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If a and b are distinct positive integers then a previous result of the author
implies that the simultaneous Diophantine equations

x2&az2=y2&bz2=1

possess at most 3 solutions in positive integers (x, y, z). On the other hand, there
are infinite families of distinct integers (a, b) for which the above equations have at
least 2 positive solutions. For each such family, we prove that there are precisely
2 solutions, with the possible exceptions of finitely many pairs (a, b). Since these
families provide essentially the only pairs (a, b) for which the above equations are
known to have more than a single solution (in positive (x, y, z)), this lends support
to the conjecture that the number of such solutions to the above equations is �2
in all cases. � 1997 Academic Press

1. INTRODUCTION

In this note, we consider the simultaneous Diophantine equations

x2&az2=y2&bz2=1, (1.1)

where a and b are distinct nonzero integers. These and related equations
arise in connection with a variety of classical problems on polygonal
numbers (see e.g. [3]), from consideration of elliptic curves with good
reduction away from 2 (see [8]) and in the construction of Pt sets (see [4]
for relevant definitions and a more complete bibliography of the abundant
literature on the subject). As has been noted by Ono [7], positive solutions
(x, y, z) to (1.1) imply the existence of rational points of infinite order on
the elliptic curve

Y2=X(X+a)(X+b),
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a fact used in [7] to describe certain families of (a, b) for which (1.1)
possesses no nontrivial solutions.

Let us denote by N(a, b) the number of solutions to (1.1) in positive
integers (x, y, z). In [2], the author, sharpening work of Masser and
Rickert [5], proved

Theorem 1.1. If a and b are distinct nonzero integers, then N(a, b)�3.

In the direction of lower bounds, let l and m be integers with l, m�2 and
set

n(l, m)=
:2l&:&2l

4 - m2&1

with :=m+- m2&1. It follows that Nl, m=N(m2&1, n(l, m)2&1)�2,
corresponding to the solutions

(x1 , y1 , z1)=(m, n(l, m), 1)

and

(x2 , y2 , z2)=\2n(l, m)m&
n(l, m)

m
&

n(l&1, m)
m

, 2n(l, m)2&1, 2n(l, m)+
to (1.1) (it is readily seen that m divides n(l, m) for all l whence the second
solution is in fact integral). Thus Theorem 1.1 is not too far from the truth.

The purpose of the present paper is to provide some evidence for the
following

Conjecture 1.2. If a and b are distinct nonzero integers, then N(a, b)�2.

Since the only pairs (a, b) known for which (1.1) possesses at least two
positive solutions are equivalent to (m2&1, n(l, m)2&1) for certain l and
m (in a sense we will make precise in the next section), a useful first step
in proving this conjecture would be to show that Nl, m=2 for all l, m�2.
Towards this end, we find

Theorem 1.3. If l and m are integers with l�2 and m�2_107
- l

log2 l, then Nl, m=2.

In essence, this result provides an (almost complete) solution to infinite
families of simultaneous Pell equations, somewhat analogous to the solu-
tion of families of Thue equations due to Thomas [9] (see also [6] and
[10]).
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2. SOME TOOLS

Suppose that b>a�2 are nonsquare integers and let : and ; denote the
fundamental solutions to x2&az2=1 and y2&bz2=1 respectively (i.e. let
:=a1+a2 - a and ;=b1+b2 - b where (x, z)=(a1 , a2) and (y, z)=
(b1 , b2) are the smallest positive integer solutions to x2&az2=1 and
y2&bz2=1, respectively). It follows that if (xi , yi , zi) is a positive solution
to (1.1), then

zi=
: ji&:&ji

2 - a
=

;ki&;&ki

2 - b
(2.1)

for positive integers ji and ki . In [2], we established the following gap
principle:

Lemma 2.1. If (xi , yi , zi) are distinct positive solutions to (1.1) for
1�i�3, with ji and ki as defined above, then

(k3&k2)(k2&k1)>:2j1.

The families of (a, b) described in the previous section with N(a, b)�2
correspond to prescribing j1=k1=1 and j2=2l, k2=2. Let us further note,
at this juncture, that the restriction to a and b of the form a=m2&1 and
b=n2&1 is without loss of generality (provided N(a, b)�1). To see this,
suppose that :=a1+a2 - a and B=b1+b2 - b are fundamental solutions
to x2&az2=1 and y2&bz2=1 respectively. Then solutions to x2&az2=1
correspond to those to x2&(a2

1&1) z2
1=1 via z=a2 z1 . If ba2

2 is of the
form n2&1 for some n, we reach the desired conclusion. If not, then if
#=c1+c2 - ba2

2 is the fundamental solution to x2&(ba2
2)z2

1=1, we have
tha z1=c2 z2 for integral z2 , etc. Iterating this argument by considering, in
succession, the equations derived from x2&az2=1 and y2&bz2=1, at
some stage, since we suppose that the equations (1.1) have a positive solu-
tion, this procedure must terminate. This establishes the claim.

For the remainder of the paper, we will restrict our attention to the
aforementioned families (where we have Nl, m�2). Let us suppose that
there exists a third positive solution (x3 , y3 , z3) to (1.1), with correspond-
ing j3 and k3 . Lemma 2.1 therefore implies that

k3&2>(m+- m2&1)2,

whence we may readily show that

k3�4m2>:2, (2.2)
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since k3 is integral. To use this inequality, we require an estimate for linear
forms in the logarithms of (three) algebraic numbers, say the following
recent result due to Voutier [11]:

Theorem 2.2. Let l1 , l2 and l3 be logarithms of three non-zero algebraic
numbers :1 , :2 and :3 and put

D=[Q(:1 , :2 , :3) :Q]�[R(:1 , :2 , :3) :R].

Let b1 , b2 and b3 be nonzero integers with (b1 , b2 , b3)=1 and let A1 , A2 ,
A3 , B, E>1 and k�1 be positive real numbers satisfying

log Ai�max {log E
D

, h(:i),
E |li |

D = for 1�i�3

and

B�max{2, E k�D, max
1�i{j�3

|bi | log E
D log Aj

+
|bj | log E
D log Ai = .

If

4=b1 l1+b2 l2+b3 l3

and the li's are linearly-independent over Q, then

|4|>exp(&C(k, E) D5(log B)2 log A1 log A2 log A3),

where

C(k, E)=
1447000
(log E)4 \1+

2.6
k

+
1.7
k2 +\1+

1
3E+

3

.

Here, h(:) denotes the standard logarithmic Weil height of an algebraic
number :. A result of this sort allows one to effectively solve any given
system of equations of the form (1.1), in conjunction with techniques from
computational Diophantine approximation (see e.g. [1] where it is shown
that (1.1) has at most one positive solution for 2�a<b�200). Together
with (2.2), it will enable us to tackle whole families of pairs (a, b).

3. PROOF OF THEOREM 1.3

We apply Theorem 2.2 with

:1=- b�a, :2=:, :3=;, b1=1, b2=j3 , and b3=&k3 .
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Setting E=e (for simplicity; we can obtain somewhat sharper results with
a more carefully chosen E ), we will suppose that D=4 (since we clearly
have D�4 and, if the case D=2, the bounds we obtain are in fact stronger
in all situations). It follows that we may take

log A1=
1
2

log b, log A2=
e
4

log :, log A3=
e
4

log ;,

and

B�max{ek�4,
j3

log A3

+
k3

log A2= .

It is readily observed that j3 �log A3<k3 �log A2 and since (2.2) and the
hypotheses of Theorem 1.3 imply that k3>7_1014, we may choose B=k3

and k=136. Theorem 2.2 therefore implies that

log |4|>&4.94_108 log2(k3) log(b) log(:) log(;).

On the other hand, arguing as in [2], (2.1) yields

log |4|<&2k3 log ;+log(b�a)<&1.99_k3 log ;, (3.1)

where the last inequality follows from (2.2) and the lower bound for k3 . We
therefore have

k3

log2 k3

<2.49_108 log(b) log(:).

Since one has b<4l log :, (2.2) implies that

m2

log4(2m)
<109l,

contradicting the fact that

m�2_107
- l log2 l.

This completes the proof of Theorem 1.3.
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