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PRODUCTS OF CONSECUTIVE INTEGERS

MICHAEL A. BENNETT

Abstract

In this paper, a number of results are deduced on the arithmetic structure of products of integers
in short intervals. By way of an example, work of Saradha and Hanrot, and of Saradha and
Shorey, is completed by the provision of an answer to the question of when the product of k out of
k + 1 consecutive positive integers can be an ‘almost’ perfect power. The main new ingredient in
these proofs is what might be termed a practical method for resolving high-degree binomial Thue
equations of the form axn−byn = ±1, based upon results from the theory of Galois representations
and modular forms.

1. Introduction

A celebrated theorem of Erdős and Selfridge [6] states that the product of k � 2 con-
secutive integers can never be a perfect nth power, for n � 2. In the particular case
k = 2, this amounts to the observation that there are no consecutive positive nth
powers. If we shift this problem slightly, however, and ask to find two consecutive
integers whose product is, say, twice an nth power, then it becomes a rather more
formidable task. There are infinitely many such pairs for n = 2, corresponding to
Pell equations of the form u2 − 2v2 = ±1. The only known proof that the only
pair for larger values of n is (1, 2) depends upon a modification of Wiles’ proof of
Fermat’s last theorem (see [5]).

In this paper, we will investigate a rather innocent-looking Diophantine equation,
closely related to these questions. Our main result is the following theorem.

Theorem 1.1. If m, t, α, β, y and n are nonnegative integers with n � 3 and
y � 1, then the only solutions to the equation

m(m + 2t) = 2α3βyn

are those with

m ∈ {2t, 2t±1, 3 · 2t, 2t±3}.

We will actually deduce Theorem 1.1 from a pair of results, the first of which
constitutes the bulk of the work in this paper.

Theorem 1.2. Suppose that a < b are positive integers with ab = 2α3β for
α, β nonnegative integers. If n � 3 is an integer, then the only solutions in positive
integers x and y to the Diophantine equation axn − byn = ±1 are given by

(a, b, x, y, n) = (1, 2, 1, 1, n), (2, 3, 1, 1, n), (3, 4, 1, 1, n), (8, 9, 1, 1, n), (1, 9, 2, 1, 3).
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The second result that we require is part of recent joint work of Vatsal, Yazdani
and the author.

Theorem 1.3 (Bennett, Vatsal, Yazdani [4]). If α and β are nonnegative
integers and n � 5 is prime, then the equation

xn + 3βyn = 2αz3

has no solution in coprime nonzero integers (x, y, z) with |xy| > 1.

The proofs of the above theorems are, perhaps surprisingly, rather involved (or,
I should say, this is the case for our proofs). Some of the ingredients include results
on ternary Diophantine equations coming from the theory of Galois representations
and modular forms, bounds for solutions of binomial Thue equations derived
both from the method of Thue–Siegel and from lower bounds for linear forms in
logarithms of algebraic numbers, and local methods. We wish to emphasize that
the techniques that we employ are, at least in part, new, and have not been applied
in such a setting before. Indeed, our main goal in writing this paper is to exhibit a
concrete example of a polynomial-exponential equation where:

(i) traditional techniques based on lower bounds for linear forms in logarithms
fail to provide a complete solution, and

(ii) the addition of arguments based upon Frey curves proves adequate to the
task.

A couple of corollaries may be of interest. The first is a generalization of classical
work of Størmer [17] and Ljunggren [11] on Diophantine equations of the form
x2 −2αyn = ±1 (which has rather curious applications to, for example, the compu-
tation of π; see [13] for details).

Corollary 1.4. Let D = 2α3β , where α and β are nonnegative integers. Then
the only solutions to the equation

x2 − Dyn = ±1 (1)

in positive integers (x, y, n) with n � 3 are given by

(x, y, n,D) =




(1, 1, n, 2), (2, 1, n, 3), (3, 1, n, 8), (5, 1, n, 24),
(7, 1, n, 48), (17, 1, n, 288), (3, 2, 3, 1), (5, 2, 3, 3),
(7, 2, 4, 3), (17, 2, 5, 9), (239, 13, 4, 2).

Another straightforward corollary of Theorem 1.1 (and, indeed, a motivation for
this paper) is an extension of a result of Hanrot, Saradha and Shorey [8]. Before
we state this, we require a little background material. The theorem of Erdős and
Selfridge [6], to which we alluded at the beginning of this introduction, states that
the equation

m(m + 1) . . . (m + k − 1) = yn

has no solutions in positive integers x, y, k and n, with k � 2 and n� 2. Many
generalizations of this result, suggested in [6] or otherwise, have since been
considered. For example, we may treat the Diophantine equation

(m + d1)(m + d2) . . . (m + dt) = byn, (2)
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where m, t, b, y and n are positive integers with n � 3, where P (b), the greatest
prime divisor of b, is ‘small’, and where the di are distinct integers from a short
interval. Along these lines, assuming that

0 � d1 < d2 < . . . < dt < k, m > kn and P (b) � k,

Saradha [15] (for k � 4) and Győry [7] (for k ∈ {2, 3}) were able to show that
equation (2) has no solutions, provided that k = t. In the case k = t + 1, a similar
conclusion was obtained by Saradha [15] for k � 9, and by Hanrot, Saradha and
Shorey [8] if 6 � k � 8. Theorem 1.1 enables us to extend this result to k � 3 as
follows.

Corollary 1.5. Let t ∈ {2, 3, 4}. Then equation (2) has only the following
solutions in positive integer m and integers 0 = d1 < . . . < dt � t, where P (b) � t+1
and n � 2 (or n � 3 if t = 2).

t m di

2 1, 2, 3, 8 {0, 1}

2 1, 2, 4, 6, 16 {0, 2}

3 1, 2, 48 {0, 1, 2}

3 1, 3, 24 {0, 1, 3}

3 1, 6 {0, 2, 3}

t m di

4 1, 2, 3 {0, 1, 2, 3}

4 1, 2, 4, 8 {0, 1, 2, 4}

4 1, 2, 5 {0, 1, 3, 4}

4 1, 2, 6 {0, 2, 3, 4}

It does not seem that the techniques of [8] may be adapted to handle the cases
considered here. Moreover, our approach does not require the restriction to m >
(t + 1)n (which is, admittedly, a mild one).

2. Proof of Theorem 1.1

Let us begin by proving Theorem 1.1, assuming that Theorem 1.2 holds. Suppose
that we have

m(m + 2t) = 2α3βyn

for integers n � 3, y � 1 and α, β, t � 0, where, without loss of generality, y is
coprime to 6. Write

m = 2α03β0m1,

with m1 also coprime to 6. We investigate the cases α0 < t, α0 = t and α0 > t
separately.

If we have α0 < t, then α = 2α0 and hence, if further β0 = 0, from

m1(m1 + 2t−α0) = 3βyn

there exist odd coprime positive integers a and b such that m1 = an and

m1 + 2t−α0 = 3βbn,

whence
an − 3βbn = −2t−α0 . (3)
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By Theorem 1.3, if n has a prime factor exceeding 3, then a = b = 1, and so an old
result of Levi ben Gerson (see [13]) implies that β = 1 and t−α0 = 1, or else β = 3
and t − α0 = 3. These conditions lead to m = 2t−1 and m = 2t−3, respectively.
For the remaining values of n, without loss of generality, we may suppose that
n ∈ {3, 4}.

If n = 3 and β ≡ 1 (mod 3), we may appeal to a result of Selmer [16], to the
effect that the ternary equations

X3 + 3Y 3 = 2γZ3 (γ ∈ Z)

have no solutions in coprime integers X, Y and Z with |XY Z| > 1. In our situation,
this implies that a = b = 1, and so t − α0 = 1, whereby m = 2t−1. If, on the other
hand, β ≡ 2 (mod 3), since the Diophantine equation X3 − 9Y 3 = 2k has only
the solutions (X,Y ) = (1, 0), (X,Y ) = (−2,−1) and (X,Y ) = (−1,−1) (this may
be readily proved using standard techniques for Thue–Mahler equations; see, for
example, [18] or [19]), we conclude that m = 2t−3. Finally, if β ≡ 0 (mod 3), we
find, by parity, that a2 + ab + b2 = 1, contradicting the fact that a, b ∈ N.

If n = 4, considering equation (3) modulo 3 and 16 and factoring the left-hand
side of (3) leads to the conclusion that only the equations

a4 − 3βb4 = −2, with β ≡ 1 (mod 4)

and
a4 − 3βb4 = −8, with β ≡ 2 (mod 4)

have solutions in odd coprime positive integers. The second of these, after factoring,
has just the solution a = b = 1, β = 2, again leading to m = 2t−3. A like conclusion
(that is, that a = b = β = 1 is the only positive solution) obtains for the first
equation, from work of Ljunggren [10], and leads to m = 2t−1.

Next, suppose that α0 < t and β0 > 0 (so that β0 = β). We can thus find odd
coprime positive integers a and b for which

m1 = an and 3β0m1 + 2t−α0 = bn,

and so
bn − 3β0an = 2t−α0 . (4)

Again, if n has a prime factor p� 5, then Theorem 1.3 yields a= b = 1, con-
tradicting equation (4), the two sides of which have opposite signs. If n= 4, local
considerations (modulo 3 and 16) imply that (4) has no positive odd solutions.
The case n= 3 of (4) may be handled as per equation (3), only this time with no
corresponding solutions.

For the remaining possibilities, where α0 � t, we appeal to Theorem 1.2 (whose
proof will follow this section). If α0 = t and β0 = 0, we find that

m1(m1 + 1) = 2α−2α03βyn,

and so
an − 2α−2α03βbn = −1

for some odd coprime a, b ∈ N, whereby, from Theorem 1.2, a = b = α − 2α0 = 1
and β = 0 (so that m = 2t). If α0 = t and β0 > 0, then

m1(3β0m1 + 1) = 2α−2α0yn,
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and so

3β0an − 2α−2α0bn = −1,

for a, b ∈ N odd, whence a = b = 1 and β0 = 1 (so that m = 3 · 2t).
If α0 > t and β0 = 0, then α = α0 + t and

m1(2α0−tm1 + 1) = 3βyn,

so that

3βan − 2α0−tbn = 1.

Again applying Theorem 1.2 gives a = b = 1, and so m ∈ {2t+1, 2t+3}. Finally, if
α0 > t and β0 > 0, then

m1(3β02α0−tm1 + 1) = yn,

and so

an − 3β02α0−tbn = 1,

which, by Theorem 1.2, has no positive integral solutions. This completes the proof
of Theorem 1.1.

3. Proof of Theorem 1.2

We now turn our attention to proving Theorem 1.2. To do this, we will appeal
to a pair of results on ternary Diophantine equations that follow from the theory
of Galois representations and modular forms. The first of these combines work of
Kraus [9], Darmon and Merel [5] and Ribet [14], and provides a generalization of
the approach of Wiles for ternary equations of signature (n, n, n).

Theorem 3.1. If a and b are coprime positive integers with ab = 2α3β , where
α and β are nonnegative integers such that α = 0 or β = 0 or α � 4, then, if n � 5
is prime, the equation

axn + byn = zn

has no solution in coprime nonzero integers (x, y, z) with |xy| > 1.

Generalizing some work of Darmon and Merel [5], Vatsal, Yazdani and the author
have proved analogous results for ternary equations of signature (n, n, 3). As easy
consequence of these methods is the following lemma.

Lemma 3.2. If a and b are coprime positive integers with ab = 2α3β , where α
and β are positive integers with β > 1, then, if n � 5 is prime, the equation

axn + byn = z3

has no solution in coprime nonzero integers (x, y, z) with |xy| > 1.

Proof. To prove the above result, we argue as in [4]. The fact that there
exist no weight 2 cuspidal newforms with trivial Nebentypus character and level
N ∈ {2, 6, 18}, leads, via [4, Lemma 3.4], to the conclusion stated here.
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Finally, through an application of the hypergeometric method of Thue and Siegel,
the author has proved the next theorem.

Theorem 3.3 (Bennett [2]). If a, b and n are integers with ab �= 0 and n � 3,
then the equation

|axn − byn| = 1 (5)

has at most one solution in positive integers (x, y).

Applying these results (with z = ±1), it remains, for n � 5 prime, to solve
equation (5) with (a, b) equal to (1, 6), (1, 12), (1, 24) and (3, 8). To deal with these
equations, we use a lower bound for linear forms in logarithms of algebraic numbers:
say, that implicit in the following result of Mignotte.

Theorem 3.4 (Mignotte [12]). Let

F (x, y) = axn − byn, a �= b,

be a binary form of degree n � 3, with positive integer coefficients a and b. Put
A = max{a, b, 3}. Then, for y > |x| and F (x, y) �= 0, we have

|F (x, y)| � |b|
1.1

yn · exp
{
−

(
2 + η

3
· U2

λ
log A +

2(2 + η)
3

U + 1
)

log y

}

· exp
{
− θ

(
1 +

h

λ

)3/2

(log A · log y)1/2

}

· exp {−3.04h − 2U log A − 2.16 log A} ,

where

λ = log
(

1 +
log A

|log(a/b)|

)
,

h = max
{

5λ, log λ + 0.47 + log
(

n

log A
+

1.5
log (max{y, 3})

)}

and

U =
4h

λ
+ 4 +

λ

h
, η =

1
223

, θ =
16

√
6(2 + η)
3

.

To obtain good upper bounds upon n, we exploit some properties of a particular
(Frey) elliptic curve corresponding to a putative solution to axn−byn = 1. In effect,
we consider such an equation to be a special case of a ternary equation of the form
axn − byn = zm for one of m = 2, m = 3 or m = n (see, for example, [3], [4] or [9],
respectively, for details on such equations). If 3 | b, for example, we may, following
[4], consider the curve

E : Y 2 + 3XY + bxnY = X3. (6)

As it transpires, this is a good choice for E because the discriminant of E turns out
to be of the form 2α3βmn for integers α, β and m. By Theorem 3.1 and Lemma 3.2,
we can suppose that gcd(y, 6) = 1 (and, trivially for our choices of (a, b), that
|y| > 1). We associate to the elliptic curve E, a (modular) Galois representation

ρE,n : Gal(Q/Q) −→ GL2(Fn),

on the n-torsion points E[n] of E.
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For n � 5 prime, by [4, Lemma 3.4], this representation arises from a weight 2
cuspidal newform

f = fE =
∞∑

n=1

cnqn,

of trivial character and level 54. Since all newforms at this level are one-dimensional,
we see, for each prime p � 5, that cp = ap, where ap is the pth Fourier coefficient
of an elliptic curve of conductor 54. If p � 5 is a prime dividing y, then E has
split multiplicative reduction at p and hence, via [4, Proposition 4.2], n necessarily
divides p + 1 − ap. It follows from the Hasse–Weil bounds that n < p + 1 + 2

√
p,

and hence that y + 1 + 2
√

y > n, whereby

y > n − 2
√

n. (7)

We will now employ Theorem 3.4 to deduce upper bounds upon n. Since (a, b) is
(1, 6), (1, 12), (1, 24) or (3, 8), we may assume that A = b, and that

λ =




log 2, in the first three cases,

log
(

1 +
log 8

log(8/3)

)
, if (a, b) = (3, 8),

and
h = log λ + 0.47 + log

(
n

log b
+

1.5
log y

)
.

Substituting these into Theorem 3.4 and using inequality (7) leads, after some
routine calculations, to the conclusion that |axn − byn| > 1 for positive integers x
and y, provided that n > n0 is prime, where n0 is given as follows.

(a, b) (1, 6) (1, 12) (1, 24) (3, 8)

n0 4831 6553 8269 5531

Note that, in the case (a, b) = (3, 8), in order to employ the argument leading to
(7), we have interchanged the roles of a and b.

We have thus shown that any equations of the shape (5) with (a, b) equal to (1, 6),
(1, 12), (1, 24) or (3, 8), for which we have positive integral solutions with n prime,
necessarily have n � n0. In the next two sections, we will tackle these remaining
equations.

4. Solving high-degree binomial Thue equations

We begin by presenting what might be considered a ‘practical’ method for
completely resolving a given binomial Thue equation of the shape axn − byn = 1,
for arbitrary n � 3. In our situation, we will in fact restrict attention to prime
exponents n � 7. For larger values of n, say n > 100, a traditional approach via
linear forms in logarithms is impractical, due to the difficulty involved in computing
systems of independent units in Q( n

√
a/b), a necessary precondition for solving

the given equation. Our method is rather different. If we actually have a positive
solution (for example, if a = 2 and b = 3), then we may employ Theorem 3.3 to
reach the desired conclusion. If not, we search for a local obstruction, by considering
the equation modulo a prime of the form p = 2kn + 1, coprime to ab, for k ∈ N.
For such a prime, there are at most 2k + 1 residue classes for xn modulo p, and
hence at most (2k + 1)2 possible residue classes for axn − byn modulo p. If none of
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these is congruent to 1 modulo p, we derive a contradiction. For example, in our
situation with (a, b) = (3, 8) and prime n satisfying 5 � n � 5531, we are able, in
each case, to find such corresponding p, via a simple computation.

If a = 1, however, we must modify the above approach, as the solution x = 1,
y = 0, ensures local solvability. In such a case, we will again consider axn − byn

modulo a prime of the form p = 2nk + 1, coprime to ab. If the congruence

axn − byn ≡ 1 (mod p) (8)

implies that p |xy, then the relevant Frey curve E, corresponding to the putative
solution (which may be slightly more complicated than that given in (6)),
necessarily has multiplicative reduction (possibly not split) at p. Its corresponding
mod p Galois representation ρE thus satisfies

trace ρE(Frobp) = ±(p + 1),

whence, arguing as in the previous section and appealing to [4, Proposition 4.2],
n divides

NormK/Q(p + 1 ± cp).

Here, cp is the pth Fourier coefficient of a weight 2 cuspidal newform of level

N = 3δ Rad(ab) = 3δ
∏
p|ab

p

for some −1 � δ � 2, where the form has coefficients in a number field K (again,
see [4] for details of how to compute N precisely). If we find, after calculating these
norms for each form at level N , that in all cases

NormK/Q(p + 1 ± cp) �≡ 0 (mod n),

then we reach the desired contradiction. In our situation, with a = 1 and b ∈
{6, 12, 24}, our curve is just that given in (6) whence, as in the previous section, we
have split multiplicative reduction at p, and so

trace ρE(Frobp) = p + 1,

whereby, as before,
ap ≡ p + 1 ≡ 2 (mod n), (9)

where ap is the pth Fourier coefficient of an elliptic curve of conductor 54. If this fails
to occur, then we conclude as desired. In particular, if k is not too large, relative to
n, say k � (n − 5)/8, then the Hasse–Weil bounds imply that |ap| < n − 2, and so
we obtain a contradiction, unless ap = 2. Note that for the two isogeny classes of
elliptic curves over Q with conductor 54, the set of prime indices for which ap = 2
is the same in either case: p = 19, 37, 109, 757, . . . .

For example, let us consider u7 − 6v7 = 1. We take p = 29, and we note that
r7 ≡ 0,±1,±12 (mod 29) for integral r. It follows, if 29 fails to divide v, that

u7 − 6v7 ≡ ±2,±3 ± 5,±6,±7,±11,±13,±14 (mod 29),

and hence the equation u7 − 6v7 = 1 has no positive solutions in such a case. If, on
the other hand, v ≡ 0 (mod 29), the fact that c29 = ±6 for the (two isogeny classes
of) elliptic curves of conductor 54 contradicts identity (9) (where we have p = 29
and n = 7). It follows that the Diophantine equation u7 − 6v7 = 1 has no solutions
in positive integers u and v.
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We carry out this procedure for all primes 5 � n � n0, for the pairs (a, b) = (1, 6),
(a, b) = (1, 12) and (a, b) = (1, 24). (The actual computation takes only a few minutes
on a Sun Ultra 10; full data is available from the author on request.) In every case,
we are able to find a prime p = 2nk + 1, from which we can conclude that (5) has
no solutions in positive integers (x, y). These primes range from 23 � p � 432781
(where this last value corresponds to (a, b) = (1, 24) and n = 7213). In all but one
case, the prime p is the smallest prime of the form 2nk+1 for which the congruence
(8) implies that p | xy. The only exception corresponds to the three cases where
n = 197, and consideration of the equation

ax197 − by197 = 1

modulo 3547 implies that p | xy. Since a3547 = 2 for any elliptic curve of conductor
54, we cannot use this prime to conclude that the above equations are insoluble
in positive integers. If, however, we consider these equations modulo p = 4729,
we are led to the conclusion that y ≡ 0 (mod 4729), contradicting the fact that
a4729 = ±49. This completes the proof of Theorem 1.2 in the case where n � 7 is
prime.

5. Solving low-degree binomial Thue equations

To finish the proof of Theorem 1.2, it remains to solve all possible Thue equations
of the shape (5) with ab = 2α3β and n ∈ {3, 4, 5}. We may assume, without loss
of generality, that a and b are positive, coprime integers with a < b, ab = 2α3β

and 0 � α, β � n − 1. For n = 3, this leaves us with precisely twelve equations of
the shape ax3 − by3 = 1 to solve. For n = 4, we have twenty-four equations of the
form ax4 − by4 = 1, and a like number of the form ax4 − by4 = −1. Finally, for
n = 5, Theorem 3.1 and Lemma 3.2 imply that we may suppose that β = 1 and
α ∈ {1, 2, 3}. Local considerations modulo 9, 11 and 16, together with Theorem 3.3,
reduce the problem, in all cases, to that of solving the equations xn − 2α3βyn = 1,
which we do via standard techniques based on lower bounds for linear forms in
logarithms in conjunction with lattice basis reduction. We may, for example, employ
the computational package Kant. For forms of such low degree and height, this is
nowadays a relatively routine matter (though this is by no means the case for even
moderately large values of n). In conclusion, the only solutions that we encounter
are those corresponding to

(a, b, n) =




(1, 2, n),
(2, 3, n),
(3, 4, n),
(8, 9, n),
(1, 9, 3).

This concludes the proof of Theorem 1.2.

6. Proof of Corollary 1.4

We now turn our attention to the corollaries of Theorem 1.1. Let us begin by
supposing that x2 −Dyn = −1, for x and y positive integers, D = 2α3β with α and
β nonnegative integers, and n � 3 an integer. Since D divides x2 +1, we necessarily
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have β = 0. If n � 7 is prime, then, from [3, Theorem 1.2], we conclude that α = 1.
In this case, work of Størmer [17] and Ljunggren [11] allows us to conclude that
x = y = 1, or that x = 239, y = 13 and n = 4.

Let us next suppose that x2 − Dyn = 1, for x and y positive integers, D = 2α3β

with α and β nonnegative, and n � 3. It follows that

(x − 1)(x + 1) = 2α3βyn

and so, from Theorem 1.1, x ∈ {2, 3, 5, 7, 17}.
This completes the proof of Corollary 1.4.

7. Proof of Corollary 1.5

To prove Corollary 1.5, we begin by supposing that we have positive integers m,
t, b and n, with 2 � t � 4 and

(m + d1)(m + d2) . . . (m + dt) = byn,

where 0 � d1 < d2 < . . . < dt � t, P (b) � t + 1 and (so that we may apply
Theorem 1.1) n � 3. Writing m+di = aiy

n
i , where ai is nth-power-free, we consider

the set S, consisting of integers di for which P (ai) � 3. Corollary 1.5 will follow
from Theorem 1.1 (after some rather benign calculations) if we can show that S
necessarily contains two distinct elements di and dj for which di−dj = 2α for some
nonnegative integer α.

We may view this as a graph-theoretic problem. Given k � t and m, write, for
each i with 0 � i � k−1, m+i = ciei where P (ci) � k and ei is coprime to

∏
p�k p.

We define a graph Sm to consist of vertices i for which P (ci) � 3. We connect two
vertices of Sm with an edge if they differ by a nonnegative power of 2. Notice that
Sm depends only on the residue class of m modulo

∏
5�p�k p. It is thus a finite

computation to determine, for each k, the minimal number of vertices i ∈ Sm that
need be removed to totally disconnect the graph Sm.

For example, if k = 3, then Sm = {0, 1, 2} for each m, and so we would need
to remove at least two vertices to disconnect Sm. This implies that Corollary 1.5
holds in the case where t = 2. Similarly, k = 4 implies that Sm = {0, 1, 2, 3}, again
requiring two removed vertices (whence Corollary 1.5 holds for t = 3). Finally, if
k = 5, then

Sm =




{1, 2, 3, 4}, if m ≡ 0 (mod 5),
{0, 1, 2, 3}, if m ≡ 1 (mod 5),
{0, 1, 2, 4}, if m ≡ 2 (mod 5),
{0, 1, 3, 4}, if m ≡ 3 (mod 5),
{0, 2, 3, 4}, if m ≡ 4 (mod 5),

again requiring the removal of at least two vertices to disconnect. This completes
the proof of Corollary 1.5 in the case where n � 3.

We note that this argument may be easily extended to deal with larger values of
k (and, indeed, of k− t; we may, for example, treat k− t = 2, provided that t � 7).
In such a situation, the number of cases for Sm grows quite quickly (exponentially
in k) and, though it an easy matter to generate the graphs Sm for a value of k from
those corresponding to k − 1, we are nonetheless restricted to relatively small k.
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To handle equation (2) with n= 2, we note that the elliptic equations
corresponding to

(m + 1)(m + d2)(m + d3) = 2α3βy2, 0 = d1 < d2 < d3 � 3,

and

(m + d1)(m + d2)(m + d3)(m + d4) = 2α3β5γy2, 0 = d1 < d2 < d3 < d4 � 4

(where we may suppose that α, β, γ ∈ {0, 1}), are easily solved via, say, lower
bounds for linear forms in elliptic logarithms. (In fact, in many cases, elementary
arguments suffice.) Such an approach is implemented in the computational package
Simath. Employing this, we find only the positive solutions m given in the statement
of Corollary 1.5, completing the proof. Alternatively, we can obtain this result by
utilizing a lower bound for simultaneous rational approximation to

√
2 and

√
3 of

the shape

max
{∣∣∣∣

√
2 − p1

q

∣∣∣∣ ,

∣∣∣∣
√

3 − p2

q

∣∣∣∣
}

> 10−10q−1.8161,

valid for positive integers p1, p2 and q (see [1] for details). This enables one to show
that integer solutions to the simultaneous equations

x2 − 2z2 = u, y2 − 3z2 = v,

satisfy

max {|x|, |y|, |z|} �
(
1010 max {|u|, |v|}

)5.5
. (10)

To see how such a result may be of use in solving equation (2) with n = 2, suppose,
by way of example, that

m(m + 2)(m + 3) = 3y2,

for positive integers m and y. It follows that either m = 1 and y = 2, or that there
exist positive integers a, b and c such that

m = 6a2, m + 2 = 2b2, m + 3 = c2,

whereby
c2 − 2b2 = 1, (3a)2 − 3b2 = −3.

Inequality (10) thus implies that c < 1058. A quick check of convergents in the
continued fraction expansion of

√
2 shows that (a, b, c) = (1, 2, 3). The other

remaining cases follow in a similar fashion.

Acknowledgments. The author would like to thank the anonymous referee for
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