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Abstract

The author uses Pade approximation techniques and an elementary lemma on
primes dividing binomial coefficients to sharpen a theorem of F. Beukers on frac-
tional parts of powers of rationals. In particular, it is proven that ||((iV+ l)/N)k\\ >
3~* holds for all positive integers N and k satisfying 4 ^ N ^ k- 3*. Other results are
described including an effective version of a theorem of K. Mahler for a restricted
class of rationals.

1. Introduction

The connection between fractional parts of powers of rationals and the number
g(k) in Waring's problem is a well known one. In fact, if we define

||x|| =min(|a;-M|)
meZ

then the inequality ||(3/2)*|| > (3/4)* (1)

implies that we have g(k) = 2* + [(3/2)*] - 2. (2)

In general, if p > q ̂  2 are relatively prime integers, then any improvement upon the
trivial bound

IKp/qfW^q-" (3)

will provide information about the solutions to certain diophantine equations.
Replacing the above by strict inequality, for instance, would imply the truth of
Catalan's conjecture.

In 1957, K. Mahler [8] showed that if e > 0 is given, there exists k0 such that for
all k ^ k0,

* > e ~ * . (4)

The result, however, relies upon Ridout's extension of Roth's theorem and is thus
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192 M. BENNETT

ineffective, i.e. it is not possible to construct the constant k0 from the proof. It does,
though, imply that (1) (and hence (2)) fails for at most finitely many values of k.
Efforts to derive effective versions of (4) have either utilized the theory of linear
forms in logarithms (A. Baker and J. Coates[l]) or that of Pade approximation
to the polynomial (1— z)k and related functions. From the latter technique,
F. Beukers[4] proved that if N ^ 2 and k ̂  1 are integers, then

'N+l
> -iV~3/2(8.4)-fc. (5)

By improving a technical lemma on the size of common factors of binomial
coefficients, D. Easton strengthened (5), showing that for k ̂  k0 = ko(N) (an effective
constant), one has

> (3.87)-*.
N

In the following, we sharpen both of these bounds, proving:

THEOREM. If N and k are integers with 4 ̂  N< k-3k, then

>3~k.
N

In a forthcoming paper [2], it is shown that if we let gN(k) denote the order of
{lk,Nk, (N+ l)fc,...} as an additive basis for the positive integers (so that g2(k) = g(k)),
then the above result implies, for 4 < N ^ 2k/3, that

gN(k)=Nk +

Owing to difficulties in obtaining suitably strong effective bounds for || (4/3)fc ||, the case
N = 3 in this variant of the Ideal Waring problem remains unsettled (as does the case
N=2, but see [7]).

2. Construction of the approximants
The basic technique involved in our proof is that of (diagonal) Pade or rational

approximation to (1— z)k. The approximating and error terms are readily handled
asymptotically and the most important factor involved in obtaining a ' good' bound
is the ratio between k and the degree n of the Pade approximants. This can be
somewhat delicate since this ratio must be fairly small in order to deduce a lower
bound, yet large enough that the bound is nontrivial (in the sense of (3)). Our
difficulties are at least slightly ameliorated by the presence of large common factors
in the coefficients of the approximating numerator and denominator polynomials (as
evidenced by Lemma 3).

The following method for producing the Pade approximants to (1 — z)k was
suggested to the author by F. Beukers. If we let A, B and C be positive integers and
z a real variable, then we can write

\tA(l-t)B(z-t)cdt= \tA(l-t)B(z-tfdt+ [tA(i-t)B(z-t)cdt.
Jo Jo Jz

(6)
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Making the change of variables t->zt in the first integral on the right hand side of (6)
and t -> 1 — t + zt in the second yields

ftA(l-t)B (z-tf dt = (-l)c (l-z)B+c+1 [tB{\-t)c{\-t
Jo Jo

+ ZA+C+I Ct
A(l-t)c(l-zt)Bdt

Jo
and so denning

and £,(*) - ^ ^ c l ' " £f( l -0"(l-»<) ' iB (8)

enables us to conclude

PA(z)-(l-z)B+c+1QA(z) = zA+c+lEA(z). (9)

One may note, by comparison to e.g. F. Beukers[4], that if A = C then PA(z) and
QA(z) correspond to the diagonal Pade approximants to (1 — z)B+c+1, with error term
EA(z). By expanding via the binomial theorem and utilizing

\? ^TTy- for p'qeN

we have:
LEMMA 1. QA(z) and EA(z) satisfy:

r\(A+B + C+

so that PA(z), QA(z) and £^(2) are polynomials in z with integer coefficients.
Additionally, we will use

LEMMA 2. PA{z)QA+1{z) — QA(z)PA+1(z) = czA+c+1 where c is a non-zero constant.

Proof. See e.g. T. Beukers[4]. I

The next lemma is the principal tool used in this paper to sharpen various
estimates. Its form is suggested by the coefficient of the polynomials QA(z) as given
in Lemma 1 (b).

LEMMA 3. Suppose t is a positive integer satisfying
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and define

A B
Mt = max • At T Bt ] ' r a ] \.

[A+B+C\+ [A+B+cy \
If p is a prime such that Mt < p ^ (A+B + C)/t, then we may conclude that

+ C-r\(B +
C ){ r

Proof. Since p > Mt, we have

while p ^ {A +B + C)/t implies A/p > At/(A +B + C) and we may conclude that

(where {x} denotes the fractional part of x). Similarly,

{B/p}>{Bt/(A+B + C)}

and {C/p} > {0t/(A +B + C)}.

Now (10) is readily seen to be equivalent to

[ At ) \ Bt \ \ Ct }
\A+B+C}+{A+B+CJ+{A+B+CJ

and hence we have

\pj \pj \p)'

and thus, if r is an integer, 0 J$ r ^ A, either

In the first instance,

so that p\i I

/ CO \

I since ordp(n!) = ^[n/p^j.If, however, (12) holds, we must have {A/p} > {r/p}
\ i=l /

and thus

[Pi [Pi \P.
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which is ^ 1 by (12). It follows that

whence p i

As a final preliminary lemma, motivated by the integral representations for QA(z)
and EA(z) we prove:

, (A+B + C)\ 1 j(A+B + C\ (A+B + C)A+B+C

LEMMA 4. . , , < — " K V

A\B\C\ 2nJ\ ABC j AABBCC

Proof. Using an explicit version of Stirling's formula (see e.g. Stromberg[12]), we
have the above inequality with the right hand side multiplied by ex where

Z l 1 1 1
12(A +B + C) 124 + 1/4 125+1/4 12C+1/4'

Since A, B and C are positive integers, X < 0 and so ex < 1. I

3. Bounding the approximants
In what follows, we take c > d ^ 1 and m to be integers, ?i = dm or dm— 1 and

s = c/d. Here and subsequently, let A = C = n and B = cm — n — 1. If we further
define / \

Q(s)= max \F(s,t)\ Voc(s)
\te[O,l] /

and E(s) = max|6?(s,0l N ,
\(e[O,l]

where F{sJ) =

then the following lemma provides us with upper bounds for the denominator and
error terms in our approximation.

LEMMA 5. We have
(a) \Qn(-l/N)\<(4:-Q(s))dm,
(b) \En( — l/N)\ <̂  (a(s)-E(s))dm where the implied constants are independent of m.

Proof, (a) From (7) we may write
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and so, via Lemma 4, we conclude that

where I is the above integral and

Now from the definition ofF(s,t), we have

if n — dm

where

/
max|F(«,0

\«e[O,l]

dt i f ^ =

jf w = (fon_

and thus \Qn(-l/N)\<C2(4-Q(s))dm,

where C2 = C171/maxt6[Oil] \F(s, t)\d is independent of TO.
(b) Repeating the above argument yields

\En(-l/N)\<C3(oc(s)-E(s))dm

with C3 = C1-I2/ma,xtelol-i\G(s,t)\d and

I td(l-t)d(l+ty dt if » =

td~l(l — t)d~1[ 1 +— i

dm

The following lemma motivates the definitions of Q(s) and E(s).

LEMMA 6. If N^ max {4, <z(s)}, then

Q(s) < l<E(s)< 1.07565. (13)

Proof. To bound Q(s), we note that \F(s,t)\ is maximal in [0,1] either for some

NN
Now tx > ——- implies that 1 — tx <

so that

On the other hand, t0 <

JV+1

1

and 1 -
'N+l

N

N
(N+l)

implies \F(s,to)\ < ( l - ^ ) 2 ^ " 1 ^ oc(s)-1. From
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a(s), we have

Q(s) = ( max \F(s, t)\\-a(s) < 1.

We now consider E(s). That E(s) > 1 is immediate. It is also readily observed that
G(s, t) is increasing in s and hence to find an upper bound it suffices to suppose (for
N > 4) that <x(s) = N. This implies that

E(s) < (l+a(s)~1)s~1

and hence the inequality in (13) for N ^ 72. Computing the cases 4 ^ N < 71 from
the definition of E(s) yields (13) (with E(s) attaining the value 1.075644.. .for
N=Q). I

4. Some remarks on primes dividing binomial coefficients

To date, in all effective Pade-type lower bounds for ||(3/2)fc||, a crucial factor
has been the estimation of common divisors of binomial coefficients (see e.g.
F. Beukers[4], D. Easton[6] and A. K. Dubitskas[5]). In fact, the strongest effective
bound known is by Dubitskas[5], who showed that for k^k0 (a computable
constant), we have

||(3/2)*|| > (1.734)-*.

The proof of this utilizes a special case of Lemma 3. In our situation, we define

((2n~r\(cm — n—l+r\
&(c,d) = gcd

and have, by Lemma 3,

r-o,i P\V
 n A r

where t satisfies

.1" nt 1
lcm + n— l j cm + n — 1

and p is prime with Mt < p < (cm + n— \)/t (where Mt is as in the statement of the
lemma, remembering that we take A = C = n, B = cm — n—l, n = dm or dm — 1 and
s ~ c/d).

where

5+1

and t is such that {t/(s+l)} > 1/2. By (9), both ^(cd^-PJz) and ^{c,d)-l-Qn{z)
have integer coefficients and also:

LEMMA 7. / / e > 0, there is an effective constant ra0 = mo(e, c, d) such that if m^ m0,
then

c§(c,d)>L(sf-€>am.
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Proof. The bound follows immediately from the definition of L(s) and the fact that
Yix<Piylogp ~ y — x (where p is prime). To quantify this statement, see e.g. Rosser
and Schoenfeld[9, 10] and Schoenfeldfll]. I

One may observe that this lemma represents a sharpening of a result of
D. Easton[6, Lemma 5-2-8] in that

limJL(5) = 77/er~ 1-76387..., (15)
s-»oo

where y is Euler's constant, while the analogous function of Easton's approaches
unity as SH>-OO. For a proof of (15), lovers of mysterious constants may refer to
Bennett [3]. In the work that follows, however, we will not specifically apply Lemma
7, instead computing bounds via Rosser and Schoenfeld[9, 10] and Schoenfeldfll],
directly from (14) (for certain fixed c and d). We include the lemma here to give an
approximate indication of the bounds obtained by this method and note that it is
asymptotically best possible (in the sense that limm^o0'&(c,d)1Kdm) = L(s)).

5. Proof of the theorem

We separate the proof into two cases. If iV ̂  729, we will prove that the inequality

N
3"fc (16)

holds for all k^N/2. To extend this to k<N/2, observe that in this case
((N+1)/N)k < e1/2 ~ 1.6487 and hence

so that (16) holds for these k also. In the second case, if 4 ^ N ^ 728, we compute
explicit k0 = ko(N) such that for k ̂  k0, we have (16). By checking the remaining
values of k, we complete the proof.

To start, we define

where S is an integer, 0 ̂  S < c, andM is an arbitrary integer. It follows from (9) that

\Pn(-l/N)-MN-'Qn(-l/N)\. (17)

By Lemma 2, we can choose n = dm or dm —I such that the right hand side of (17)
does not vanish and therefore, by the remarks of the previous section,

|A| • \Qn{ - l/N)\ +N->"-l\En( - 1/N)\ ^ 9{c, d) -N^-'.

Therefore, if we have
\En{-\/N)\<yS{c,d)-Nn-s+\ (18)

we can conclude from Lemma 5 (a) that
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where C4 = 1/(2C2). Hence, it follows, defining k = cm — S, that

N
\-S (19)

where C5 = Ci((N+ 1) • (4Q(s) -N)lls)-S. The inequality in (16) then obtains if the right
hand side of (19) exceeds 3~* (since M was chosen an arbitrary integer).

Let us now suppose thatiV > 729, c = [N1/3] and d = 1. We first show that (18) is
satisfied for k > N/2.

Since a(s) < e2s2/4 by calculus, Lemma 6 yields (in conjunction with Lemma 5)

\En(-l/N)\<C3(2s*)m-
To bound C3, we suppose n = m and hence that

I2 Jo
Now c - l

which implies/2/max<£[0 ^ \G(s, t)\ ^ 1/(1 +t'/N) < 1 where t' maximizes the function
t(l-t)(l + t/N)c-2 on [0,1]. It follows that C^C^ c/(2n). The case n = m-l is
similar, with a sharper bound for C3. We may conclude, therefore, that

\En(-l/N)\<-(2c*)m-
7T

Since ^(c,d) ^ 1, the above implies (18) provided m is such that

or equivalently, m log / l o ghn "

Now log (cNc~*/rt) < c log 2V by our choice of c and 2V while log(iV/(2c2)) ^
log (iyi/3/2) ^ (2/9)logJV (since N^ 729). We conclude that the right hand side of
(20) is bounded above by 9c/2 and so if k Ss N/2, it follows that m > N/(2c) ^ 9c/2.

Now by Lemmas 5 and 6
\Qn(-l/N)\<C2-4:m

and we wish to bound C2. If n = m, we have

c—c c" — c

and max

This last quantity is > iff a(s) x since c— 1 < N/91, whence

mnx\F(c,t)\>—i.
tctn 11 ^C
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Table 1

N d N *.

4
5
6
7
8
9

10
11
12
13
14
15

25 13
17 8
30 13
37 15
60 23
52 19
20 7
86 29
46 15
79 25
13 4
10 3

28375
66045

162600
127391
177060
219180
269480
359050
170890
63437
36491
19900

•73668
•74651
•70934
•68958
•64959
•61823
•58654
•55299
•52125
•48979
•46801
•44074

16
17
18
19-21
22-28
29-31
32-37
38-77
78-135

136-274
275-545
546-728

17
7

25
11
4

13
9
5
6
7
8
9

16728
10276
10325

=$ 12749
=$11288
«S 11466

=$8703
=$6175

=$422
^382

1-42391
1-40421
1-40286
1-42202
1-45226
1-34021
1-30645
1-30678
1
1
1
1

Thus <?2<HZ-

Similarly if n = m — 1, we have

< > • < *

2 9 11 /•"

-2e2 = -
(c3-c) n*l\c2-l

1 // 1
C 2 - l277 V W-l) C

and in either case, we can write

\Qn(-l/N)\<±m.

The result, then, will follow from (using Lemma 6)

(3/(4N)1/c)k ^ 8N(N+ I)0'1

or equivalently
k ^ log (8N(N+ If'1)/log (3/(4ZV)1/c).

Now since c = [N1/3] and N ^ 729, we have

log(3/(42V)1/c) ^ log (3/(3996)1/9) > 0.17716

and logfaAPM-l)"-1) < log8 + clog(iV+l)

so that

Since this is less than N/2, the result obtains.
For 4 =$ JV ^ 728, we choose values c and d and use Lemma 3 to find intervals

containing primes dividing 3?(c, d). To estimate the contribution of these primes, we
apply upper and lower bounds on the Chebyshev function 6{x) = Hv^x\ogp from
theorem 10 of Rosser and Schoenfeld[9], the corollary to theorem 6 of Rosser and
SchoenfeldflO], corollary 2 (9-8) of Schoenfeldfll] and the closing remarks to this
last paper. We deduce explicit k0 — ko(N) for each such N beyond which (16) holds
and tabulate the results in Table 1, together with the choices of c and d, and the lower
bound derived for ^{c,d)lKdm) (denoted by <S). By checking the required inequality
for smaller values of k, we complete the proof. This calculation utilizes Fortran code
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which computes thelV-ary expansion of (N+ l)k and searches for long strings of 0s or
(N-l)s.

6. Concluding remarks
If one desires only to find effective (rather than explicit) bounds, it is possible to

sharpen the theorem to

for all k ^ k0 = ko(N), a computable constant (whereN ^ 4 as before). The caseIV = 3
appears to be intractable by this method. For larger values of N, however, the lower
bound may be improved in the direction of (4). In fact, we can find an effective
k0 = ko(N) such that k^- k0 implies

Here cx and c2 are explicit constants which can be taken to be 4 and \/2, respectively,
without the use of Lemma 7 and decreased somewhat with its application. I t follows
that, given e > 0, there is an effective No such that if N ^ No, we may find a
computable kn = kJN) with

N
>e~ek

for all k^ k0. In general, though, an effective version of (4) seems unlikely to be
forthcoming.

The author would like to thank Professor D. W. Boyd for many helpful discussions
and suggestions, Djun Kim and Professor W. Casselman for their computing
expertise and David Robinson for his precise typing.
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