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Abstract. In this paper, we show that if p and q are positive integers,
then the polynomial exponential equation px + qx = y2 can have at most
two solutions in positive integer x and y. If such solutions exists, we are able
to precisely characterize them. Our proof relies upon a result of Darmon
and Merel, and Chabauty’s method for finding rational points on curves of
higher genus.

1. Introduction

More than two centuries ago, in the Gentleman’s Diary, J. Saul [12] ex-
hibited a pair of positive integers (p, q) = (184, 345) with the property that

p+ q, p2 + q2 and p3 + q3

are simultaneously squares of integers. Such questions, while undoubtedly
odd by modern standards, enjoyed a long vogue, stemming from work of
Diophantus of Alexandria. As is the case for much of classical number theory,
the best place to find references to such problems is Dickson [7]. In 1986,
Bremner [1] put a modern spin on Saul’s result, showing that all such pairs
(p, q) may be derived from a certain binary recurrence sequence arising from
the rational points on a particular elliptic curve (of positive rank over Q).

In a more recent paper, Gica [9] used the arithmetic of a real quadratic
field to show that, for (p, q) = (5, 11), px + qx is square only when x = 1. As
with the above, this falls within the framework of the following more general
question :

Given integers p and q, for what values of x do we have px + qx square?
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The answer to this is somewhat surprising in three regards. Firstly, it is
possible with current methods to answer such a question completely, provided
p and q are coprime. Secondly, to carry this out really does seem to require
modern techniques of some sophistication. Finally, if p and q fail to be co-
prime, then this apparently innocent question leads us into very deep waters
and well beyond the limits of current technology.

Our main result in this paper is the following.

Theorem 1.1. If p and q are relatively prime positive integers, then the
equation

(1.1) px + qx = y2

possesses at most two solutions in positive integers x and y, all of which satisfy
x ≤ 3. If there are two solutions (x1, y1), (x2, y2), with x1 < x2, then one of p
or q, say p, is even and there exist coprime integers m and n such that either

x1 = 1, x2 = 2, p = 4mn
(
m2 − 2mn+ 2n2

)
and

q =
(
m2 + 2n2

) (
m2 − 4mn+ 2n2

)
,

or
x1 = 1, x2 = 3, p =

1

4
(n−m) (3n−m) (m2 + 3n2)

and
q = mn (m2 − 3mn+ 3n2).

In this latter case, we may assume that both m and n are odd.

An immediate corollary (which yields the aforementioned result of Gica
as a special case) is the following.

Corollary 1.2. If p and q are odd relatively prime positive integers,
then equation (1.1) has at most a single solution in positive integers x and y,
which necessarily satisfies x ∈ {1, 3}.

The outline of this paper is as follows. We begin by invoking a striking
result of Darmon and Merel [6] which reduces the problem to one of small
exponents x in (1.1) (in particular, to x ≤ 3). Easy elementary arguments
then allow us to classify precisely when we can find solutions with (x1, x2) =
(1, 2) and (1, 3). To complete our proof, it remains to exclude the possibility
that we have two solutions with (x1, x2) = (2, 3). In this situation, we are
led to the problem of determining the set of rational points on a particular
hyperelliptic curve of genus 2, via the methods of Chabauty [2], techniques
which over the past twenty years or so have proven to be remarkably successful
in finding rational points on higher genus curves. We conclude with some
comments on the surprisingly difficult situation that arises if we do not insist
that the integers p and q are coprime.



SQUARES FROM SUMS OF FIXED POWERS 3

2. Proof of Theorem 1.1

The main ingredient in our proof is the following beautiful theorem of
Darmon and Merel (Theorem 1 of [6]) :

Theorem 2.1. (Darmon and Merel) If p and q are coprime integers for
which equation (1.1) has a solution in positive integers x and y, then we have
1 ≤ x ≤ 3.

This result follows from arguments somewhat analogous to Wiles’ work on
Fermat’s Last Theorem, but with significant additional complications. With
Theorem 2.1 in hand, we know that equation (1.1) has, trivially, at most three
solutions. To strengthen this conclusion, we analyze the constraints placed
upon the integers p and q through their satisfying (1.1) with 1 ≤ x ≤ 3. In
each case, we determine parametrizations of p and q in terms of integers m
and n enabling us to generate all possible values of p and q satisfying the
given constraint.

2.1. Solutions to p + q = a2, p2 + q2 = b2. Let us begin by supposing that
equation (1.1) has solutions with both x = 1 and x = 2; i.e. that there exist
integers a and b for which

p+ q = a2 and p2 + q2 = b2.

Since p and q are coprime, we may apply the theory of primitive Pythagorean
Triples and assume that p is even to deduce that there exist coprime integers
r and s such that p = 2rs and q = r2 − s2 with

a2 = (r2 − s2) + 2rs = (r + s)2 − 2s2,

so that
(r + s− a) (r + s+ a) = 2s2.

Examining the factors on the left-hand side of the latter equation, we realize
that their greatest common divisor divides 2(r + s), 2a and s. Since r and s
are coprime, we conclude that their greatest common divisor is in fact 2 and
thus s is even. Hence we can find coprime integers m and n, with m odd,
such that

r + s± a = 2m2, r + s∓ a = 4n2, and s = 2mn,

whence
r = m2 − 2mn+ 2n2.

Since p = 2rs and q = r2 − s2, we can parametrize p and q by

p = 4m3n− 8m2n2 + 8mn3, q = m4 − 4m3n+ 4m2n2 − 8mn3 + 4n4.
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2.2. Solutions to p+ q = a2, p3 + q3 = b2. Let us now suppose that (1.1) has
solutions with both x = 1 and x = 3; i.e. that there exist integers a and b for
which

p+ q = a2 and p3 + q3 = b2.

From the fact that (p+ q)3 = p3 + q3 modulo 3, it is easy to see that a2 and
b2 are congruent modulo 3. If 3 | a, then, from the coprimality of p and q, we
may assume that 3 fails to divide pq. Since

a4 − 3pq = p2 − pq + q2 =
p3 + q3

p+ q
= (b/a)2,

we thus have that (b/a)2 ≡ ±3 mod 9, a contradiction. It follows that a2 ≡
b2 ≡ 1 mod 3 and hence, in

b2 = p3 + q3 = (p+ q)
(
p2 − pq + q2

)
,

the factors on the right hand side are necessarily coprime, whereby there exists
a positive integer c, also coprime to 3, for which

(2.2) p2 − pq + q2 = c2.

If p and q are odd, then from p+ q = a2, it follows that

pq ≡ −1 mod 4,

contradicting (2.2) modulo 4. We may thus suppose that one of p or q, say p,
is even.

Write

4c2 − (2p− q)2 = (2c− 2p+ q)(2c+ 2p− q) = 3q2.

Examining the sum and difference of the factors in the middle, we conclude
that the factors are relatively prime, whence there exist positive integers r
and s such that

2c± (2p− q) = r2, 2c∓ (2p− q) = 3s2, rs = q.

If we have
2c− (2p− q) = r2, 2c+ (2p− q) = 3s2,

then

c =
r2 + 3s2

4
and q − 2p =

r2 − 3s2

2
.

After a little work, we find from the equation p+ q = a2, that

a2 + r2 = 3

(
r + s

2

)2

.

Considering this equation modulo 3 leads us to a contradiction of the fact
that a is coprime to 3.

We may thus suppose that

2c+ (2p− q) = r2, 2c− (2p− q) = 3s2,
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whereby

(2.3) p =
r2 + 2rs− 3s2

4
, q = rs.

We now appeal to the fact that p+ q = a2 which, with (2.3), leads us to
the equation (

r + 3s

2

)2

− a2 = 3s2

and hence to the conclusion that there exist integers m and n for which
r + 3s

2
± a = m2,

r + 3s

2
∓ a = 3n2, s = mn,

i.e.
r = m2 − 3mn+ 3n2, s = mn.

Substituting these values into (2.3), we find that

p =
1

4
(n−m) (3n−m) (m2 + 3n2)

and
q = mn (m2 − 3mn+ 3n2).

It is worth noting that this combines the pair of parametrizations given by
Mordell (page 235 of [11]) for this case into a single form.

2.3. The case p2 + q2 = a2, p3 + q3 = b2. To complete the proof of Theorem
1.1, it remains to show that there do not exist integers a and b for which

p2 + q2 = a2, p3 + q3 = b2,

provided p and q are coprime. If there are such integers, then using Pythagorean
Triples again we may write p = 2mn and q = m2 − n2 for relatively prime
nonzero integers m and n, of opposite parity, to conclude that

(2.4) b2 = (m2 + 2mn− n2)(m4 − 2m3n+ 2m2n2 + 2mn3 + n4).

Defining a curve C by

C : y2 = x6 − 3x4 + 8x3 + 3x2 − 1 = (x2 + 2x− 1)(x4 − 2x3 + 2x2 + 2x+ 1),

a triple of integers (m,n, b) satisfying equation (2.4) therefore yields a (ratio-
nal) point (x, y) = (mn , b

n3 ) on C.
Let J denote the Jacobian of C. We now show how the computer algebra

package MAGMA can be used to find the structure of J(Q). The following
commands

> _<x>:=PolynomialRing(Rationals());
> C:=HyperellipticCurve(x^6-3*x^4 + 8*x^3 + 3*x^2- 1);
> J:=Jacobian(C);
> T,mapTtoJ:=TorsionSubgroup(J);
> T;
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> {mapTtoJ(t):t in T};

yield the output
Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
2*P[1] = 0

{ (x^2 + 2*x - 1, 0, 2), (1, 0, 0) }

This tells us that J(Q)tors ' Z/2. To understand the arithmetic structure
of J(Q), it remains to determine the rank r of J(Q) and (if possible) the r
free generator(s). We can use a 2-descent to compute an upper bound r̂ on
the rank, then search for independent points in J(Q) and hope we find r̂ of
them, thus verifying that r̂ is indeed the rank of J(Q).

> r:=TwoSelmerGroupData(J); r;
> R:=RationalPoints(J:Bound:=1000);
> B:=ReducedBasis(R); B;

yields
1

[ (x^2 - 10/7*x + 5/7, 180/49*x - 48/49, 2) ]

We thus have an upper bound of 1 on the rank and, since we found a
torsion-free element, J(Q) has rank 1. Therefore

J(Q) ' Z/2× Z.

Note that we cannot immediately conclude that

A = (x2 − 10x/7 + 5/7, 180x/49− 48/49)

generates the free part of J(Q); it could be a multiple of a generator. Let us
suppose that G is a generator of the free part of J(Q) and that A = nG for
some integer n. Then, taking (canonical) heights, we find that ĥ(A) = n2ĥ(G).
If A is not a generator then n ≥ 2 and so

ĥ(G) < 1

4
ĥ(A).

It follows that we need only search for points on J(Q) up to canonical height
1
4 ĥ(A) to find the generator. In MAGMA, we can search for points by naive
height h. Letting HC be the height constant of J(Q), i.e. the maximum
difference between the canonical and naive height, we thus need to search up
to the bound

exp

(
ĥ(A)
4

+HC

)
in order to guarantee that we will find a generator. We have
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> HC:=HeightConstant(J:Effort:=2); HC;
> A:=J![x^2 - 10/7*x + 5/7, 180/49*x - 48/49];
> hA:=Height(A); hA;
> newbound:=Exp(hA/4+HC); newbound;
> R:=RationalPoints(J:Bound:=newbound); B:=ReducedBasis(R); B;

with output
4.44071413357422703795263287001
1.93643613393619560185292719584
137.664995784170212641786904264
[ (x^2 - 10/7*x + 5/7, 180/49*x - 48/49, 2) ]

whereby it follows that A is indeed a generator of the free part of J(Q).
Since we are in a situation where the rank of J(Q) is strictly less than

the genus of C, we may appeal to classical arguments of Chabauty to attempt
to determine C(Q). We try such arguments modulo an assortment of small
primes; the commands
> P:=B[1];
> #Chabauty(P,5);
> #Chabauty(P,7);
> #Chabauty(P,11);
> #Chabauty(P,13);
> #Chabauty(P,17);

lead to the following outputs :
3
2
5
3
1

Thus, applying Chabauty’s method at the prime 17 is enough to show
that we have found all the rational points on C and hence conclude as desired
(i.e. that equation (2.4) has no solutions in coprime, nonzero integers m and
n). This completes the proof of Theorem 1.1.

3. p and q with common factors

The case where p and q have a common factor is, as it transpires, signif-
icantly more difficult to handle. If, for example, p = q = 2k2, for k a fixed
positive integer, then equation (1.1) has solutions for every odd positive in-
teger x. If we assume that p 6= q, then we suspect that equation (1.1) has at
most 3 solutions in positive integers x and y. If there are three such solutions,
(xi, yi) with, say, x1 < x2 < x3, then we would guess that

(x1, x2, x3) = (1, 2, 3).
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Further, if there are exactly two solutions, say with x1 < x2, then perhaps it
follows that

(x1, x2) ∈ {(1, 2), (1, 3), (1, 5)}, or (x1, x2) = (2, k) for k odd.

This appears to be well out of reach to prove at the present time.
In the case that we have three solutions to (1.1) given by (x1, x2, x3) =

(1, 2, 3), let us suppose that gcd(p, q) = d > 1 and write p = dp1, q = dq1.
Then if p+ q, p2 + q2 and p3 + q3 are all squares, it follows that both p21 + q21
and p21−p1q1+q21 are squares, whereby, from the Pythagorean Theorem, there
exist positive coprime integers m and n such that, without loss of generality,
p1 = m2 − n2, q1 = 2mn, and hence an integer a such that

a2 = p21 − p1q1 + q21 = m4 − 2m3n+ 2m2n2 + 2mn3 + n4.

Upon setting

y =
4am

n3
+

4m3

n3
− 6m2

n2
+

4m

n
− 2a

n2
+ 2

and

x =
2a

n2
+

2m2

n2
− 2m

n
+ 1,

we find that
y2 = x3 − x2 − 9x+ 9

which is an elliptic curve E of conductor 192. In fact, it is 192A2 in Cremona’s
notation [5], with full rational 2-torsion, and rank 1 over Q; i.e. we have

E(Q)tors ∼= Z/2Z× Z/2Z× Z.
On this curve, we find the point (x, y) = (51, 360), corresponding to (m,n) =
(4, 1). This value leads to p1 = 15, q1 = 8 whereby d = 23. We thus recover
Saul’s example (p, q) = (345, 184). For further details on this case, the reader
is directed to the paper of Bremner [1]. Something similar occurs if one
has two solutions to (1.1) of the shape (x1, x2) = (1, 5) – one finds that
p4− p3q+ p2q2− pq3 + q4 is necessarily square, which leads, after some work,
to the curve

y2 = x3 + x2 − 3x− 2,

of conductor 200 and rank 1.
Similarly, the cases where we have solutions (x1, x2, x3) = (1, 2, 5) or

(1, 3, 5) correspond to rational points on the curves

C2 : y2 = x6 − x5 + 2x4 − 2x3 + 2x2 − x+ 1

and
C3 : y2 = x6 − 2x5 + 3x4 − 3x3 + 3x2 − 2x+ 1,

respectively. Applying Chabauty arguments, we may show that all such points
either lie at infinity, or correspond to (x, y) = (0,±1) or (1,±1). In no
cases do these lead us to examples of (p, q) for which (1.1) has solutions with
(x1, x2, x3) = (1, 2, 5) or (1, 3, 5).
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If we restrict our attention to the situation where (1.1) has two solutions
given by x1 = 1 and x2 = n, then we are led to the Diophantine equation

xn + yn

x+ y
= z2,

where we may now suppose that gcd(x, y) = 1 and, via [6], that n > 5 is odd.
It appears to be extremely difficult to fully treat this equation. Presumably,
the true state of affairs (see Conjecture 1 of [13]) is that the equation has no
coprime positive solutions other than (x, y) = (1, 1). While this conjecture
has been established provided n is divisible by one of

3, 7, 11, 13 or 25

(see [10] and [13]), in general, with current methods, this lies well beyond the
provable.
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