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ON THE REPRESENTATION OF UNITY
BY BINARY CUBIC FORMS

MICHAEL A. BENNETT

Abstract. If F (x, y) is a binary cubic form with integer coefficients such that
F (x, 1) has at least two distinct complex roots, then the equation F (x, y) = 1
possesses at most ten solutions in integers x and y, nine if F has a nontrivial
automorphism group. If, further, F (x, y) is reducible over Z[x, y], then this
equation has at most 2 solutions, unless F (x, y) is equivalent under GL2(Z)-
action to either x(x2 − xy − y2) or x(x2 − 2y2). The proofs of these results
rely upon the method of Thue-Siegel as refined by Evertse, together with lower
bounds for linear forms in logarithms of algebraic numbers and techniques from
computational Diophantine approximation. Along the way, we completely
solve all Thue equations F (x, y) = 1 for F cubic and irreducible of positive
discriminant DF ≤ 106. As corollaries, we obtain bounds for the number of
solutions to more general cubic Thue equations of the form F (x, y) = m and
to Mordell’s equation y2 = x3 + k, where m and k are nonzero integers.

1. Introduction

In 1909, Thue [57] derived the first general sharpening of Liouville’s theorem on
rational approximation to algebraic numbers, proving, if θ is algebraic of degree
n ≥ 3 and ε > 0, that there exists a constant c(θ, ε) such that∣∣∣∣θ − p

q

∣∣∣∣ > c(θ, ε)
q
n
2 +1+ε

for all p ∈ Z and q ∈ N. It follows almost immediately, if F (x, y) is an irreducible
binary form (in Z[x, y]) of degree at least three and m a nonzero integer, that the
equation

F (x, y) = m(1.1)

possesses at most finitely many solutions in integers x and y (to see this, apply
Thue’s inequality to the roots of F (x, 1) = 0). In the intervening years, there
has developed an extensive body of literature devoted to explicitly solving “Thue”
equations, or bounding the number of such integral solutions; in the latter regard,
we mention a result of Bombieri and Schmidt [14] (see Stewart [53] for further
refinements):
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Theorem 1.1. If F is an irreducible binary form of degree n and m is a nonzero
integer, then equation (1.1) possesses at most

c n1+ω(m)

solutions in coprime integers x and y, where ω(m) denotes the number of distinct
prime factors of m and the constant c is absolute (for n sufficiently large, one may
take c = 430).

Note that this upper bound upon the number of solutions to (1.1) is independent
of the coefficients of the form F ; a result of this flavour was first deduced in 1983
by Evertse [23]. In a certain sense, this result is sharp, at least up to the constant
c. Indeed, the example

F (x, y) = xn + r(x − y)(2x− y) · · · (nx− y),

where r is a nonzero integer, has the corresponding solutions (1, 1), (1, 2), . . . , (1, n)
to (1.1) with m = 1.

The effective solution of an arbitrary Thue equation has its origins in the follow-
ing theorem of Baker [4]:

Theorem 1.2. If F is an irreducible binary form of degree n, κ > n+ 1 and m is
a nonzero integer, then every integer solution (x, y) of equation (1.1) satisfies

max{|x|, |y|} < c elogκ |m|

where c is an effectively computable constant depending only on n, κ and the coef-
ficients of F .

More recent refinements of this result, together with techniques from computational
Diophantine approximation, have led to practical algorithms for solving Thue equa-
tions. We will discuss these briefly in Section 9; the reader is directed to [60] and
[51] for more details.

In what follows, we restrict our attention to binary cubic forms with integer
coefficients, i.e. polynomials of the shape

F (x, y) = ax3 + bx2y + cxy2 + dy3.

We require some terminology before we can state our results. Let us call forms F1

and F2 equivalent (and write F1 ∼ F2) if they are equivalent under GL2(Z)-action
(i.e. if there exist integers a1, a2, a3 and a4 such that

F1(a1x+ a2y, a3x+ a4y) = F2(x, y)

for all x and y, where a1a4 − a2a3 = ±1). The discriminant DF of such a form is
given by

DF = 18abcd+ b2c2 − 27a2d2 − 4ac3 − 4b3d = a4
∏
i<j

(αi − αj)2

where α1, α2 and α3 are the roots of the polynomial F (x, 1). We denote by NF the
number of solutions in integers x and y of the Diophantine equation

F (x, y) = 1.(1.2)

Note that if F1 ∼ F2, then NF1 = NF2 and DF1 = DF2 . The quantity NF will be
the primary object of study in this paper; its behaviour differs quite substantially
depending on whether DF is positive or negative. We discuss these situations in
turn.
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1.1. Forms of negative discriminant. When F is a binary cubic form of negative
discriminant, we have a fairly complete understanding of NF . In fact, more than
75 years ago, Delone [20] and Nagell [40] established independently that equation
(1.2) has at most five solutions if DF < 0. More precisely, they proved

Theorem 1.3. If F is an irreducible binary cubic form with integer coefficients
and DF < 0, then NF ≤ 5. Moreover, if NF = 5, then F is equivalent to

x3 − xy2 + y3,

with DF = −23 and, if NF = 4, then F is equivalent to either

x3 + xy2 + y3 or x3 − x2y + xy2 + y3,

with discriminant −31 or −44, respectively.

Their proofs rely crucially upon the fact that, if DF < 0, the number field
generated over Q by the real root of the equation F (x, 1) = 0 has a ring of integers
with a single fundamental unit. They utilize what would now be considered to be a
special case of Skolem’s p-adic method (though, in the interests of historical fairness,
it might be reasonably regarded as the origin of this technique) together with what
Delone terms an “ascent algorithm”; the reader is directed to [21], Chapter VI for
details.

1.2. Forms of positive discriminant. The situation where DF > 0 is compli-
cated by the fact that the number field Q(ε) (where ε is any real root of F (x, 1) = 0)
has a ring of integers generated by a pair of fundamental units. In principle, as
noted by Ljunggren [33] and [34], the p-adic method used in case DF < 0 may in
fact be extended to treat this more difficult problem. For particular cubic forms
(i.e. those with DF = 49, 81; see e.g. [33] and [6]), such an approach has been
employed to solve equation (1.2). It does not, however, appear to be a straightfor-
ward matter to derive an explicit upper bound upon NF by this method, valid for
arbitrary cubic forms of positive discriminant. The main reason for this is that, in
order to apply the local method of Skolem, one requires exact information about
fundamental units in certain quadratic extensions of Q(ε).

In 1929, Siegel [48] used the theory of Padé approximation to binomial functions
(via the hypergeometric function) to show, for F cubic of positive discriminant,
that equation (1.2) has at most 18 solutions in integers x and y. Refining these
techniques, Evertse [24] reduced this upper bound to 12. In fact, in 1949, Gel’man
had already demonstrated that there could be at most 10 such solutions, provided
the discriminant of the form was large enough (see Delone and Fadeev [21], Chapter
V for a proof; Evertse [24] indicates that DF > 5× 1010 suffices).

The main result of this paper is, in essense, a technical appendix to [24]:

Theorem 1.4. If F (x, y) is a homogeneous cubic polynomial with integral coeffi-
cients for which F (x, 1) has at least two distinct complex roots, then the equation

F (x, y) = 1

possesses at most 10 solutions in integers x and y.

As observed by Bombieri and Schmidt [14], bounds for the number of solutions
to equation (1.2) lead to corresponding results for equation (1.1). In fact, Theorem
1.4 immediately implies
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Corollary 1.5. If F (x, y) is a homogeneous cubic polynomial with integral coeffi-
cients and nonzero discriminant and m is a nonzero integer, then the equation

F (x, y) = m

possesses at most 10 × 3ω(m) solutions in coprime integers x and y. Here, ω(m)
denotes the number of distinct prime factors of m.

Additionally, a result of the flavour of Theorem 1.4 leads, via an argument of
Mordell [39], to bounds for the number of solutions of Mordell’s equation:

Corollary 1.6. If k is a nonzero integer, then the equation

y2 = x3 + k

has at most 10 h3(−108k) solutions in integers x and y, where h3(−108k) is the
class number of binary cubic forms of discriminant k.

We note, if ε > 0, one may show that

h3(−108k)� |k|1/2+ε

(see e.g. the forthcoming paper of the author and T. D. Wooley [13]).
Theorem 1.4 is almost sharp, since the equation

x3 − x2y − 2xy2 + y3 = 1(1.3)

(corresponding to a cubic form of discriminant 49) has the nine integral solutions
(x, y) = (1, 0), (0, 1), (−1, 1), (−1,−1), (2, 1), (−1,−2), (5,−4), (4, 9) and (−9,−5).
That this list is complete was stated by Ljunggren [33] and proved by Baulin [6] (via
the p-adic method alluded to earlier). In the following table, we give representatives
of all known equivalence classes of irreducible cubic forms for which NF ≥ 6. In
each case, NF has now been determined exactly (refer to the cited references):

F (x, y) DF NF References
x3 − x2y − 2xy2 + y3 49 9 [6], [25], [33], [44]

x3 − 3xy2 + y3 81 6 [25], [33], [59]
x3 − 4xy2 + y3 229 6 [15], [25], [44]
x3 − 5xy2 + 3y3 257 6 [25]

x3 + 2x2y − 5xy2 + y3 361 6 [25]

Presumably, the “truth” of the matter is the following conjecture (essentially
due to Nagell [41] and refined by Pethő [42] and Lippok [32]), which states that the
forms in the above table are, up to equivalence, the only irreducible cubics with
NF ≥ 6:

Conjecture 1.7. If F is a binary cubic form with DF > 0, then NF = 9 if DF =
49, NF = 6 if DF ∈ {81, 229, 257, 361} and NF ≤ 5 otherwise.

As we describe in Section 4, there are infinitely many inequivalent cubic forms
F for which DF > 0 and NF = 5.

Our proof of Theorem 1.4 consists of some (very) slight refinements of a number
of technical lemmata from [24], together with some recent techniques from com-
putational Diophantine approximation, based upon lower bounds for linear forms
in logarithms of algebraic numbers and the L3 lattice basis reduction algorithm.
The paper is organized as follows. In Section 2, we treat the (rather simple) case
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of reducible forms. In such a situation, we are able to derive precise information
regarding solutions to equation (1.2). In Section 3, we consider irreducible forms
with nontrivial automorphism groups, obtaining a (sharp) refinement of Theorem
1.4. Section 4 contains mostly historical, expository remarks about families of cu-
bic Thue equations and their effective solution. In Section 5, we begin the proof of
Theorem 1.4 for irreducible forms, following the classical reduction theory of cubic
forms of positive discriminant. Section 6 introduces the Padé approximants that
play a crucial role in this proof and provides a number of fundamental inequalities
concerning them. In Section 7, we apply these inequalities to complete the proof
of Theorem 1.4 for cubic forms F with discriminant DF > 24000. In Section 8,
we discuss the problem of finding representatives for each equivalence class of cu-
bic forms with positive discriminant below a certain bound. Finally, in Section 9,
we briefly describe how one solves a collection of cubic Thue equations, via lower
bounds for linear forms in logarithms of algebraic numbers, together with tech-
niques from computational Diophantine approximation, and present the results of
these computations in our situation, completing the proof of Theorem 1.4.

2. Reducible forms

Let us take a brief interlude from the principal matter at hand to discuss the
(much simpler) situation where the form F (x, y) is reducible over Z[x, y]. In gen-
eral, equation (1.2) may have infinitely many integral solutions; F (x, y) could, for
instance, be a power of a linear or indefinite binary quadratic form that represents
unity. If F (x, y) is a reducible cubic form, however, we may very easily derive a
stronger version of Thue’s theorem, under the assumption that F (x, 1) has at least
two distinct zeros. Indeed, we have

Theorem 2.1. Suppose that F (x, y) is a reducible cubic form such that F (x, 1) has
at least two distinct roots (over C). If DF > 0, then we have NF ≤ 4. Further, if
NF = 4, then F is equivalent to

x
(
x2 − xy − y2

)
,

whereby DF = 5, and if NF = 3, then F is equivalent to

x
(
x2 − 2y2

)
(with DF = 32). If, on the other hand, DF ≤ 0, then NF ≤ 2 and NF = 2 implies
that F is equivalent to either

x
(
x2 + nxy + ny2

)
for some n with 1 ≤ n ≤ 3 (corresponding to DF = −3,−16 or −27, respectively),
or to

x (x+ y)2 or x (x+ 2y)2

(with DF = 0).

Proof. Let us suppose that F (x, y) is a binary cubic form, reducible over Z[x, y],
and that F (x, 1) has at least two distinct complex roots. We begin by applying the
following (almost trivial) lemma:

Lemma 2.2. If F is a reducible binary cubic form, then equation (1.2) has a so-
lution in integers x and y precisely when F ∼ G for a form G satisfying

G(x, y) = x
(
x2 + axy + by2

)
(2.1)

where a, b ∈ Z.
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Proof of Lemma 2.2. If F ∼ G and G satisfy (2.1), then G(1, 0) = 1 and so NF =
NG ≥ 1. Conversely, if there exist integers x0 and y0 such that F (x0, y0) = 1, then
necessarily gcd(x0, y0) = 1 and so there exist integers a and b with ax0 + by0 = 1.
It follows that the map x→ ax+ by, y → −y0x+ x0y has determinant 1 and sends
(x0, y0) to (1, 0), whereby F ∼ F , for

F (x, y) = (x+ jy)
(
x2 + kxy + ly2

)
and j, k, l ∈ Z. The lemma follows upon noting that the map x → x − jy, y → y
has determinant 1.

It follows that F must be equivalent to a form G satisfying (2.1), with at least
one of a or b nonzero (since otherwise G(x, 1) and hence F (x, 1) would have only a
single root). We readily compute that

DG = b2
(
a2 − 4b

)
.(2.2)

If G(x, y) = 1 for x and y integral, then it follows that x = ±1. In case x = 1, then
substituting for x in (2.1), we find that

by2 + ay = 0.(2.3)

Similarly, if x = −1, then (2.1) yields

by2 + ay + 2 = 0.(2.4)

Suppose first that a = 0 (so that b 6= 0). If x = 1, then (2.3) leads to only
the solution (x, y) = (1, 0). On the other hand, if x = −1, from (2.4) we have
y = ±

√
−2/b. In order to have y ∈ Z, we require that b = −2 (so that y = ±1). It

follows that if a = 0, then NG = 1 unless

G(x, y) = x
(
x2 − 2y2

)
.

Noting that the equation x(x2 − 2y2) = 1 has the integral solutions (x, y) =
(1, 0), (−1, 1) and (−1,−1), we conclude that NG = 3.

Next, let us suppose that a is nonzero. If DF = 0, then F ∼ G where, from
(2.2), we have either

G(x, y) = x2 (x+ ay)

or

G(x, y) = x

(
x+

(a
2

)2

y

)2

.

In the first case, if G(x, y) = 1, we have x = ±1 and x + ay = 1, whereby (x, y) =
(1, 0) or ay = 2 (so that a ∈ {±1,±2}). We may readily show that such forms are
equivalent, under GL2(Z)-action, to either x(x + y)2 or x(x + 2y)2. The second
possibility for G leads to the same conclusion. If, however, both a and b (and hence
DF and DG) are nonzero, we may note that equations (2.3) and (2.4) lead to

y ∈
{

0,
−a
b
,
−a±

√
a2 − 8b

2b

}
.

Since these four values sum to zero, if NG ≥ 3, we necessarily have NG = 4. In this
case,

a ≡ 0(mod b) and a2 − 8b = m2



ON THE REPRESENTATION OF UNITY BY BINARY CUBIC FORMS 1513

for some m ∈ Z, and also

−a±m ≡ 0(mod b),

whence m ≡ 0(mod b). Combining these facts, it follows that b2 divides 8b and so,
since b 6= 0 by hypothesis, b ∈ {±1,±2,±4,±8}. Now

a ≡ m ≡ 0(mod b) and a2 −m2 = 8b,

and so there exist positive integers u and v with u2 − v2 = 8/b which implies that
b = ±1. If b = 1, then a = ±3, while b = −1 leads to a = ±1. In all four cases,
we find that DG = 5 and so, since there is a unique equivalence class of binary
quadratic (and hence of reducible cubic) forms of discriminant 5 (Q(

√
5) has class

number 1), it follows that

G(x, y) ∼ x
(
x2 − xy − y2

)
.

Observing that the equation x(x2 − xy − y2) = 1 has the solutions (x, y) =
(1, 0), (1,−1), (−1,−1) and (−1, 2) completes our analysis in the cases where NF ≥
3.

Finally, assume that DF < 0 and NF = 2. From (2.2), we have a2 < 4b and
so, in order to have two distinct integral solutions to G(x, y) = 1, we must have
a
b ∈ Z \ {0}. It follows that (a

2

)2

< b ≤ |a|(2.5)

and so 1 ≤ |a| ≤ 3. In each of these cases, we find from (2.5) that |a| = b and
DG = −3,−16 or −27, corresponding to b = 1, 2 or 3, respectively. Again noting
thatQ(

√
−1) andQ(

√
−3) have class number 1, this concludes the proof of Theorem

2.1.

It is worth observing that there are infinite classes of nonequivalent reducible
cubic forms F with DF > 0 and NF = 2 (in contrast to the case of negative
discriminants detailed in the preceding Theorem). Indeed, the forms

Fn(x, y) = x
(
x2 + nxy − ny2

)
have positive discriminant if n ≥ 1 or n ≤ −5, and Fn(x, y) = 1 for (x, y) = (1, 0)
and (1, 1).

An amusing corollary of Theorem 2.1 is the following irreducibility criterium
(where we write, for a polynomial P (x) of degree n, P ∗(x, y) for the corresponding
binary form, given by P ∗(x, y) = ynP (x/y)):

Corollary 2.3. Suppose that P (x) is a cubic polynomial with integral coefficients
and discriminant DP , for which the equation P ∗(x, y) = 1 has at least three distinct
solutions in integers x and y. Then, if DP 6∈ {5, 32}, either P (x) is irreducible over
Z[x] or there exist coprime integers p and q such that P (x) = (px+ q)3.

In particular, this implies the irreducibility of polynomials of the shape

P (x) = r (x− a1) (x− a2) (x− a3)± 1,

if r is a nonzero integer and a1, a2 and a3 are distinct integers, or if r = ±1 and at
least two of a1, a2 and a3 are distinct (unless, without loss of generality, we have
a1 = a2 = a3 ± 2). See also Schur [45] and Heuberger [28].
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3. Automorphisms of cubic forms

For a given binary form F , let AutF denote the subgroup of elements of SL2(Z)
which fix F (i.e. σ ∈ AutF implies σ(F ) = F ). The following result of Ayad [3] (see
also Proposition 2.12 of Shintani [46]) completely characterizes those cubic forms
for which AutF is nontrivial:

Theorem 3.1. If F is a binary cubic form with DF 6= 0, then AutF is either
trivial or cyclic of order 3. The latter case occurs precisely for those forms which
are equivalent under SL2(Z)-action to

Gm,n(x, y) = mx3 + nx2y − (n+ 3m)xy2 +my3

for some m,n ∈ Z (whereby DF = (n2 + 3mn + 9m2)2). Further, if |AutF | = 3,
then NF ≡ 0(mod 3).

Applying Theorem 1.4 immediately yields the following:

Corollary 3.2. If F is a binary cubic form for which AutF is nontrivial and DF

is nonzero, then NF ≤ 9.

As previously noted, the equation G1,−1(x, y) = 1 (i.e. equation (1.3)) possesses
nine integral solutions and thus this result is sharp. Since the forms G1,r(x, y) have
NG ≥ 3 (indeed, as we mention in Section 4, NG has been completely determined
for these forms), it might be tempting to suppose that these are, up to equivalence,
the only forms with nontrivial automorphism groups for which (1.2) is solvable.
This is, in fact, untrue as there are infinite families of indices (m,n) for which

Gm,n 6∼ G1,r(3.1)

for all r ∈ Z, but still NGm,n ≥ 3. By way of example, if (m,n) = (2k+ 1,−3k− 1)
for k ∈ Z, then Gm,n(2, 1) = 1 and (3.1) holds for infinitely many values of k. To
see this, observe that DGm,n = (27k2 + 27k + 7)2 and so, if Gm,n ∼ G1,r, then

27k2 + 27k + 7 = r2 + 3r + 9

or

(2r + 3)2 − 27(2k + 1)2 = −26,

whose solutions grow exponentially in r and k. Note that if NGm,n > 0, parity
considerations ensure, necessarily, that m is odd.

4. Families of cubic Thue equations

The first infinite parametrized families of Thue equations to be solved were,
fittingly enough, done so by Thue [58], a fact that seems to be frequently overlooked.
Indeed, a proof that the equation

(a+ 1)xn − ayn = 1(4.1)

has only the solution x = y = 1 in positive integers, for a suitably large in relation
to prime n ≥ 3, follows immediately from the main theorem of [58]. As a specific
example, in Beispiel 1 of [58], one finds explicit bounds for integral solutions of the
inequality ∣∣(a+ 1)x3 − ay3

∣∣ ≤ c
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with a ≥ 37. These readily imply that the equation

(a+ 1)x3 − ay3 = 1

has only the solution x = y = 1 in integers, provided a ≥ 386 (or, with a modicum
of computation, with a ≥ 37) (see also Siegel [49]). We remark that the author
[11], building on the author’s joint paper with de Weger [12], has recently extended
Thue’s result to show that if a and n are arbitrary positive integers with n ≥ 3,
then equation (4.1) has only the solution x = y = 1 in positive integers.

In the case of parametrized families of cubic Thue equations of positive discrim-
inant, results are of a much more recent nature. In 1990, using the fact that the
underlying number fields are the so-called “simplest cubics”, Thomas [55] was able
to show that the equations

G1,n(x, y) = x3 + nx2y − (n+ 3)xy2 + y3 = 1

have only the solutions (1, 0), (0, 1) and (−1,−1) in integers, provided n ≥ 1.365×
107. This restriction was later removed by Mignotte [36] (except for the equations
with n = −1, 0 or 2, in which case, as previously observed, we have 6, 3 and 3
additional solutions). For a good overview of families of Thue equations (cubic and
otherwise) that have been solved in recent years, the reader is directed to Heuberger
[29]. For the purposes of the paper at hand, we will mention two further families,
the only ones known for which NF ≥ 5. It seems not unlikely that there are other
infinite families of cubic forms with NF = 5.

Define Fm(x, y) and Gn(x, y) by

Fm(x, y) = x3 − (m+ 1)x2y +mxy2 + y3

and

Gn(x, y) = x3 − n2x2y + y3,

for m,n ∈ Z. Provided m 6= −2,−1, 0 or 1, the equation Fm(x, y) = 1 has the
five distinct integral solutions (x, y) = (1, 0), (1, 1), (1,−m − 1), (0, 1) and (m, 1).
That this list is complete was proven, independently, by Lee [31] and Mignotte and
Tzanakis [38], for m suitably large (and, recently, by Mignotte [37], for m ≥ 2).
One observes that the cases m = 0 and m = 1 correspond to discriminants −23
and −31, respectively, i.e. to extreme examples of forms of negative discriminant.
Similarly, if n 6= 0, 1 or −1, then Gn(x, y) = 1 has the distinct solutions (x, y) =
(1, 0), (1, n), (1,−n), (0, 1) and (n2, 1). As Pethő [42] (Theorem 3) has remarked,
the families Fm and Gn are essentially disjoint. Indeed, if Fm ∼ Gn for some
integers m and n, then DFm = DGn . Since DFm = m4 + 2m3− 5m2− 6m− 23 and
DGn = 4n6 − 27, we therefore have

4n6 = m4 + 2m3 − 5m2 − 6m+ 4

or, equivalently, (
m2 +m− 3

)2 − (2n3
)2

= 5.

It follows that m2 + m − 3 = ±3 and 2n3 = ±2, whence m ∈ {−3,−1, 0, 2} and
n ∈ {−1, 1}. In each of these cases, the relevant form is equivalent to x3−xy2 +y3,
of discriminant −23.

Observe that both families Fm and Gn are equivalent to

F (x, y) = (x− a1y)(x− a2y)(x− a3y)± y3,(4.2)
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for suitable choices of integers a1, a2 and a3. Such polynomials have been termed
split forms by Thomas [55] (see also [56]). There has been substantial research on
split families in recent years; the reader is directed to [29] for details and extensive
references. We note that, in Section 9, we will discuss a family of non-split forms
for which NF ≥ 4 (see also [32]).

5. Reduction to a diagonal form

We return now to consideration of the problem of bounding NF for an arbitrary
cubic form of positive discriminant. A key observation that enables us to derive
relatively precise results in this situation is that we may reduce the problem at
hand to consideration of a diagonal form over a suitable imaginary quadratic field.
The method of Thue-Siegel is particularly well suited for application to such forms.
Virtually all of what follows is classical, deriving from work of Eisenstein, Hermite,
Arndt and Berwick; the reader is directed to Dickson [22] (Vol. 3, Chapter 12) for
references.

Let us define, for a cubic form F , an associated quadratic form, the Hessian
H = HF , and a cubic form G = GF , by

H(x, y) = −1
4

(
δ2F

δx2

δ2F

δy2
−
(
δ2F

δxδy

)2
)

and

G(x, y) =
δF

δx

δH

δy
− δF

δy

δH

δx
.

These forms are covariant with respect to the action of GL2(Z); i.e.

HF◦γ = HF ◦ γ and GF◦γ = GF ◦ γ
for all γ ∈ GL2(Z). If we write

F (x, y) = ax3 + bx2y + cxy2 + dy3

and

H(x, y) = Ax2 +Bxy + Cy2,

then it follows by routine calculation that

A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd

and

B2 − 4AC = −3DF .

Further, these forms are related to F (x, y) via the identity

4H(x, y)3 = G(x, y)2 + 27DFF (x, y)2(5.1)

(see Theorem 1 of Mordell [39], Chapter 24). Following Hermite, we will call a
cubic form F reduced if the Hessian of F , H(x, y) = Ax2 +Bxy + Cy2, satisfies

C ≥ A ≥ |B|.
It is a basic fact that every cubic form F of positive discriminant is equivalent to
a reduced form. The notion of reduction here is classical and differs somewhat
from that used by Belabas and Cohen in [8] and [9]. In fact, it is this latter, more
stringent version of reduction we will utilize in Section 8.
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We begin with a lemma that characterizes “very small” solutions of equation
(1.2).

Lemma 5.1. If F is an irreducible, reduced binary cubic form with positive dis-
criminant DF and Hessian H, then the equation F (x, y) = 1 has at most one
solution in integers x and y with H(x, y) < 1

2

√
3DF . If this solution exists, it is

given by one of (x, y) = (±1, 0).

Proof. Suppose that (x, y) is a solution to F (x, y) = 1 with y 6= 0. If |y| ≤ |x|,
then, since A ≥ |B|, we have that

H(x, y) ≥ Cy2 ≥ C ≥ 1
2

√
3DF ,

where the last inequality readily follows from B2 − 4AC = −3DF . If, on the other
hand, |y| ≥ |x|+ 1, then

H(x, y) ≥ (C − |B|) y2 + |B||y|+Ax2.

Since this is an increasing function of |y| and y 6= 0, we have

H(x, y) ≥ C +Ax2 ≥ C ≥ 1
2

√
3DF .

We conclude, if H(x, y) < 1
2

√
3DF , that y = 0 (and so x = ±1 accordingly).

When one speaks of “irreducible, reduced forms”, as Davenport comments, “the
terminology is unfortunate, but can hardly be avoided” ([18], page 184).

From now on, let us write ∆ = 3DF and assume DF ≥ 24000 (whence ∆ ≥
72000). We will work in the number field M = Q(

√
−∆) for a fixed choice of the

square root. From (5.1),

G(x, y) ± 3
√
−∆F (x, y)

2
are cubic forms inM [x, y] with coefficients conjugate to one another and no common
factors (since F (x, y) is also irreducible over M). It follows that they are cubes of
linear forms over M with the same properties, say ξ(x, y) and η(x, y), where (see
Evertse [24], displayed equation (11))

ξ(x, y)3 − η(x, y)3 = 3
√
−∆F (x, y),

ξ(x, y)3 + η(x, y)3 = G(x, y),

ξ(x, y)η(x, y) = H(x, y)

and
ξ(x, y)
ξ(1, 0)

and
η(x, y)
η(1, 0)

∈M [x, y].

We call a pair of forms ξ and η satisfying the above properties a pair of resolvent
forms, and note that if (ξ, η) is one pair, there are precisely two others, given by
(ωξ, ω2η) and (ω2ξ, ωη) for ω a primitive cube root of unity. We say that a pair of
rational integers (x, y) is related to a pair of resolvent forms (ξ, η) if∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤2

∣∣∣∣e2kπi/3 − η(x, y)
ξ(x, y)

∣∣∣∣ .(5.2)
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We will first derive an upper bound for∣∣∣∣1− η(x, y)
ξ(x, y)

∣∣∣∣ ,
following an argument of Evertse [24]. From our definitions, we have∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ =
3
√

∆
|ξ(x, y)|3

and will, in consequence of Lemma 5.1, assume H(x, y) ≥
√

∆/2, whereby

|ξ(x, y)| ≥ 1√
2

∆1/4.

It follows from ∆ ≥ 72000 that∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ ≤ 6
√

2
∆1/4

< 0.519.(5.3)

Since η(x, y)/ξ(x, y) has modulus one, equation (5.2) implies, if we write θ =
arg
(
η(x,y)
ξ(x,y)

)
, that 3θ = arg

(
η(x,y)3

ξ(x,y)3

)
. By virtue of (5.3),

2− 2 cos(3θ) < (0.519)2,

and so |θ| < 0.176. Since∣∣∣∣1− η(x, y)
ξ(x, y)

∣∣∣∣ ≤ ∣∣∣∣arg
(
η(x, y)
ξ(x, y)

)∣∣∣∣ =
1
3

∣∣∣∣arg
(
η(x, y)3

ξ(x, y)3

)∣∣∣∣ ,
we have ∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ ≤ 1
3

3|θ|√
2− 2 cos(3θ)

∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ ,
whence applying our upper bound for |θ| implies∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < 1.012
√

∆
|ξ(x, y)|3

.(5.4)

This inequality will enable us to obtain our first “gap” principle; i.e. a result that
prevents “suitably large” solutions to (1.2) from lying too close together. Suppose
that we have distinct solutions to (1.2), related to (ξ, η) and indexed by i, say
(xi, yi), with |ξ(xi+1, yi+1)| ≥ |ξ(xi, yi)|). For concision, we will write ηi = η(xi, yi)
and ξi = ξ(xi, yi). Since ξ(x, y)η(x, y) = H(x, y) is a quadratic form of discriminant
−∆, it follows that

ξ2η1 − ξ1η2 = ±
√
−∆ (x1y2 − x2y1)

and, since (x1, y1), (x2, y2) are distinct solutions to F (x, y) = 1, we have
√

∆ ≤ |ξ2η1 − ξ1η2| ≤ |ξ1||ξ2|
(∣∣∣∣1− η1

ξ1

∣∣∣∣+
∣∣∣∣1− η2

ξ2

∣∣∣∣) .
Thus (5.4) implies

√
∆ < |ξ1||ξ2|(1.012

√
∆)
(
|ξ1|−3 + |ξ2|−3

)
.

It follows that

|ξ1|−3 + |ξ2|−3 > 0.988 |ξ1|−1|ξ2|−1
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and so

|ξ1|3 + |ξ2|3 > 0.988 |ξ1|2|ξ2|2.
If we write |ξ2| = α|ξ1|2, then

|ξ1|3 + α3|ξ1|6 > 0.988 α2|ξ1|6

whence (
0.988 α2 − α3

)
|ξ1|3 < 1.

Since, by assumption,

|ξ1| >
1√
2

∆1/4 > 11.582,

the above inequality implies that α > 0.987; i.e. we have proven

Lemma 5.2. If (x1, y1) and (x2, y2) are distinct solutions to (1.2), related to (ξ, η),
with

|ξ(x2, y2)| ≥ |ξ(x1, y1)| ≥ 1√
2

∆1/4

and ∆ ≥ 72000, then

|ξ(x2, y2)| > 0.987 |ξ(x1, y1)|2 .

Let us now assume that there are 4 distinct solutions to (1.2) related to a pair
of resolvent forms (ξ, η), corresponding to ξ−1, ξ0, ξ1 and ξ2, where we have ordered
these in nondecreasing modulus. We will deduce a contradiction, implying that at
most 3 such solutions can exist, which, with Lemma 5.1, will prove Theorem 1.4.
Two applications of Lemma 5.2 imply

|ξ1| > (0.987)3|ξ−1|4

and, since

|ξ−1| ≥
1√
2

∆1/4,

we may conclude that

|ξ1| > 0.24 ∆.(5.5)

This inequality will prove crucial in establishing stronger gap principles in the next
section.

6. Approximating polynomials

To prove Theorem 1.4 for forms of large discriminant, we apply arguments due
to Siegel [48], [49] and [50], with refinements by Gel’man (see Delone and Fadeev
[21]) and Evertse [24]. We note that the method employed actually leads to bounds
on the number of solutions to the Diophantine inequality

|F (x, y)| ≤ c,
though we will not pursue this here (see [24] for details). Following Evertse (see
also Thue [58], Siegel [48] and Delone and Fadeev [21]), we define polynomials

Ar,g(z) =
r∑

m=0

(
r − g + 1/3

m

)(
2r − g −m
r − g

)
(−z)m
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and

Br,g(z) =
r−g∑
m=0

(
r − 1/3
m

)(
2r − g −m
r − g

)
(−z)m

for r ∈ N and g ∈ {0, 1}. We have

Ar,g =
(

2r − g
r

)
F

(
−1

3
− r + g,−r,−2r + g, z

)
and

Br,g =
(

2r − g
r

)
F

(
1
3
− r,−r + g,−2r + g, z

)
,

where

F (α, β, γ, z) = 1 +
∞∑
n=1

α(α + 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)
γ(γ + 1) · · · (γ + n− 1)n!

zn

is the standard hypergeometric function, satisfying the differential equation

z(1− z)
d2F

dz2
+ (γ − (1 + α+ β)z)

dF

dz
− αβF = 0.

Ar,g(z) and Br,g(z) are essentially diagonal Padé approximants to the binomial
function (1− z)1/3, defined by

(1− z)1/3 =
∞∑
m=0

(
1/3
m

)
(−z)m,

for |z| < 1. In fact, we have (see Lemma 3(i) of [24])

Ar,g(z)− (1 − z)1/3Br,g(z) = z2r+1−gFr,g(z),(6.1)

where Fr,g(z) is a power series with rational coefficients.
We note that the polynomials Ar,g and Br,g have coefficients that, generally

speaking, possess large integer common factors; we will exploit this fact for small
values of the parameter r. To be precise, let us define Cr,g to be the greatest
common divisor of the numerators of the coefficients of Ar,g(z) (or, equivalently,
from (6.1), the greatest common divisor of the numerators of the coefficients of
Br,g(z)). In general, we may show that

lim
r→∞

C1/r
r,g = 3

√
3 e−

π
√

3
6 ∼ 2.09807 . . .

(see e.g. [10]), but, for our purposes, it suffices to observe that Cr,g is as follows for
certain pairs (r, g) with r ≤ 8:

(r, g) Cr,g (r, g) Cr,g (r, g) Cr,g
(1, 1) 1 (4, 0) 5 (7, 1) 4
(1, 0) 2 (5, 0) 28 (7, 0) 88
(2, 0) 1 (6, 1) 14 (8, 1) 11
(3, 0) 20 (6, 0) 14 (8, 0) 55

(6.2)

We consider the complex sequences Σr,g given by

Σr,g =
η2

ξ2
Ar,g(z1)− η1

ξ1
Br,g(z1)
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where z1 = 1− η3
1/ξ

3
1 . Note that

|z1| =
3
√

∆
|ξ1|3

< 218 ∆−5/2 < 10−9,

where the inequalities follow from (5.5) and ∆ ≥ 72000. Let us define

Λr,g =
1
Cr,g

ξ3r+1−g
1 ξ2 Σr,g.

The key observation to make is that Λr,g is either an integer in M = Q(
√
−∆) or

a cube root of such an integer. If Λr,g 6= 0, this provides a lower bound on |Λr,g|.
In fact, from the proof of Lemma 5 of Evertse [24], we have

Λr,0 ∈
√
−∆ Z

and

Λ3
r,1 ∈ OM \ Z,

where OM denotes the ring of integers of M ; i.e.

OM =
{
m+ n

√
−∆

2
: m,n ∈ Z,m ≡ n∆(mod 2)

}
.

If Λr,g 6= 0, it follows that

|Λr,0| ≥
√

∆

and ∣∣Λ3
r,1

∣∣ ≥ 1
2

√
∆,

whereby

|Λr,g| ≥ 2−g/3∆1/2−g/3(6.3)

for g ∈ {0, 1}. To obtain an upper bound for |Λr,g|, we appeal to estimates of
Evertse [24] for |Ar,g(z1)| and |Fr,g(z1)|:

Lemma 6.1. Let r and g be integers with r ≥ 1, g ∈ {0, 1} and z ∈ C.
(i) If |z| < 1, then

|Fr,g(z)| ≤
(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) (1− |z|)−
1
2 (2r+1−g)

.

(ii) If |1− z| ≤ 1, then

|Ar,g(z)| ≤
(

2r − g
r

)
.

If we combine inequality (6.3) with Lemma 6.1, we deduce

Lemma 6.2. If Σr,g 6= 0, then

c1(r, g) ∆g/3 |ξ1|3r+1−g |ξ2|−2 + c2(r, g) ∆r−g/6 |ξ2| |ξ1|−3r−2(1−g) > 1(6.4)

where we may take

c1(r, g) =
1√
r

4r and c2(r, g) =
1√
r

(2.252)r,
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for r ≥ 9, and as follows, for 1 ≤ r ≤ 8:

(r, g) c1(r, g) c2(r, g) (r, g) c1(r, g) c2(r, g)
(1, 1) 2.6 1.3 (6, 1) 42.1 2.4
(1, 0) 1.1 0.7 (6, 0) 66.8 2.7
(2, 0) 6.1 2.4 (7, 1) 547.0 16.9
(3, 0) 1.1 0.3 (7, 0) 39.5 0.9
(4, 0) 14.2 1.8 (8, 1) 745.9 13.0
(5, 0) 9.2 0.7 (8, 0) 236.9 3.1

Proof. This is essentially Lemma 5 of Evertse [24]. Arguing as in the proof of that
lemma, we write

|Λr,g| =
1
Cr,g

|ξ1|3r+1−g |ξ2|
∣∣∣∣(η2

ξ2
− 1
)
Ar,g(z1) + z2r+1−g

1 Fr,g(z1)
∣∣∣∣ .

Since |1 − z1| = 1 and |z1| < 10−9, we may apply Lemma 6.1 and inequality (5.4)
to find that |Λr,g| is bounded above by

1
Cr,g

|ξ1|3r+1−g |ξ2|
((

2r − g
r

)
1.012

√
∆

|ξ2|3
+

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) (
3.001

√
∆

|ξ1|3

)
2r+1−g

)
.

Comparing this with (6.3), we obtain inequality (6.4) for any c1(r, g) and c2(r, g)
that majorize

1.012
Cr,g

2−2g/3

(
2r
r

)
(6.5)

and

2g/3

Cr,g
(3.001)2r+1−g

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) ,(6.6)

respectively.
Substituting the values for Cr,g from (6.2) into (6.5) and (6.6) leads to the desired

conclusion for 1 ≤ r ≤ 8. We may therefore suppose r ≥ 9. Applying an explicit
version of Stirling’s formula (see e.g. Theorem (5.44) of [54]),

1
2
√
k

4k ≤
(

2k
k

)
<

1√
πk

4k,(6.7)

for k ∈ N. It follows that
1.012
Cr,g

2−2g/3

(
2r
r

)
<

1.012√
πr

4r <
1√
r

4r.

Similarly, we may show that(
r − g + 1/3
r + 1− g

)(
r − 1/3

r

)
<

√
3

2πr
,(6.8)

for r ∈ N and g ∈ {0, 1}. This follows from observing, if we set

Br =
(
r − 2/3

r

)(
r − 1/3

r

)
=
θr
r
,

that

Br+1 =
(
r2 + r + 2/9

r2 + r

)
θr
r + 1

,
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whereby

θr = θ1

r−1∏
k=1

k2 + k + 2/9
k2 + k

.

Since θ1 = 2/9 and
∞∏
k=1

k2 + k + 2/9
k2 + k

=
9

2 Γ(1/3)Γ(2/3)
=

9
√

3
4π

,

we obtain (6.8) upon noting that(
r − 2/3

r

)
>

(
r + 1/3
r + 1

)
,

for r ∈ N. Consequently,

2g/3

Cr,g
(3.001)2r+1−g

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) <
(3.001)

√
3

π
√
r

(
r + 1
2r + 1

)(
3.001

2

)2r

.

Since r ≥ 9, we conclude as desired.

We will see in the next section that, if Σr,g 6= 0, this lemma provides a gap
principle for our solutions (i.e. a nontrivial lower bound for |ξ2| in terms of |ξ1|).
For small values of r, we explicitly prove nonvanishing of Σr,g in the following:

Lemma 6.3. Σr,g 6= 0 for (r, g) = (1, 1), (1, 0), (2, 0), (3, 0), (4, 0) and (5, 0).

Proof. This is Lemma 6 of Evertse [24] for (r, g) = (1, 1), (1, 0), (2, 0) and (3, 0). We
mimic his proof in the remaining cases.

Let us begin by defining

Ar,g(z) =
3α(r,g)

Cr,g
Ar,g(z)

and

Br,g(z) =
3α(r,g)

Cr,g
Br,g(z),

where α(r, g) is the smallest integer such that Ar,g(z) and Br,g(z) have integral
coefficients (that α(r, g) exists and is bounded above by [3r/2] is relatively straight-
forward to show; see Chudnovsky [16], Lemma 3.1).

From (6.1), we can find, for each r ∈ N, a polynomial Kr(z) ∈ Z[z], satisfying

Ar,0(z)3 − (1 − z)Br,0(z)3 = z2r+1Kr(z).

In fact, we have

A3,0(z) = 81− 135z + 63z2 − 7z3,

B3,0(z) = 81− 108z + 36z2 − 2z3,

A4,0(z) = 3402− 7371z + 5265z2 − 1365z3 + 91z4,

B4,0(z) = 3402− 6237z + 3564z2 − 660z3 + 22z4,

K4,0(z) = 756756− 1513512z + 972153z2− 215397z3 + 10648z4,
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A5,0(z) = 6561− 17496z + 16848z2 − 7020z3 + 1170z4 − 52z5,

B5,0(z) = 6561− 15309z + 12474z2− 4158z3 + 495z4 − 11z5

and

K5,0(z) = 341172− 852930z+ 757836z2− 283824z3 + 40408z4− 1331z5.

Let us further define binary forms A∗r and B∗r via

A∗r(x, y) = xrAr,0(y/x)

and

B∗r (x, y) = xrBr,0(y/x).

Suppose that Σr,0 = 0 for some r ∈ {4, 5}. Setting u = ξ3
1 and v = ξ3

1 − η3
1 (so

that z1 = v/u), we thus have

η3
2

ξ3
2

=
(u− v) (B∗r (u, v))3

u (A∗r(u, v))3 .

Arguing as in the proof of Lemma 6 of Evertse [24], if ar is the integral ideal in
M = Q(

√
−∆) generated by u (A∗r(u, v))3 and (u− v) (B∗r (u, v))3, and N(ar) is its

absolute norm, then

N(ar)1/2|v|−3r−1|z1|r3
√

∆
|Kr(z1)| ≥ 1.

Since |z1| = 3
√

∆ |ξ1|−3, we therefore have

|ξ1|3r ≤
N(ar)1/2|v|−3r−1

(
3
√

∆
)r+1

|Kr(z1)| .(6.9)

Following [24], we will seek an upper bound for N(ar)1/2|v|−3r−1. Define M1 to
be a finite extension of M in which the ideal generated by u and v is principal, say
generated by w. Set u1 = u/w, v1 = v/w and let the extension of ar to M1 be br.
If we define

rr = (A∗r(u1, v1), B∗r (u1, v1)) ,

then (see Evertse [24], formula (46))

br ⊃ w3r+1B∗r (0, 1)3r3
r .(6.10)

Setting

F4(x, y) = −188811x3 + 203940x2y − 49638xy2 + 1738y3

and

G4(x, y) = −188811x3 + 266877x2y − 96369xy2 + 7189y3,

we may verify that

F4(x, y)A∗4(x, y)−G4(x, y)B∗4 (x, y) = 296352x3y4

while

B∗3(x, y)A∗4(x, y)−A∗3(x, y)B∗4 (x, y) = −28y7.

These two identities imply that

r4 ⊃
(
296352u3

1v
4
1 , 28v7

1

)
⊃ 296352 (v1)4

.



ON THE REPRESENTATION OF UNITY BY BINARY CUBIC FORMS 1525

Since B∗4 (0, 1) = 22, it follows from (6.10) that

b4 ⊃
(
65197443w13v12

1

)
⊃ (6519744)3 (v)13.(6.11)

Similarly, in the case r = 5, if we let

F5(x, y) = −1228041x4 + 1898127x3y − 865854x2y2 + 119350xy3 − 2739y4

and

G5(x, y) = −1228041x4 + 2307474x3y − 1362114x2y2 + 272870xy3 − 12948y4,

we find that

F5(x, y)A∗5(x, y)−G5(x, y)B∗5 (x, y) = 312741x4y5

while

B∗4 (x, y)A∗5(x, y)−A∗4(x, y)B∗5 (x, y) = −143y9.

We therefore have

r5 ⊃
(
312741u4

1v
5
1 , 143v9

1

)
⊃ 312741 (v1)5

,

and so, since B∗5 (0, 1) = −11, (6.10) implies that

b5 ⊃
(
34401513w16v15

1

)
⊃ (3440151)3 (v)16.(6.12)

From (6.11) and (6.12), then, we have the inequalities

N(a4)1/2|v|−13 ≤ (6519744)3

and

N(a5)1/2|v|−16 ≤ (3440151)3 .

Noting that |z1| < 10−9 implies

|K4(z1)| > 756755 and |K5(z1)| > 341171,

we may apply (6.9) to conclude that

|ξ1| < 25.85 ∆5/24, if r = 4

and

|ξ1| < 13.47 ∆1/5, if r = 5.

In each case, since we assume ∆ ≥ 72000, this contradicts inequality (5.5), com-
pleting the proof of the lemma.

For larger values of r, it is too time-consuming to provide case-by-case proofs of
the nonvanishing of Σr,g. Instead, we utilize the following easy lemma.

Lemma 6.4. If r ∈ N and h ∈ {0, 1}, then at least one of

{Σr,0,Σr+h,1}

is nonzero.
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Proof. Consider the determinant∣∣∣∣∣∣
Ar,0(z1) Ar+h,1(z1) η1/ξ1
Ar,0(z1) Ar+h,1(z1) η1/ξ1
Br,0(z1) Br+h,1(z1) η2/ξ2

∣∣∣∣∣∣ .
Expanding along the first row, we find that

0 = Ar,0(z1)Σr+h,1 −Ar+h,1(z1)Σr,0

+
η2

ξ2
(Ar,0(z1)Br+h,1(z1)−Ar+h,1(z1)Br,0(z1)) .

If both Σr,0 and Σr+h,1 vanish, then we must have

Ar,0(z1)Br+h,1(z1)−Ar+h,1(z1)Br,0(z1) = 0,

contradicting Lemma 3(iii) of Evertse [24] (since z1 6= 0).

7. Proof of Theorem 1.4 for DF ≥ 24000

We will use Lemmata 6.2, 6.3 and 6.4 to iterate our gap principle, showing that
|ξ2| is arbitrarily large in relation to |ξ1|. Specifically, we will prove that

|ξ2| > (2.3∆)−r|ξ1|3r+2(7.1)

for all r ≥ 2. Since |ξ1| > 0.24 ∆ and ∆ ≥ 72000, this contradicts any a priori
upper bound for |ξ2|.

First, for 1 ≤ r ≤ 5, we apply Lemma 6.3 in conjunction with Lemma 6.2. From
Lemma 5.2,

|ξ2| > 0.987 |ξ1|2

and so, since c1(1, 1) = 2.6, we obtain

c1(1, 1) ∆1/3|ξ1|3|ξ2|−2 < 2.669 ∆1/3|ξ1|−1.

From |ξ1| > 0.24 ∆ and ∆ ≥ 72000, it therefore follows that

c1(1, 1) ∆1/3|ξ1|3|ξ2|−2 < 0.007

whence, since Lemma 6.3 implies the nonvanishing of Σ1,1, we may apply Lemma
6.2 (and the fact that c2(1, 1) = 1.3) to conclude that

|ξ2| > 0.763 ∆−5/6|ξ1|3.
Arguing similarly for (r, g) = (1, 0), (2, 0), (3, 0), (4, 0) and (5, 0), we have

|ξ2| > c3(r, g) ∆g/6−r|ξ1|3r+2(1−g)

where the values for c3(r, g) are as given in the following table:

(r, g) c3(r, g) (r, g) c3(r, g)
(1, 1) 0.763 (3, 0) 3.333
(1, 0) 0.302 (4, 0) 0.555
(2, 0) 0.388 (5, 0) 1.428

This verifies (7.1) for 2 ≤ r ≤ 5. To show that (7.1) holds for r > 5, we use
induction on r. Suppose that (7.1) is true for some r ≥ 5. Then

c1(r + 1, 0) |ξ1|3r+4|ξ2|−2 <
4r+1

√
r + 1

(2.3∆)2r|ξ1|−3r.
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Inequality (5.5), ∆ ≥ 72000 and r ≥ 5 therefore allow us to conclude that

c1(r + 1, 0) |ξ1|3r+4|ξ2|−2 < 0.001.

If Σr+1,0 6= 0, then, from Lemma 6.2, we have

|ξ2| >
0.999

c2(r + 1, 0)
∆−r−1 |ξ1|3r+5,

and, since c2(r + 1, 0) ≤ (2.252)r+1/
√
r + 1, it follows that

|ξ2| > (2.3∆)−r−1 |ξ1|3r+5,

as desired. If, however, Σr+1,0 = 0, then Lemma 6.4 implies that both Σr+1,1 and
Σr+2,1 are nonzero. Our induction hypothesis, (5.5), ∆ ≥ 72000 and r ≥ 5, imply

c1(r + 1, 1) ∆1/3|ξ1|3r+3|ξ|−2 <
4r+1

√
r + 1

(2.3)2r∆2r+1/3|ξ1|−3r−1 < 0.001

and thus we may apply Lemma 6.2 to obtain

|ξ2| >
0.999

c2(r + 1, 1)
∆−r−5/6 |ξ1|3r+3 > (2.252)−r ∆−r−5/6 |ξ1|3r+3.(7.2)

It follows from (5.5) and (7.2) that

c1(r + 2, 1) ∆1/3 |ξ1|3r+6|ξ2|−2 < c1(r + 2, 1)
(

(2.252)2

(0.24)3
∆

2−r
r

)r
.

Since we have

c1(r + 2, 1) =


16.9, if r = 5;
13.0, if r = 6;
4r+2
√
r+2

, if r ≥ 7,

the inequality

c1(r + 2, 1) ∆1/3 |ξ1|3r+6|ξ2|−2 < 0.301

(corresponding to r = 5) obtains from ∆ ≥ 72000. A final application of Lemma
6.2 leads to

|ξ2| >
0.699

c2(r + 2, 1)
∆−r−11/6 |ξ1|3r+6.

Since c2(r + 2, 1) ≤ (2.252)r+2/
√
r + 2, |ξ1| > 0.24∆, ∆ ≥ 72000 and r ≥ 5, we

conclude that

|ξ2| > (2.3∆)−r−1 |ξ1|3r+5.

This completes our induction and hence the proof of Theorem 1.4 for forms of
discriminant exceeding 24000.
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8. Finding representative forms of small discriminant

It remains to deal with those binary cubic forms F with 0 < DF < 24000. In
fact, we will completely solve equation (1.2) for representatives of every equivalent
class of (irreducible) binary cubic forms with 0 < DF ≤ 106. The results of these
computations are tabulated in Section 9. Our approach combines a method of
Davenport [18] (as refined by Belabas and Cohen [8] and [9]) for finding such repre-
sentatives, with recent techniques from the theory of linear forms in logarithms of
algebraic numbers and computational Diophantine approximation for solving the
resulting Thue equations.

There are two algorithms of which the author is aware for determining all classes
of irreducible binary cubic forms with (positive) discriminant below a given bound;
both may be readily extended to find all distinct real cubic fields of bounded dis-
criminant. This follows from the existence of a one-to-one correspondence between
such fields and primitive integral irreducible binary cubic forms (i.e. those whose
coefficients a, b, c and d contain no common factor). The first of these methods
is outlined in some detail in §30 of Delone and Fadeev [21]. It relies on the fact
(established in Chapter II of [21]) that there is a discriminant preserving, bijective
map between GL2(Z)-equivalence classes of irreducible integral binary cubic forms
and rings with unit elements contained in rings of integers of cubic fields (i.e. the
conjugate sets of orders of such fields). Following Delone and Fadeev, one restricts
attention to cubic forms of the shape x3 + bx2y + cxy2 + dy3, with b ∈ {0, 1}, via
the following lemma (see Delone and Fadeev [21], §28 or Pethő [42], Theorem 1):

Lemma 8.1. If F (x, y) is a binary form with integral coefficients, DF > 0 and
NF ≥ 1, then there exist integers b, c and d with

F (x, y) ∼ x3 + bx2y + cxy2 + dy3,(8.1)

b ∈ {0, 1}, c < 0 and

0 < d <
2
9
|c|
√

3|c|, if b = 0,

or

9c− 2− 2
√

(1 − 3c)3

27
< d <

9c− 2 + 2
√

(1− 3c)3

27
, if b = 1.

A computational difficulty with this approach is, that the forms of type (8.1)
one is led to consider, may be equivalent and hence one must distinguish between
inequivalent forms of equal discriminant via either the method of inverse Tschirn-
hausen transformations (see §13 of [21]) or, for instance, by applying a result of
Wolfskill [61].

We will instead utilize a second, rather simpler, algorithm for finding classes of
cubic forms of bounded discriminant, based on the classical notion of reduction,
and first applied by Davenport [18] (see also [19]). We say that a quadratic form
H(x, y) = Ax2 + Bxy + Cy2 with real coefficients is strongly reduced if 0 ≤ B ≤
A ≤ C and C > 0. A cubic form F (x, y) = ax3 + bx2y + cxy2 + dy3 of positive
discriminant will be called strongly reduced if its HessianH(x, y) = Ax2+Bxy+Cy2
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is strongly reduced in the above sense and, additionally,

(1) a > 0.
(2) If B = 0, then b > 0.
(3) If A = B, then |b| < |3a− b|.
(4) If A = C, then a ≤ |d| and |b| < |c| whenever a = |d|.

(8.2)

Our notion of strong reduction coincides with that of reduction in [8] and [9]. The
reason we introduce this more stringent notation is the following result (for which
the reader is directed to [8]):

Proposition 8.2. If F (x, y) is an irreducible cubic form with DF > 0, then F (x, y)
is equivalent to a unique strongly reduced form.

Our strategy, then, will be to count strongly reduced forms of bounded discrim-
inant. We will make use of the following lemma (Proposition 5.5 of [8] or [9]; a
slight sharpening of Lemma 1 of [18]):

Lemma 8.3. If F (x, y) = ax3 + bx2y+ cxy2 +dy3 is a strongly reduced cubic form
with 0 < DF ≤ X, then if b < 0, necessarily c < 0, and we have the following
inequalities:

1 ≤ a ≤ 2
3
√

3
X1/4, −X1/4 ≤ b ≤ 2√

3
X1/4,

−
√

3
4
X1/2 ≤ bc ≤ X1/2, − 4

27
X1/2 ≤ ad ≤

√
3

36
X1/2,

−35− 13
√

13
216

X ≤ ac3, b3d ≤ −35 + 13
√

13
216

X

and

0 ≤ c2(bc− 9ad) ≤ 4
3
X.

As noted in [8] and [9], using only the inequalities in the above lemma, the
number of quadruples (a, b, c, d) we must check to find representatives of all cubic
forms with 0 < DF ≤ X is of order O(X). The following theorem of Davenport
[18] (as sharpened by Shintani [47]) shows that this is relatively efficient.

Theorem 8.4. Let H3(0, X) denote the number of equivalence classes of integral
cubic forms F , with 0 < DF ≤ X. Then, as X →∞, we have, for ε > 0,

H3(0, X) =
π2

72
X + CX5/6 +O(X2/3+ε) ∼ 0.137X,

where C is constant.

Note that the seeming discrepancy between this result and that stated in [18]
derives from a missing factor of 3 in the statement of the main theorem of [18],
together with the fact that the estimate in the latter is for classes of properly equiv-
alent, rather than equivalent, forms; i.e. for SL2(Z) instead of GL2(Z) equivalence
classes.

Applying Lemma 8.3 with X = 106, we may thus assume that

1 ≤ a ≤ 12 and − 31 ≤ b ≤ 36.
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From the inequalities for c and d in Lemma 8.3, together with the more precise
estimates

0 < DF = 18abcd+ b2c2 − 27a2d2 − 4ac3 − 4b3d ≤ 106

and (8.2), we find, upon checking for reducibility, that there are precisely 89595
classes of irreducible binary cubic integral forms F with 0 < DF ≤ 106. For each
of these, we must solve equation (1.2).

9. Results of our computations

Solving Thue equations of low degree has, in recent years, become a relatively
routine matter. The standard approach to this problem tranforms a given Thue
equation into an equation for units in a corresponding number field and then derives
an upper bound upon solutions to (1.1) from lower bounds for linear forms in
complex logarithms and explicit information about fundamental (or, perhaps, only
independent) units in the field. The Lenstra-Lenstra-Lovasz lattice-basis reduction
algorithm can then be used to reduce these bounds to a reasonable size. The best
reference for our purposes is [60], while newer innovations are outlined in [51];
we direct the reader to either of these sources for details of these methods. The
bottleneck, from a computational viewpoint, in any of these approaches, is the
computation of the related fundamental (or independent) units. However, for the
cubic fields we are concerned with, this does not present major difficulties. Using
code written in C and utilizing Pari GP, Version 1.39 to compute our fundamental
units and perform our lattice-basis reduction, we solved each of the 89595 equations
of the form (1.2) corresponding to irreducible binary cubic forms F with 0 < DF ≤
106. We double-checked our results using Kant V4 (Version 2.0, Jan. 1999) on a
DEC Alpha 21164A, running at 433MHz and Kant V4 (Version 2.1, May 1999) on
a Sun Ultra 10, running at 333 MHz. With the latter, more recent release, we ran
into problems only with the form

F (x, y) = 6x3 + 8x2y − 29xy2 − 7y3

of discriminant DF = 781260. In this case, memory constraints made it difficult to
use Kant to solve equation (1.2) (though, via Pari, we had no such problems). The
problem here is the size of a system of fundamental units ε1 and ε2 in Q(θ), where

θ3 + 8θ2 − 174θ− 252 = 0.

These are given, in terms of the integral basis{
1, θ,

1
6
(
θ2 + 2θ

)}
,

by

ε1 = −39− 30θ + 16
1
6
(
θ2 + 2θ

)
and

ε2 = a1 + a2θ +
a3

6
(
θ2 + 2θ

)
,

where

a1 = −11501734278118444509026241884948625352033,

a2 = 290428324827684495528067721672024179949
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and

a3 = 376868040325411354059165345345508299624.

In conjunction with sharp lower bounds for linear forms in logarithms of algebraic
numbers, due to Baker and Wustholz [5]; however, this still leads to a lattice basis
reduction problem of reasonable size (and to the conclusion that the equation 6x3 +
8x2y − 29xy2 − 7y3 = 1 has no integral solutions).

In each of our 89595 cases, we have NF ≤ 9 and, in fact, we found nothing
to contradict Conjecture 1.7. If we write R(X,N) for the number of irreducible
integral cubic forms F with discriminant 0 < DF ≤ X , for which equation (1.2)
has exactly N distinct solutions in integers, then we have

NF R(24000, NF ) R(106, NF )
0 323 49687
1 603 32992
2 326 6088
3 109 638
4 29 146
5 13 39
6 4 4
9 1 1

We note that there are precisely seven classes of forms with 0 < DF ≤ 106 and
NF = 5 which are inequivalent to all forms in the families

Fm(x, y) = x3 − (m+ 1)x2y +mxy2 + y3

and

Gn(x, y) = x3 − n2x2y + y3.

These are given by F (x, y) = ax3 + bx2y + cxy2 + dy3, where

a b c d DF Solutions to F (x, y) = 1
1 1 −3 −1 148 (1, 0), (0,−1), (−2, 1), (3, 2), (−14, 45)
1 0 −5 −1 473 (1, 0), (0,−1), (−2, 1), (1,−5), (7, 3)
1 0 −7 −1 1345 (1, 0), (0,−1), (1,−7), (18,−7), (−19,−7)
1 11 −1 −12 62501 (1, 0), (1,−1), (−1,−1), (11,−1), (−179,−172)
1 9 −12 −21 108729 (1, 0), (1,−1), (−2,−1), (10,−1), (4651, 2294)
1 21 −2 −21 783689 (1, 0), (−1, 1), (−1,−1), (356,−365), (442,−21)
1 21 −1 −22 810661 (1, 0), (1,−1), (−1,−1), (21,−1), (373,−364)

Five of these classes were observed by Pethő [42] (the discriminant of the form
with DF = 62501 is given incorrectly in [42]), while that with DF = 108729 was
found by Lippok [32]. The class with DF = 783689 appears to be new. Note that
the forms with DF = 148, 473 and 783689 are all special cases of the parametrized
family given by

Hn(x, y) = x3 + nx2y − 2xy2 − ny3,

with n = 2, 3 and 21, respectively (n = 0 and 1 correspond to forms of discriminant
32 and 49; the first of these represents the unique reducible class of forms with NF =
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3 while the second has NF = 9). For arbitrary n ∈ Z, the equation Hn(x, y) = 1
has the solutions (x, y) = (1, 0), (−1, 1), (−1,−1) and (n2 +1,−n) and discriminant

DHn = 4n4 + 13n2 + 32.

It is worth observing that this family of forms is apparently inequivalent to

F (x, y) = (x− a1y) (x− a2y) (x− a3y)± y3

for a1, a2 and a3 integral, provided n ≥ 2 (i.e. Hn(x, y) is not a split family).

10. Concluding remarks

The arguments of Sections 6 and 7, together with a very slight refinement of
Lemma 5.2, may be used to show, if c, δ > 0, that there is at most a single integral
solution (x, y) to (1.2), related to a pair of resolvent forms (ξ, η), for which

|ξ(x, y)| ≥ c ∆2/3+δ,

provided ∆ is suitably large (in terms of c and δ). To sharpen Theorem 1.4 by
proving that NF ≤ 7 for large DF , one would, in all likelihood, need to significantly
strengthen Lemma 5.2.

As a final remark, we mention that Chudnovsky and Chudnovsky [17] claim to
have proven that NF ≤ 9 for all cubic forms with sufficiently large discriminant.
While we believe this to be true (indeed refer to the stronger Conjecture 1.7), there
is no proof of this assertion given in [17] and hence this author has no way of
determining its validity.
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