all Hom-pairings are Zg-bilinear. This justifies the term ‘Zg-sheaves’.

Definition 3.3.1 Let E be a topos. The category of noetherian Qg-sheaves on E is the category
whose objects are noetherian ¢-adic sheaves (i.e. Zg-sheaves) and whose morphisms are defined
by

Homg,(F, G) = Q; ®z, Homg,(F, G).

We denote this category by Qg fn(FE).
Note that noetherian Z,-sheaves on the punctual topos are just ¢-adic systems of finite abelian

groups, where the definition of ‘/-adic system’ is as in definition 3.2.1.
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Definition 3.3.2 If M is an f-adic system of finite abelian groups, let
(M) ={z €M, |Ir>0Vm>ndy € My, : y — zand "y = 0}.

The (-adic system M,,,, = ((Mior.)n)n>0 is called the torsion-subsystem of M. If M = M,,,., M
is called torsion . If M,... = 0, M is called torston-free.

The following are some basic facts about f-adic systems of finite abelian groups:
Proposition 3.3.3 Let M be an £-adic system of finite abelian groups.
©. If M 1s torsion-free it is free of finite rank.
it. M/Miors is torsion-free.
wi. If M 1s torsion, then there exists an r > 0 such that (" M = 0.

w. there exist integers ri,...,r, such that
MZ/LD - DLLDLe® - DLy,

where we have writlen Z; for the canonical (-adic system given by (Zy), = Z/0"TZ for
alln> 0.

Proof. Straightforward. O

Proposition 3.3.4 Let M be an £-adic system of finite abelian groups. Lel E be a topos salisfy-
ing the finiteness theorem with respect to £, for alln > 0. Consider M as a (constant) Z,-sheaf
on E. Then for any p > 0 the canonical homomorphism

HP(E,74) @z, M — HP(E, M) (11)

is an isomorphism in the category Qpfu(pt) of finite(-ly generated) Qy-abelian groups’. In (11)
we abuse notation wn a similar fashion as in proposition 3.3.3 with regard to Z,.

Proof. For any n > 0 we have a canonical homomorphism

HP(E,Z)" P72 o M, — HP(E, M,)
E@x — HP(E x)¢)

where we consider x € M,, as a homomorphism x : Z/E”HZ — M,,. Putting these homomor-
phisms together, gives a homomorphism of projective systems

(HP (B, /02 © M), oo — (HP(E, Mp), 5 -

n>0
Now we have (-adic systems H? (E, Z,)@M and H?(FE, M) together with natural 4 R-isomorphisms

HP (B, Z) 0 M 2 (HY(B, 20 Z) 0 My), 5,

and
HP(E, M) == (HY(E, My)),,> -

Composing, we get an AR-morphism [13, Exp. V]

HP (B, Z¢) @ M — HP (B, M),
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which is actually a homomorphism of projective systems, since H?(E,7Z,) @ M and HP(E, M)
are f-adic. So we have established the existence of the homomorphism (11).
Now we have a short exact sequence of f-adic systems of finite abelian groups

0— M,

tors

- M—-=M/M,,.—0 (12)

ors

where M/M,,,, is free of finite rank, say r. Hence (12) splits and M = M,.,. ® (Z,)". So we have
HP(E,Z¢) @ M = HP (B, 7)) @ Moo ® HF (B, Z¢)"

and

HP(E,M) = HP(E, Mo ® (Z0)").
By similar arguments as those proving the existence of (11), we get

HY(E,M & N)=HP(E,M)® HF(E,N)
for any two f-adic sheaves M N on E. Using this, our homomorphism is given by
HP(E,7Z¢) @ Myore ©@ HP(E,Zy)" — HP(E, M,,..) ® HP(E,Zy)".

So 1t suffices to show that the canonical homomorphism

HP(E,Z4) @ Myore — HP(E, M,,..)

is killed by ¢° for some integer s > 0. But this is clear, because M,,,, is killed by ¢° for some
s>0.0

Corollary 3.3.5 Let X be a topos having sufficiently many points and satisfying the finiteness
theorem with respect to £, for allm > 0. Let m :' Y — X be a morphism of topoi satisfying
the finiteness theorem with respect to €7, for all n > 0. Let F' be a noetherian Z,-sheaf on Y
such that (RIm, Fy,)n>0 ts a constant projective system of abelian sheaves on X. Then there is a
spectral sequence

HP(X,Z¢) @z, Rim.F = HPYU(Y, F) (13)
in the category Qpfu(pt) of finite Qg-abelian groups.
Proof. If X is the empty topos, there is nothing to prove. So we may assume that X has points.

Let € : pt — X be one. (Rqﬂ'*Fn)nzo i1s a noetherian AR-f-adic sheaf on X. So there exists a
noetherian ¢-adic sheaf H, and an AR-isomorphism H — (Riw,.F,), > 0. Pulling back to pt via

the exact functor £* we get an AR-isomorphism &*H — &*(RIm,F},),>0. Since pt Lx - pt
is isomorphic to the identity, we have proved that there exists an AR-f-adic system of finite
abelian groups N = (N, )n>0, such that N =2 (Ri7m,F),)n>0, where we denote by N the sheaf
on X associated to N. Since N is AR-f-adic, there exists en f-adic system of finite abelian
groups M together with an AR-isomorphism M — N. Then M — N is an AR-isomorphism of
projective systems of abelian sheaves on X. So M = Riw,F, and we have proved that Rin,F
is constant. So we can apply proposition 3.3.4 to conclude that

HP(X,7) @ Rim F = HP (X, Rin, T)
in the category Qgfn(pt). From proposition 3.2.4 we now get the spectral sequence
HP(X,Z) @ Rim,F = HPY(Y, F)

in the category Q,fn(pt). O
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Definition 3.3.6 For a projective system M = (M, ), >0 of abelian groups such that AL, =
0 for all n, we define
M @ Q= Q¢ @z, lim M,

n

For a topos X and a projective system F of abelian sheaves on X such that ¢*+!F, = 0 for all
n, we define
HP(X, Fe Qz) =Qy Xz, IIIPHP(X, Fn)

n

Note 3.3.7 If X is a topos satisfying the finiteness theorem with respect to £ and F' a noetherian
Z¢-sheaf on X, then
HP(X, Fe Qz) =Qy Xz, IIIPHP(X, F)n

This is because (HP (X, F)n ), and (H? (X, Fj)),,~ have the same limit, being A R-isomorphic.

Corollary 3.3.8 Under the same hypotheses as in corollary 3.3.5 we have a spectral sequence
of finite dimenstonal Qp-vector spaces

HP(X,Q0) @q, (Rim. F @ Q¢) = HPY(Y, F @ Qy).
Proof. Simply take the limit of (13) and tensor with Q. O

Theorem 3.3.9 Let k be a separably closed field, £ # chark. Let # : Y — X be a morphism
of algebraic k-stacks of finite type and F a noetherian Zg-sheaf on ..., such that Rim . F, is
constant, for alln > 0. Then we have a spectral sequence of finite dimensional Q¢-vector spaces

HP (X, Q1) @, (RIT i F @ Qp) = HPYYD..., F @ Q).

Proof. X, has sufficiently many points, because it is quasi-separated and noetherian. It satisfies
the finiteness theorem with respect to £7 for all n > 0 by theorem 3.1.6, and because k is
separably closed. 7, : .. — X.. satisfies the finiteness theorem with respect to £7 for all
n > 0, also by theorem 3.1.6. So corollary 3.3.8 applies. O

Fibrations With Connected Structure Group
Lemma 3.3.10 let F be a topos. Let X € ob E. Let G be a group object in E, acting on X on
the left. Let P be a (right) G-torsor and let Y = P xg X. Lelt jx : Byx — E and jy : E/y — E
be the localization morphisms. Then for any abelian object A of E we have
Rijy (AlY)= P xg Rijx , (A|X)

for allq > 0.
Proof. Rijy  (A|Y) is the sheaf associated to the presheaf

U— HUY x U, A).
P x¢ Rijx,(A|X) is the sheaf associated to the presheaf

UHP(U) Xg(U) HQ(X X U,A),
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by exactness of a, the functor that maps a presheaf to the associated sheaf. Note that ¢ € G(U)
induces

g: XxU — XxU
(x,u) — (g(w)z,u).

The operation of ¢ on H4(X x U, A) is then given by g(¢) = ﬁ_l*(f), for a cohomology class
£ € HY(X x U, A). Note also that s € P(U) induces an isomorphism

§: X xU — YxU
(z,u) — ([s(u), 2], u).

We denote the isomorphism induced by § on the cohomology level by su: s (€) = §_1*(€), for
a cohomology class € € H4(X x U, A). The following facts are easy to check

g = GO (14)
sg(z,u) = (50g)(z,u) (15)
(s9)u(971€) = s(&), (16)

where (14) and (15) are used to prove (16). We can now define
$(U) : P(U) xauy HUX x U, A) — HIUX x U, A)
[s,€] — s2(9).
That ¢(U) is well-defined follows from (16). We get an induced map of sheaves
¢ Pxg Rijx,(AX) — Rijy, (A]Y).
¢ 1s obviously an isomorphism. O

Proposition 3.3.11 Let G be a connected algebraic group over the separably closed field k,
acting from the left on an algebraic k-stack X of finite type. Then for every j,n > 0 the induced
action of G on HY (X, Z/0" 7)) is trivial.

Proof. 1f we give the finite set HI (X, Z/€**T'Z) the obvious k-scheme structure, then the action
of G on H/ (X, Z /0" TZ) is morphic. Hence the stabilizer of any element & € H/ (X, Z/("T'Z)
i1s a nonempty closed and open subset of G, i.e. G itself. O

Theorem 3.3.12 Let k be a separably closed field. let X be an algebraic k-stack of finite type
and let G be a (connected) algebraic group variety over k acting (from the left) on X, a smooth
algebraic k-stack of finite type. Let P be a principal G-bundle over X and let Y = P xg X be
the associated bundle with fiber X. Then if £ # char k we may write the Leray spectral sequence
of the morphism ) — X as the following spectral sequence of finite dimensional Qg-vector spaces

E;] == Hi(xsma(@z) ®@l Hj(XSmaQZ) :> Hi+j(@5m’(@z)'

Proof. Denote by é,f(, P and Y the sheaves on X.,, induced by the stacks Gz, Xz, and )
that are all smooth over X. Let ly and 5 be the corresponding localization morphisms
n X,..

The sheaf P is a principal G-bundle and ¥ = P xz X. Letting 7 : 3) — X denote the natural
morphism and 7, : 9., — X, the induced map of smooth topoi we have

gty

R uu(Z) OV 2) = Ry (Z)0F'T).
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By Lemma 3.3.10 we have
Rl (Z)0OHZ) = Pxg R (Z/0Z)
_ Do i n+1
= PXGH](Xsm,Z/E 7).
From Proposition 3.3.11 we get
o . i n+1 ~ i n+1
PXGH](Xsm,Z/E 7)== (X, 2/
which proves that ' '
R (202 = HI (X, 2/ 07T,

Then our theorem follows from Theorem 3.3.9. O

3.4 ‘The Infinite Dimensional Grassmannian’

Let k be a separably closed field. Consider BGL,,, the classifying stack of G'L,, over k. Since
BG Ly, classifies G'L,-bundles, or equivalently vector bundles of rank n, we may consider BG L,
as an anolog of the infinite dimensional Grassmannian which is used in homotopy theory.

Let Grass, (h) be the Grassmannian over k of locally free quotients of rank n of @". The uni-
versal quotient on Grass,(h) induces a natural morphism Grass,(h) — BGL,. The connection
between the cohomology of Grass, (k) and BG L, is given by the following lemma.

Lemma 3.4.1 The natural morphism Grass,(h) — BGL, induces an isomorphism
HY(BG L., Q) = H'(Grassn(h).m, Qo)
for every i < 2(h —n).

Proof. We may consider Grass,(h) as the quotient of M(n x h)* by the natural action of
G Ly,. Here we denote by M(n x h)” the subvariety of M(n x k) of non-singular n x h-matrices.
Hence we get a natural open immersion of algebraic k-stacks Grass, (k) — [G,\M (n x h)]. Since
M (nxh) is cohomologically trivial, we get from Theorem 3.3.12 that [G,,\ M (nx k)] has the same
cohomology as BGL,,. Now our lemma follows from purity (Corollary 2.1.3) upon estimating
the codimension of the singular part of M(n x h). O

Let V be the vector bundle on BGL,, associated to the universal GL,-bundle via the standard
representation of GL,. Let ¢; € H*(BGLy,,,, Qi) fori =1,...,n be the Chern classes of V.
We will call ¢q, ..., ¢, the universal Chern classes.

Theorem 3.4.2 We have
H*(BG L., Qu[35])) = Qfer, ..., cnl].
The arithmetic Frobenius ®, acts as the identity on H*(BG Ly, Qu([3]))-

Proof. This may be deduced from the corresponding results on finite dimensional Grassmannians
using Lemma 3.4.1. O

Choose an isomorphism 6 : Qy(1) — Q,. For any algebraic stack X over k& we get an induced
isomorphism

0 H (X, Qu(v)) — H (X, Qy)
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for any pair of integers ¢, v. In particular we get an isomorphism
0:Qler, ... en] — H(BG Ly, Qo)

of Qalgebras and the action of the arithmetic Frobenius on the generators #(e1),...,0(c,) is
given by '
P, (0(ci)) = ¢~ 0(ci),

foralli=1,...,n.

3.5 The Trace Formula for the Action of a Linear Algebraic Group on
a Deligne-Mumford Stack

Some Preliminary Remarks on Spectral Sequences

Definition 3.5.1 Let (E, ®) = (EP1,®), e, be a family of C-vector spaces (EP7) with & :
EP? — P4 g Clinear endomorphism for every p, ¢ € Ng. We say that (), ®) satisfies condition
(*) with respect to N, a nonnegative integer, and the four functions

a:{0,...,N} — Rsg
b:{0,...,.N} — Ny
c:Ng — Ryo
d:Ng — Nj

if the following conditions are satisfied:
1. For every ¢ > N we have EP4 = (
ii. If A is an eigenvalue of ® on EP»? then |A| < a(q)e(p)
iil. dim EP>? < b(q)d(p) for every p,q € Ng.

Lemma 3.5.2 Let (E, D) = (EP1, ®), 4ew, be a family of C-vector spaces satisfying condition
(*) with respect to (N, a,b, ¢, d). Assume that ) - e(p)d(p) < co. Then ), q>0(—1)p+q tr O| EP1
1s absolutely convergent. B B

Proof. We have

ST me|Er < > alg)e(p)b(q)d(p)

— Za(q)b(q)ZC(P)d(P)
< o )

which proves the lemma O

Definition 3.5.3 Let (E,®) = (EP?, ®), 4en, be a family of C-vector spaces satisfying condi-
tion (*) with respect to (N, a,b, ¢, d) such that 3, c(p)d(p) < co. Then we define the trace of
® on E to be
r®|E =Y (1Tt ®IEP.
P,q20
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Lemma 3.5.4 Let (F,®) be a spectral sequence of C-vector spaces with a compatible endomor-
phism ®. Let n be an integer n > 2. Assume that (E,, ®) satisfies condition (*) with respect to
(N,a,b,¢,d) where Zp>0 c(p)d(p) < 0o. Then (Epy1,®) also satisfies condition (*) with respect
to (N,a,b,e,d). Moreover, we have tr ®|E, 11 = tr ®|E,.

Proof. Tt is clear that (E,11, ®) satisfies condition (*). So tr ®|F, 4 is well-defined. We consider
Ey, as an infinite family (C3),>0 of finite complexes of finite dimensional C-vector spaces. The
next level Fy, 11 is then the family of graded C-vector spaces (H(C})),>0. So we may compute

|y = Y tr®H(C))
v>0
= ) uelC;
v>0
= tr®|F,,

where we have to keep track of the signs, of course. O

Lemma 3.5.5 Let (E,®) be an Ey spectral sequence of C-vector spaces with a compatible en-
domorphism ®. Assume that (Fq, ®) satisfies condition (*) with respect to (N, a,b,¢,d) where
> psoc(p)d(p) < oo. Let (E,®) abut to F':

EDY —y prta,

Then

r®|F = (=1)" tr | F"
n=0

1s absolutely convergent and we have
tr ®|F = tr ®|E,.

Proof. First note that our spectral sequence degenerates at Eny2, so that we have oy = Enya.
By Lemma 3.5.4 and induction E, satisfies (*) and we have tr ®|Fy = tr ®|Fs. So we may
estimate as follows:

iltr@lF”l < iiltr@lE&”‘pl
< DD a(n —p)b(n — p)e(p)d(p)
= > alg)b(q) D e(p)d(p)
<  00.

This proves the absolute convergence of tr ®|F. To prove the formula we may calculate

tr®|F 12 tr ®|F"

n

D> e @B
P

=0

= Z(_
= Z(_
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= > > (D) tr@|ELF
n=0p=0

= Y (—1)PHtr @ LR
P,¢20

= tr®|F

= tr<I>|E2,

finishing the proof. O

The Trace Fromula

Choose an embedding @, C C. If we are given a topos X we write H*(X, C) for H*(X,Q,)®q,C.

Let X be a smooth equidimensional Deligne-Mumford stack of finite type over the separably
closed field k, together with an action ¢ of GL, on X. Let X be the quotient stack for this
action. We have a 2-cartesian and 2-cocartesian diagram of k-stacks

GL,xX X X
po | |
X Z.0x

The stack X is a smooth algebraic k-stack of finite type. The structure morphism 7 : X — X
is a left principal G'L,-bundle and we have another 2-cartesian and 2-cocartesian diagram of
k-stacks

m

X — X
| L s
Speck — BGL,

We will consider the Leray spectral sequence of f, the morphism of associated smooth topoi
induced by f. Since f is just the bundle with fiber X associatied to the universal GG L, -bundle
we get from Theorem 3.3.12 the following E spectral sequence of finite dimensional Q,-vector
spaces.

HY(BGLy ., Q1) @, H (X, Q) = HH (X, Q)

By the remarks following Theorem 3.4.2 the Es-term of this spectral sequence may be written
as By = H*(X.m, Qo)[0(c1),...,0(cn)], where ¢1,..., ¢, are the universal Chern classes and ¢
denotes an isomorphism 6 : Q1) — @4 So we may write this spectral sequence (by slight
abuse of notation) as

By = H* (X, Q)[0(c1), ..., 0(cn)] = H*(Xom, Qo). (17)

Now assume that X and o are defined over the finite field IF,. Then the arithmetic Frobenius
®, acts on the spectral sequence (17), and upon tensoring with C we get a spectral sequence of
C-vector spaces with compatible endomorphism &,.

H*(X o, O)[0(c1), ..., 0(cn)] = H*(X.om, C). (18)

Now define N = 2dim X and

a(j) = maxy |A| forj=0,...,N
b(j) = dimH/ (X, Qo) for j=0,...,N
(i) = g 2 for i € g
d(i) = dim(Qyfer,...,en]); for i € Ny.
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In the definition of a(j) the index A ranges over the eigenvalues of ®, on HI(X ., Q). In the
definition of d(7) the subscript ¢ denotes the homogeneous part of degree i. We define the degree
on Qfeq, . .., ¢,] by declaring the degree of ¢, to be 2v. Note that Y ;- ¢(i)d(i) < co. Moreover,
the family (H*(X...,O)[0(c1), ..., 0(cy)], ®,) satisfies condition (*) with respect to (N, a,b, ¢, d).
Hence by Lemma 3.5.5 we get that tr ®,|H*(X..., C) converges absolutely and we have

tr <I>q|H*(§m, C) = tr <I>q|H*(75m, O)[f(e1), ..., 0(en)]
=t D, |H (Ko, O) tr @, C[0(c1), - .., 0(cn )]
_ i 1
= tr®,|H" (X _
r q| ( Sm’QZ)IEl_l/qV
Now dimX = dim X — dim G L,, so we have
qdim%trq)q|H*(¥sm’©) — qdlthrq) |H (XsmaQZ/ dim GL, H 1/(]

gt X gy <I>q|H*(7m,Qz)/ [ -
v=1

Z #Au t&/#GL

E[X(F,)]

by Theorem 2.4.5.

Lemma 3.5.6 Let X be a smooth Deligne-Mumford stack of finite type over Iy and let G be a
connected algebraic group over Fy acting on X. Let X be the associated algebraic stack. Then

1 /
= #G(TF,)
2 # A“tg [;m 7 Autd q

EE[X(IF )]
Proof. From a theorem of S. Lang we have H'(IF,,G) = 0. This implies that X (FF,) — X(F,) is
essentially surjective. Hence we may calculate

P e SN DD

€[X (I y)] £e[X(T )] ne[XaF )l #Aum
ce[xE )] #Aut€
proving the lemma. O
From Lemma 3.5.6 we get finally:
dim X
tr&,|H* . 1
q 1@, | H* (X, ©) = #Autg (19)

EE[X(Ty)]

Theorem 3.5.7 Let G be a non-singular linear algebraic group over Ty, acting on a smooth
equidimensional Deligne-Mumford stack X of finite type over Fy. Let X = Xg = [X/G] be
the corresponding smooth algebraic Fy-stack of finite type. Then tr <I>q|H*(§Sm,C) 15 absolutely
convergent and we have

. 1

dim X ¢ | H* §

1 Py [H(Xn, ©) = ZAute
£€[X(F )]
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Proof. Choose an embedding of GG into GL,, for somen. Let Y = X xgGL,. Then X =Yg, =
[Y/GL,] and so the theorem follows from (19). O

4 The Algebraic Stack of G-Bundles

Introduction

This section is of a technical nature. We define the stack of G-torsors $§'(X/S, ), where G
is an algebraic group scheme over the curve X over the base scheme S. (See section 4.3.) In
section 4.4 we show that $H1(X/S,G) is an algebraic stack, locally of finite type, for the case we
are interested in. This is the case that S is the spectrum of a field and G is a reductive group
scheme over X. (See Proposition 4.4.6.) In section 4.5 we show that $1(X/k, G) is smooth. (See
Corollary 4.5.2.) The calculation of the dimension of §*(X/k,G) will be deferred to section 8.1.

4.1 Some Elementary Non-Abelian Cohomology Theory

Let X be a topos. We want to prove some basic facts about groups in X.

Definition 4.1.1 Let GG a group in X and U € ob X. Then we denote the groupoid BG(U) of
(right) Gy-torsors by A(U, (), so that H1(U, () is the set of isomorphism classes of A(U, ). If
no confusion seems likely to arise, we write A(G) for A(X, ). Note that A(X, -) has the same
relation to H(X, -) as T'(X, -) has to H°(X, ).

Proposition 4.1.2 Let G be a group on X and E a G-torsor. Let PG = F xg,adG =Auty
be the wnner form of G, obtained from G by twisting with E. Then we have a natural equivalence
of groupoids
AG) — AFG)
F — Homg(F,F)
with quast-inverse
APG) — AG)
F' — F' xpg E.
Proof. Straightforward. O
Remark 4.1.3 This lemma doesn’t necessarily apply to an arbitrary inner form G’ of G.

Let G1 — (3 be a homomorphism of groups in X. Then there i1s a natural morphism of groupoids

E — FExg, Ga.

Proposition 4.1.4 If G' — G is a monomorphism and E € ob A(G) then there is a 2-cartesian
diagram of groupoids
I(E/G) — {2}
5] | E
AGY  — A(G).
If E' € ob A(G), then we have

NG/ —  {eo}
1 | E'xqiG
AGY — A(G).



Proof. The first diagram expresses the fact that the category of reductions of E to G’ is a set
(since G' — G is injective) and that this set is equal to the set of global sections of E/G’. The
second diagram follows from the first since (B x¢ G)/G' = B' x¢ (G/G') = G/G'. O

Proposition 4.1.5 If 1 — G’ — G — G"” — 1 is a short exact sequence of groups in X, and if
FE € ob A(G) then we have a 2-cartesian diagram of groupoids

AEGY — {a}
vl | Exga”
A(G) — A(G).

Proof. We have to show that A(Y () is equivalent to the category of reductions of the structure
group of E xg G" to G. Let F € obA(PG’), i.e. F is an £(G/-torsor. Under the vertical map
¥, F is mapped to F' xsg E. The action of ¥G’ on F is given by [e,¢'](e) = eg’. So the
induced action on E x¢ G' is given by [e, ¢'l([e, 9'']) = [ed’, 9] = [e, ¢"], i.e. it is trivial. So
(F x5g F) xg G" = E xg G”. Thus F' — ¢(F) defines a reduction of structure group of
E Xag G// to . " "

Conversely, let E be a G-torsor and ¢ : E xg G — E X GG” an isomorphism of G"-torsors.
Construct F' as the following fibered product in the topos X:

Fo— Hom,(E, E)
| B !
X -2 Homgu(E x¢ G" E xaq G").

Then F is an G'-torsor and F xeg B = E. O

Proposition 4.1.6 Let 1 — G' — G — G” — 1 be a short exact sequence of groups in X, with
G’ abelian. If HX(X, 2" G') = 0 for every E" € ob A(G"), then A(G) — A(G") is essentially

surjective.

Proof. Let E" be a G"-torsor. Let K(E") be the gerbe of liftings of E” to GG. The lien of the
gerbe K(E") is the lien associated to the group ® G’. The gerbe K(E") is trivial or neuter if
and only if ' admits a (global) lifting to G (see [10, Chap. IV, Proposition 2.5.8]). Now K(E")
defines a class in Hz(E”G’) in the notation of [10, Chap. IV, Définition 313J By [10, Chap.
1V, 3.4] Hz(E”G’) = 0 so that K(E") is isomorphic to B(E”G’), the trivial &’ G'-gerbe. Hence
K(E") has a section. O

The above propositions imply the standard facts about the long exact cohomology sequence in
non-abelian cohomology theory. Just apply the following lemma to the above diagrams:

Lemma 4.1.7 Let

A — {g}
! !
B —

be a 2-cartesian diagram of groupoids. Then we get an induced exact sequence
[A] — [B] — [C].

Here [-] denotes the associated set of equivalence classes and [C] is made into a pointed set using

{g} — C.

Proof. Clear. O
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4.2 The Relative Case

Let 7 : X — S be a morphism of topoi. We want to generalize the results of the previous
section to this situation. For a sheaf of groups G on X, we denote the direct image 7. BG' of the

classifying X-stack BG by H1(X/S, G).

Proposition 4.2.1 (‘Change of Origin’) Let G be a sheaf of groups on X. Then for any
G-torsor E, there is an isomorphism of S-stacks

61(X/8,G) - 81X/, FG).
Proof. This follows immediately from Proposition 4.1.2. O

Lemma 4.2.2 Let G be a sheaf of groups on X. Then the natural morphism of S-stacks
HHS, m.G) — 9HYX/S,G) is a monomorphism. So we may consider $H(S, 7.G) as an S-
substack of H1(X/S,G). Then H(S, 7.G) is the image S-substack of the trivial morphism of
S-stacks S — 9HY(X/S,G).

Proof. First let us show that for every U € ob S the functor (S, 7.G)(U) — H1(X/S,G)(U) is
fully faithful. In other words, we need to show that the functor ®¢(U) : A(U, 7.G) — A(7*U, G)
1s fully faithful. Without loss of generality we may assume that U = 5, so that we need only
show that ®¢ : A(S, 7.G) — A(X, G) is fully faithful.

Let E be a m.G-torsor. Let £ = SG(F) = 7*E Xgor,¢ G. Note that we have a natural
morphism of 7,G-sheaves £ — 7. L. Since locally this is obviously an isomorphism, it follows
that ¥ = 7. . We also have a natural morphism of S-group sheaves ., (EG) — E(TF*G). Since
this is also locally an isomorphism, it follows that 7.(?G) = #(7.G). Therefore, the following
diagram is 2-commutative:

A(S, 7. G) —  A(X,G)
! I
A(S B(m.G)) — AXEG)
Here the vertical arrows are the change of origin isomorphisms from proposition 4.1.2, whereas

the horizontal arrows are the functors ® and ®z, of the lemma. so by changing the origin in
the indicated way, we reduce to proving that

i T(S, 1.G) = T(X,G),
i I(X,E)# o =T(S,E) # 2.

Now (i) is clear, and (ii) likewise, noting that E' = T E, as we already did.
This finishes the proof that $H1(S,7.G) — H1(X/S, ) is a monomorphism. Now S —
HH(X/S, G) obviously factors through $(S, 7.G). Also, S — $H(S,7.G) is by definition an

epimorphism. So we have proved the lemma. O

If G; — (5 is a homomorphism of groups in X, then there is an induced morphism of stacks
over S:

HH(X/S,G1) — HUX/S, Ga).

Proposition 4.2.3 Let G’ — G be a monomorphism of groups in X. Let E € ob H1(X/S, G)(U)
where U € ob S. Then we have a 2-cartesian diagram of S-stacks:

Tw.(E/Gy) — U
1 | E
HUX/S, G — HHX/S,G)
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Let E' € obHY(X/S,G')Y(U). Then we have

au (G/G)y x U — U
1 | B'xqiG
AHX/S, G — 9YX/S,G).

Proof. Follows immediately from Proposition 4.1.4. O

Proposition 4.2.4 Let 1 — G' — G — G — 1 be a short exact sequence of groups in X. Let
N be defined by the diagram below being 2-cartesian. Then we have the following diagram of
S-stacks:
9/, - D) — 9S8, TG")
Nl !
HHX/S,G) — HUX/S,G")

Here ¢ : H1(X/S,G") — Q) is a principal m.G"-bundle, ¢ is @ monomorphism, and ¢ and ¢ give
the decomposition of 1o ¢ as an epimorphism followed by a monomorphism.

If E € ob9 (X/S,G)(U) then we have a 2-cartesian diagram of S-stacks

9 (Xu /U, PGy) — u
1 | Exga”
HHX/S, G) — 9YX/S,G").

Proof. Clear. O

Proposition 4.2.5 Let 1 — G' — G — G — 1 be a short exact sequence of groups in X and
assume that G' is abelian. If RZTFU*(E”G/U) =0 for every E" € ob H1(X/S,G")U) and for all
U €obS, then H1(X/S,G) — HY(X/S,G") is an epimorphism.

Proof. Let E" be a G"-torsor. We need to show that we can locally lift £ to G. Let K(E") be
as in the proof of Proposition 4.1.6 the #” (-gerbe of lifts of E to G. The gerbe K (E") defines
an element d(E") € H*(X, E”G’). It suffices to show that locally over S, this element vanishes.
But this follows from the assumption on R?w, (E”G’). O

4.3 The Case of Schemes

Let X be a scheme. Endow the category of schemes over X with the fppf-topology and pass to
the associated topos. This topos is the flat topos associated to the scheme X. We will denote
it by Xy. A morphism of schemes 7 : X — S induces a morphism of the associated topoi, and
a group scheme G over X induces a sheaf of groups on the topos X .

If G is a group scheme over X, then a G-torsor is a torsor under the associated sheaf of
groups on Xy. If X is an S-scheme and G an X,-group (i.e. a sheaf of groups on Xj,), then we
denote by $'(X/S,G) the S-stack of families of G-torsors. In the notation of section 4.2 the
stack H1(X/S, G) is equal to H (X, /Sy, G).

Sometimes we will also have to consider the étale topos associated to the scheme X. This is
the topos associated to the category of étale X-schemes with the étale topology and is denoted
by X..

Lemma 4.3.1 Let X be scheme and G/X a group scheme. Then any G-torsor is an algebraic
X-space.
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Proof. Let E be a G-torsor. Then there exists a faithfully flat X-scheme U of finite presentation
and a cartesian diagram of X-spaces

UXXG — U

$0p1 l d l
F — X

induced by a section s of £ over U. So sop; : U xx G — F is a presentation of E. This proves
that £ is an algebraic X-space. Another way of saying this is, that the property of being an
algebraic space is local with respect to the fppf-topology. O

Lemma 4.3.2 Let S be a scheme and # : E — X a smooth surjective morphism of algebraic
S-spaces. Assume that X s quasi-compact. Then there exists an étale morphism of finite type
U — X such that m has a section over U, i.e. such that there exists a morphism of algebraic
S-spaces s : U — E such that mo s =1dx.

Proof. This follows immediately from the corresponding result for schemes, which is well-
known. O

Corollary 4.3.3 Let X be a scheme and G/X a smooth group scheme. Then any G-lorsor is
locally trivial with respect to the étale topology on X.

Proof. Without loss of generality we may assume that X is quasi-compact. Let F by a G-torsor.
By lemma 4.3.1 F is an algebraic X-space. Of course £ is smooth over X. So by lemma 4.3.2
E — X has local sections with respect to the étale topology. O

Lemma 4.3.4 Let 7 : Y — X be a finite morphism of schemes. Let G be a group scheme over

X.
t. If m 1s flat then G — 7, 7*G is @ monomorphism.

w. If m 1s a nilpotent closed immersion and G is smooth over X then G — ma*G s an
epimorphism, even with respect to the Zariski topology on X.

Proof. First let T be any X-scheme. We have 7, 7*G(T) = 7*G(Y xx T) = G(Y xx T). So we
need to check whether the restriction map G(T) — G(Y xx T) is a monomorphism. But this
follows immediately from the faithful flatness of Y xx 1T — T

For the second part note that if 7" is an affine X-scheme then the restriction map G(7) —
G(Y xx T) is an epimorphism, since G is formally smooth over X. So G(T) — m.7w*G(T) is
surjective whenever T is an affine X-scheme. This clearly implies the result. O

4.4 Algebraicity of the Stack of (G-Bundles

Representability of Certain Direct Images

Proposition 4.4.1 Let X be a projective scheme over the field k. Let m : X — Speck be
the structure morphism. Let S be a k-scheme and Y — Xg an affine Xg-scheme of finite
presentation. Then wg,Y s an affine S-scheme of finite presentation.

Proof. Since the proposition is local in S, we may assume that S is affine. Then using [12,
Proposition 8.9.1] we reduce to the case that S is the spectrum of a noetherian ring. Choose
a very ample invertible sheaf Ox (1) on X. We have Y = Spec A, where A is a quasi-coherent
sheaf of Ox-algebras of finite type. Then by [14, 6.9.13] there exists a coherent Ox -submodule
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& C A generating A. Then there exists an Ox.-module £ of the type & = @?:1 Ox.(n)
together with an epimorphism & — &’. Thus we get a surjective morphism of Ox_-algebras
S(€) — A. Let T be the kernel. Again by [14, 6.9.13] there exists a coherent submodule 7/ C 7
generating Z. Let F be a sheaf of the type 7 = @~ Ox,(m;) mapping onto F’. Then we get
a morphism of Ox-algebras S(F) — S(&) such that F generates 7. Let B = SpecS(&) and
F = Spec S(F) be the corresponding geometric vector bundles over Xg. We have a cartesian
diagram of Xg-schemes

Y — Xg
Lo o
rF — F.

This follows easily from the exactness of the following sequence of abelian groups:
0 — Homo,-alg.(Av, Ov) — Homo,,-med.(Ev, Ov ) — Homoy,-med. (Fu, Ov),

where U is any Xg-scheme.
By the formal properties of the functor ng, we get a cartesian diagram of X-sheaves

75 Y — S
! o Lo

TS*E — TS*F.

So we have reduced to the case that ¥ = V(D._; Ox.(n;)). But then we are also reduced to
the case that S = Spec k, for which it is easily seen that 7, V(&) = V(7.£), for any locally free
coherent @ x-module £. O

Corollary 4.4.2 Let X be a projective scheme over the field k with structure morphism 7 : X —
Speck. Let G be an affine group scheme of finite type over X. Let S be a k-scheme and E, F
two Gg-torsors over Xg. Then wg, Isom(FE, F') is an affine S-scheme of finite presentation.

Proof. The sheaf Isom(F, F') is an E@Gg-torsor. Since PGy is a form of Gg and Gg is affine
of finite presentation, G is, by faithfully flat descent, again an affine group scheme of finite
presentation over Xg. By the same reasoning, Isom(F, F') itself is an affine Xg-scheme of finite
presentation. Then the lemma follows from Proposition 4.4.1. O

Passing to Covers

Theorem 4.4.3 Let X be a projective scheme over the field k. Let f:Y — X be a projective
flat covering of X. Let G be an affine group scheme of finite type over X. Then the natural
morphism of k-stacks

DX/ b, G) — 9 (Y/k, [7G)

1s representable affine of finite presentation.

Proof. Let U be a k-scheme and E € ob 9 (Y/k, f*G)(U), i.e. E is an f*Gy-torsor over Y. Let

V' be defined so as to make the following diagram 2-cartesian:

Vv — U
| | E
X[k, G) — oYY /k, *G).

We need to check that V' is an affine scheme of finite presentation over U.
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Consider the following projections:

piZYXXy — Y

(y1,92) — Wi fori=1,2
G Y xxYxxY — Y
(Y1,92,93) — Wi fore=1,2,3

TijZYXXyXXY — YXXY
(y1,92,93) — (wi,y;)  for (4,5) = (1,2),(2,3),(1,3)

For any U-scheme T', V(7)) is the set of descent data for Ep. A descent datum is an isomorphism
ér :piEp — pyEr
satisfying the cocycle condition
T530T o To¢T = Ti50T.
In other words, a descent datum is a preimage of the trivial element under the map
87 :Isom(p} Ep,p5Er) — Aut(qiEr)
¢r — 7T3¢;1 o Wha®T o T1oPT.
This proves that we have a cartesian diagram of sheaves over Uy

vV — U
! O !
* * 4 *
pau, Isom(pi B, psE)  —  p3y, Aut(qi F),

where p; : Y Xx ... Xx Y — Speck is the structure map, for ¢ = 0,1, 2, 3. So it suffices to prove
—_——

i
that 6 is an affine morphism of finite presentation. But this follows from Lemma 4.4.2 which
says that § is a morphism between affine U-schemes of finite presentation. O

Application to Reductive Group Schemes

Proposition 4.4.4 Let X be a projective scheme over the field k. Let V be a vector bundle of
rank n over X and G C GL(V) a closed subgroup such that the quotient GL(V)/G is an affine

scheme over X. Then the natural morphism of k-stacks
HX/k, G) — 91 (X/k, GL(V))

is representable, affine of finite presentation. In particular, H1(X/k,G) is an algebraic k-stack,
locally of finite type.

Proof. By Proposition 4.2.3 for any GL(V)s-torsor E, where S is a k-scheme, we have a 2-
cartesian diagram of k-stacks:

TS*(E/GS) — S
1 | E
X[k, G) — 9YX/k,GL(V))

where m : X — Spec k 1s the structure morphism. By Proposition 4.4.1 to prove the first part
all we need to do is exhibit F/Gg as an affine Xg-scheme of finite presentation. This question is
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local with respect to the fppf-topology on Xg, so we may assume that £ = GL(V)g. But then
E/Gs =GL(V)g/Gs = (GL(V)/G)s which is affine of finite presentation by assumption.

For the second part, we will note that H1(X/k, GL(V)) is an algebraic k-stack, locally of finite
type. By Change of Origin, we have §1(X/k, GL(V)) = 91 (X/k,GL,). But H1(X/k,GL,) is
an open substack of Cohx,, the k-stack of coherent O x-modules, which is algebraic and locally
of finite type by [19, Théoreme 4.14.2.1]. (Note that even though [19, Théoréme 4.14.2.1] states
that Cohx y is of finite type, all that is true and proved is that Cohxy, is locally of finite type.) O

Proposition 4.4.5 Let 7 : X — S be a projective flat morphism of schemes. Let V be a vector
bundle of rank n over X and G C GL(V) a closed subgroup. Then the natural morphism of
S-stacks

HH(X/S,G) — 9'(X/S, GL(V))

is representable, locally of finite presentation. In particular, $'(X/S,G) is an algebraic S-stack,
locally of finite presentation.

Proof. By Proposition 4.2.3 for any GL(V)p-torsor E, where T is an S-scheme, we have a
2-cartesian diagram of S-stacks:

TT*(E/GT) — T
| | E .
HHX/S, G — HUX/S,GL(V))

Now since F/Grp is an algebraic Xp-space of finite presentation, we have by [1, 6.] that
77, (E/Gr) is an algebraic T-space of finite presentation. So we are reduced to proving that
HHX/S,GL(V)) is an algebraic S-stack, locally of finite presentation. This follows as in the
proof of Proposition 4.4.4 from [19, Théoréme 4.14.2.1]. O

Proposition 4.4.6 Let X be a curve over the field k and let G be a reductive group scheme
over X. Then $Y(X/k,G) is an algebraic k-stack, locally of finite type.

Proof. Let f:Y — X be a finite cover such that f*G is rationally trivial. Such an f exists by
the beginning of the proof of Theorem 6.4.4. Then by Note 6.3.1 f*G is an inner form. So by
Theorem 4.4.3 we may replace X by Y and thus assume that GG is an inner form. Let G be the
constant group of the same type as (G. The group scheme Gy is defined over k. So there exists
an embedding Gy — G L, making Gy into a closed subgroup of G'L,, for some n. The fact that
G is an inner form means that there exists an Ad Go-torsor E such that G =2 E xaqg, Go. So
we may assume that G = F X aq g, Go. Via the induced map Ad Gy — AdGL,, = PGL, we get
an associated PG Ly-torsor F X aqG, PGL,. To this PG L,-torsor we have the associated inner
form £ xpaag, PGLp Xpgr, GLyp = E Xadg, GLy of GL,. We also have a homomorphism G =
E xadg, Go — F Xad g, GLn, which identifies G as a closed subgroup scheme of £ xaqq, GLn
since it does so locally.
Now consider the exact sequence

l1—G, —GL, — PGL, — 1

of group schemes over X. Let % be an algebraic closure of k. Then we have Hz(yét, Gn) =0
by [4, Arcata, Proposition 3.1]. Hence over k any PGL,-torsor can be lifted to a GL,-torsor.
In particular, our PG Lp-torsor E Xaqqg, PG Ly can be lifted to a GLy,-torsor F' over X. The
torsor F'is defined over a finite extension K of k. Now it is easily seen using [19, Théoréme 4.1]
that to prove the proposition we may replace k by K and thus we may assume that F' i1s defined
over k.
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So we have a GLy-torsor F' such that F' xgp, PGL, = E Xadg, PGL,. Now we have
FGLn = F XGL,,Ad GLn = F XGL, PGLn XPGL, GLn = F XAdGq PGLn XPGL, GLn =
E xXadg, GLn. Hence we have exhibited G as a closed subgroup scheme of rqr, = GL(V),
where V 1s a vector bundle over X such that F is the bundle of frames of V:

G C GL(V).

This homomorphism i1s by construction locally isomorphic to Gog C GL,. But by a theorem
of Kostant, the quotient GL,/Gqy over k is an affine k-scheme, since Gy is reductive. Hence
GL(V)/G is an affine X-scheme. So by Proposition 4.4.4 $'(X/k,G) is an algebraic k-stack,
locally of finite type, q.e.d. O

4.5 Smoothness of the Stack of G-bundles

Proposition 4.5.1 Let S be a noetherian affine local scheme, 7 : X — S a curve and T C S a
closed subscheme defined by an ideal of square zero. Let G be a smooth group scheme over X.
Then the natural morphism

A(X,G) — A(Xp,Gr)

1s essentially surjective.

Proof. Let + : X7 — X be the natural morphism, which is a closed immersion defined by an
ideal sheaf T of square zero. Since Z? = 0 we may consider Z as an Ox,-module. By Lemma
4.3.4 we have a natural epimorphism of sheaves of groups on X,,,:

G — L*GT.

Let g be the Lie algebra of ¢, which is a locally free coherent O x-module. If e : X — G denotes
the identity section and C, ;g is the conormal sheaf of ¢, then we have g’ = Ceyq. Now from
general principles we have for any affine open subset U C X an exact sequence

0 — Homo,, (Ce/q|U, I|U) — G(U) — G(Ur).
This gives rise to an exact sequence of sheaves of groups on X,,,:
0 — Homoy(Ceyg,I) — G — 1.Gp — 1.

Or, in other notation
0—g®R7T — G — 1,Gp — 1.

Now apply Proposition 4.2.5 to this sequence and the morphism of topo1 X,,, — S;... We have
Rirs,(P(g@ T)s) = 0 for every S’ C S Zariski-open and any (1.G)s/-torsor E, since being a
coherent module is local for the fppf-topology and by [17, Chap. III, Corollary 11.2]. Hence S
being a local scheme implies that A(X,G) — A(X7, Gr) is essentially surjective. O

Corollary 4.5.2 Let GG be a reductive group scheme over the curve X over the field k. Then
DY X/k,G) is a smooth algebraic k-stack.

Proof. By Proposition 4.4.6 $1(X/k,G) is an algebraic k-stack, locally of finite type. So it
suffices to prove that $1(X/k, &) is formally smooth, which is precisely Proposition 4.5.1. O
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5 Root Systems and Convex Solids

Introduction

We will define the notion of a root system with complementary convex solid. A root system
with complementary convex solid consists of a root system ® and an additional structure d, the
complementary convex solid. If @ is a root system in the real vector space V', then d is the family
of vertices of a solid F* C V*, where V* is the dual of V. This solid F' gives rise to the name of
the structure d. d is a family of points in V*, parametrized by €, the set of Weyl chambers of
®. This family d is subject to two axioms (see definition 5.2.1). The convex hull of d is F', the
complementary convex solid. Alternatively, F' can be described by its faces. The faces of F' are
parametrized by the set A of fundamental weights of ® (see the all important Lemma 5.2.5).

The terminology ‘complementary’ is suggested by the fact that there is a bijection between
the facets of ® and the solids bounding F'. To a facet P there corresponds a solid F(P) C F,
the dual solid of P. This correspondence has the property that dim F'(P) = n — dim P, where
n = dimV is the rank of ® (at least if F'(P) is not degenerate).

The terminology ‘convex’ is used because F' is by definition convex, and this convexity is
the key point used in the proof of our main result on root systems with complementary convex
solids.

The convexity of F' is used as follows: Choose a metric on V, identifying V' with VV*. Then
since F'is compact non-empty and convex there exists a unique point y € F' closest to the origin of
V. This point y lies in a unique facet P of ®. This facet is special (Proposition 5.3.14). Our main
results (Corollaries 5.3.15 and 5.3.17) can be understood as giving different characterizations of
this special facet P. (See also Definition 5.3.11.)

5.1 Root Systems

Here we will assemble some elementary facts about root systems that do not usually seem to
emphasized in the literature.

We will always assume all root systems to be reduced. For convenience, we briefly review
the definition of a (reduced) root system. Let V' be a real vector space. A root system in V is
a subset ® C V satisfying:

1. @ is finite and generates V.

ii. Forevery o € ® there exists & € V* such that (o, &) = 2 and such that the map o, : V — V
defined by 04(€) = & — (€, &) maps ® into P.

iii. For every o € & we have &(®) C Z.
iv. If &« € ® then 2o ¢ ®.

Because of (i) the element &, whose existence is guaranteed by (ii) is unique. Hence (iii) makes
sense.
For the basic facts about root systems, see [3, Chap. VIJ.

Facets and their Corners

Let V be a finite dimensional R-vector space of dimension n. Let ® be a root system in V. Let
¢ denote the set of Weyl chambers of ®.
For o € ® let L, be the hyperplane in V defined by

Lo ={¢ €V [({{a) =0}
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(La)aea is a finite set of hyperplanes in V. Hence (Lgy)aea determines a partition of V' into
facets. We call these the facets of ®. By definition, £,7 € V are in the same facet if and only
if for every a € ® either £ € L, and n € L, or € and # are strictly on the same side of L, (i.e.
(&, &)(n, &) > 0). The facets of dimension n are precisely the Weyl chambers of ®. The facet of
dimension zero is the origin. There is a canonical bijection between the facets of ® and those of
®. For a facet P of ®, we let P denote the corresponding facet of ®. We partially order the set
of facets of ® by
P>Q+<=PCQ.

Definition 5.1.1 For a facet P of ® let cham(P)={ce €| P > c}.

Let A be the set of fundamental weights of @, i.e.
A={A eV |Jce: Xis afundamental dominant weight w.r.t. c}.

Recall that if aq,...,a, is the basis of ® defined by the Weyl chamber ¢ then the dual basis
A1,y Ap of @, ..., Gy 1s the set of fundamental dominant weights with respect to c.
For any A € A let A denote the corresponding fundamental weight of ®.

Definition 5.1.2 Let P be a facet of ®. Then A € A is called a corner of P if A € P. The set
of corners of P will be denoted by vert(P). We also define

vert/(P) = {A € A | 3c € cham(P) : X € vert(c)}.

We have vert(P) C vert'(P) and vert(P) = vert’(P) if and only if P is a chamber. This follows
for example from proposition 5.1.4.

Lemma 5.1.3 Let ¢ be a Weyl chamber of ®. Let Ay,..., A, be the fundamental dominant
weights of ® with respect 1o ¢. Then vertc={A1,...; A, }.

Proof. Ay, ..., A, is the dual basis of &y, ..., &,, where ay, ..., «, is the basis of ® defined by ¢.
It is well-known that

eV | a)>0foralli=1,... n}
= eV |éE=> &N withg >0foralli=1,... n}.

a
|

So A; Evertecforall:=1,... n.

Now assume A € vert¢. Then there exists a Weyl chamber 0 such that A is a fundamental
dominant weight with respect to 9. We have ? = o(¢) for some o € W, W the Weyl group of
®. Then A = a(X;) for some i = 1,...,n. Since A € ¢ and A; € T, we get A = A; because Tis a
fundamental domain for the action of W on V. O

Proposition 5.1.4 Let P be a facet of ® and let Ay, ..., A, be the corners of P. Then
i. (A1,...,Ar) is linearly independent,
ii. The affine support of P is span(Ay,..., ),
wi. P={¢ €V | There exist &,...,& > 0 such that € =5 _ &XMi}y

w. The corners of P are Ay, ..., Ar.
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Proof. In case P is a chamber, the proposition follows from lemma 5.1.3. For the general case, let
¢ be a chamber such that P > ¢. Let ay, ..., a, be the basis of ® corresponding to ¢, Ay,...; A,
the corners of ¢. We may assume that

P={¢eV|
(& a)y>0foralli=1,...;rand {{,&;) =0foralli=r+1,...,n}
for some 0 < 7 < n. Then vert P = {Ay,..., A} and the proposition is obvious. O

Corollary 5.1.5 Let P be a facet of . Then for every A € vert/(P), vert(P) U {A} is again
the sel of corners of a facel of ®. Similarly, vert P — {A} is the sel of corners of a facet for any
A E vert P.

Parabolic Sets of Roots

Recall that a parabolic set of roots is a subset R C ® such that for every o € ® we have o € R
or —x € R.

Lemma 5.1.6 Let P be a facet of ® with corners Ay, ..., A.. Let
R(P)={a€®|{a,\)>0foralli=1,...,r}.
Then we have §
A, 0 ={A€eA | {a,A) >0 for all « € R(P)}.
The set R(P) is called the parabolic set of roots associated to the facet P.

Proof. The inclusion ‘C’ is obvious. For the other inclusion, choose a chamber ¢ € cham P giving
a basis aq, ..., an of & with dual basis A1,..., A,. Let A € A satisfy (o, A) > 0 for all « € R(P).

Since aq,...,a, € R(P) we have {a;, A} > 0 and hence (A, &;) >0foralli=1,...,n. So A €,

ie. A= A; forsome j =1,...,n. Assume that j > r. Then («;, A;) =0foralli=1,... r. Thus
—a; € R(P) by the definition of R(P) and by the assumption on A = A; we get (—a;, A;) > 0
which is a contradiction. O

Lemma 5.1.7 Let R be a parabolic set of roots in ®. Define
vert R={A € A | (a,A) >0 for all « € R}.

Then there exists a unique facet P of ® such that vert P = vert R. Moreover, R = R(P) in the
notation of lemma 5.1.6.

Proof. There exists a Weyl chamber ¢ such that R contains the set of positive roots with respect
to ¢. Let aq,...,a, be the basis of ® defined by ¢ and Ay, ..., A, the corners of ¢. Then there
exists a subset, say Aq1,..., A, such that

R={ae®|{a,A)>0foralli=1,... r}.

By corollary 5.1.5, there exists a facet P such that vert P = {A1,..., A }. So R = R(P) and by
lemma 5.1.6 we also have {A1,...,A,} = vert R. O

Corollary 5.1.8 There is a bijective correspondence

{facets of ®} —— {parabolic subsets of ®}
P +— R(P)
whose tnverse is given by
R —— the unique P such that vert P = vert R.

This correspondence is order preserving.
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Another way of looking at this bijective correspondence is given by the following proposition:

Proposition 5.1.9 Let P be a facet of ®, R the corresponding parabolic subset of ®. Then
Z a € P

Proof. Choose a Weyl chamber ¢ € cham P with basis a1, ..., «a, and corners Ay, ..., A, such that
vert P = {A1,..., A }. Let o; be the reflection defined by a; for i = 1,...,n. Let =3  pa.
Consider an ¢ > r. o; permutes R as can easily be seen by looking at the formula (o) =
a — {a, &;)a;. Hence 04(3) = B and B € &;. Therefore, 3 € span(Ay,...,\.). So to prove
that 3 € P it suffices to prove that {5,d&;) > 0 for all i = 1,...,r. To this end, consider for
t=1,...,7 the set
R; = {Oé ER | (a,di) < 0}

It is easily checked that o;(R;) C R and that R; No;(R;) = @. So we can decompose R as
follows:

R=R;Uoi(R;)US; U{ey},

where the union is disjoint. We may now calculate

(Boar) = D Aas@n)+ D (ad)+ Y {and) + (i, @)

a€R; a€oi(R;) a€S;
> Y (@) + (oi(a), ) +2
a€ER;
= 2

which finishes the proof. O

Reduction of a Root System to a Facet

Let P be a facet of ®. P induces direct sum decompositions V = span P @ P and V* =
span P @ PL. We set Vp = PL and Vp = PL. Then we identify Vp as the dual of Vp. Let
p:V —Vpand p: V" — Vp be the projections given by the above direct sum decompositions.
Note that p is the adjoint of p. ®p = & N Vp is a root system in Vp. We call ®p the reduction
of ® to the facet P. The dual of ®p in V7 is dp = 0N Vp. Let €p denote the set of Weyl
chambers of ®p, Ap the set of fundamental weights of ®p.

Lemma 5.1.10 p induces a bijection

p: {Facets ) of ® such that Q < P} —— {facets of ®p}
Q — p(Q)

For a facet Q of @ such that @ < P we have dimp(Q) = dim @ — dim P. In particular, we get
a bijection
p:cham P — Cp.

Proof. Straightforward calculation. O
Lemma 5.1.11 p induces a bijection

p:vert' (P) —vert(P) — Ap
A — p(A).

Proof. Clear. O
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5.2 Root Systems with Complementary Convex Solids
Complementary Convex Solids

Now we are prepared to give the fundamental definition of this section:

Definition 5.2.1 Let d = (d(¢))ce be a family of vectors in V*, parametrized by the set of
Weyl chambers of ®@. This family d is called a complementary convex solid for ® or, alternatively,
the pair (9, d) is called a root system with complementary conver solid if the following two axioms
are satisfied:

(B1) If X is a corner of both of the Weyl chambers ¢ and 0, then
(A, d(c)) = (A, d(0)).

(B2) If the Weyl chambers ¢ and ? have precisely n — 1 corners in common, and if o € & is the
unique root that is positive with respect to ¢ and negative with respect to 0, then

(o, d(©) < (o, d(2)).
Let P be a facet of ®. Then we define the dual solid F(P) of P by

PP = o1

We also define F' = F({0}). F' is the convex solid that gives rise to the name of the structure
defined above.

Note 5.2.2 If & # @ then F # @. If P < @ for facets P and @ of ®, then F'(P) C F(Q).

For the next definition let ® be endowed with a complementary convex solid d. Let P be a facet

of @.
Definition 5.2.3 The complementary convez solid dp for ®p induced by d is defined by
dp(c) = p(d(p~'¢)),

! is the inverse of the map of lemma 5.1.10.

for each ¢ € €p. Here p~

It is easy to check that dp satisfies axioms (B1) and (B2).

Note 5.2.4 Let @ be a facet of p and Fp(Q) the dual solid of ) with respect to dp. Then
Fp(Q) = p(F(r~'Q)).

In particular, letting Fip = Fp({0}), we have Fp = p(F(P)).

Characterization of I' in Terms of Faces

Let d = (d(c))cee be a complementary convex solid for ®. For A € A let Hy be the hyperplane
in V* defined as follows:

Hy={ee V" | (A x) = (A d)},

where ¢ is any Weyl chamber such that A is a corner of ¢c. By (B1) the definition of Hj does not
depend on the choice of ¢. (Hx)xea is a finite set of hyperplanes in V*.
We define the positive half space associated with A:

EY ={z eV | ()\z)>()d()}

We will also have to consider the closure Fj\— of E;'\'
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Lemma 5.2.5 Let P be a facet of ®. Then

FPy= (| mn () I}

AEvert P AEvert! P

For example,
r= 71
AEA

Proof. Let P be a facet of ®. Consider the projection p: V* — Vi and let p; be its restriction

to m)\EVertP HA:
.. *
P ﬂ H)\ — VP
AEvert P

First note that p; is a bijection. p1(F(P)) = Fp and for any u € vert’ P — vert P we have

. —+) =+
p1( ﬂ H/\OEM):EP(M)’

AEvert P

where p(p) is considered as a fundamental weight of ®p. Hence

pl( N ma N E;):mf;

A€gvert P A€Evert’ P AEAPR

which reduces the proof to the case P = {0}. so the claim is now

conv(d(c)) = () x. (20)

e
AEA

Let us first prove the inclusion ‘C’. To this end define n(c) = >, .. A for every ¢ € €. We
choose a fundamental weight A and a Weyl chamber ¢y such that A € vert ¢y. Let ¢ be an arbitrary
Weyl chamber. We need to show that (A, d(c)) > (A, d(c)). Let vy, ..., o be the simple roots
defined by ¢ and Ay,..., Ay the corners of c. If for all ¢ = 1,...,n we have (A, &;) > 0, then
A € ¢ and we are done by (Bl). So we may assume without loss of generality that (A, &;) < 0.
Let o1 be the reflection defined by «; and let @ = o1(¢). By (B2) we get {1, d(c)) < (a1, d(0)).
Moreover, d(¢) — d(0) € Ra; by (B1), because Ag, ..., A, are corners of both ¢ and 9. So in fact
d(c) — d(0) = wa; with < 0.
Now we have

(Ad(0) = (A d(e) = d(0)) + (A, d(2))
= x2{A &) + (A, d(D))
> (A d(@)).

So it suffices to prove that (A, d(0)) > (A, d(cg)). But we have n(d) = n(c) — @1 and hence

(n(@),4) = ((c),A) = (a1, 4)

because (A, &1) < 0 implies {1, A} < 0. So since there are only finitely many Weyl chambers we
are done.
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The other inclusion we will prove by induction on the rank n of ®. So we assume (20) to
hold for root systems of rank n — 1. Then by the above argument involving p;, the lemma holds
for all one-dimensional facets of ®. This implies for every A € A:

—+
H FE d(c). 21
AN NOA u C ccoeney (¢) (21)

to prove (20) choose an element x € mAeA Fj\— Then choose any fundamental weight A € A and

consider the line L = (& —|—t;\)teng. Obviously, LﬂﬂueA E: is compact by considering for example

Fj\— and Fi—k. It is also clearly convex. Let [tg,?;] be the interval such that L N E =

HEA T H
{x +1\ |t € [to,11]}. Then we have x + t;A € ﬂuEAF: for i = 0,1 and # + toA € Hy, and

r4+tAe Hy, for suitable Ag, A1 € A. By (?1) T +Vti;\ € conveee d(c) for ¢ = 0,1. Hence
z € convee d(c) also, because © € conv(z + toA, z +114). O

By lemma 5.2.5 we can interpret (d(c))cce as the family of vertices of the solid F and (Hx)xea
as the family of (affine supports of the) faces of F. In particular, d can be recovered from the
finite set of hyperplanes (Hx)xea-

5.3 Stability of Root Systems with Complementary Convex Solids

Again, let ® be a root system in the n-dimensional R-vector space V.

Stability
For a facet P of @ we let
R(P) = {a € ® |for all A € vert P: (o, \) > 0}
be the corresponding parabolic set of roots (see Corollary 5.1.8). We also define
U(P) = {a € ® | there exists A € vert P: (a, A) > 0}.
We have U(P) C R(P) and in fact R(P) is the digjoint union of U(P) and ®p.

Definition 5.3.1 Assume that ® is endowed with a complementary convex solid d. Let P be
a facet of &, R the corresponding parabolic set of roots. Then we define the degree of P (resp.
the degree of R) with respect to d as

degP=degR=> (a,d(c))= > (o, d(c)),

aER aeU(P)

where ¢ is any Weyl chamber such that P C ¢ (or equivalently, ¢ is any Weyl chamber such that
R contains the roots positive with respect to c).

By proposition 5.1.9 and property (B1) this definition does not depend on the choice of «.

Proposition 5.3.2 If we have a root system with complementary convex solid (®,d), then the
following are equivalent:

t. For every facet P of ® we have deg P < 0.

1. For every one-dimensional facet P of ® we have deg P < 0.
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iti. For every pair (A, ¢) € A x € such that A € vert ¢ we have (A, d(c)) < 0.
w. 0 e F.

Proof. (1)=-(ii) is obvious. In view of proposition 5.1.9 (iii) is just a reformulation of (ii). The
equivalence of (iii) and (iv) follows from the characterization 5.2.5 of F'. (iii) implies (i) by
proposition 5.1.9. O

Definition 5.3.3 We call a root system with complementary convex solid (®, d) semi-stable if
the conditions of proposition 5.3.2 are satisfied.

Remark 5.3.4 Call (®,d) stable if any of the following equivalent conditions is satisfied:
1. For every positive-dimensional facet P of ® we have deg P < 0.
1. For every one-dimensional facet P of ® we have deg P < 0.
iii. For every pair (A,c) € A x € such that A € vert ¢ we have (A, d(c)) < 0.

iv. 0 is an interior point of F.

The behavior of the degree with respect to reduction is described by the followinglemma. Choose
a complementary convex solid d for ®.

Lemma 5.3.5 Let P be a facet of @ and let Q < P be another facet. Let p: V — Vp be the
reduction map. Then we have

deg Q = degp(Q) + deg P.
Proof. Choose a Weyl chamber ¢ € cham ). Let Ay,... A, be the corners of P and Ay, ... A,

the corners of . Then
degQ—degP= Y {a,d(0)),

a€l(Q)-U(P)

but
U(Q)—U(P)
= {a6<1>|E|i:r—|—1,...,5:(a,;\i)>0andVi:l,...,r:(a,;\i)ZO}
= {a e ® |3 e vert(p(Q)) : (oz,;\> > 0}
= Up@)).
Hence
deg@ —deg P = > {a,d(e)
«€eU(p(Q))
=Y ()
«€eU(p(Q))
= degp(@Q),

so that we are done. O
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The Numerical Invariants
For what follows, we will need numerical invariants for facets that are finer than the degree.
Definition 5.3.6 Let P be a facet of ®. Let A be a corner of P. Then define
V(P A)={a€®|(a,A) =1and Yu € vert(P) — {A} : (o, 1) = 0}.
We call W(P, ) the elementary set of roots associated to P and A.
Lemma 5.3.7 Let P be a facet of ®. Then for any corner A € vert(P) we have
Z a € span (A).
we TP A€vert P

Proof. Let ¢ € cham P. Let «ay,...,«, be the basis associated to ¢, A1,..., A, the corners of
cand A1, ..., A, the corners of P. Let 0, = 04, for ¢ = 1,...,n be the generators of the Weyl
group associated to aq,...,an. Let o € ¥(P, A). Consider for i > r

oi(a) = a — {a, &;)ay.

For j < r we have § §

{gi(a), Aj) = (o, 4j)
so that o;(a) € ¥(P, A) also. So for i > r o; permutes U(P, ). Hence Zaeqf(P N is invariant
under o; and therefore

(> aa@)=0

w€T(P,A)
forall i =r+1,...,n. This proves that Zaeqf(P N E span(Ag, ..., Ay). O
Now assume that ® is endowed with a complementary convex solid d.

Definition 5.3.8 For a facet P and a corner A of P define

n(P,A) = > {a,d(c)).

w€W(P,A)

Here ¢ is any Weyl chamber in cham P. We call n( P, A) the numerical invariant of P with respect
to A and d.

This definition is justified by lemma 5.3.7 and (B1).
Note 5.3.9 For any ¢ € € we have

d(c)= > n(c, M)A

So d can be reconstructed from the numerical invariants of the chambers.

The behavior of the numerical invariants with respect to reduction is described by the following
lemma.

Lemma 5.3.10 Let P be a facet of @ and let Q < P be another facet. Let p: V — Vp be the
reduction map. Let A € vert Q — vert P. Then

n(@Q,A) = n(p(Q), p(A)).
Proof. This follows easily from ¥(Q, A) = ¥(p(Q), p(A)) which is also easy to see. O
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Special Facets

Definition 5.3.11 A facet P of ® is called special with respect to the complementary conver
solid d, if the following two conditions are satisfied:

(S1) For all X € vert P we have n(P, A) > 0.
(S2) (®p,dp) is semi-stable.

Our goal 1s to prove that there is exactly one special facet for a given root system with comple-
mentary convex solid.
Let P be a facet of ®. Then P determines uniquely a point y(P) € V* by:

{y(P)} = ﬂ Hy Nspan P.
Aevert(P)

Lemma 5.3.12 The facet P of ® is special if and only if the following two conditions are
satisfied:

(S1) y(P) e P,
(S2') y(P) € F(P).

Proof. Let Ayr,..., A be the corners of the facet P. Let f; be the average over ¥(P, ;) for
i=1,...,r. Then (62,;\]) =& foralli,j=1,...,r. So by lemma5.3.7 (f1,..., ;) is a basis
for span(Ay, ..., Ar).

By the definition of y(P) we have (A;, y(P)) = {A;, d(c)) for i = 1,...,r. Hence (G;,y(P)) =
(Bi,d(c)) for i = 1,...,7. Now we have

r

y(P) = Z(ﬁi,y(P)W

= Ytk

i=1
- Z#\IJPA

This makes the equivalence of (S1) and (S1) obvious.
Let us prove the equivalence of (52) and (52'):

(®p,dp) is semi-stable < 0€ Fp
& 0€p(F(P))
& span PN F(P)# o
& y(P) € F(P)
since F(P) C(i—y Ha,. O
Note 5.3.13 Another way of formulating this result is:
P is special <= PN F(P) # 3.

In case P is special, y(P) is the unique element of P N F(P).

52



Proposition 5.3.14 Endow V with a metric compatible with W, the Weyl group of ®. If P is a
special facet of (¥, d), then y(P) is the unique point of F' closest to the origin of V*. Conversely,
if y is the unique point of F closest to the origin, and P is the facet such that y € P, then P is
special and y = y(P).

Proof. Let (,) denote a scalar product on V such that W acts through isometries on V. Use (,)
to identify V and V*. Let || - || be the associated norm. F' being a closed convex and non-empty
set in V' 1t contains a unique point of minimal distance from 0 € V. Call this point y.

Let P be a special facet with corners Ay, ..., A, and choose a chamber ¢ € cham P. To prove
that y(P) = y, first note that y(P) € F by (52') and note 5.2.2, then let © € F' be arbitrary and
prove that [|z|| > [|ly(P)|I:

Choose ¢ € {1,...,r}. z being in F implies that (A;, 2} > (A;,d(c)). By the definition of
y(P) we have (A;, y(P)) = (A;, d(c)), so we get (A, — y(P)) > 0.

Since y(P) satisfies (S1') we have y(P) = >_I_, niA\; with n; > 0 for i = 1,...,r, because the
A; are simply positive scalar multiples of the A;. Now we have

lzll* = Ny(P)* + e = y(P)I* + 2(y(P), = — y(P))
> ly(P)II* + 2((P),x — y(P))
= IIy(P)||2+22m(%l‘—y(1’))
> ly(P)I?

by the above remarks.
Now let P be the unique facet such that y € P. Consider the C*° function

f:001] — R
to— [y +td(e) = y)lI*.
For all ¢ € [0,1] we have y + t(d(c) — y) € F since F' is convex. By assumption, f assumes its
minimum at ¢ = 0. Hence f/(0) > 0. Differentiating f yields the result (y,d(c) — y) > 0. Since
y € P wehavey =5, m withn; >0fori=1,...,7. So we have > ._, ni(Xi,d(c) —y) > 0.
On the other hand, y € F implies (A;,d(c) —y) < 0 for all ¢ = 1,...,r. This certainly forces

(Aisy) = (Ai,d(c)) for i = 1,...,r. So y € (yevers p Ha- In particular, y € F(P) N P so that P
is special and y = y(P). O

Corollary 5.3.15 (®,d) has a unique special facet.
Proof. Clear. O

Proposition 5.3.16 If P is a facet that is mazximal among the facets of marimal degree of
(®,d), then P is special.

Proof. Let A € vert P. Let @ be the facet with corners vert P — {A}. Let ¢ : V — Vg be the
reduction map. Then n(P,A) = n(q(P),q(})) by lemma 5.3.10. Now both Zaeqf(q(P),q(A)) o
and ZaeR(q(P)) « are positive scalar multiples of ¢(A). Hence there exists an 5 > 0 such that
nn(q(P),q(A)) = degq(P). Now by lemma 5.3.5 we have
deg P = degq(P)+deg@Q
= qn(P,A) + deg Q.

Since @ > P we have deg P > deg @ by the assumptions on P. Hence n(P, A) > 0.
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Now let p: V — Vp be the reduction map to P. Let @ be a facet of ® such that p(Q) is a
facet of ®p. By lemma 5.3.5 the maximality of deg P implies deg p(Q) < 0. Thus, (®p,dp) is
semi-stable. O

Corollary 5.3.17 The special facet of (®,d) is the largest element in the set of facets of mazimal
degree of (®,d).

Proof. Let P be the special facet of (®,d) and let @ be any maximal facet of maximal degree.
Then by proposition 5.3.16 and corollary 5.3.15 P = Q. O

6 The Canonical Parabolic Subgroup

Introduction

Let k& be a field. A curve will be a smooth projective geometrically connected k-scheme of
dimension one. We will apply the theory of root systems with complementary convex solids to
the study of reductive group schemes over curves. If GG is a reductive group scheme over the
curve X with function field K then for any generic maximal torus 7' C G’ which is split, we
get a root system ® = ®(Gg,T) in V C X(T) ® R. The root system ® is naturally endowed
with a complementary convex solid (proposition 6.3.7). This complementary convex solid d is
defined in terms of the numerical invariants of the Borel subgroups of G containing 7. These
numerical invariants were already introduced by Harder in [15]. we review the construction of
these invariants in a much more general context in section 6.2. For the proof that d is actually
a complementary convex solid for ® we need two alternative constructions of these invariants
(see page 60). Once it is established that a generic split maximal torus gives rise to a root
system with complementary convex solid, it is easy to deduce our main result, theorem 6.4.4.
(See also definitions 6.1.1 and 6.2.6.) Everything depends on corollary 6.3.11 which summarizes
the connection between canonical parabolic subgroups of G and special facets of the various
associated root systems with complementary convex solids.
Note that for a Weyl chamber ¢ of & d(c) is simply the unique vector in V* such that

(o, d(c)) = deg W(B, &)

for every o € &. Here B is the Borel subgroup of G corresponding to ¢ and deg W(B, «) is the
numerical invariant of B with respect to the root «.

Note also that in the case G = GL(V), where V is a vector bundle on X, our result reduces
to the well-known existence of a canonical flag in V, the Harder-Narasimhan filtration. (See [16,
Proposition 1.3.9.].) Note that the degree of instability (Definition 6.1.4) which plays a central
role in our discussion 1s in this case simply twice the area of the Harder-Narasimhan polygon.

Our results could also be deduced from Proposition 1 in [21]. There Ramanathan states a
theorem on reduction of unstable GG-bundles to a parabolic subgroup. Unfortunately, it seems
that his proof has never been published.

We would like to draw attention to Conjecture 6.4.7. This conjecture, to the effect that the
canonical parabolic 18 isolated, would have many nice consequences.

6.1 Stability of Reductive Groups

Let k& be a field and let X be a curve over k, i.e. X 1s a one-dimensional projective smooth
geometrically connected scheme over k.
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Definition 6.1.1 Let G be a smooth affine algebraic group scheme over X with connected
fibers. Then we define the degree of GG to be

deg G = degg,

where g is the scheme of Lie algebras of G, considered simply as a vector bundle on X. (Note
that G is of finite type over X, so that g is in fact a vector bundle on X.)

We will be concerned with reductive group schemes over X i.e. smooth affine group schemes
over X all of whose geometric fibers are (connected) reductive algebraic groups (see [8, Exp.
XIX; 2.7]). For the definition of parabolic subgroups see [8, Exp. XXVI; 1.1]. For a parabolic
subgroup P of the reductive group scheme GG/ X we denote its unipotent radical by R, (P). It is
again a smooth affine algebraic group scheme with connected fibers (see [8, Exp. XXVI; 1.6]).

Note 6.1.2 A reductive group scheme has degree zero. In particular, if G/X is a reductive
group scheme and P C (i is a parabolic subgroup, then deg P = deg R, (P).

Proof. By passing to a finite étale cover of X we may assume that & is an inner form. This can
be seen as follows:

Let GGy be the constant group on X of the same type as . Then G being an inner form means
that there exists a Gg-torsor F such that G = F xg, 4q Go = MGD (). This is equivalent
to Isomext(G, Gg) having a section over X. By [8, Exp. XXIV, th. 1.3.] Isomext(G,Gyp) is a
constant tordu X-scheme. Now from [8, Exp. XXII, cor. 2.3.] G is quasi-isotrivial. Hence the
same is true of Isomext(G, Gp). Now from [7, Exp. X,cor. 5.14.] we get that the connected
components of Isomext(G, G) are finite (and of course étale) over X. Replacing X by any one
of them, G becomes an inner form.

So we may assume that G = E x g, 44 Gy for a Gg-torsor £/. Then g = E xg, 44 go. Now
the adjoint representation Ad : Gy — G L(go) factors through SL(gp). Hence g has a reduction
of structure group to SL(gp). So detg = Ox. O

Lemma 6.1.3 Let G/X be a reductive group scheme. There exists an M > 0 such that deg P <
M for all parabolic subgroups P of G.

Proof. We have

deg P = degp
< dimy H(X,p) +rk(p) (9 — 1) (by Riemann-Roch)
< dimy H°(X,g) +rk(g)g (since p is a subsheaf of g).
Hence M = dimy H°(X,g) + rk(g) g, where g is the genus of X, will do. O
Definition 6.1.4 Let GG/X be a reductive group scheme.
1. We call G semu-stable, if for every parabolic subgroup P of GG we have deg P < 0.
1. We call GG stable, if for every proper parabolic subgroup P of G we have deg P < 0.

1ii. The largest integer d such that there exists a parabolic subgroup P of G with deg P = d
is called the degree of instability of G, denoted deg,;(G).

By Note 6.1.2 we may replace deg P by deg R, (P) in this definition. By Lemma 6.1.3 the degree
of instability is finite.
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6.2 The Numerical Invariants of a Parabolic Subgroup
Let G/ X be a reductive group scheme.

Remark 6.2.1 Let Dyn(G) be the Dynkin diagram of G ([8, Exp. XXIV, 3.3.]). For a parabolic
subgroup P C G the type of P, t(P), is defined in [8, Exp. XXVI, 3.2.] to be a certain section of
P(Dyn((G)), the ‘power scheme’ of Dyn(G). Of course, there is a choice involved here, since one
could also take the complement of ¢(P) as the type of P. (Note that P(Dyn(()) indeed has an
automorphism given by taking complements.) In fact I believe that the authors of SGA3 made
the wrong choice. Here we will adopt the alternative definition. This is justified, for example by
lemma 6.2.2 (iii). Our ¢(P) contains more information about P than the one of SAG3 does. For
example, if P = B is a Borel subgroup, the ¢(P) of SGA3 is empty, whereas our ¢(P) contains
information about how the ‘corners’ of B are twisted.

Another reason for adopting the complementary definition is to avoid having to talk about
the ‘complement of the type of P’ in what follows.

Lemma 6.2.2 Let (G,T) be a reductive group scheme G over a connected scheme S, with a
mazimal torus T which is split. Let ®(G,T) be the corresponding root system.
1. There is a unique bijective correspondence

{parabolic subgroups of GG containing 7} —— {parabolic subsets of &}
P +— R(P),

such that for any parabolic P such that T C P the Lie algebra p is given by

p=to @ Ja-

a€R(P)
1. There ts a bijective correspondence

{parabolic subgroups of G containing T} — {facets of &}
P — P

wi. Let P be a parabolic subgroup of G containing T'. There s a natural bijective correspon-
dence

mot(P) — vert P’

v — v

Proof. 1. Since S is connected, T 1s the group of multiplicative type associated to its character
group X(7T) via [7, Exp. X, cor. 5.9.], and there is a unique system of roots ®(G,T) of G in
X(T). Now the claim is local with respect to the Zariski topology on S, so we may assume that
ge is trivial, for every oo € ®(G,T). So in this situation, T defines uniquely a deployment ([8,
Exp. XXII, def. 1.13.]) of G. Now if P is a parabolic subgroup of GG containing T, then by [8,
Exp. XXII, lem. 5.2.7.] there exists a subset R C ® such that p = t® P, cp 8a. Clearly, R is
uniquely determined by P. By [8, Exp. XXVI, prop. 1.4.] R is a parabolic subset of ®. The
same proposition then also gives the bijectivity of this map.

ii. Follows immediately from corollary 5.1.8.

1i1. Without loss of generality assume that G is deployable, i.e. that all g,, o € @, are trivial.
Choose an épinglage F of G compatible with P. Let B be the Borel subgroup T' C B C P defined
by E. Let ¢ be the Weyl chamber of ® such that ¢ = B’. We have ¢ < P’. Let oy, ..., @, be the
simple roots defined by ¢, A1,..., A, the corners of ¢. Let A1,..., A, be the corners of P’. Now, by
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definition, Dyn(() is a constant S-scheme. Tts set of components is identified with {aq,..., an},
since S is connected. ¢(P) C Dyn(G) is the subscheme defined by the subset {aq,..., ar}. So
we define our map simply by a; — A; for ¢ = 1,...,r. This is obviously bijective. It remains
to show that it is independent of the choice of our épinglage E. So let F; be another épinglage
of (G, compatible with P. The inner automorphism of P mapping F to E; induces an element
o € W, the Weyl group of ®. But ¢(P’) = P’ which entails o(X;) = A; fori=1,...,r. O

CONSTRUCTION. Let P C (G be a parabolic subgroup and let {(P) be the type of P. ¢(P)
is a finite étale X-scheme. Let mgt(P) be the set of connected components of ¢(P) and let 7
be the free abelian group on wot(P). For simplicity let us write wot(P) = {v1,...,05}. Let
b= Zle n;v; be a positive element of 7. We will associate with v a vector bundle on X as
follows:

Let Y — X be an étale X-scheme, which we assume to be connected, for simplicity, and let
T be a maximal torus of G'y such that 7' C Py and such that T is split. Let ® = ®(Gy,T)
be the corresponding root system, and assume that g, is trivial over YV, for o € ® (so that Gy
is uniquely deployable with respect to T'). Let P’ be the facet of ® corresponding to Py via
lemma 6.2.2. The schemes vy y,..., 0,y form a partition of {(P)y. So via lemma 6.2.2 we get
a partition v}, ..., v, of vert P'. Fori=1,... s let fi; = ZXEn’l A. Now define

Qo)={ae®|{a, i) >n; foralli=1,... s}

(v) is a closed set of roots satisfying Q(b) N —Q(b) = @. Let

U, v, 7)= ] Vs
a€(v)

be the unipotent subgroup scheme of Gy defined by Q(v). U(v,Y,T) is smooth with geometri-
cally connected fibers and independent of any order chosen on Q(b). (See [8, Exp. XXII; 5.6.5,
5.6.1,5.4.7).)

Proposition 6.2.3 There exists a unique subgroup scheme U(v) of G such that for every con-
nected étale Y — X and every split mazimal torus T' of Gy such that T C Py and such that Gy
is deployable with respect to T, we have U(b)y = U(b,Y,T). U(b) is a closed normal unipotent
subgroup of P with geometrically connected fibers. Moreover, W(P,0) = U(v)/[[ s, U(v') is a
vector bundle over X in a natural way.

Proof. We just need to adopt the proof of [8, Exp. XX VI, prop. 2.1.] to our situation: Uniqueness
is clear in view of the fact that G can be deployed locally with respect to the étale topology ([8,
Exp. XXVI, lem. 1.14.]). For the existence, consider a connected étale Y/X together with an
épinglage F of Gy adapted to Py (see [8, Exp. XX VI, def. 1.11.]). Let T be the maximal torus
given by F.

Claim: U(v,Y,T) is normal in Py.

Let R C ® = ®(Gy,T) be the parabolic set of roots corresponding to Py. Then Py is
generated by 7" and the various U, for o € R. T clearly normalizes U(b,Y,T). To see that U,
normalizes U(v,Y,T'), consider the commutation relation of [8, Exp. XXII, cor. 5.5.2.]:

Pa(@)ps(W)Pa(—2) = ps(¥) T[] Pratms(cnmase™y™). (22)

Here p, : Gy = Uy : @ +— exp, (2 Ay ) is the isomorphism given by E, A, denotes the element
of T'(gn) given E. So we have to show that for 3 € Q(v) and o € R we have na + mf3 € Q(v) if
it 1s in ®. But this is only a trivial computation.
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If we choose another épinglage E’ there exists a unique inner automorphism of Py mapping
E' to E. This inner automorphism will leave U(b, Y, T') invariant by the claim. Hence U(v,Y,T')
does not depend on the choice of T. This proves that the U(b, Y, T) indeed glue to give a subgroup
scheme U(b) of G. By the claim, U(b) is normal in P. Now consider for Y/X, T, ®, pi1, ..., pis
as above

Q)={ac®|Vi=1,...,5: {a,jt;) >n;and FTi = 1,... s {a, f1i;) > n;}.
We can construct a corresponding unipotent normal subgroup scheme of P called U’'(b), just as

we did for Q(v). Clearly, U'(v) = [],/5, U(0). For a given épinglage  of Gy over Y/X étale
we consider the following homomorphism of group schemes over Y:

P e — Ulw/Uo)y

@€Q(0)= ' (0)
Z Ty +— H exp,(2a).

By (22) the commutator of two elements in U(v)y is in U’(v)y, so that this is indeed a well-
defined homomorphism. In fact it is even an isomorphism. Via this isomorphism we introduce
a vector bundle structure on U(b)y /U'(b)y. Changing the épinglage amounts to applying an
inner automorphism coming from P. Let & € R and § € Q(b). Then we have

Pa(@)ps(W)Pa(—2)U' (0)y = pp(y) [ [ Protslen ez y)U" (0)y .

But y — (1+3,50¢n,1,0,6%")y is linear. This shows that P acts linearly on U(v)/U’(v) via
inner automorphisms. So changing the épinglage doesn’t change the structure of vector bundle

on U(v)/U’(v). O

Proposition 6.2.4 Let Uy D Uy D ... be the filtration of Ry(P) defined in [8, Exp. XXVI,
prop. 2.1.]. Then for every i > 0 we have

Ui/Uiyr = @ W(P,v).
vET 41

Here T, ={v e T |Ifo= Z;Il njb; then Z;Il n; =i}

Proof. Let i > 0. Choose a b € T;41. Then by definition we have U(b) C U; and U(v') C U1
for every v’ > b. This gives a natural map W(P,v) — U;/U;;+1. By looking at this map locally,
it can easily be seen that it identifies W (P, v) with a vector subbundle of U; /U;11. The rest of
the proposition is also easily proved locally, by reducing to questions about the corresponding
sets of roots. O

Definition 6.2.5 Let P be a parabolic subgroup of G. Then for any component v of the type
t(P) of P we define n(P,v) = deg W(P, v) to be the numerical invariant of P with respect to the
component of the type b. We call the collection (n(P,0))ver,t(p) the numerical invariants of P.
We call (W(P,0))r,i(p) the elementary vector bundles associated with P.

Definition 6.2.6 The parabolic P C G is called canonical if it satisfies the following conditions:

(C1) The numerical invariants of P are positive, i.e. for every v € mgt(P) we have n(P,b) > 0.
(C2) P/Ry(P) is semi-stable.

Our goal is to prove that every reductive group scheme over X has a unique canonical parabolic
subgroup (theorem 6.4.4).
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6.3 Rationally Trivial Reductive Group Schemes

Let K denote the function field of X. Let G/X be a rationally trivial reductive group scheme
over X. This means that there exists a maximal torus 7' C G'g that is split. In this case, every
generic maximal torus is split.

Note 6.3.1  is rationally trivial if and only if G is an inner form.

Proof. Let Gy be the constant group over X of the same type as . If (G is rationally trivial,
then Isomext(Gly, ) has a constant generic fiber. This implies that Isomext(Gy, G) is trivial
(see the proof of note 6.1.2). and hence that GG is an inner form. Conversely, if G is an inner
form any maximal torus of G is split by [8, Exp. XXIV| cor. 2.8.]. G has maximal tori by [T,
Exp. XIV, théoréme 1.1.]. O

Let Dyn(G)/X be the Dynkin diagram of G. Dyn(G) — X is a trivial covering, because it is so
generically. In particular, for any parabolic P C G the type ¢(P) is a trivial covering of X.

Proposition 6.3.2 Let T be a generic mazimal torus of G. Let ® = ®(Gg,T) be the corre-
sponding root system.
1. There exists a natural bijection

{parabolic subgroups of G containing T} — {facets of &}
P — P

with tnverse

{facets of &} —— {parabolic subgroups of G containing 7'}
Q — Q.

This bijection is order preserving.
1. Let P be a parabolic subgroup of G containing T'. There is a natural bijective correspon-
dence

mot(P) — vert P’
b — v

with tnverse

vert P/ —  mot(P)

A — Al

Proof. 1. In view of lemma 6.2.2 it suffices to prove that every parabolic subgroup of G extends
uniquely to a parabolic subgroup of G. But this follows immediately from the projectivity of
Par(G)/X (see [8, Exp. XX VI, cor. 3.5.]).

ii. This is clear from lemma 6.2.2 because wgt(P) and wot(Px) are in canonical bijection. O

By this proposition the Borel subgroups containing a generic maximal torus 7' C G'g correspond
to the Weyl chambers of the corresponding root system ®(G, T'). The maximal parabolics con-
taining 7' correspond to the one-dimensional facets of ®(G,T'), i.e. to the fundamental weights
AeA.

If P is a parabolic subgroup of ¢ containing T, and A € vert P’ we let W(P,\) = W(P,})
and n(P,A) = n(P,A) = deg W(P, A).

59



Alternative Descriptions of the Numerical Invariants

We will give two alternative constructions of the vector bundles W(P,v). For simplicity we
restrict to the case that P = B is a Borel subgroup of G. In this case, all W (B, ) will be
line bundles. We do not insist however on the fact that v € 7 be positive. So choose a Borel
subgroup B C G and fix it throughout this discussion.

FirsT CONSTRUCTION. Let T be a generic maximal torus of GG contained in B and ¢ =
®(Gg,T) the corresponding root system. Let ¢ = B’ be the Weyl chamber of ® defined by B,
let A1,..., A, be the corners of ¢. ¢ defines an ordering on ® by o < 8 < [ — « is positive with
respect to c. ~

Let ap € ® be a root. Then v = Y " (ao, Ai)A; is an element of 7. v is either positive of
negative, according to whether «y is positive or negative. We distinguish these two cases:

1. «p is positive: Consider

Qag)={ae®|a>ag} and Q(ag)={a€P|a>ap}. (23)

Then define

@ 9K o and V @ 9K o-

a€Qap) a€Q (ap)

V(Q(ag)) and V(' (ag)) are vector subspaces of

g =t D @ OK,a-
aed

The spaces V(Q(ap)) and V(£ (ag)) extend uniquely to vector subbundles of g. Call these vector
bundles V(ap) and V'(ag). Clearly V(ag)/V/(ag) is a line bundle on X.

Lemma 6.3.3 There is a natural isomorphism W (B,v) = V(ag)/V'(evp).

Proof. Consider the group schemes U(v) and U'(v) = [],,, U(v) of Proposition 6.2.3. The
corresponding Lie algebras u(v) and u/(v) are subbundles of g. Now by construction we have
that u(v)g = V(Q(ap)) and v/ (0)g = V(' (). Hence u(v) = V() and u'(b) = V'(ag) and
W(B,v) = U(v)/U"(v) = u(b)/w'(0) = V(a0)/V'(ex0)
which finishes the proof. O
1. ag 1s negative: Consider
T(awg)={a€®|agay} and YT(ag)={a€®|a £ ag}.

Then define

V(T()=t® P gxo and V(Y(ao))=t® P ok
a€Y(ag) a€Y/(ap)

Again, we extend these vector spaces to subbundles of g. We get vector bundles V(ag) and
V(). Again, V(ag)/V'(ap) is a line bundle on X. In this case, W(B,v) is not defined yet.
So we define W(B,v) = V(ag)/V'(ag).

SECOND CONSTRUCTION. (See [15, Satz 1.1.1.].) Let T be a generic maximal torus of
(i contained in B and ® = ®(Gk,T) the corresponding root system. Let Gy be a constant
reductive group scheme over X of the same type as G. Let Ty C By C iy be a constant maximal
torus and a constant Borel subgroup of Gy. Let ®; = ®(Gy,Ty) be the corresponding root
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system. We identify @y with ® = (Gg,T), making sure that the Weyl chambers corresponding
to By and B become equal. Now the pair (G, B) is associated to an Aut Gy, By-torsor:

Isom(Go, Bo; G, B) X aut 64,8, (Go, Bo) = (G, B).

We have that B$? C Aut Gy, Bg is a subgroup scheme. A reduction of structure group of
Isom(Go, Bo; G, B) to B3? is the same thing as a section of the sheaf Isom(Gg, Bo; G, B)/Bg.
But there is a canonical isomorphism

Isom(GY, By; G, B)/B3® = Isomext(Go, G)

by [8, Exp. XXIV, cor. 2.2.]. GG being an inner form, Isomext(Gy, () is trivial, so that, indeed,
we can reduce the structure group of Isom(Gy, Bo; G, B) to B&?. So there exists a Bg¢-torsor
E such that E X gaa (Go, Bo) = (G, B). Every a € ® induces a character of B?, which we will
again denote a. So for every root o € ¢ we get a line bundle

0

(a4

L(O{) = E ><Bgd7
on X.

Lemma 6.3.4 For every o € ® we have L(o) = V(a)/V'(«). In particular, the isomorphism
class of L(a) does not depend on the choice of the Bi%-torsor E such that E X pad (Go, By) =

(G, B).

Proof. Choose an oy € ®. We distinguish two cases:
i. ap is positive. Again consider the subsets Q(ap) and Q/(ag) of & defined in (23). Then

define
Vo(Qa0)= P g0 and V()= P o
a€Qap) a€QY (ap)
These are vector subbundles of go, the Lie algebra of Gy. Clearly, I/ X pad V(Q(ap)) and E x
By (' (ag)) = V(o).
Claim: By acts on Vp(Q(a)) and Vo (' (ap)) via Ad. The induced action on Vp(2(eag))/ Vo (£ (an))
is given by ay.
We have an isomorphism
Ty xx H Uo,a — By
acedt
(see [8, Exp. XXII, prop. 5.6.1.]). So it suffices to consider the actions of Ty and Uy o for o € T
on Vo(2(a)) and Vo(2'(ag)). To clearly leaves both bundles invariant. So consider for o € ®F
the morphism
exp, : 90,0 — Uo,a C Go

which maps onto Up » ([8, Exp. XXII, 1.1.]). So we have to examine the action of Ad(exp,(zA4a))
on Vo(2(awg)) and Vo(€¥ (). (Here Ay € T'(X, go,«) is a fixed nowhere vanishing section, for
every o € $.) By [8, Exp. XXII, lem. 5.4.9.] we have the following formula

Ad(exp,(vAn))As = Ag + an,ﬁ,ixiAﬁ+ia (24)
i>1

for any g € ®, 3 # —a. Now o € & and 3 € Q(ag) implies 3 + iav € Q) if it is a root at
all. The same is true for /(ag). So By indeed acts on Vo(Q(ap)) and Vo(€2'(evg)). Hence By
also acts on the quotient Vo(2(ag))/Vo(§¥(evg)). By (24) U, acts trivially on this quotient. So
By acts via aq since Ty does. This finishes the proof of the claim.
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So now we have

Viao)/Vi(wo) = (B xpge Vo(@a0))) / (B %o Vol (0))

E % gea (Vo(Q00))/Vo(€ (a0)))
0.

R

E XBgd,Oz

ii. g is negative. The proof is analogous to the proof in the first case. We use T(ap) and

T'(ep) and define
Vo(Y(ao)) =t& P o and V(Y(a0)=t& P g
a€Y(ag) a€Y'(ag)

The only complication is that « € ®* and 3 € T(ag) does not imply that 8 #Z —a. so we have
to treat this case separately. But

Ad(expy(2Ad)A_a =A_s mod t0® go,a
by [8, Exp. XX, 2.10.(2)]. So this complication causes no problem. O

Note 6.3.5 If «, 5 and « + 3 are roots, then L(a + ) = L(«) ® L(f). For any root « we have
L(—a)® L) 2 O.

Proof. Obvious. O

The Root System with Complementary Convex Solid Given by a Generic Maximal
Torus of ¢

Lemma 6.3.6 Let P C G be a parabolic subgroup and B C P C G a Borel subgroup. Letv e T
be a positive element in the free abelian group on the components of the type of P. Let U(b) be
the corresponding unipotent group defined in proposition 6.2.3.

Let T C B be a mazimal torus and ® the corresponding root system. Let Q(b) C @ be the
corresponding set of roots. Then we have

degU(v) = > degW(B,v(a))
a€Q(v)

where v(a) =375 cvert B/ (@, A
Proof. Clear. O

Proposition 6.3.7 Let T C G be a generic maximal torus and let ® = ®(Gg,T) be the
corresponding root system. For ¢ € € let

dc)= > n(E M)A

Then (d(c))cce is a complementary conver solid for ®.

Proof. To check whether (C1) is satisfied let A € A be a fundamental weight and ¢ € € a Weyl
chamber of ®. Let «g, ..., a, be the simple roots defined by ¢, ig ..., An the dual basis. Let
B = ¢ be the Borel subgroup of GG corresponding to ¢, let P = R A be the maximal parabolic
in GG corresponding to A and let v = X be the component of the type of B corresponding to A.
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Note that the unipotent subgroup U(b) associated to B and v in proposition 6.2.3 is nothing
but R,(P). By lemma 6.3.6 we have

degU(v) = > degW(B,v(a)),

a€(v)
where b(a) = Z?:1<O‘a;\i>:\i~ By lemmas 6.3.3 and 6.3.4 we have W(B,v(a)) = L(a). By
note 6.3.5 we have deg L(ar) = > i, {, A;) deg L(cv;). Finally, we have deg L(a;) = n(B, ;).

Assembling these various facts we get

deg P = degR,(P)
= degU(U)

= > degW(B,v(a))

a€(v)

= Z deg L(«a)

a€(v)

= > D> (e, Ai)deg L(aw)

OzEQ(b) i=1

= > D> (e di)n(B,N)

OzEQ(b) i=1

Now, by proposition 5.1.9 there exists an 1 > 0 such that Zaeﬂ(n) a = nA. Sowe get (A, d(c)) =
deg P. deg P does not depend on the choice of ¢, but only on the choice of A. So (C1) follows.
For the proof of (C2) let ¢ and ® be Weyl chambers having precisely n — 1 corners in com-
mon. Let aq,...,a, be the simple roots defined by ¢, A1, ..., A, the corresponding corners of ¢.
Without loss of generality assume that @ = o1(c) so that the corners of D are Ay — arp, Ao, ..., Ap.
Then «; 1s the unique root positive with respect to ¢ and negative with respect to 0. We have

(a1,d(0)) = 0@, A —a){a, A —ay) + Zn(a, M) (e, A)
= —n(ﬁ,/\l — Ozl). )

Now by lemmas 6.3.3 and 6.3.4 (applied to ?) we have that n(d,A\; — a;) = deg L(—a1). By
note 6.3.5 we have deg L(—a1) = — deg L(a). By lemma6.3.4 again, deg L(ay) = deg Vy(a1)/Vy(a1).
Now «; is negative with respect to 0, so that Vy(a1) and Vy(«aq) are defined by YTy(«y) and
T’Dﬁal), respectively. Here the index D means that the construction is taking place with respect
to 0.

Claim: Q(a1) C Ty(ar) and Q (1) C T(ar).

To prove the claim, it suffices to prove the first part. So assume o € Q (7). Then o > a3
with respect to ¢, i.e. for all i = 1,...,n we have (a, ;) > &;;. Assume a & Ty(a1). Then
o < aj with respect to 9. In particular, (o, \;) < (a1, A;) for all i = 2,... n, since Az,..., A,
are corners of 2. So {«, ;\Z) =0 forall : =2,...,n which forces « to be a scalar multiple of «a;.
But & # a1 because o € Ty(ay) and o # —ay since o € Q(1). So we reach a contradiction
and prove the claim.
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By the claim, we have Vi(a1) C Vi(a1) and V/(ey) C Vy(ay) because this is the case
generically. So we have a natural homomorphism of line bundles

Ve(on)/V(e1) — Va(an)/Vi(an)
which is non-zero, because generically it is the identity map on gx o,. Hence we have
deg Ve(ar)/V!(a1) < deg Vo(ar)/Vy(an).
By lemma 6.3.3 we have
deg Ve(a1)/ V(1) = n(E, A1)
But n(¢, A1) = {a1,d(c)). This proves (C2). O

Definition 6.3.8 d(G,T) = (d(c)).ce¢ defined asin proposition 6.3.7is called the complementary
convex solid of G with respect to T.

Proposition 6.3.9 Let T C G be a generic mazimal torus and (®,d) the corresponding root
system with complementary convex solid. Let P C G be a parabolic subgroup scheme containing
T. We have

deg P = deg P,

where deg P’ is of course taken with respect to d.
Moreover, for every corner A of P’ we have

n(P,A) = n(P',X).
Proof. These are easy calculations using lemma 6.3.6. O

The following proposition explains the significance of reduction.

Proposition 6.3.10 Let P be a parabolic subgroup of G, T a generic mazimal torus of P.
Then T is also a generic mazimal torus of G and P/Ry(P). Let (®,d) be the root system with
complementary convex solid associated with G and T. Let P’ be the facet of ® associated to
P wia proposition 6.3.2. Then (®p:,dp:) is the root system with complementary convex solid
associated to P/Ry(P) with the generic mazimal torus T.

Proof. Since a complementary convex solid is completely determined by the numerical invariants
of the Weyl chambers (note 5.3.9), it will suffice to check that the numerical invariants of the
Borel subgroups behave according to lemma 5.3.10. In other words, we have to show that
for any Borel subgroup B C P and any corner A € vert B’ — vert P’ we have deg W (B, ) =
deg W(B/R.(P),p(A)), where p(A) is the corner of (B/R,(P)) associated with A. But this

follows immediately from the fact that R, (P) C U’(A). (The notation U'(}) is taken from the
proof of proposition 6.2.3.) Indeed, we have

WB.A) = U
0N/ Ru(P) / R/ Ru(P)
W(B/Ru(P). p(N)

which implies the result. O
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The Main Theorem for Rationally Trivial Reductive Groups

Corollary 6.3.11 Let P be a parabolic subgroup of G. Then P is canonical if and only if for
every generic mazrimal torus of P the corresponding facet P’ of the corresponding root system
with complementary convex solid is special. In particular, G is semi-stable if and only if for every
generic mazimal torus of G, the corresponding root system with complementary convex solid 1s
semi-stable.

Proof. First assume that P is canonical. Let T' C Pg be a generic maximal torus. Let P’ be
the corresponding facet of ® = ®(Gg,T). Then propositions 6.3.9 and 6.3.10 immediately show
that P’ is special. Conversely, assume that for every T' C Pk the corresponding P’ is special.
we need to check that P satisfies (Cl) and (C2). (Cl) is clear. To prove (C2), assume that
P/Ry(P) is not semi-stable. Then there exists a parabolic subgroup @ of G such that Q C P
and deg(Q/Ry(P)) > 0. Choosing a maximal torus 7' C Qg this contradicts the fact that the
corresponding P’ is special. O

Proposition 6.3.12 G contains a unique canonical parabolic. It is mazimal among the parabol-
1es of maximal degree.

Proof. To prove uniqueness, let P and () be two canonical parabolics. By [8, Exp. XXVI, 4.1.1.]
there exists a maximal torus T' C Gg such that T'C Pg NQg. Let (®,d) be the corresponding
root system with complementary convex solid. Then the corresponding facets P’ and @’ of ®
are both special by corollary 6.3.11 and hence equal by corollary 5.3.15. This implies P = @ by
proposition 6.3.2.

To prove existence, let P be maximal among the parabolics of maximal degree. We claim
that P satisfies (C1) and (C2). Let T be any generic maximal torus of (¢ contained in P. Using
the notation of proposition 6.3.2, P’ is then maximal among the facets of maximal degree in
(®(G,T),d(G,T)) by propositions 6.3.9 and 6.3.2. By proposition 5.3.16 P’ is special. Hence P
is canonical by corollary 6.3.11. O

6.4 The Main Theorem

Lemma 6.4.1 Let 7 : Y — X be a finite morphism of curves over k. Assume that Y/X 1is
Galois, i.e. that the corresponding extension of function fields is Galois. Let G/X be a reduclive
group scheme. Then iof P C 7m*G is a parabolic subgroup such that c*P = P for every o €
GalY/X then there exists a unique parabolic Q C G such that #*Q) = P.

Proof. This follows immediately from the properness of Par(G) — X ([8, Exp. XXVI, cor. 3.5.]).
By this properness, parabolic subgroups are completely characterized by their generic fibers. O

Lemma 6.4.2 Let 7 : Y — X be a finite separable morphism of curves over k and G a reductive
group scheme over X. Let P C G be a parabolic subgroup. The numerical invariants of P are
positive if and only if the numerical invariants of m* P are positive.

Proof. Let v € mot(P) and let vy,...,05 be the elements of myn*t(P) lying over v. In other
words, 7*v = [[;_, v;. Clearly we have

T W(P,0) = P W (x"P,v;).
i=1

Soif n(w* P,b;) = deg W (7" P, v;) is positive for every i = 1, ..., s then sois n(P,0) = deg W (P, v).
This proves one direction. It also makes it possible to reduce the other direction to the case that

Y/X is Galois.
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GalY/X acts naturally on [[;_, b; and hence on {by,...,b,}. Now since b is connected, the
action of GalY/X on {vy,... 05} is transitive. For any o € GalY/X and i = 1,..., s we have
o*W(r*P,v;) = W(a*P,oc~1v;) and hence

degW(m*Pv;) = dego™W(x" P, v;)
= degW(n" P07 v;).

This proves that
deg m deg W(P,v) = sdeg W(P, ;)

for any ¢ = 1,...,s which proves the lemma. O

Lemma 6.4.3 Let 7 : Y — X be a finite separable morphism of curves and G a reductive group
scheme over X such that m*G is rationally trivial. Then G 1s semu-stable of and only of 7°G s
semi-stable.

Proof. Clearly, 7*G semi-stable implies (G semi-stable. This allows us to reduce the other
direction to the case that Y/X is Galois. So assume that G is semi-stable. By proposition 6.3.12
7*G has a canonical parabolic P C #*G. For every o € GalY/X o*P is also a canonical
parabolic in 7*G. Hence ¢* P = P and P descends to a parabolic  C G such that 7*Q) = P.
Now deg @ < 0, so deg P < 0 which implies that P = 7*G and #*( 1s semi-stable. O

Theorem 6.4.4 Let G be a reductive group scheme over the curve X. Then G has ¢ unique
canonical parabolic subgroup P. P is the largest element in the set of parabolics of maxrimal
degree in (.

Proof. Choose a finite Galois morphism of curves 7 : ¥ — X such that #*( is rationally trivial.
This can be done by choosing a finite Galois extension L of K over which G has a split maximal
torus ([8, Exp. XIX, prop. 6.1.]) and then taking Y to be the integral closure of X in L. Now by
proposition 6.3.12 #*G has a canonical parabolic P. As in the proof of lemma 6.4.3 P descends
to X, so there exists a unique parabolic () C G such that #*Q = P. Evidently, @ is canonical.
This proves the existence.

Now if )’ is any canonical parabolic in GG, then 7@’ is canonical by lemmas 6.4.2 and 6.4.3.
This proves 7@’ = P and () = @'. This proves uniqueness.

For the last part, let  C G be maximal among the parabolics of maximal degree and let
P C G be the canonical parabolic. Then deg P > deg () as can be seen after pulling back via
7 and using proposition 6.3.12. Hence deg P = deg @ and P C ) by assumption on ¢. This
implies P = @, again by pulling back via 7 and using proposition 6.3.12. O

Further Remarks

Definition 6.4.5 Let GG be areductive group scheme over the curve X. Let 20 be the free abelian
group on the connected components of Dyn(G). Let P be the canonical parabolic subgroup of
(. Assume that the type ¢{(P) =0y IT... 1T b,. Then we call

5

n(G)=> n(Po)o; €D

i=1
the type of instability of G.

Corollary 6.4.6 The canonical parabolic commutes with pullbacks to separable curves over X.
In particular, semi-stability commutes with such pullbacks.
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Proof. Clear. O

Conjecture 6.4.7 Let G be a reductive group scheme over the curve X. Let P be the canon-
teal parabolic subgroup of G. Let g and p be the Lie algebras of G and P, respectively. Then
H°(X,g8/p) = 0.

The truth of this conjecture would imply that the canonical parabolic subgroup is a geometric
invariant, i.e. that even after passing to inseparable extensions of the base field & the canonical
parabolic remains canonical. So it would make notions like the geometric degree of instability
superfluous.

Conjecture 6.4.7 is easily seen to be true if G = GL(V), for a vector bundle V' over X, or if
P is a Borel subgroup. It is also true if the genus of X is zero or one and G is rationally trivial.

Conjecture 6.4.7 is equivalent to claiming that the canonical parabolic is ¢solated in the
sense that the corresponding k-valued point of 7, Par G (here # : X — Speck is the structure
morphism) is an isolated point of m, Par G with local ring equal to k.

7 Families of Reductive Group Schemes over Curves

Introduction

In this section we study the behavior of the canonical parabolic subgroup in families of reductive
group schemes. For this purpose we consider the following setup. Let S be a locally noetherian
scheme and 7 : X — S a curve over S. This means that 7 is a smooth projective morphism
all of whose geometric fibers are one-dimensional and connected. We will study reductive group
schemes G over X.

Our goal is to prove the two fundamental Theorem 7.2.4 and 7.2.5. The first theorem is a semi-
continuity theorem. Tt states that the (geometric) degree of instability is upper semi-continuous
in families. Under the assumption that the (geometric) degree of instability is constant, we can
almost prove that the canonical parabolics Ps in the various members G of our family glue
together to a parabolic subgroup P of G. The significance of Theorem 7.2.5 is that all we have
to do is pass to a cover S’ of S that is universally homeomorphic to S. Note that the truth of
Conjecture 6.4.7 would improve this result. These theorems are nicely summarized in Corollary
7.2.9.

Before considering the general case, we consider the case that S is the spectrum of a discrete
valuation ring. This is the contents of Section 7.1.

In Section 7.3 we apply our results to the following situation. We have a reductive group
scheme G over a curve X over a field k. We study the algebraic k-stack of G-torsors H1(X/k, G),
defined on page 37. We associate three invariants with a G-torsor E.

First, there is the degree, deg E, of E, which is the homomorphism deg E : X(G) — Z, where
X(G) is the character group of (G, defined by

deg E(x) = deg(E xa, Ox).

This degree generalizes the degree of a vector bundle.

The second and the third invariant of E are defined in terms of £G = Aut(E) = E xg 44 G,
the twist of G associated to E. The degree of instability of E is the degree of instability of G
defined in Definition 6.1.4. The type of instability is defined in terms of the Dynkin diagram
DynG of G. If U is the free abelian group on the connected components of the scheme Dyn G
then the type of instability is a certain non-negative element of 2. (See Section 7.2.)

For every homomorphism d : X(G) — Z we let L(X/k, G) be the substack of H'(X/k, G) of
G-torsors of degree d. It is a closed and open substack. The stack $}(X/k, G)<m of G-bundles
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of degree d and degree of instability less that or equal to m is open in HL(X/k, G). The family
(Sj}l(X/k,G)Sm)mzo defines an exhaustion of HL(X/k,G). If v € T we let HLX/k, G)m o
be the stack of G-torsors of degree d, degree of instability m and type of instability v. The
family (95(X/k, G)m v)m,o defines a stratification of $5(X/k, G). This is the analogue of the
stratification of Shatz (see [22]).

7.1 The Case of a Discrete Valuation Ring

Lemma 7.1.1 Let G be a reductive group scheme over the curve X over the field k. Let P C G
be a parabolic subgroup such that

1. the numerical invariants of P are positive,
ii. deg P = deg,;(().
Then P 1s the canontcal subgroup.

Proof. Let K be the function field of X. By lemma 6.4.2 and corollary 6.4.6 we may pass to a
finite separable cover of X and thus we may assume that G is rationally trivial. Let T" C Pk
be any generic maximal torus. Denote by P also the facet of ® = ®(Gg,T) corresponding to
P. By corollary 6.3.11 1t suffices to prove that P is special with respect to the complementary
convex solid d on ® induced by G. For this it suffices to prove that (®p,dp) is semi-stable. So
let ¢ < P be another facet. By lemmas 5.1.10 and 5.3.5 1t suffices to show that deg ) < deg P
which is clear. O

Lemma 7.1.2 Let X be an integral noetherian normal scheme, G over X a reductive group
scheme. Let n be the generic point of X. If Py C Gy 15 a generic parabolic subgroup such that
there exists a vector subbundle p C g such that p, is the Lie algebra of P, then there exists a
parabolic subgroup P C G such that p is the Lie algebra of P.

Proof. Let Gr(g) be the projective X-scheme of vector subbundles of g. There is a natural
X-morphism f : Par(G) — Gr(g) associating to a parabolic subgroup of G its Lie algebra. We
first note that this morphism f is radicial. To prove this, let L be an arbitrary field together
with a morphism # : Spec L — X. We need to show that Par(G)(L) — Gr(g)(L) is injective.
So let Py, P, € Par(G)(L) be two parabolic subgroups of #*G = G| Spec L. By [8, Exp. XXVI,
4.1.1.] there exists a maximal torus T of #*G such that T C Py N Py. If f(P1) = f(P2), then the
Lie algebras p; and ps are equal as subbundles of 2*g. Thus, by [8, Exp. XXII, Corollaire 5.3.5]
we have P = P,. Thus f is indeed radicial.

Now to prove the lemma, note that p corresponds to a section of ¢ : Gr(g) — X, which we
will also denote by p. Similarely, P, is a generic section of p : Par(G) — X. Let Z be the closure
of P,({n}) in Par((), with the reduced subscheme structure. Let ¢ : Z — Par G be the inclusion
morphism. If we can show that po ¢ 1s an isomorphism we are done, because ¢ is separated.

Towards this goal let us first prove that po¢ is injective on the underlying topological spaces.
If 21,22 € Z both lie over € X, then their images f(z1) and f(z2) also both lie over z. Now
z1 and zp are specializations of P,(n) € Par(G). Hence f(z1) and f(z2) are specializations of
p(n) € Gr(g). But the only specialization of p(n) lying over z is p(x). Hence f(z1) = f(z2) =
p(z). Because f is radicial, this implies z; = z9. Thus po ¢ is indeed injective.

Since poi is clearly of finite type, the injectivity implies that po i is quasi-finite. Since poi is
also clearly projective, Zariski’s main theorem in the formulation of Grothendieck implies that
pot 1s finite, in particular affine. Now since po ¢ is birational and X is normal, po ¢ 1s indeed an
isomorphism. O
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Proposition 7.1.3 Let 7 : X — S be a curve over the scheme S = Spec R, where R is a discrete
valuation ring, and let G be a reductive group scheme over X. Let n be the generic point of S,
0 the special point. Then we have

1. deg, G > deg; Gy,

w. If deg, Gg = deg; Gy, then there exists a parabolic subgroup P C G such that P, is the
canonical subgroup of Gy and Py s the canonical subgroup of Gg.

Proof. Let P, be the canonical parabolic subgroup of G,;. Let p,; be the Lie algebra of F,. Then
we have an exact sequence of vector bundles on X,,, defining gy:

0—p, =gy, —09; — 0.

By the properness of Quot(g/X/S) there exists a coherent Ox-module q, flat over S, together
with an epimorphism v : g — q such that «|X,, is the map of the above short exact sequence.
Let p be the kernel:

Then the restriction of p to X,, is indeed p,,.

Let y be the generic point of Xy. Then Ox , is a discrete valuation ring and ® — Ox , is a
local morphism of discrete valuation rings making Ox , a flat R-module. The Ox ,-module g,
is flat over R. By some trivial algebra (using the fact that flatness over a discrete valuation ring
just means that a local parameter acts faithfully) this implies that g, is flat over Ox . Since it
is also finitely generated, it is free. Thus, letting U C X be the maximal open subset over which
q is locally free, we have y € U. Clearly, we also have X,, C U. By lemma 7.1.2 there exists a
parabolic subgroup P C Gy such that the corresponding Lie algebra is isomorphic to py as a
vector subbundle of ggr.

Let V = UN Xy. Then Py = P|V is a parabolic subgroup of G|V. Since Xj is a curve,
we may extend Py to a parabolic subgroup ]30 of Go = G| Xp. Let Po be the Lie algebra of ﬁo.
Then generically, po = p|Xo and py coincide, so pg is the vector subbundle of gy generated by
the coherent subsheaf py. Hence we have

deg ﬁo deg fﬁo
deg Po
= deg by
= deg; Gy.

v

Clearly, we have deg, Gy > deg P,. This implies (i).

On the other hand, deg; Gy = deg; G,, implies that degpy = degpy and that pg is already a
vector subbundle of gg. By a well-known result this implies that q is locally free over all of X
and hence that p is a vector subbundle of g. In other words, U = X. So P is defined over all of
X. To prove (ii) it suffices to prove that Py is the canonical parabolic subgroup of Gy.

Let S’ be the henselization of S. To prove that Py is canonical in Gy it suffices to prove
that P{ is canonical in Gfj. So by Proposition 6.4.6 we may replace S by S’ and assume that S
is henselian. By Zariski’s connectedness theorem [4, Arcata IV, Prop. 2.1] we have a bijection
7o Dyn(G) = my Dyn(Gy). This clearly implies that the numerical invariants of Py are positive,
noting that P, being canonical, its numerical invariants are positive. This implies that Py is
canonical by lemma 7.1.1. O
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7.2 The Fundamental Theorems
The Scheme of Parabolic Subgroups

Lemma 7.2.1 Let 7: X — S be a flat projective morphism of noetherian schemes. Let' Y be a
smooth projective X-scheme. Then the functor m.Y defined by

Y (T) = Y(X x5 T)

for any S-scheme T, 1s representable. We denote the S-scheme representing this functor also by
mY . It 1s locally of finite type over S.

Proof. See [11,4.c]. O

Let G/X/S be a reductive group scheme over a curve, and let 7 : X — S be the structure
morphism. Let Par(G) be the scheme of parabolic subgroups of Gi. Tt is smooth and projective
over X. Consider the S-scheme 7, Par(G). It satisfies the universal mapping property

7. Par(G)(T) = {parabolic subgroups of G| X xg T}

for any S-scheme T. Also, there is a universal parabolic subgroup P of G|X xgs m, Par(G).
The Lie algebra p of P is a vector bundle on X xg w. Par(G). This vector bundle p induces a
decomposition
7. Par(G) = H (7« Par G); 4,
(rd)

where (7, Par G)r,d is the open and closed subscheme of 7, Par G characterized by the fact that
rk(p|X;) = r and deg(p|X;) = d for all points s of m, ParG. (Note that it does not matter
whether we think of points as geometric points, points of the underlying topological space or
field-valued points in general.) Similarely, we define (7. Par G)q to be the scheme of parabolic
subgroups of GG that have degree d everywhere over S.

Proposition 7.2.2 For any integer d the scheme (7. ParG)q is of finite type over S. In par-
ticular, the same holds for (m. Par ), q for any r.

Proof. The arguments on pages 124-127 of [15] proving Satz 2.1.1 of [15] can be adapted to
prove this proposition. O
The Theorems

Lemma 7.2.3 Let G be a reductive group scheme over the curve X over the noetherian scheme
S. Then there exists an M > 0 such that deg, Gs < M for all s : Speck — S, where k 1s a field.

Proof. By the proof of Lemma 6.1.3 we have
degi G, < dlmn(s) HO(Xsags) + rk(gs)g(Xs)~

Now since rk(gs) and ¢g(X;) are locally constant on .S we might as well assume that they are
constant, say equal to r and g respectively. By the semi-continuity theorem dim) H%(X, 05)
is upper semi-continuous on 5. Now every increasing sequence of open subsets of S becomes
stationary. This finishes the proof. O

Theorem 7.2.4 Let # : X — S be a curve over the locally noetherian scheme S. Let G
be a reductive group scheme over X. Then the geometric degree of instability of G is upper
semicontinuous on S.
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Proof. Without loss of generality let S be noetherian. Let d be an integer. Let
S<q = {s € S |for every extension k of x(s) we have deg; G}, < d}.

We need to show that S<g is open in S. Let M be as in Lemma 7.2.3. Then

M

H (7. Par G)s

b=d+1

is by Proposition 7.2.2 an S-scheme of finite type. Its image in S is precisely the complement
of S<4. By Chevalley’s theorem this implies that S<g4 is constructible in S. Hence it suffices to
prove that Sc4 1s stable under generization.

To do this we may assume without loss of generality by [17, I, Exc. 4.11] that S is a discrete
valuation ring and that for the generic point 7 € S we have deg; G;, = deg; Gy, for any field
extension k of £(n). Then we are done by Proposition 7.1.3 1. O

Theorem 7.2.5 Let # : X — S be a curve over the locally noetherian scheme S. Let G be a
reductive group scheme over X, of constant geometric degree of instability d. Then there exists
a scheme S’, finite radicial and surjective over S, and a parabolic subgroup P of G’ such that
for every k-valued point s of S', where k is a field, the canonical parabolic subgroup of G is P;.

Proof. Without loss of generality assume that S is noetherian. First let us prove that the
dimension of the geometric canonical parabolic subgroup is a locally constant function on 5.
This means that for any r the set

Sy = {s € 5| the dimension of the canonical parabolic subgroup

of Gm is equal to r}

is open and closed in S. Here k(s) denotes the algebraic closure of £(s). Consider the S-scheme
(7« Par ), 4. Its image in S is contained on Up>r S, and contains S,. By induction we may
thus assume that .S, is constructible. So it remains to prove that 5, is stable under specialization
and generization. For this, we may assume that S is a discrete valuation ring. We may also
assume that the geometric canonical parabolic subgroups are already defined over the two points
0,7 € S. Then the claim follows immediately from Proposition 7.1.3 ii. So we will assume that
S = 5, for some r.

Consider the scheme (7. Par (), 4. By Proposition 7.2.2 it is of finite type over S. Hence
by Proposition 7.1.3 (7 Par (), 4 is proper over S. By the characterization of the canoni-
cal parabolic as the unique parabolic subgroup of degree d and dimension r, we get that
(7« Par ), ¢ — S is radicial and surjective, in particular quasi-finite. Now from Zariski’s main
theorem it follows that a proper quasi-finite morphism is finite. So (7. Par (), 4 is a finite radicial
surjective S-scheme, and taking S’ = (m, Par GG), 4 will prove our theorem. O

Note 7.2.6 Let S be a locally noetherian scheme and S” an S-scheme. Then the following are
equivalent:

1. The scheme S’ is finite, radicial and surjective over S.
ii. The morphism S’ — S is radicial, surjective, universally closed and of finite type.
iii. The morphism S’ — S is locally of finite type and a universal homeomorphism.

Remark 7.2.7 The truth of Conjecture 6.4.7 would imply that (at least if S is integral noethe-
rian) we could take S = S’ in Theorem 7.2.5.
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The Type of Instability

Let 7 : X — S be a curve over the locally noetherian scheme S, which we will assume to
be connected, for simplicity. Let G be a reductive group scheme over X and let Dyn(G) be
the scheme of Dynkin diagrams of G. This scheme Dyn G is finite and étale over X. Let
01,...,0, be the connected components of Dyn G and let U be the free abelian group on the
generators vy, ...,0,. Whenever 7' — S is a connected S-scheme, we denote the corresponding
free abelian group on the connected components of Dyn Gy by Up. The natural morphism
7o(Dyn Gr) — mo(Dyn @) induces a homomorphism By — V.

Now let P be a parabolic subgroup of G. Let ¢(P) be the type of P (See Remark 6.2.1). Tt
is a closed and open subscheme of Dyn 7, so by renumbering if necessary, we may assume that
t(P)=uv,11...1Tv,. Let B(P) C B be the subgroup generated by vy,...,0,. Now we can do the
construction of page 57 in this context. We get for every i = 1,...,s a vector bundle W (P, ;)
over X. Then the numerical invariant of P with respect to v;, denoted n(P, v;), is the degree of
W (P, v;)s for some point s € S. By the connectedness of S this definition is independent of the
choice of s. We define

n(P) =" n(P o)y
i=1
which is an element of U(F) C V.

More generally, if P is a parabolic subgroup of G, where T'is a connected S-scheme, we get
n(P) € Vp. So n(P) has a natural image in V.

Now let s € S be a set-theoretic point of S. Choose an algebraically closed field & over x(s).
Let Py be the canonical parabolic subgroup of G. As above, we get n(Py) € Uj. The image of
n(Py) in U does obviously not depend on the choice of k over x(s). Thus we have constructed
a function n : S — .

Definition 7.2.8 We will call this function n the geometric type of instability of the reductive
group scheme (G over the curve X over the connected locally noetherian scheme S.

We will now summarize the results of our considerations in the following corollary.

Corollary 7.2.9 Let 7 : X — S be a curve over the connected locally noetherian scheme S.
Let G be a reductive group scheme over X. Let U be the free abelian group on the connected
components of the scheme of Dynkin diagrams of G. Then the geometric degree of instability of
G is upper semicontinuous on S. So for any d € 7Z the set S; = {s € X | degi(Gw) =d}isa
locally closed subset of S. Moreover, for any d € 7 the geometric type of instability n : S — U
18 continuous when restricted to Sy.

Proof. The first part of the claim is just Theorem 7.2.4. For the second part, we may replace
S by some induced subscheme structure on some connected component of S; and thus assume
that the geometric degree of instability is constant on S. Invoking Theorem 7.2.5 we may even
assume that there exists a parabolic subgroup P of G, such that P, 1s the canonical parabolic
subgroup of G for every geometric point s of S. Then n is clearly constant and equal to n(P). D

7.3 Applications to G-bundles

Let S be a connected locally noetherian scheme, # : X — S a curve over .S and G a reductive
group scheme over X. We will study the S-stack $'(X/S, @) of (families of) G-torsors. For the
definition see page 37. By Corollary 4.5.2 $§1(X/S, ) is a smooth algebraic S-stack, if S is the
spectrum of a field. Whenever we refer to H'(X/S, () as an algebraic S-stack, we will tacitly
assume that S is the spectrum of a field.
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Let U be the free abelian group on the set of connected components of the Dynkin diagram

Dyn(G) of G.

Stability of G-bundles

Let £ be a G-torsor. Then FG = Autg(E) = E x g a4 G is again a reductive group scheme on
X. This follows from descent theory, because Z( is a sheaf on X that is locally (with respect to
the fppf topology) an affine scheme. This argument shows that “( is a scheme over X. Then
it is clearly a reductive group scheme, because this property is local with respect to the fppf
topology.

Note that there is a canonical isomorphism of X-schemes Dyn(G) = Dyn(¥G). This comes
about as the image of the canonical section of Isomext(G,¥ &) in Isom(Dyn(G), Dyn(£G)). (See
[8, Exp. XXIV 3.5].) Hence we can canonically identify the free abelian group on the connected
components of Dyn(¥G) with .

Definition 7.3.1 The G-torsor F is called geometrically (semi-)stable if for every geometric
point s of S the reductive group scheme PG, = (£(G), on X, is (semi-)stable. (See Definition
6.1.4.)

The geometric degree of instability of E, denoted deg,(F), is the function on S associating
to every set theoretic point s € S the degree of instability degi((EG)K(s)) of (EG)W, where

@ is the algebraic closure of the residue field «(s) of s. By Theorem 7.2.4 deg,;(F) is upper
semicontinuous on S.

The geometric type of instability of E| denoted n(F), is simply the geometric type of insta-
bility of £G (see Definition 7.2.8). By the above remarks we can consider n(FE) as a function
n(F): S — Y. By Corollary 7.2.9 n(FE) is continuous over subsets of S over which deg,(E) is
constant.

The Natural Stratification of the Stack of G-bundles

Definition 7.3.2 Let m > 0 be an integer. Then by $'(X/S, G)<m we will denote the S-stack
of G-torsors of geometric degree of instability less than or equal to m. This stack HHX/S, G)<m
is clearly an open substack of §1(X/S,G), in particular also algebraic and smooth over S. We
denote the complement of $H*(X/S,G)<m-1 in H'(X/S, G)<m by H'(X/S, G)m and endow it
with the reduced induced substack structure (see [19, Lemme 3.9]). So $H1(X/S, (), is a closed
substack of H1(X/S, ()<, and hence algebraic and locally of finite type.

For an element v € U such that v > 0 we let HY(X/S,G)m v be the substack of H1(X/S, G)y,
of G-torsors of geometric type of instability v. More precisely, let T' be any S-scheme, which we
may, without loss of generality, assume to be connected. Then a morphism 7' — H1(X/S, G)m
defines a G'p-torsor Er via the induced morphism 7' — $'(X/S, G). Noting that the degree of
instability of Fr is necessarely constant equal to m, we see that the geometric type of instability
n(Er): T — U is also constant. We define 7' — $1(X/S, G),, to factor through H(X/S, G)p v
if n(Er) is equal to v. Clearly, §'(X/S, G)m o is an open and closed substack of H'(X/S, G)p,.

For example, H1(X/S, G)o is the S-stack of geometrically semi-stable G-torsors. The only el-
ement v € U such that H'(X/S,G)o, is non-empty is b = 0. We have H'(X/S,G)oo =
HHX/S, G)o.

The family ('(X/S, G)m)m>o defines a stratification of H'(X/S, ). We call it the stratifi-
cation with respect to the degree of instability. The family ($'(X/S, G)<m)m>0 Is an increasing
family of open substacks covering the stack §1(X/S,G), i.e. an ezhaustion of H1(X/S, ). For
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every m > 0 we get a decomposition

HHX/S, G = [T 9" (X/S, Ghmyo-

v>0

Remark 7.3.3 Let E be a G-torsor. Since for any further G-torsor F' the group schemes
Autg(F) and Auteg(Homg(F, F)) are canonically isomorphic, the Change of Origin morphism
HHX/S, G) — HH(X/S,E @) (see Proposition 4.2.1) respects all the above substacks.

The Degree of G-bundles

Let S be a connected locally noetherian scheme and 7 : X — S a curve over S. Let G be (briefly)
more generally a smooth affine group scheme of finite type over X. Let X(G) = Hom(G, G,,)
be the character group of (G, which we consider simply as an abelian group. If A is an abelian
group we denote by AY = Hom(A, Z) its dual group.

Definition 7.3.4 Let E be a G-torsor. Then the degree of E, denoted deg F, is the homo-
morphism deg E : X(G) — Z defined by deg E(x) = deg(E xa, Ox). Since E xg, Ox is a
line bundle on X and S is connected, the degree of (E x¢, Ox), is independent of s € S. So
deg F(x) is well-defined. The function deg E is a homomorphism, since multiplying gluing data
for line bundles corresponds to adding degrees.

Definition 7.3.5 Let d € X(G)Y. Then we define Sj}l(X/S, () to be the S-stack of G-torsors of
degree d. Here we view the degree of a Gp-torsor Ep over a connected S-scheme T as an element
of X(G)V via the natural homomorphism X(G) — X(Gr). The stack HL(X/S,G) is clearly an
open and closed substack of $'(X/S, ). We have a decomposition

ahx/s, Gy = [ 9uX/S.G).

dEX(G)Y

Definition 7.3.6 Now assume G to be reductive. Then combining the degree, the degree of
instability and the type of instability, we get locally closed substacks (X /S, G)m of HL(X/S, G)
and closed and open substacks Sj}l(X/S, G)m,o of Sj}l(X/S, G-

Remark 7.3.7 Returning to the case that (G is an arbitrary smooth and affine group scheme
over X, note that if F is a G-torsor, then there is a canonical isomorphism X(G) = X(¥G).
So we can compare degrees of G-torsors and FG-torsors. Then the Change of Origin mor-
phism $1(X/S,G) — HHX/S,F G) identifies HL(X/S,G) with Sj}l_degE(X/S,E (), for every
d € X(G)Y. Checking this is a straightforward calculation. So for a given d € X(G)Y any
G-torsor E with deg F' = d induces an isomorphism

PYX/S, G) == P(X/SE @),

Reduction to a Parabolic Subgroup

Let G be a reductive group scheme over the curve X over the connected locally noetherian
scheme S. Let P C G be a parabolic subgroup of G. Let ¢(P) be the type of P (see Remark
6.2.1). This is a closed and open subscheme of Dyn((). Hence the components by,..., b, of
t(P) generate a subgroup of . This subgroup will be denoted B(P). As on page 72 we get for
every i = 1,..., s a vector bundle W(P, v;) over X. By construction, P acts on W (P, v;) linearly,
via the action induced from inner automorphisms (see the proof of Proposition 6.2.3). Taking
the determinant of this representation of P gives a character y; of P. This process defines a
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homomorphism B(P) — X(P). Identifying B(P) with its dual (via the basis by,...,0,) we get
a homomorphism

b:X(P)Y — B(P)

N
i=1

Denote the image of this homomorphism v by B(P)".
Naturally, we have a homomorphism X(G) — X(P) and hence a homomorphism

d:X(P)" — X(G)
6 — §|X(G).

Taking the determinant of the action of P on its unipotent radical R, (P) we get a character xq
of P. This makes sense, because R, (P) has a filtration that is invariant under the action of P
and whose factors are vector bundles.

Lemma 7.3.8 There exist positive rational numbers y1,...,ys such that

S
Xo = Z YiXi-
i=1

Proof. We may assume that G admits a split maximal torus 7. Looking at the corresponding
root system, our lemma follows from Proposition 5.1.9. O

Evaluating at xo defines a homomorphism m : X(P)¥ — Z. From Lemma 7.3.8 it easily follows
that m factors through B(P)’. So we may, when the need arises, consider m as a homomorphism

m : B(P) — Z. We have
m (annz) :Zniyi.
i=1 i=1

Note 7.3.9 If F is a P-torsor of degree §, then the associated G-torsor £ x p G has degree d(§).
If 0(8) = >, njv;, then n; = n(E xp aa P,v;), where we consider £ xp 44 P as parabolic
subgroup of E xp aq G. Also, deg(E xp aq P) = m(é).

Let Ry(P) be the unipotent radical of P and H = P/R,(P). We have a natural morphism
HH(X/S, P) — 9N (X/S, H).

Let $1(X/S, P)o be the preimage of $1(X/S, H)o under this morphism. In other words, we call
a P-torsor semi-stable if its associated H-torsor 1s.

Definition 7.3.10 We call an element § € X(P)¥ positive if 6(y;) > 0foralli=1,...,s5. We
denote the set of positive elements of X(P)" by X(P)Y.

Proposition 7.3.11 The natural homomorphism
dxv:X(P) — X(G)" x B(P)

15 an injection with finite cokernel
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Proof. Let R(G) and R(P) be the radicals of G and P respectively. We have X(G) C X(R(G))
and X(P) C (R(P)). So since R(G) C P it makes sense to consider the sequence of abelian
groups

0 — B(P) = X(P) = X(R(G)) — 0. (25)
Note that we do not claim that it 1s exact.
By construction, the characters yi,...,xs vanish on the center of G. After all, they are
induced by inner automorphisms of G. Since R(() is contained in the center of G we see that
pot=0.

Let U — X be an étale morphism with U connected and Ty a split maximal torus of Gy,
contained in Py. Let ® = ®(Gy,Ty) be the corresponding root system. Let P also denote
the facet of ® corresponding to Py via Lemma 6.2.2. For a corner A of P let ¥(P,A) be
the corresponding elementary set of roots (see Definition 5.3.6). Let y(A) = Zae\If(P,A) « for
A € vert P. There exists a natural map fy : vert P — {oy,...,b5}. Restricting the characters

X1;--.,Xs to Ty we get
i= Y, 7
AEfG (i)

forevery 1 =1,...,s.
Now let x = >°7_, v;x; = 0 be a relation among the characters x1,...,xs. We have

X o= >ovoy, )

=hetyt(v)

= > Vo),

AEvert P

By abuse of notation, we have written n,, instead of n; here. Now since (7(A))xevert p is linearly
independent, we get ny, (n) = 0 for all A € vert P and hence xy = 0. This proves the injectivity
of the homomorphism ¢ in the sequence (25).

Now let x € X(P) and assume that p(x) = 0. Considering again U and Ty as above, this
implies that, restricting x to Ty, we get x € V, where V = span® C X(Ty) ® R is the vector
space in which our root system @ lives. In fact, by considering the action of the Weyl group on
X, it is easily seen that x € spany ¢y p(A). We can write

X = Z vay(A),

AEvert P

since ¥(A))aevert p is a basis for spany ¢, p(A). Replacing y by some integer multiple, we may
assume that all vy (A € vert P) are integers.

Claim: For all A, i1 € vert P we have: fu(A) = fu(u) = va = v,.

To prove the claim, choose an épinglage Fy of Gy compatible with Ty, Then Dyn(G)y
is constant, equal to the Dynkin diagram of (Ey, Gyr). The type t(P) of P is a subscheme of
Dyn(G)y whose connected components are in canonical bijection with the corners of P. So
we may consider (Va)ievert p as a continuous function vy on ¢(P)y C Dyn(G)y. Choosing a
different maximal torus and a different épinglage, does not change this function vyy. Hence the
vy, for U connected and étale over X such that GG is épinglable over U, glue together and define
a continuous function v on ¢(P) C Dyn (. This function v is then necessarily constant on every
connected component v;, for ¢ = 1,... s. This proves the claim.

Now consider the element ,

0= Vi)Y
i=1
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of BV(P). Here we mean by Vit @ number vy for some A € f{;l(nl) By the claim it does
not matter which A we choose. This element v maps to x under . Thus we have proven that
t(b(P)) has finite index in ker p.

It is well-known that X(() has finite index in X(R((G)). this implies that im p has finite index.
So (25) is a complex of finitely generated free Z-modules. At the first place it is exact, and at
the other two places it has finite cohomology. Taking the dual of (25) gives a complex with the
same properties

0 — X(R(G))" — X(P)" — B(P) — 0.

Taking the dual of the injective map with finite cokernel X(G) — X(R(G)) we get another such,
i.e. X(R(G))Y is a subgroup of finite index in X(G)Y.

Together, these facts imply that X(P)¥ injects into the direct product. We also see that
X(P)Y — B(P) and X(P)¥ — X(G)Y have finite cokernel. O

Proposition 7.3.12 Let 6 € X(P)Y. If E is a geometrically semi-stable P-torsor of degree
8, then the associated G-torsor E xp G has degree d(é) and geometric type of instability v(é).
Moreover, its geometric degree of instability is equal to m(8). Hence we get a natural morphism

of S-stacks
95(X/8, P)o — 9405)(X/S, Gngs),o5) -

Under the assumption that the connected components of Dyn(G) are geometrically connected,
this morphism is finite and a universal homeomorphism.

Proof. Directly from the definitions (and Note 7.3.9) we get the existence of a morphism
95(X/S, Plo — 9406(X/ S, G)<mis)-

This morphism actually factors through Sj}l(é)(X/S, G)m(s) because HHX/S, P)o is reduced,
being smooth. Thus we have the existence of our morphism.
To prove the second claim we choose a connected S-scheme 7" and a morphism

FE. T — Sjil(é)(X/S’ G)m(g)yn(g)
which we interpret as a G'p-torsor. By Proposition 4.2.3 we have a 2-cartesian diagram

TT*(E/PT) — T
| | E
9 (X/S, P) — HYX/S,G).

Let 77, (E/Pr)us) be the open and closed subscheme of 77, (£/Pr) defined by the following
cartesian diagram

TT*(E/PT)n(é) —  ar.(E/Pr)
!
[ s OWX/S.P) — 9'(X/S,P),

Then we have the diagram

7"-T>~<(E/PT)n(6) —  7r.(F/Pr)
| |
9LHX/S,P)y  — HYX/S,P).

This follows from Proposition 7.3.11 and the fact that F has degree d(é). We also use the fact
that a reduction of structure group of Ey to P, of degree ¢ with v(é’) = uv(8) is necessarily semi-
stable, for any geometric point ¢ of 7. Here we take advantage of the fact that the components
of Dyn(G) correspond bijectively to the components of Dyn(Gy).
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Now by [8, Exp. XXVI, Lemme 3.20] we have a canonical isomorphism
E/Pr = Paryp, (" Gr).

Applying 7, we get
7.(E/Pr) = 7, Part(pT)(EGT).

Letting (. Pa,rt(PT)(EGT))n(é) be the image of 7. (#/Pr)ys) under this canonical isomorphism,
we get a 2-cartesian diagram

(71'* Part(pT)(EGT)) o5y T
| E
95(X/S, P)o — D46y (X/ S, e, o05)-

We know that the geometric degree of instability of E is equal to m = m(§). The geometric
dimension of the canonical parabolic associated to E is also constant, say equal to r. Then from
the proof of Theorem 7.2.5 we know that #p, Par(E G7)rm 1s finite radicial and surjective over
T. Now it is easy to see that

T, Par(EGT)TVm = (71'* Part(pT)(EGT)) o(8) -

This shows that our morphism is representable and finite radicial and surjective. In view of Note
7.2.6 this finishes the proof. O

Remark 7.3.13 If Conjecture 6.4.7 is true, the morphism of Proposition 7.3.12 can be shown
to be an isomorphism.

8 The Trace Formula for the Stack of G-Bundles

Introduction

In this section we search for open substacks of H'(X/k, ) that are of finite type. Our main
result is, that §}(X/k, G)<m, for d € X(G)¥ and m > 0 is of finite type (see Theorem 8.2.6).

In section 8.3 we prove that $5(X/k, G) <, is the quotient of a Deligne-Mumford stack by an
affine algebraic group. We do this by studying level-D-structures, where D is an effective divisor
on X. For a G-torsor F, a level-D-structure s is just a section of F over D: s € E(D). The stack
of G-torsors with level- D-structure is denoted by $'(X/k, G; D) and the natural morphism

9 (X/k, G5 D) — 9(X/k,G)

given by forgetting the level- D-structure is a principal fiber bundle with structure group p.(Gp),
where p : D — Speck is the structure morphism. (See Corollary 8.3.8.) If we choose D large
enough, HL(X/k, G; D)<y, is a Deligne-Mumford stack. So we may apply the results of Section
3 to HL(X/k,G)<m and get the trace formula Corollary 8.3.13.

Finally, in Section 8.4 we prove the trace formula for HL(X/F,, @), where we have to make an
assumption on the group G. We call this assumption (§) (see Definition 8.4.7). This assumption
amounts to the truth of Conjecture 6.4.7 for G and all its twists PG, where E is a G-torsor.
Since $L(X/F,, G) is in general not of finite type, both sides of the trace formula are infinite
sums.
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8.1 The Case of Vector Groups

Proposition 8.1.1 Let 7 : X — S be a curve of genus g over the locally noetherian scheme
S. Let V be a vector group over X, of constant degree d and rank r. Assume that R'7,V is a
vector group and commutes with base change. (The same is then automatically true for =, V.)
Then the natural morphism

a:9YX/S V) — R'm.V

makes HY(X/S, V) a gerbe over R*m, V. If T is an affine R'w.V-scheme, then the T-gerbe
HHX/S, V)r is trivial, isomorphic to (Bm.V)r. In particular, H1(X/S, V) is an algebraic S-
stack of finite type and smooth of relative dimension r(g — 1) — d over S.

Clear.

Proof. First we will define the morphism «. For any S-scheme T we have $*(X/S,V)(T) =
A(Xp,Vy)and R'7 V(T) = R'7p, Vp(T). We also have natural maps A(Xr, V) — HY (X7, Vr)
and HY(Xr,Vy) — Rlap, Vr(T). The map o(T) is taken to be the composition.

Claim: The morphism o makes H1(X/S, V) a gerbe over R'm, V.

To prove the claim, let first 7' be an S-scheme and let £, F' € ob A(Xp, V) such that o(F) =
a(F) in R'wp, Vr(T). We have to prove that E and F are locally isomorphic (with respect to
the flat topology on T'). We may assume that 7' is affine. Then R'ap,Vr(T) = H' (X7, V) and
a(F) = a(F) implies that F and F" are isomorphic.

Secondly, let T' be an S-scheme and & € R'ar, Vr(T). We have to prove that & may locally
be lifted. So again we may assume hat 7' is affine and hence that ¢ € HY(Xp, Vy). Taking a
Vip-torsor F representing the cohomology class & we get an object E € ob A(Xp, Vp) mapping
to & under «. This proves the claim.

Now let T be an affine scheme with a morphism ¢ : 7" — Rz V. Considering T" as an S-
scheme we have R'7,V(T) = HY (X7, Vr), so that ¢ induces a cohomology class ¢ € HY(Xp, V).
Choosing a Vp-torsor F representing & we get an element & € A(Xp, V) which gives rise to
a morphism ¢ : T — §'(X/S, V). Clearly, we have a(t) = t. So H'(X/S,V) is trivial over
the R, V-scheme T. Now we have 77, Aut(E) = (7.V )7 so that the T-gerbe $H1(X/S, V)7 is
isomorphic to (B, V).

The last part of the proposition is local in S. So we may assume that S is affine. Then R'w,V
is an affine scheme. Hence by what we just proved, we have H1(X/S,V) = Br.V x5 R'm. V.
Another way of writing this is

oY(X/S, V) = [R'7.V/R T V], (26)

where R°m,V acts on R'm,V trivially. The rest of the proposition is then obvious, using
Riemann-Roch to compute the dimension. O

Corollary 8.1.2 Let X be a curve over the field k and V' a vector group over X. Then we have
Xk, V) = [HHX, V) HY(X, V),

where H{(X, V) fori= 0,1 is considered as a vector group over k, and H°(X,V) acts trivially
on HY(X,V). In particular, HY(X/k,V) is a smooth algebraic k-stack of finite type and of
dimension tk V(g — 1) — deg V.

Proof. Since the base scheme is a field, the hypotheses of Proposition 8.1.1 are satisfied. Note
in particular formula (26). O
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Corollary 8.1.3 Let X be a curve over the locally noetheraian scheme S and V' a vector group
on X. Then $*(X/S,V) is a smooth algebraic S-stack of finite type and of relative dimension
thV(g—1)—degV.

Proof. Let & be a locally free coherent (?x-module such that V' = V(£Y). Then we consider the
homomorphism of group schemes over X

V — GLE®Ox)

v — 14w

where 1 is the identity on £ ® Ox and v acts on £ ® Ox via v(e, &) = (av,0). In this way, V
becomes a closed subgroup of GL(€ & Ox) and by Proposition 4.4.5 we have that $'(X/S,V)
is an algebraic S-stack, locally of finite presentation. The smoothness of $§*(X/S, V) follows
from Proposition 4.5.1. The calculation of the dimension can now be done fiberwise, i1.e. we may
assume that X = Speck is a field and apply Corollary 8.1.2. O

Applications to Parabolic Subgroups
Lemma 8.1.4 Let X be a curve over the field k and

00—V —G—H—1

a short exact sequence of group schemes on X, where V s a vector group. Then the natural mor-
phism HY1(X/k,G) — 91 (X /k, H) is a smooth epimorphism of finite type and relative dimension
thV(g—1)—degV.

Proof. Since any pullback and any twist of a vector group is again a vector group and R*m, ap-
plied to a vector group is always zero, Proposition 4.2.5 implies that §*(X/k, G) — $H1(X/k, H)
is an epimorphism. Then the other properties are local on the base and the second half of
Proposition 4.2.4 implies the result, making use of Corollary 8.1.3. O

Corollary 8.1.5 Let X be a curve over the field k and V a group scheme over X having a
filtration V.= Vo D ... D V,, = 0 such that all factors V;/Viy1 for i =0,...,n— 1 are vector
groups. Then HY(X/k, V) is a smooth algebraic k-stack of finite type and dimension dimx V(g —
1) — deg(V).

Proof. By induction on n. Let ¢ < n be an index such that V;4; = 0. Then V; is a vector group.
We consider the short exact sequence of groups on X

00—V, —V—V/V; —0.

By Lemma 8.1.4 §1(X/k, V) — HY(X/k,V/V;) is smooth of finite type and relative dimension
tk Vi(g — 1) — deg V;. By induction hypothesis we have H1(X/k, V/V;) smooth of finite type and
relative dimension dimx V/V;(g — 1) — deg V/V;. The corollary follows. O

Corollary 8.1.6 Let X be a curve over the field k and
00—V —G—H—1

a short exact sequence of group schemes on X, where V' a group scheme over X having a filtration
V=V, D...DV, =0 such that all factors V;/Viyy for i = 0,...,n — 1 are vector groups.
Then the natural morphism HY(X/k,G) — HY(X/k, H) is a smooth epimorphism of finite type
and relative dimension dimx V(g — 1) — deg PV, where E is the universal G-torsor.
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Proof. Use Propositions 4.2.4 and 4.2.5. Note also, that the relative dimension of this morphism
is not necessarily constant. O

Proposition 8.1.7 Let G be a reductive group scheme over the curve X over the field k. Let
P C G be a parabolic subgroup and let H = P/Ry,(P). Then the natural morphism of k-stacks
DY X/k, P) — HY(X/k,H) is a smooth epimorphism of finite type and of relative dimension
dimx (R, (P))(g — 1) — deg(¥ P), where E is the universal G-torsor.

Proof. By [8, Exp. XXVI, Prop. 2.1] R,(P) has a filtration such that the quotients are vector
groups. So we may apply Corollary 8.1.6. O

Calculating the Dimension of the Stack of G-Bundles

Lemma 8.1.8 Let X be a smooth algebraic k-stack of dimension n. Then TX — X is smooth of
relative dimension n.

Proof. O

Corollary 8.1.9 Let G be a reductive algebraic group scheme over the curve X over the field k.
Then $Y(X/k,G) is a smooth algebraic k-stack of dimension dimx G(g — 1).

Proof. Note that by Corollary 4.5.2 all we have to check 1s that the formula for the dimension is
correct. Consider the short exact sequence of group schemes on X:

0 —g—TG—G—1.

Then Lemma 8.1.4 implies that §1(X/k, TG) — HY(X/k,G) is smooth of relative dimension
rkg(g — 1). (Note that degg = 0 by Note 6.1.2.) But directly from the definitions we have
DX /k, TG) = THYX/k,G). So the corollary follows from Lemma 8.1.8. O

8.2 Algebraic Stacks of Finite Type

Quasi Compact Stacks

Lemma 8.2.1 Let f: X — Y be a continuous map of topological spaces X,Y . If X is quasi
compact and [ is surjective then Y s quasi-compact.

Proof. Clear. O

Lemma 8.2.2 Let X be an algebraic S-stack, where S is an affine scheme. Then X s quast
compact if and only if |X|, the set of poinits of X with the Zariski topology, is a quasi compact
topological space.

Proof. If X 1s quasi compact there exists a presentation p : X — X such that X is quasi
compact over S. The morphism p induces a continuous and surjective map p: |X| — |X| of the
corresponding Zariski topologies. Since S is affine | X| is quasi compact and by lemma 8.2.1 |X]
1s quasi compact.

Conversely, assume that |X| is quasi compact. Choose a presentation p : X — X of X. Let
(Vi)ier be a family parametrizing all affine open subsets of X. For every ¢ € I let L; = p(V;),
which is an open substack of X, and let U; be the open subset of |X| corresponding to &l;. Then
(Us)ier is a covering, so that there exist 1,...,n € I such that Uy,...,U, cover |X|. Now let
X' = U,V and let p’ = p|X’. Then p' : X’ — X is a presentation of X and X’ is quasi
compact, as a finite union of affine schemes. O
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Corollary 8.2.3 Let f : X — ) be a morphism of S-stacks where S is quast compact. If X 1s
quast compact and f s surjective, then ) is quasi compact.

Proof. Since S is quasi compact, the question of ) being quasi compact is local in S, so we
may assume that S is affine. Then we consider the induced map f: |X| — |2)] of the associated
sets of points with the respective Zariski topologies. The corollary then follows immediatly from
Lemmas 8.2.1 and 8.2.2. O

Passing to Galois Covers

Let X be a curve over the field k. Let #: Y — X be a finite Galois extension of X. This means
that Y is another curve over k, and # is a finite morphism of curves making K(Y) a Galois
extension of K(X). Let T = Gal(Y/X).

Let GG be a reductive group scheme over X, with character group X(G). Then X(7*G) is a
[-module and X(G) = X(7*G)''. We have the trace map try;x @ X(7*G) — X(G) defined by
try/x(X) = > er ox. Taking the dual, we get tr¥ : X(G)¥ — X(7*G)". With these notations,
we have the following proposition.

Proposition 8.2.4 Let G be a reductive group scheme over the curve X over the field k. Let
7:Y — X be a Galois cover of X. Then we have for every d € X(G)¥ a natural morphism of
algebraic k-stacks

Sj}l(X/k’ G) B Sjgrv(d)(y/k’ T*G)a
induced by pulling back via ©*. This morphism is affine of finite type.

Proof. Let n = #I. Let d € X(G)V. If d is a I-invariant extension of nd € X(G)" to X(7*G),
then for any x € X(7*G) we have

wd = Yty

cel’

= > d(oy)

cel’

~(z
= nd (; Ux)

and hence d = tr¥(d). In particular, d is uniquely determined by d. If F is a G-torsor of degree
deg E/ we have for y € X(G):

degm E(m*y) = deg(m"E Xgeq ney Ov)
= deg(7"(E Xg, Ox))
= ndeg(F XG,x Ox)
= ndeg F(x),

so that deg 7" F extends ndeg F. We also have for ¢ € T and x € X(7*G):

deg 7" E(ox) = degm " F(c"x)
dego*n" E(c"x)
)
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so that deg 7* £ is [-invariant. Hence deg 7* F = tr¥(deg E), by the above remarks. This proves
that we get a natural morphism

Sj}l(X/ka G) — Sjgr\/(d)(Y/k‘, T*G)

It is affine by Theorem 4.4.3. O

Borel Subgroups

Proposition 8.2.5 Let G be a rationally trivial reductive group scheme over the curve X over
the field k. Assume that X has a k-valued point. Let B C G be a Borel subgroup and let
§ € X(B)Y. Then $H3(X/k, B) is an algebraic k-stack of finite type.

Proof. The quotient group T' = B/R,(B) is a torus over X. The torus T is split, since G is
rationally trivial. By Proposition 8.1.7 we only need to prove that L(X/k,T) is of finite type,
where d is the image of § under the natural map X(B)"Y — X(T)Y. Write T as T'= G,". Then
X(T)Y =Z". Let d =(dy,...,dy). Then we have

DYX/k, ™) = 0, (X/k, Go) % . x 0 (X/k, G).

Thus we are reduced to the case T'= G,,. By Remark 7.3.7 a line bundle L of degree d induces
an isomorphism HL(X/k, G,.) = H(X/k, G, ) since any inner form of G,, is equal fo G,,. Now
choosing a k-valued point P of X we have H5(X/k, G, (P)) = Pic’(X) = Jac X. Hence we have
D5(X/k,G,) = [Jac X/G,], where G, acts trivially on Jac X. O

The Theorem

Theorem 8.2.6 Let G be a reductive group scheme over the curve X over the field k. Let m > 0
be an integer and d : X(G) — Z a homomorphism. Then H(X/k,G)<m is a smooth algebraic
k-stack of finite type.

Proof. By Corollary 4.5.2 all we have to prove is that H3(X/k,G)<p, is of finite type. If
7:Y — X is a Galois covering of X, then by Proposition 8.2.4 and Corollary 6.4.6 we have a
finite type morphism

DX/ k, G gm — Digv (a)(Y/ b, TG .-

So for the purpose of proving our theorem we may pass to a Galois cover of X an assume that
G is rationally trivial and that X admits k-valued points. By Corollary 8.2.3 we need only find
an algebraic k-stack of finite type ), together with a surjective morphism

Y — D4(X/k, G)<m.

Choose a Borel subgroup B C (. Let x1, ..., xs be the characters of B given by the action of
B on its associated elementary line bundles. Consider the natural homomorphisms d : X(B)Y —
X(G)Y and m : X(B)Y — 7Z (see pages 75 and following). Consider finally the morphism

[T 95(X/k, B) — 94(X/k, G)<m, (27)
6

where the disjoint sum is taken over all § € X(B)Y satisfying the following three conditions:
i.d(é)=d

ii. m(8) <m
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. §(x;) > —2gfori=1,...,s.

By Note 7.3.9 this morphism indeed exists. Also, if E'is a B-torsor of degree §, then 8(x1),...,6(xs)
are the numerical invariants of the Borel subgroup F xp 44 B of ' Xp 44 G.

Claim: The number of 6 € X(B)" satisfying the above three conditions is finite.

By Proposition 7.3.11 all we need to do 1s check that

{(n1,...,ns) €Z° | ny > =29 fori=1,...,sand > ;_ njy; < m}

is finite. Here y1,...,ys € Q¢ are given as in Lemma 7.3.8. But this is clear.

Hence by Proposition 8.2.5 the stack on the left hand side of (27) is of finite type. So it only
remains to prove the surjectivity of the morphismin (27). Letting £ : Spec K — 9L(X/k, G)<m
represent a point of Sj}l(X/k,G)Sm we may replace k£ by K and thus assume that E is a G-
torsor over X of degree d such that deg;(¥G) < m. By [15, Satz 2.2.6] there exists a Borel
subgroup B’ C PG such that the numerical invariants ny(B’), ..., n(B’) satisfy n;(B’') > —2g
for i = 1,...,s. This Borel subgroup B’ will define a reduction of structure group F’ of E to
B,ie. E'is a B-torsor such that E' xp G = E and E' xg a4 B = B'. Let § = deg E' be the
degree of E’. Then by Note 7.3.9 we have d(6) = deg E = d, m(8) = deg(B’) < deg;(PG) < m
and 8(y;) = n;(B') > —2¢ for i = 1,...,s. Thus E’ defines a point of the stack on the left hand
side of (27) mapping to E. This proves the surjectivity of the morphism in (27) and thus the
theorem. O

8.3 Level Structures
Let X be a scheme and ¢ : D — X a scheme over X. Let G/X be a group scheme.

Definition 8.3.1 We define the groupoid of G-torsors with level-D-structure, denoted A(X, GG; D),
to be the category whose objects are pairs (F,s), where F is a (right) G-torsor (over X) and
s is a section of Ep = *FE. The set of morphisms from (F, s) to (E’,s'), for (E,s),(E’,s') €
ob A(X,G; D), is defined to be the set of all isomorphisms of G-torsors ¢ : £ — E’ such that
ép(s) =¢'.

Note 8.3.2 Clearly, we have a morphism of groupoids f : A(X,G; D) — A(X, @), given by
forgetting the level-D-structure. We also have a natural action o of T'(D, ) on the right of
A(X, G; D) making the following diagram a 2-cartesian and 2-cocartesian diagram of groupoids:

A(X,G;D)x T(D,G) 2 A(X,G;D)
P1 l l f
A(X,G; D) L. AKX, G).

Proof. Straightforward checking. O

Note 8.3.3 If F is a G-torsor then we have a 2-cartesian diagram of groupoids

'(D,E) — 1o}
T l l E
AX,G;D) -1 A, G)

where 7 is given by 7(s) = (E, s) for every s € T'(D, F).

Proof. Clear. O
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Let X be a scheme over the base scheme S. Let ¢ : D — X be an X-scheme and p: D — S the
structure morphism. Let G be a group scheme over X.

Definition 8.3.4 We define the S-stack of G-torsors with level-D-structure, denoted $*(X/S, G; D),
by setting
H'(X/S,G;D)(U) = A(Xy, Gu; Dy)
for every S-scheme U'.
Note 8.3.5 We have a natural morphism of S-stacks
f9NX/S,G; D) — 9(X/S,G)

and a natural action o of the sheaf of groups p.:*G on $1(X/S,G; D) yielding a 2-cartesian
diagram of S-stacks

9YX/S,G; D) x p*G L HYX/S,G; D)

P1 l lf
91(X/S,G; D) L s x/s,G).

The question of whether this diagram is 2-cocartesian (i.e. whether f is an epimorphism) is a
little more subtle.

Proof. Follows immediatly form Note 8.3.2. O

Lemma 8.3.6 Let 7 : Y — X be a finite flat morphism of schemes. Let U — Y be a faithfully
smooth (€étale) Y-scheme of finite presentation. Then w.U is a faithfully smooth (€étale) X-
scheme, locally of finite presentation.

Proof. This follows easily using formal smoothness and the formal properties of the functor
. O

Note 8.3.7 Let U be an S-scheme and F a Gy-torsor. Then we have a 2-cartesian diagram of
S-stacks

pU*L*UE — U
Tl lE
f

HYX/S,G; D) — SN (X/S,G)
where 7 is given by 7(s) = (Ey,s) for any s € E(Dy). So if G is of finite presentation over X
and D is proper and flat over S, then f is representable and locally of finite presentation. If, in
addition, (G is smooth over X and D is finite over S then f 1s in addition smooth and surjective.
So in this case f is an epimorphism and the diagram of Note 8.3.5 is 2-cocartesian.

Proof. The fact that the diagram is 2-cartesian follows immediatly from Note 8.3.3. If G is of
finite presentation over X, then F is an algebraic space of finite presentation over Xy. Hence
the same is true for ¢; E' over Dyy. Now py : Dy — U is proper and flat, so by [1, 6.] pr.if E is
an algebraic space, locally of finite presentation (over U). This proves that f is representable,
locally of finite presentation. Now if G is smooth over X, then (f; E is smooth over Dy . Hence
the claim follows form Lemma 8.3.6. O

Corollary 8.3.8 If G is a smooth group scheme over X and D 1is finite and flat over S, then
pxt*G s a smooth group scheme over S and

f9NX/S,G; D) — 9(X/S,G)
1s a principal homogeneous p,*G-bundle.

Proof. Immediate from Notes 8.3.5 and 8.3.7. O
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Applications to the Stack of G-Bundles

Lemma 8.3.9 Let k be field and X a curve over k. Let $ be a k-stack of finite type. Let
g be a locally free coherent sheaf on X x §. Then there exists a finite set of closed points
D =A{z1,...,2p} C X such that m,g(—D) =0, where m : X x § — 9 is the structure morphism.

Proof. We will use noetherian induction. If $ = @ there i1s nothing to prove. Otherwise choose a
point & of § and let & : Spec K — § be a represetative of £. Let g be the pullback of g to Xg.
Then we choose finitely many closed points Dy = {21, ..., 2,} of X such that the vector bundle
d(—D1)k on the curve Xg over the field K has no globel sections. By cohomology and base
change ([17, Chap. III, Theorem 12.11]), there exists an open substack L C $, containing £, such
that m.g(—D)|t4 = 0. Let ' = H — 4 with the reduced substack structure. Then £’ is a proper
closed substack of $. So by the induction hypothesis, there exists Dy = {y1,...,ym} C X such
that 7.gg/(—D2) = 0. Let D = Dy U D5. Then, again by cohomology and base change, we have
7.g(—D) = 0 as required. O

We will now calculate the Zariski tangent space to the scheme of automorphisms of a G-torsor
with level-D-structure (F,s). We will need the following lemma.

Lemma 8.3.10 Let S be a locally noetherian scheme and w: X — S a projective flat S-scheme.
Let G be an affine smooth group scheme over X. Lett: D — X be a closed subscheme of X
that is finite and flat over S and p = wot. Let E be a G-torsor and s : D — E a section of E
over D. Then we have a short exact sequence of group schemes of finite type over S:

1 — m. Aut(E,s) — ﬂ'*(EG) LN pet"G. (28)

Proof. First note that G is an affine X-scheme, so that =, (EG) is a group scheme of finite over
S by Proposition 4.4.1. For the same reason, p,¢*( is a finite type group scheme over S. We
will now construct the homomorphism

b5 i m(FG) — pat*G.

Let g € m.(YG)(S). We may consider g as an automorphism g : £ — E of the G-torsor . Then
let ¢5(g) € put™G(S) = G(D) be the unique element such that s¢,(g) = ¢g(s). Since s¢;(gh) =
gh(s) = g(sés(h)) = g(8)ds(h) = s¢s(g)ds(h) we see that we have defined a homomorphism of

group schemes. Directly from the definition we have

¢s(9) =1 <= yg(s)=s
< g€ Aut(E,s).

This proves the exactness of the above sequence. Hence 7, Aut(FZ, s) is a closed subgroup scheme
of m.(EG), in particular of finite type over S. O

Under the same hypotheses as in the Lemma, let us now assume that S = Speck, where k
is a field. Let ¢ € Aut(F,s) be an automorphism of (F,s). The element ¢ itself induces an
isomorphism of the Zariski tangent space of ., Aut(F, s) at ¢ with the Zariski tangent space of
Aut(F,s) at 1. Denote these Zariski tangent spaces by T, Aut(F, s)(¢) and T, Aut(E, s)(1),
respectively. Now directly from (28) we have an exact sequence of k-vector spaces

0 — Tm Aut(FE, s)(1) — H(X,Pg) — H(D, g).

So we have

Tr. Aut(£, 5)(¢) = H°(X, Pg(=D)). (29)
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Lemma 8.3.11 Let GG be a reductive group scheme over the curve X over the field k. Let
p: X x 94 X/k,G) — H1(X/k,G) be the second projection. Let E be the universal G-torsor
on X x HHX/k,G). Let m > 0 be an integer, and d : X(G) — Z a homomorphism. Let
D ={z,...,2,} C X be closed points such that p.Lg(—D)|H5(X/k,G)<m = 0. (Such points
exist by Lemma 8.3.9.) Then $5(X/k,G; D)<y ts a Deligne-Mumford stack over k.

Proof. Let
(F,s) : Spec K — 9L(X/k, G; D)<m

represent a point of H5(X/k, G5 D)<y. So E is a Gi-torsor on X of degree d and geometric
degree of istability less than or equal to m, and s is a section of E over Dg. We need to
show that the K-scheme mg, Aut(F,s), where m : X — Speck is the structure morphism, is
unramified over Spec K. Without loss of generality, we may assume that K = k. By (29) we
have T, Aut(E, s)(¢) = HY(X,¥g(—D)) which is equal to zero by assumption. O

Proposition 8.3.12 Let G be a reductive group scheme over the curve X over the field k. Let
m > 0 and d € X(G)Y be given. Then there exists a Deligne-Mumford stack X over k and a
non-singular affine algebraic group U over k acting on X such that

Ha(X/k, G)<m = [X/T].
Proof. Choose D as in Lemma 8.3.11 and X = 93(X/k,G; D)<y. Take T' = p, "G where

¢t : D — X is the inclusion and p : D — Speck the structure morphism. Then T is an affine
algebraic k-group by Proposition 4.4.1 and non-singular by Lemma 8.3.6. By Corollary 8.3.8 we
have

Done. O

Corollary 8.3.13 Let GG be a reductive group scheme over the curve X over the field k. Let
m >0 and d € X(G)Y be given. Then H5(X/k,G)<m 1s a smooth algebraic k-stack of finite type
and dimension dimx G(g — 1) and if k =T, is finite, the Lefschetz trace formula holds for this
IF,-stack:

1

dimx G- 3 &, | H*(HL(X /Ty, G)<im = 2 Aut( ED
q 1@ [H(94(X/Fy, G)<m,,,r O Z # Aut(FE)

Ee[Aq(X,G)<m]

(30)

where the sum is taken over all isomorphism classes of G-torsors E such that deg ¥ = d and
deg;(E) < m.

Proof. Combine Theorem 8.2.6 with the dimension calculation Corollary 8.1.9. Then apply
Theorem 3.5.7, which is possible because of Proposition 8.3.12. Note also that Iy is perfect and
Corollary 6.4.6. O

8.4 Passing to the Limit

Exhausting Topoi

Definition 8.4.1 Let F be a topos and X an object of E. A covering 4 = (U;);en of X is called
an ezxhaustion of X, if U; is a subobject of X for all : € N and U; C U4 for all ¢« € N.

Lemma 8.4.2 Let F be a topos, X an object of E and 84 = (U;)ien an exhaustion of X. Let M
be a presheaf of abelian groups on E, such that M(U;) is finite for alli € N. Then HP (4, M) =0
for allp > 0.
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Proof. N is an ordered set, so we may consider IN as a category. We endow NN with the chaotic
topology. Then N, the category of presheaves (of sets) on N, is the topos of sheaves on the site
N. The category ab [N of abelian sheaves on the topos N is the category of projective systems of
abelian groups indexed by IN. For an abelian sheaf F' on N we have the Cartan-Leray spectral
sequence corresponding to the covering 91 = (n)nen of the final object of N:

HP (N, HI(F)) = H'HI(I, F). (31)

For any n € N we have H%(n, F') = 0 for ¢ > 0, because the functor F' — F'(n) is exact, N having
the chaotic topology. So since N is closed under direct products, the Cech complex C'* (M, 4(F))
is zero if ¢ > O:
crvHIF) = [ HYmin(ny, ..., n,), F)
(n1,...,np)ENP

So from the spectral sequence (31) we get Hp(ﬁ, F)y = HP(OM, F). Now the global section

functor I'(I, -) is nothing but the inverse limit functor. So we have H?(IN, F') = lim" F', and

N
hence lim” F' = HF (M, F). Since M = (M (U;))ien is a projective system of abelian groups, we

—

N
can apply this result and get: . .
L M = HP (9N, M)
N
Obviously, H? (91, M) = HP (4, M), by looking at the Cech complexes. So we have
HP (U, M) = lim? M (U;).

Since our indexing category is N, lim? always vanishes for p > 2.Since M (U;) is finite for all

1€ N, M satisfies the Mittag-Leffler condition, and hence lim'M = 0. O

Proposition 8.4.3 Let E be a topos that can be exhausted by noetherian open subtopoi that
satisfy the finiteness theorem with respect to N. Then for any constructible abelian sheaf F' on
E with NF =0 we have
HP (B, F)=limHP(U;, F),
2
where (U;)ien is an exhaustion of B, such that, for alli € N, Ey, is a noetherian topos satisfying
the finiteness theorem with respect to N.

Proof. Let U = (Us)ien be an exhaustion of F, such that, for all i € N, /)y, is a noetherian
topos satisfying the finiteness theorem with respect to N. Let F' be a constructible abelian sheaf
on E with NF = 0. Then for any ¢ € N the sheaf F'|U; is noetherian, and so H¢(U;, F') is finite.
So we can apply Lemma 8.4.2 to the presheaf H?(F') on E, obtaining H? (U, HI(F)) = 0 for
p > 0. So the Cartan-Leray spectral sequence of the covering il gives us
HY(E, F) = H (4 HUF)).

But this is what we wanted to prove. O
Corollary 8.4.4 Let k be a separably closed field and £ # chark. If X is an algebraic k-stack,
that can be exhausted by open substacks (X;)ien of finite type, then

HY (X, F) = lim HP(X;, ., F)

for any constructible abelian sheaf F' on X with {7 F =0 for some n > 0.

Tsm)
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Proof. By Theorem 3.1.6 the topos X, . satisfies the finiteness theorem with respect to £7 for
every n > 0. So the Corollary follows form Proposition 8.4.3. O

The Condition (§)

If X 1s a curve over an algebracically closed field &, then the following lemma shows that the
index m in the notation $1(X, ), ,» is redundant, so we may write H5(X, G), instead.

Lemma 8.4.5 Let G be a reductive group scheme over the curve X over the algebraically closed
field k. Let 0 be the free abelian group on the connected components of DynG. Then there
exists a function m : LU — Z such that if £ is a G-torsor of type of instability v € UV, then
m(v) = deg,(PG). If P is a parabolic subgroup of G, then we have a commutative diagram

b

X(P)Y — I
m\, |m
Z

where the horizontal map v and the diagonal map m are defined as on page 75.

Proof. If there exists no G-torsor of type of instability v, then we may assign an arbitrary
value to m(b). So let £ and F' be G-torsors of type of instability b. We need to show that
deg;(PG) = deg,(*'G). Without loss of generality we may assume that (¢ contains a parabolic

subgroup P of type 1, where
n= H 0;

n,i—éO
and o = Y 7 n;v;. Let E' and F’ be the canonical reductions of £ and F to P. Then
v(deg ') = v = v(deg F"), so our lemma follows from the fact that m factors through B(P)’. O

Lemma 8.4.6 Let G be a reductive group scheme over the curve X over the algebraically closed
field k. Then there exists a function v : 0 — Z such that if F is a G-torsor of type of instability
b € Y, then r(v) = dimx R, (P), where P is the canonical parabolic subgroup of £G.

Proof. This follows from the fact that parabolic subgroups of the same type are forms of each
other. O

Definition 8.4.7 Let GG be a reductive group scheme over the curve X over the field k. We will
say that G satisfies condition (§) if the following is satisfied. Whenever K is a field extension of
k and F is a G g-torsor, we have

HO(XKaEg/p) = Oa
where p denotes the Lie algebra of the canonical parabolic subgroup of G

Note 8.4.8 If Conjecture 6.4.7 is true, then every reductive group scheme over a curve satisfies
condition (§).

Proposition 8.4.9 Let G be a reductive group scheme over the curve X over the algebraically
closed field k. Assume that G satisties Condition (§). Let P be a parabolic subgroup of G and
let 6 € X(P)Y. Let H= P/R,(P). Then we have a natural morphism of algebraic k-stacks

pps D) (X/Gosy — 95(X/H)o.

The morphism pp 5 is a smooth epimorphism of fintie type and relative dimension dimx R, (P)(g—
1) —m(é). It induces isomorphisms

H' (95 (X/Gogy, Qo) — H (95(X/H)o, Q),
for every 1> 0.

89



Proof. By Proposition 7.3.12 we have a natural morphism
95(X, P)o — Hiis) (X, Gos)- (32)

Using condition (§) this can be shown to be an isomorphism. Now composing the inverse of
(32) with the morphism of Proposition 8.1.7 we get pp 5. The condition (§) implies that we can
apply Proposition 8.1.1 to the factors of the filtration of R, (P). This implies that pp s induces
isomorphisms on f-adic cohomology. O

Lemma 8.4.10 Let GG be a reductive group scheme over the curve X of genus g over the alge-
braically closed field k. Assume that G satisfies Condition (§). Let d € X(G)Y be fizred. Then

for every v € U the natural closed immersion

is a smooth pair of algebraic k-stacks of codimension c¢(v) = r(v)(g—1)+m(v). For the definition
of r(b) and m(v) see Lemmas 8.4.5 and 8.4.6.

Proof. If §L(X,G)s = @ there is nothing to prove. Otherwise, there exists (maybe only after
a change of origin) a parabolic subgroup P of G and an element § € X(P)¥ such that d(6) = d
and v(8) = v. Then, as we already noted in the proof of Proposition 8.4.9, we have (X, G), =
H(X, P)g. This proves that HL(X, G), is smooth of dimension dimx (P)(g — 1) — m(8). So the
codimention is

c(v) dimx G(g — 1) — (dimx P(g — 1) — m(§))

dim Ry (P)(g — 1) + m(8),

which finishes our proof. O

Definition 8.4.11 Let G be a reductive group scheme over the curve X of genus g over the
algebraically closed field k. Let #® be the number of roots of G. Then we define for every
integer ¢ > 0 the number () to be the smallest integer satisfying

, 141 ifg>0
> 2
7(1)—{1+g+—#f if g = 0.

Proposition 8.4.12 Let G be a reductive group scheme over the curve X of genus g over the
algebraically closed field k. Assume that G satisfies Condition (§). Let i > 0 be an integer. Then
if m > y(7) the canonical homomorphism

H'(HY(X, ), Q) — H' (DX, @) <m, Qe)
15 an isomorphism.

Proof. By Lemma 8.4.10 we get for every m > ¥(¢) an isomorphism
H{(HUX, G <m, Q) — H(HHX, G)<m—1,Q0),

since we may estimate the codimension ¢ of 93(X, G), in H5(X, G)<pm (for v such that m(v) = m)

as follows:
_ m ifg>0
c-d@@—l%ﬁnz{7n_%? ity =0,

so that for m > v(¢) we have i < 2¢ — 2. By Corollary 8.4.4 this implies our proposition. O
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Eigenvalues of Frobenius

Lemma 8.4.13 Let G be a non-singular linear algebraic group over IFy, acting on a smooth
equidimensional Deligne-Mumford stack X of finite type over Fy. Let X = [X/G] be the cor-
responding smooth algebraic IFy-stack of finite type. Then for any embedding Q, — C and any
eigenvalue X of ®, on H'(X,,.,C) we have |A| < q 2.

Proof. As in the proof of Theorem 3.5.7 we reduce to the case that G = G'L,,. Then using the
spectral sequence (18) on page 32 we reduce to proving the lemma for the Deligne-Mumford
stack X. Then using the Gysin sequence (Corollary 2.1.3) and Proposition 2.2.6, we reduce to
the case that X is ‘nice’. Then by Corollary 2.2.8 we reduce to the case that X is a smooth
variety over IF,. Again using the Gysin sequence, we may even reduce to the case that X is an
affine smooth IFy-variety. Now using Poincaré duality as in the proof of Proposition 2.4.3 our
lemma translates to the following statement. If A is an eigenvalue of the geometric Frobenius F|
on H{(X 4, C) then we have |A| < ¢/2. But this follows from [5, Théoréme 3.3.1]. O

Corollary 8.4.14 Let G be a reductive group scheme over the curve X over the field Fy. Let
d € X(G)V be given. Then if X is an eigenvalue of ®, on H'(HL(X,G)<m,C), for some m > 0,
or on H'(H(X,G),C), then we have |A| < q 2.

Proof. The statement Er;‘fj}l(Y, é)sm follows from Lemma 8.4.13 using Proposition 8.3.12. Now
the statement for (X, G) follows from Proposition 8.4.12. O
Torsors under the Radical of ¢

Lemma 8.4.15 Let X be a curve over the field k and F' an étale abelian group scheme over X.
Then HY(X, F) is torsion.

Proof. Let E be an F-torsor. Clearly, there exists a Galois extension of curves Y — X such that
F has a section s over Y. Let I' = Gal(Y/X) and let n = #T. Since F is abelian, we may form
the n-fold twist of £ with itself:

E®HIE><F...><FE.
—_—————

Letting o1, ...,0, be the elements of T, it is obvious that [o1(s),...,,(s)] is a section of E®"
over X. Thus E®" is trivial. O

Lemma 8.4.16 Let T be a torus over the curve X over the algebraically closed field k. Let
M ={seX(T)" | 9:(X,T) # o}.
Then M is a subgroup of finite index in X(T)Y.

Proof. Let § € X(T)V. We need to show that there exists a T-torsor F such that deg £ = né for
some n # 0. Let X(7T') be the character sheaf of T" and consider the character group X(T') of T'
as a constant sheaf on X. Then we have a short exact sequence of étale abelian group schemes
over X:

0 — X(T) — X(T) — F — 0, (33)

where I 1s deﬁned~so as to make this sequence exact. It es easily seen that X(7) is locally a
direct summand of X(T), so that F is locally free. Hence Ext*(F,X(T)) = H* (X, Hom(F, X(T))),
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which is torsion by Lemma 8.4.15. So the sequence (33) is quasi split. The dual of (33) is a
sequence of tori over X:

1—85—T—G," —1,

for some integer » > 0. By the above arguments, T'— G,,” has a quasi-section. We may identify
X(T)Y with X(G,")Y and it is clear that there exists a G, -torsor of degree §. Taking the
associated T-torsor (via a quasi-section of T'— G,") we get a T-torsor E such that deg £ = né
for some n £ 0. O

Lemma 8.4.17 Let GG be a reductive group scheme over the curve X over the algebraically closed
field k. Let R be the radical of G. Then there exist finitely many elements dy, ..., d, € X(G)"
such that for every d € X(G)Y there exists an i € {1,...,n} and an R-torsor F of degree d; — d.

Proof. Apply Lemma 8.4.16 to R. so we have M C X(R)Y of finite index. Now as noted
in the proof of Proposition 7.3.11, X(R)" has finite index in X(G)Y, so M has finite index in
X(G)Y. Let dy,...,d, be a set of representatives for X(G)Y /M. Soif d € X(G)V, there exists an
ie{l,...,n}such that d —d; € M. O

Passing to the Limit

From now on, we let G be a reductive group scheme over the curve X over the algebraically closed
field k. Assume that G satisfies Condition (§). This is for example the case if G is rationally
trivial and ¢ € {0, 1}, if G = GL,, or if Dyn GG is connected. Let L be the free abelian group on
the components of the Dynkin diagram of G

For a closed and open subscheme n C Dyn GG and an integer p > 0 we let

C(n,p) = #{o e B(n)* | m(v) = p}.

Here m is defined as in Lemma 8.4.5 and U(n)™T is the set of linear combinations of components
contained in 7, all of whose coefficients are positive.

Lemma 8.4.18 We have C(n,u) = O(u?®), where s is the number of connected components of
Dyn(G).

Proof. Use Lemma 7.3.8. O

Let A be the set of closed and open subschemes n C Dyn G such that there exists a G-torsor E
such that the canonical parabolic subgroup of G has type 1. For every € A choose such a
G-torsor and call it F,. Let P, C (E2)G be the canonical parabolic subgroup (which is of type

n) and let H, = P, /R (Py). For each n € A choose §(n,1),...,8(n,n) € X(H,)" according to
Lemma 8.4.17. We get a finite family of smooth algebraic k-stacks

(ﬁ%(n,j)(x’ Hn)O) 5
1,

parametrized by A x {1 ,n}. By the finiteness theorem (Theorem 3.1.6) we have that

Hl(ffjm7 ])(X Hy)o, Q) is ﬁnlte dimensional over @ for every pair (1,j) € A x {1,...,n} and

for every ¢ € Z. So if we set

bl(naj) = dim@l Hl(ﬁ%(nyy)(xa Hn)()a QZ)a

then

bi(
B(i) > bi

J) is a family of non-negative integers. Let B(7), for i € Z, be chosen such that

(n,7) for every (n,j) € Ax {1,...,n}, and such that B(i) = 0 for ¢ < 0.
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Lemma 8.4.19 There exists an integer N > 0 such that B(i) = O(iV).
Proof. This depends essentially on the spectral sequence (17) on page 32. O

We now define for ¢ > 0:

(i)
D(i) =Y Cn,w)BGi — 2 — 2r(n)(g — 1)),

n€A p=0

where r(n) is defined as in Lemma 8.4.6, noting that r(v), for v € U, depends only on the
components of Dyn G with respect to which v has non-zero coefficients.

Lemma 8.4.20 There exists an integer M > 0 such that D(i) = O(i™).
Proof. Follows form Lemmas 8.4.18 and 8.4.19. O
Lemma 8.4.21 Let ¢ > 0 be giwven. Then we have
dimg, H'(95(X,G), Q) < D(i).
Proof. By Proposition 8.4.12 we have
dimg, H*(9(X, G), Q) = dimg, H' (94(X, G) < i), Qo).
By Lemma 8.4.10 and the Gysin sequence we have

dimg, H (93(X, G)<iy, Qo)

< Z dimg, H =20 @=D+m) (gl (X G, Q)

veEY
v>0

m(0)<y(i)
v(4)
SONN dimg, BTG (9L(X, Gy, Qo).
neA p=0 pep(n)*
m(v)=p

Now if b € L(n)*, for n € A, we have
94(X,G)o = fj}l—degE,, (X, )G,

by Remark 7.3.7. Let § € X(P,;)" be the unique element such that d(§) = d — deg £, and
v(é) = b. Then by Proposition 8.4.9 we have

Hi(fjil—degE,, (X’ (EW)G)WQZ) = Hl(fj%(X’ Hﬂ)o’ QZ)

(Note that if no such § exists, then §}(X,G), = @.) Now by construction (and Lemma 8.4.17)
there exists a j € {1,...,n} such that

Sjé(X’ HU)O = ﬁ%(n,j)(X’ Hﬂ)o'
So assembling these remarks together, we see that

Hl(fj}l(Xa G)t”QZ) = Hi(fj%(n,j)(X’ Hﬂ)o’ QZ)
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and hence
dimg, H'(95(X, G)s, Q1) = bi(n, j) < B(i).
So we have
v(4)
dimg, H{(94(X,G), Q) < D> > B(i—2r(n)(g—1)—2p)

neA pu=0 nE‘U(n)"’

m(v)=p
(i)
= > > Clpw)B(i—2r(n)(g — 1) — 2p)
= D(¥),

what was to be proven. O

Theorem 8.4.22 Let G be a reductive group scheme over the curve X over the field Fy. Assume
that G satisfies Condition (§). Then tr ®,|H*(H5(X,G),C) converges absolutely, and we have

) o 1
we, [ OHT.G).0 = Y g
E€H}(X,G)

Proof. The fact that tr®,|H*($H4(X,G),C) converges absolutely follows from Lemma 8.4.21,
Corollary 8.4.14 and Proposition 8.4.12, because

f:D(i)q_”2
i=0

converges absolutely. This follows for example from the quotient criterion and Lemma 8.4.20.
We will now prove the convergence of

1

li -

Jim > ZAutE
EeHI(X,@)<m

and calculate its limit.
So let € > 0 be given, and choose ¢}, is such a way that

> D)y < e/2.
Then let my = 4(i))). Choose mg > m{, and iy > 4 such that mg < 7(ép). Then we have

> Dy < /2.

i=ig

For every i > ig we have (i) > mg. So we may calculate as in the proof of Lemma 8.4.21:

dim H ()X, G)my, Q) < Y Z C(n, w)B(i = 2r(n)(g — 1) — 2p1)
v(9)

> D Clnm)Bi—2r(n)(g —1) — 2p1)

= D(i).

IN
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Hence we have

S dim HY(OYY, Gy, Qg™ < 30 D@ < /2. (34)

i=ig i=ig

So we may now estimate

. L 1
W H(OUY.D.0 - Y e
BeH(X,G)<mq
io i . _ !
< G2 [ OO0~ Y e
P EeH;(X,G)<m,
(by Lemma 8.4.21)
io i . _ 1
= /24 Z(—l) tr @y |H* (H5(X, G)<ma, C) — Z #AutE
= EeH;(X,G)<m,
(by Proposition 8.4.12)
o 1
e A LG e P D DI vy
BeH (X,G)<mg
(by (34))
= €

by Corollary 8.3.13. O

References

(1]

Michael Artin. Algebraization of formal moduli I. In Global Analysis, Papers in Honor of
K. Kodaira, pages 21-71. University of Tokyo Press, Princeton University Press, 1969.

Michael Artin. Versal deformations and algebraic stacks. Inventiones mathematicae, 27:165—

189, 1974.
Nicolas Bourbaki. Groupes et Algébres de Lie, chapter 4, 5 and 6. Masson, Paris, 1981.

Pierre Deligne. Cohomologie E'tale, SGA4%. Lecture Notes in Mathematics No. 569.
Springer, Berlin—Heidelberg—New York, 1977.

Pierre Deligne. La conjecture de Weil. II. Publications Mathématiques, Institut des Hautes
Ftudes Scientifiques, 52:137-252, 1980.

Pierre Deligne and David Mumford. The irreducibility of the space of curves of given genus.
Publications Mathématiques, Institut des Hautes Ftudes Scientifiques, 36:75-109, 1969.

Michel Demazure and Alexandre Grothendieck. Schémas en Groupes II: Groupes de Type
Multiplicatif, et Stucture des Schémas en Groupes Générauz, SGA3. Lecture Notes in
Mathematics No. 152. Springer, Berlin—Heidelberg, 1970.

Michel Demazure and Alexandre Grothendieck. Schémas en Groupes IlII: Structure des
Schémas en Groupes Réductifs, SGA3. Lecture Notes in Mathematics No. 153. Springer,
Berlin—Heidelberg, 1970.

95



[9]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Peter Gabriel and Michel Zisman. Calculus of Fractions and Homotopy Theory. Frgebnisse
der Mathematik und ihrer Grenzgebiete Band 35. Springer-Verlag, Berlin—Heidelberg—
New York, 1967.

Jean Giraud. Cohomologie non abélienne. Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen Band 179. Springer-Verlag, Berlin—Heidelberg—New
York, 1971.

Alexandre Grothendieck. Techniques de construction et théorémes d’existence en géométrie
algébrique IV: Les schémas de Hilbert. Séminaire Bourbaki, 13e année(221), 1960-61.

Alexandre Grothendieck. Elements de Géométrie Algébrique IV: FEtude Locale des Schémas
et des Morphismes de Schémas, EGA4. Publications Mathématiques Nos. 20, 24, 28, 32.
Institut des Hautes Etudes Scientifiques, Bois-Marie—Bures-sur-Yvette, 1964, 65, 66, 67.

Alexandre Grothendieck. Cohomologie f-adique et Fonctions L, SGA5. Lecture Notes in
Mathematics No. 589. Springer, Berlin—Heidelberg—New York, 1977.

Alexandre Grothendieck and Jean A. Dieudonné. FEléments de Géométrie Algébrique I:
Le Langage de Schémas, EGAI. Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen Band 166. Springer-Verlag, Berlin—Heidelberg—New York, 1971.

Gunter Harder. Halbeinfache Gruppenschemata uber vollstandigen Kurven. Inventiones

mathematicae, 6:107-149, 1968.

Gunter Harder and M. S. Narasimhan. On the cohomology groups of moduli spaces of
vector bundles on curves. Mathematische Annalen, 212:215-248, 1975.

Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics No. 52. Springer-
Verlag, New York, 1977.

Donald Knutson. Algebraic Spaces. Lecture Notes in Mathematics No. 203. Springer,
Berlin—Heidelberg—New York, 1971.

Gérard Laumon. Champs Algébrigues. Prépublications No. 88-33. Université de Paris-Sud,
Mathématiques, Orsay, 1988.

James S. Milne. Etale Cohomology. Princeton Mathematical Series No. 33. Princeton
University Press, Princeton, New Jersey, 1980.

Annamalai Ramanathan. Moduli for principal bundles. In Algebraic Geometry Proceed-
wngs, Copenhagen 1978, Lecture Notes in Mathematics No.732, pages 527-533, Berlin—
Heidelberg, 1979. Springer.

Stephen S. Shatz. Algebraic families of vector bundles. Compositio Mathematica, 35:163—
187, 1977.

96



