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1 Introduction

An old problem of Ramanujan, solved first by Nagell [11], amounts to showing
that the Diophantine equation

224 7=2"

has only the solutions in integers corresponding to n = 3,4,5,7 and 15. This
rather curious seeming equation arises in a variety of settings, ranging from
coding theory to the classification of finite simple groups; surveys of work
in this area can be found in [8] and [1]. Numerous generalizations of this
problem may be found in the literature. Among the more recent along these
lines, we mention papers of Bugeaud, Mignotte and Siksek [7] and Herrmann,
Luca and Walsh [9], where equations of the shape

22+ 7=y" and 2?4 Ty =2m7"211",

respectively, are solved completely.
In this paper, we will present a rather different generalization of the
equation of Ramanujan-Nagell. Specifically, we prove

Theorem 1.1. If x, n and m are positive integers satisfying
2?4+ 7=2"m, (1.1)

then either x € {1,3,5,11,181} or m > x'/2,



Our approach will be via a nontraditional application of the hypergeo-
metric method of Thue and Siegel, where we utilize rational function ap-
proximation to the binomial function, evaluated at integers in an imaginary
quadratic field. This, while combining some of the ingredients from earlier
work of Beukers [5], [6], is fundamentally quite different. Indeed, it is more
in the spirit of recent work of the authors [3], based upon approximation
to the binomial function with integral exponents, unlike that considered in
[5] and [6]. In [3], one finds, by way of example, lower bounds of the shape
m > %28 upon integer m satisfying

224z = 23%m,

with x > 8 integral and j,k € Z. Theorem 1.1 treats a somewhat similar
situation where the primes p = 2 and ¢ = 3 are replaced by p = (1++/=7)/2
and g = (1 —/=7)/2.

Given € > 0, it is possible (see e.g [10]) to obtain a lower bound for m in
equation (1.1) of the shape m > z'7¢, valid for suitably large z. Quantifying
such an ineffective statement, however, is a notoriously difficult problem in
Diophantine approximation. It is easy to show that there exist infinitely
many triples of positive integers (z,m,n) satisfying (1.1) with m < x.

2 Padé Approximants

Before we proceed with our proof, we need to state some basic results from the

theory of (diagonal) Padé approximation to the binomial function (1 — z)*,

for k integral. For our purposes, either [2] or [4] is a viable source; therein
we find the following:

Lemma 2.1. Let k and r be positive integers with k > r. There exist poly-
nomials P.(x), Q.(z), and E.(x) in Z|x] satisfying:

(k+r)!
(k—r—1!rlrl

W= —(f - 3: I /0 (1= )t (1 = ta) "

(i7i) deg P, =deg @, =7 anddeg B, =k —r —1

(iv) Pr(z) — (1= 2)"Qr(x) = (=1)"2* " E, (2)

(i) Qr(x) =

1
/ (1—t)th 11—t +at)" dt
0
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() Po(x)Qry1(2) — Qr(x)Pryi(x) = cx® L for some non-zero constant c.

As is perhaps somewhat traditional, at this stage it is worth noting that
the quantity of importance here is the ratio k/r, which must be tailored to
the problem at hand. For our purposes, here and henceforth we will take

7+ 1817

k=55, r=45—¢§ and x5 = o1 ,

(2.1)

where § € {0,1} and j is a positive integer. For later use, we require bounds
upon |B, (o) and |Q,(xo)) :

Lemma 2.2. If j is a positive integer, 6 € {0,1}, and k,r and xo are as in
(2.1), then we have

Q. (70)| < 0.31 x 256.077 and |E,(z)| < 0.22 x 23.17.

Proof. We will present the proof for 6 = 0; the case 6 = 1 is similar. From
Lemma 4 of [2], we have that

(ktr) (95)! 3 018016\
(k—r—Dlrlrl (G — DI((45))2 <3 (3'%271%).

Since we have, for t € [0, 1],

16377
1—(1—z)tf=1— ——t+ 1t
1= (1= o)t 102+
and since
16377 2
max {(1-—ty%/(1<— 3§I§§—t%—t2> } — 0.04331533667 . . .,
t€|0,

it follows that

1
y/(l—tYﬁﬁ‘%l—t+ded4
0

1 16377 2\ 16377 2
< 1—t)*(1 - ——t+¢2 1—t)*1— ——t+¢) dt
—-]f (( ) ( s102 ' F ) ) ( ) ( s102 "

ot 16377 2
0433154771 1—0)41— ——t+¢) dt
< 0.0433 /ﬁ ( ) ( <102 + >

< 2.566 x 0.04331547.



We deduce that
|@Q(x0)| < 0.31- 256.077.

From the fact that t € [0, 1] implies

7
1—trg)P=1— —t(1—-t)<1

we have

1 1
/ (1 —)"t"(1 — tao)F? dt' g/ (1 —t)"t"dt < 25677
0 0
and hence 3 3
E, < 2 (3189-24)7 2 9317,
| Er (o) 8 ( ) 8 %

The choice § = 1 leads to a stronger upper bound for |Q,(zo)| and the slightly
weaker stated inequality for |E,.(zo)|. O

As a final note before we proceed, applying Lemma 1 of [2] or Lemma 3.1
of [3], with our slight variation in notation, we may write

Pua) = (—1>5§ (9j N 5) (Sj 2 ) ()
and

45—6 o . Ny .
B 8 —20—i\ [(j+o—-1+17\ ,
=3 (V2 )T )

. 8 —20 —1\[(j+d—1+1
o=, (OG5 )0T)
9 ie{of..,@_(s} 4j —0 t

it is clear that Gs(j)'Q,(z) € Z[z]. As a consequence of Lemma 2.1 (iv),
we also have that G5(j) ™' P.(x) and Gs(j) ' E,.(z) are in Z[z]. A special case
of Proposition 5.1 of [3] leads to the following

Defining

Lemma 2.3. If j > 50 is an integer and § € {0,1}, then

Gs(j) > 2.9437.



3 Proof of Theorem 1.1 for Large n
Let us assume that =, n and m are positive integers satisfying (1.1) with, say,
n > 4000 and m < x'/? (3.1)

Write
1+v-7 13 —181 — /=7
o= ———""), 6 =« = 5
2 2
and v = 8 — 8 (so that 79 = v/3). The ring R = Z[(1 + /—7)/2] is the
ring of algebraic integers in Q(1/—7). It is a Unique Factorization Domain,
so that primes and irreducibles are the same in R. We observe that

) () ) e

where each factor is in R, and (1 + v/=7)/2 and (1 — \/=7)/2 are primes
in R. The difference of the two factors on the left of (3.2) is v/—7 which
has norm 7. Since aa = 2, it follows that the two factors cannot both be
divisible by « and that they cannot both be divisible by @. Furthermore,
since the two factors on the left of (3.2) are conjugates, if one is divisible by
a, then the other is divisible by @. We deduce that for some positive integer
7 and, hence, k = 5j chosen appropriately, there is a p in R such that

—k
Bu—0m=+V-T. (3.3)
Here, pft = 2'm where 0 < ¢ < 64; in particular, u # 0. Also,

2+ 7

5 > 0.7 .

6] =

Note that the first inequality in (3.1) implies that j > 61 and k& > 305.
Furthermore, as 22 + 7 = 2"m > 2", we see that x > 22000,

In essence what equation (3.3) tells us is that the quotient (3/3)* is
well approximated by an algebraic number with, provided m is small, rather
modest height. We will use the hypergeometric method to deduce that, since
such an event occurs rather dramatically for £ = 1, it cannot remain the case
for larger k.



We use the polynomials of Lemma 2.1, after dividing by Gs(j). Specifi-
cally, define

Pi(z) = Gs(5) "' Pr(), Qi(x) =Gs5(j) " Qr(x)

and
By (x) = Gs(j) ' Er(x),
recalling that they have rational integer coefficients. Observe that zq = v/
and (iii) of Lemma 2.1 imply 8" P (z0), 7Q*(z0), and B 1E*(xq) are in
R. From (iv) of Lemma 2.1 and multiplying through by #7*, we obtain
K —k

gp-3'Q=F, (3.4)

where

P =("P(x), Q=0"Q(z), and E=(=1)"8""""y* " E}(x0)

are in R.
Multiplying both sides of (3.3) by @ and both sides of (3.4) by & and
subtracting, we obtain

3*(Qu— PR) = +Q - V=7 — Ef.

Note that part (v) of Lemma 2.1 implies, for one of r = 4j or 45 — 1, the
expression on the left is non-zero. If a + bv/=7 € R (so a and b are half-
integers and a + b € Z), then |a + bv/=7| = Va2 + 702 Tt follows that
|Qu — Pp| > 1. Thus,

18" < Q|- VT + |E||ml.

This is our fundamental inequality; upper bounds upon |Q| and |E| lead to
a corresponding lower bound for |u| and hence m. From Lemmata 2.2 and
2.3, we obtain

Q|- V7 < (5.84-10°) .
As j > 18 and |B[* > (6.07 - 10°)’, we deduce |Q| - v/7 < |5]¥/2. Hence,

1 —-r— T *
5 - 1B < 1B P B (o) (3.5)



Observe that

T‘+1 . .
O+ 56427950 and |E* ()] < 0.22 - 7.85,
[+ ’

where the latter inequality is a consequence of Lemmata 2.2 and 2.3. Hence,
|| > 6 - 35607

One checks that
(|ﬁ‘k)0'363 — (‘5|5~0.363)j < 3560j.

We deduce that

1.363 , 'S (|8]F)0368 1,,10.363 k[, [\0.363 _ .0.363
As x > 2290 we obtain
e
> 1P

m > 961 > 561 >\/E,

contradicting (3.1).

4 Final computations

To complete the proof of Theorem 1.1, it remains to show that solutions
to equation (1.1) with n ¢ {3,4,5,7,15} and n < 4000 necessarily have
m > x'/2. This is obviously a finite computation, but it is worth observing
that it can in fact be carried out rather quickly. For a fixed choice of n in
the interval of interest, the idea is to look at the solutions of

224+7=0 (mod 2").

For n > 3, there are four in the interval [1,2" — 1], and these are the only
ones we need consider. For each such solution xj, we can simply check
if m = (22 + 7)/2" satisfies m < z'/2. However, computing the roots of
2?2 +7 =0 (mod 2") for each n is unnecessary, and a program can be sped
up as follows. One keeps track of only two of the solutions for a given n,
say 1 = x1(n) and x5 = x5(n), having the property that (23 +7)/2" is odd
for j € {1,2}. That two and only two such solutions exist in [1,2" — 1] can
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be established by induction. Indeed, if it is true for some n, note that each
xj(n) is odd and the numbers

yi =x1(n) +2"7" g =m(n) — 2",
ys = zo(n) + 2", yy = mo(n) — 2"

are four incongruent solutions to 2 + 7 = 0 (mod 2"*™). Also, (y? +7) —
(y2+7) and (y2 +7) — (y2 + 7) are odd multiples of 2" so that exactly one
of y? + 7 and y3 + 7 is divisible by 2"*2 and exactly one of y2 + 7 and y2 + 7
is divisible by 2"*2. Thus, we can compute z1(n + 1) by determining which
of y7 4+ 7 and y3 + 7 is not divisible by 2" and similarly compute z5(n + 1)
by determining which of y2 + 7 and y? + 7 is not divisible by 2"*2. In this
manner, we are able to show that m < z'/2 for each n ¢ {3,4,5,7,15} with
n < 4000, completing the proof of Theorem 1.1.

5 Concluding remarks

The machinery we have presented here can be used with slightly more effort
to sharpen Theorem 1.1 to deduce an inequality of the shape m > 2966
for suitably large x (where this statement can be made explicit). We will
not undertake this here. Additionally, similar arguments lead to results for
equations of the shape 2 + 4 = 5"m, for instance, where the analog of the
identity 1812 + 7 = 2% is provided by 112 + 4 = 53,
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