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Abstract

We prove a generalization of an old conjecture of Pillai (now a theorem of Stroeker and

Tijdeman) to the effect that the Diophantine equation 3x � 2y ¼ c has, for jcj > 13; at most

one solution in positive integers x and y: In fact, we show that if N and c are positive integers

with NX2; then the equation jðN þ 1Þx � Nyj ¼ c has at most one solution in positive integers

x and y; unless ðN; cÞAfð2; 1Þ; ð2; 5Þ; ð2; 7Þ; ð2; 13Þ; ð2; 23Þ; ð3; 13Þg: Our proof uses the

hypergeometric method of Thue and Siegel and avoids application of lower bounds for

linear forms in logarithms of algebraic numbers.
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1. Introduction

Let us suppose that a; b and c are fixed nonzero integers and consider the
exponential Diophantine equation

ax � by ¼ c: ð1:1Þ

In 1936, Herschfeld [He] showed, if ða; bÞ ¼ ð3; 2Þ and jcj is sufficiently large, that
Eq. (1.1) has at most a single solution in positive integers x and y: Later that year,
Pillai [Pi2] (see also [Pi1]) extended this result to general ða; bÞ with gcdða; bÞ ¼ 1 and
a > bX2; provided jcj > c0ða; bÞ: Since Pillai’s work (and, for that matter,
Herschfeld’s) depends upon Siegel’s sharpening of Thue’s theorem on rational
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approximation to algebraic numbers, it is ineffective (in that it is not possible, from
the proof, to compute c0ða; bÞ). In the special case where a ¼ 3 and b ¼ 2; Pillai [Pi3],
conjectured that c0ð3; 2Þ ¼ 13; noting the equations:

3� 2 ¼ 32 � 23 ¼ 1; 3� 23 ¼ 33 � 25 ¼ �5 and 3� 24 ¼ 35 � 28 ¼ �13:

This conjecture remained open until 1982 when Stroeker and Tijdeman [StTi] (see
also de Weger [dW]) proved it using lower bounds for linear forms in logarithms of
algebraic numbers, à la Baker (an earlier claim was made without proof by Chein
[Ch]). Subsequently, Scott [Sc] gave an elementary proof, exploiting properties of
integers in quadratic fields.

Our object in this paper is to prove a generalization of Pillai’s conjecture which is
not amenable to the techniques of [Sc], avoiding the use of linear forms in
logarithms. In fact, we will utilize bounds for the fractional parts of powers of
rational numbers, established via the hypergeometric method. Based upon
techniques of Thue and Siegel, using rational function approximation to hypergeo-
metric series, this approach was, at least in principle, available to Herschfeld and
Pillai. We obtain

Theorem 1.1. If N and c are positive integers with NX2; then the equation

jðN þ 1Þx � Nyj ¼ c

has at most one solution in positive integers x and y; unless

ðN; cÞAfð2; 1Þ; ð2; 5Þ; ð2; 7Þ; ð2; 13Þ; ð2; 23Þ; ð3; 13Þg:

In the first two of these cases, there are precisely 3 solutions, while the last four cases

have 2 solutions apiece.

These exceptional cases correspond to the equations:

3� 2 ¼ 32 � 23 ¼ 22 � 3 ¼ 1;

32 � 22 ¼ 23 � 3 ¼ 25 � 33 ¼ 5;

32 � 2 ¼ 24 � 32 ¼ 7;

24 � 3 ¼ 28 � 35 ¼ 13;

33 � 22 ¼ 25 � 32 ¼ 23:

For a good exposition of these and related subjects on exponential Diophantine
equations, the reader is directed to the books of Ribenboim [Ri] and Shorey and
Tijdeman [ShTi].
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2. Fractional parts of powers of rationals

If u is a real number, let us denote by jjujj; the distance from u to the nearest
integer; i.e.

jjujj ¼ minfju � Mj : MAZg:

In 1981, Beukers [Beu] was the first to apply the hypergeometric method of Thue and
Siegel to the problem of obtaining bounds for the fractional parts of powers of

rational numbers. In particular, he deduced lower bounds for jjðNþ1
N

Þkjj; for kAN and

NX2: We note that the case N ¼ 2 has special importance for the quantity gðkÞ in
Waring’s problem (see e.g. [HW, p. 337]). For our purposes, we will use a result of
the author [Ben] which slightly refines the corresponding inequality of [Beu]:

Proposition 2.1. If N and k are integers with 4pNpk 	 3k; then

N þ 1

N

� �k
�����

�����
�����

����� > 3�k:

In case N ¼ 2; by applying the techniques of [Ben,Beu] (as done in
nonexplicit fashion in [Du]), in combination with some (nontrivial) computation,
we may prove

Proposition 2.2. If kX5 is an integer, then

3

2

� �k
�����

�����
�����

����� > 2�0:8k:

A result of this flavour was obtained by Dubitskas [Du], with the exponent 0.8
replaced by 0:793y; for kXk0; where the last constant is effectively computable. In
our context, we use Propositions 2.1 and 2.2 to show, if

ðN þ 1Þx2 � Ny2 ¼ ðN þ 1Þx1 � Ny1 ð2:1Þ

for x1; x2; y1 and y2 positive integers with, say, x2 > x1; that

jðN þ 1Þx2 � Ny2 j > ðN=3Þx2 ð2:2Þ

if NX4; and

j3x2 � 2y2 j > 2x2=5; ð2:3Þ
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provided ðx2; y2Það2; 3Þ: To see these, first note that necessarily x2oy2: If not, we
would have

ðN þ 1Þx1 � Ny1 ¼ ðN þ 1Þx2 � Ny2XðN þ 1Þx2 � Nx2XðN þ 1Þx1þ1 � Nx1þ1

and so

ðN þ 1Þx1 > ðN þ 1Þx1þ1 � Nx1þ1:

This implies that ðN þ 1Þx1oNx1 ; an immediate contradiction. Since

jðN þ 1Þx2 � Ny2 j ¼ jðN þ 1Þx2 � Ny2�x2Nx2 jXNx2
N þ 1

N

� �x2
����

����
����

����;
we easily obtain (2.3) from Proposition 2.2. To derive (2.2), we consider the cases
Npx23

x2 and N > x23
x2 separately. In the first instance, (2.2) is immediate. If, on

the other hand, N > x23
x2 ; then, since

ðN þ 1Þx2 � Ny2oðN þ 1Þx2 � Nx2þ1 ¼ Nx2
N þ 1

N

� �x2

�N

� �
;

we have

ðN þ 1Þx2 � Ny2oNx2
N þ 1

N

� �N=3

�N

 !
:

Since this last quantity is negative, it follows that

jðN þ 1Þx2 � Ny2 j ¼ Ny2 � ðN þ 1Þx2 > Nx2ðN � e1=3Þ > ðN=3Þx2

as desired.
We will apply inequalities (2.2) and (2.3) to show, if ðx1; y1; x2; y2Þ is a solution to

(2.1), then x2 � x1 and y2 � y1 are relatively small. In the next section, we will derive
lower bounds upon these quantities, leading, in most cases, to a contradiction.

3. A gap principle

If ðx1; y1; x2; y2Þ is a solution to (2.1), with x2 > x1; then we have both

ðN þ 1Þx2�x1 
 1 ðmod Ny1Þ and Ny2�y1 
 1 ðmod ðN þ 1Þx1Þ: ð3:1Þ

We will use these congruences to bound x2 � x1 and y2 � y1 from below, via the
following lemma (where we write npðmÞ for the p-adic valuation of m):
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Lemma 3.1. Let x; y and N be positive integers with NX2: If

Ny 
 1 ðmod ðN þ 1ÞxÞ; ð3:2Þ

then y is divisible by

2ðN þ 1Þx�1
if N is even or x ¼ 1;

22�xðN þ 1Þx�1
if N 
 1 ðmod 4Þ and xpn2ðN � 1Þ þ 1;

21�n2ðN�1ÞðN þ 1Þx�1
otherwise:

8>><
>>:

If, on the other hand, we have

ðN þ 1Þx 
 1 ðmod NyÞ; ð3:3Þ

then x is divisible by

Ny�1 if N is odd; N 
 0 ðmod 4Þ or y ¼ 1;

22�yNy�1 if N 
 2 ðmod 4Þ and ypn2ðN þ 2Þ þ 1;

21�n2ðNþ2ÞNy�1 otherwise:

8><
>:

Proof. We are grateful to the anonymous referee for suggesting the proof of this
lemma in its current form. Let us begin by supposing that x; y and N satisfy (3.2). It
follows that y is even and, in fact, if p is a prime divisor of N þ 1 and zX1 is any
integer, we have

N2z 
 1 ðmod pÞ and N2z 
 1 ðmod 4Þ ðif p ¼ 2Þ:

The p-adic valuations of logpðN2zÞ and N2z � 1 are thus equal. Since logpðN2zÞ ¼
z logpðN2Þ; we obtain the desired result, provided N is even. If N is odd, the

necessary conclusion is a consequence of the fact that

n2ðlog2ðN2ÞÞ ¼ n2ðN2 � 1Þ ¼ n2ðN þ 1Þ þ n2ðN � 1Þ:

The analogous statement for x; y and N satisfying (3.3) follows from a similar
argument upon noting that

n2ðlog2ððN þ 1Þ2ÞÞ ¼ n2ððN þ 1Þ2 � 1Þ ¼ n2ðNÞ þ n2ðN þ 2Þ: &

4. Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. Let us first consider the equation

ðN þ 1Þx2 � Ny2 ¼ Ny1 � ðN þ 1Þx1 :
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If ðx1; y1; x2; y2Þ is a solution to this, in positive integers, then N divides

ðN þ 1Þx2 þ ðN þ 1Þx1 :

Since this latter quantity is congruent to 2 modulo N; it follows that N ¼ 2: By
Theorem II of Pillai [Pi3], the equation

3x2 � 2y2 ¼ 2y1 � 3x1 ¼ c

has only the solutions

ðx1; y1; x2; y2; cÞ ¼ ð1; 2; 2; 3; 1Þ; ð1; 2; 1; 1; 1Þ; ð1; 3; 2; 2; 5Þ;

ð3; 5; 2; 2; 5Þ; ð2; 4; 2; 1; 7Þ; ð2; 5; 3; 2; 23Þ

(where, without loss of generality, we assume that c > 0). We may thus restrict
attention to Eq. (2.1) (with, again, x2 > x1). We will combine Lemma 3.1 with
inequalities (2.2) and (2.3) to finish the proof of Theorem 1.1.

Let us begin by supposing that N ¼ 2 and

3x2 � 2y2 ¼ 3x1 � 2y1 ¼ c; ð4:1Þ

where x2 > x1: Considering this equation modulo 3, we find that y1 
 y2 (mod 2).
Let us suppose first that y1 ¼ 1:Modulo 8, (4.1) implies that x2 is even and x1 odd. If

x1 ¼ 1; 32 � 23 ¼ 3� 2 ¼ 1 and (2.3) implies that there are no additional solutions to
3x � 2y ¼ 1: Otherwise, from (2.3),

3x1 � 2 ¼ 3x2 � 2y2 > 2x2=5

and so, since 3x2 � 2y2 > 0 implies that x2 >
log 2
log 3

y2; (2.3) and Lemma 3.1 give

3x1 > 2
log 2
5 log 3

ð2	3x1�1þ1Þ þ 2

and so, since x1 > 1 is odd, x1 ¼ 3: We thus have 3x2 � 2y2 
 0 ðmod 5Þ;
contradicting x2 even and y2 odd.

Next suppose that y1X2: Considering Eq. (4.1) modulo 8 implies that y1X3 and
that x1 
 x2 ðmod 2Þ: From (2.3) and Lemma 3.1, we have either

3x1 > 2
log 2
5 log3

ð2	3x1�1þy1Þ þ 2y1

or

2y1 > 2ð2
y
1�2 þx1Þ=5 þ 3x1 ;

according to whether c > 0 or co0; respectively. In the first instance, since we have
already treated the case c ¼ 1; it is straightforward to show that

ðx1; y1ÞAfð3; 3Þ; ð3; 4Þg
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while, in the second, we necessarily have

ðx1; y1ÞAfð1; 3Þ; ð1; 4Þ; ð2; 4Þ; ð1; 5Þ; ð2; 5Þ; ð3; 5Þ; ð1; 6Þ; ð2; 6Þ; ð3; 6Þ; ð1; 7Þ; ð2; 7Þg:

It follows that, in every case, jcjp125 and so, from (2.3), all solutions to 3x � 2y ¼ c;
for the values of c under consideration, satisfy yp34: A routine computation

confirms that the only additional solutions obtained correspond to 3� 23 ¼ 33 �
25 ¼ �5 and 3� 24 ¼ 35 � 28 ¼ �13: This completes our treatment of Eq. (2.1) for
N ¼ 2 (and hence for N ¼ 3 and 8, as well).

Let us next suppose that NX4 and

ðN þ 1Þx2 � Ny2 ¼ ðN þ 1Þx1 � Ny1 > 0:

From (2.2), we have

ðN þ 1Þx1 ¼ ðN þ 1Þx2 � Ny2 þ Ny1 > ðN=3Þx2 þ Ny1 ; ð4:2Þ

and, since ðN þ 1Þx2 > Ny2 ; we may conclude that

ðN þ 1Þx1 > ðN=3Þ
logðNÞ

logðNþ1Þy2 þ Ny1 : ð4:3Þ

Note that (4.2) implies x1X2: If N ¼ 4; Lemma 3.1 yields y2 � y1X10: If x1 ¼ 2 and

y2 ¼ 11; then (4.3) gives y1 ¼ 1 and hence 5x2 ¼ 411 þ 21 ¼ 4 194 325; which is a tad
unlikely. If x1 ¼ 2 and y2X12; we have, from 5x2 > 4y2 ; that x2X11; whereby (4.2)

yields a contradiction. It follows that x1X3 and so Lemma 3.1 gives y2 � y1X2 	
5x1�1; whence, from (4.3),

5x1 > ð4=3Þ
log 4
log 5ð5x1�1 þ y1Þ þ 4y1 :

Since y1X1; this is a contradiction. Similarly, if NX5; we have y2 � y1X6: If

7py2p9; the inequality ðN þ 1Þx2 > Ny2 contradicts x2oy2 (see the remarks

following (2.3)). We therefore have y2X10 and so, again from ðN þ 1Þx2 >
Ny2 ; x2X9: From (4.2), we thus have x1X3: Applying Lemma 3.1, we deduce the
inequality

y2 � y1X2ððN þ 1Þ=2Þx1�1;

which in turn, together with (4.3), implies that

ðN þ 1Þx1 > N þ ðN=3Þ
logðNÞ

logðNþ1Þð2ððNþ1Þ=2Þx1�1þ1Þ
:

Since it is relatively easy to show that there are no solutions to this inequality with
NX5 and x1X3; we conclude as desired.

Next, suppose that

ðN þ 1Þx2 � Ny2 ¼ ðN þ 1Þx1 � Ny1o0;
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so that y1X2: Arguing as before, (2.2) yields

Ny1 > ðN=3Þx2 þ ðN þ 1Þx1 : ð4:4Þ

Suppose first that N ¼ 4: If y1 ¼ 2; we have x1 ¼ 1 and, from (4.4), since Lemma 3.1

implies x2 
 1 ðmod 4Þ; that x2 ¼ 5: Since 4y2a55 þ 11 ¼ 3136; we reach a

contradiction. It follows that y1X3 and, since Lemma 3.1 gives x2 � x1X4y1�1;
(4.4) yields

4y1 > ð4=3Þ4
y
1�1þx1 þ 5x1 :

Since x1X1 and y1X3; this is a contradiction. If NX5; Lemma 3.1 implies that

x2 � x1X2ðN=2Þy1�1

and so, from (4.4),

Ny1 > ðN=3Þ2ðN=2Þy1�1þ1 þ N þ 1:

This inequality contradicts y1X2 and NX5; completing the proof of Theorem
1.1. &
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