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Abstract

The author uses Padé approximation techniques and an elementary lemma on
primes dividing binomial coefficients to sharpen a theorem of F. Beukers on frac-
tional parts of powers of rationals. In particular, it is proven that {|((N+1)/N)¥|| >
3% holds for all positive integers N and k satisfying 4 < N < k- 3*. Other results are
described including an effective version of a theorem of K. Mahler for a restricted
class of rationals.

1. Introduction

The connection between fractional parts of powers of rationals and the number
g(k) in Waring’s problem is a well known one. In fact, if we define

lll = min (|lz—2])

meZ
then the inequality 1(3/2)F|| > (3/4)F (1)
implies that we have g(k) = 2¥+[(3/2)*]-2. (2)

In general, if p > ¢ > 2 are relatively prime integers, then any improvement upon the
trivial bound

l@/9)* =q7* (3)

will provide information about the solutions to certain diophantine equations.
Replacing the above by strict inequality, for instance, would imply the truth of
Catalan’s conjecture.

In 1957, K. Mahler[8] showed that if € > 0 is given, there exists k, such that for
all & > k,,

I/q)*l > e~ (4)

The result, however, relies upon Ridout’s extension of Roth’s theorem and is thus
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ineffective, i.e. it is not possible to construct the constant k, from the proof. It does,
though, imply that (1) (and hence (2)) fails for at most finitely many values of k.
Efforts to derive effective versions of (4) have either utilized the theory of linear
forms in logarithms (A. Baker and J. Coates[1]) or that of Padé approximation
to the polynomial (1—2)* and related functions. From the latter technique,
F. Beukers[4] proved that if N > 2 and k > 1 are integers, then

N+1\F

N
By improving a technical lemma on the size of common factors of binomial
coefficients, D. Easton strengthened (5), showing that for k£ > &, = k,(N) (an effective

constant), one has
N+1\F
N

In the following, we sharpen both of these bounds, proving:

> iN-3/2(8.4)-k. (5)

> (3.87)7*.

TueOREM. If N and k are integers with 4 < N < k- 3%, then

I+

In a forthcoming paper [2], it is shown that if we let gy(k) denote the order of
{1*,N* (N+1)*¥,...} as an additive basis for the positive integers (so that g,(k) = g(k)),
then the above result implies, for 4 < N < 2k/3, that

gnlk) = N"+[(Z%)k]—2.

Owing to difficulties in obtaining suitably strong effective bounds for | (4/3)*||, the case
N = 3in this variant of the Ideal Waring problem remains unsettled (as does the case
N =2, but see [7]).

> 3%,

2. Construction of the approximants

The basic technique involved in our proof is that of (diagonal) Padé or rational
approximation to (1—z)*. The approximating and error terms are readily handled
asymptotically and the most important factor involved in obtaining a ‘good’ bound
is the ratio between k and the degree n of the Padé approximants. This can be
somewhat delicate since this ratio must be fairly small in order to deduce a lower
bound, yet large enough that the bound is nontrivial (in the sense of (3)). Our
difficulties are at least slightly ameliorated by the presence of large common factors
in the coefficients of the approximating numerator and denominator polynomials (as
evidenced by Lemma 3).

The following method for producing the Padé approximants to (1—z)* was
suggested to the author by F. Beukers. If we let A, B and C be positive integers and
z a real variable, then we can write

fl tA(1—t)B (z—1)Cdt = r A1 —8)B(z—1t)¢ dt+J1tA(1 —t)B(z—1)Cdt. (6)

1] 0 z
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Making the change of variables ¢ -zt in the first integral on the right hand side of (6)
and t—>1—¢+2¢ in the second yields

ftA(l—t)B (z—8)Cdt = (—1)C (1 —z)BCH ftB(l—t)C(l—t+zt)A di

0 0

+4z4tCH J1 A1 —6)C (1 —zt)B dt
0

and so defining

4 !
P,() =(+Tﬁ§!%!fﬂ£ﬁ(1—t)3(z—t)0dz,
1) (A+B+C+1)! [*
Q) = =1 (j!E!CTCJ“ )LtB(l—t)C(l—t+zt)Adt )
(A+B+C+1)! [

enables us to conclude
PA(Z) _ (1 —Z)B+C+l QA(Z) — zA+C+1EA (Z) (9)

One may note, by comparison to e.g. F. Beukers[4], that if A = C then P,(z) and
Q 4(z) correspond to the diagonal Padé approximants to (1 —2z)B*¢*! with error term
E ,(2). By expanding via the binomial theorem and utilizing

Jltp 1—-tth—————! ! fo N
= Pq r ,q€E
we have:

LeMMA 1. Q4(2) and E ,(2) satisfy:

2 A+C—
@) pe = 3 (PO o
A /4 _
) Q= -0 L (FTIT(E e
5 (A+r\([A+B+C+1 ,
(©) E“(z)=,§,( r )(A+O+r+1)(_z)’

so that P,(z), @,(z) and E,(z) are polynomials in z with integer coefficients.
Additionally, we will use

LeMMA 2. Py(2) @ 4,1(2) — Q@ 4(2) Py (2) = c2*CH where ¢ is a non-zero constant.
Proof. See e.g. F. Beukers[4]. |

The next lemma is the principal tool used in this paper to sharpen various
estimates. Its form is suggested by the coefficient of the polynomials @ ,(z) as given
in Lemma 1(b).

LemMa 3. Suppose t is a positive integer satisfying

[ At + B ]+ ct ]—t—2 (10)
A+B+C| |A+B+C| [Ad+B+C]
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and define

7 A B C
M, = max At ‘T Bt ’ Ct )
1 —_—
[A+B+C]+ [A+B+C’]+1 [A+B+C]+1
If p is a prime such that M, <p < (A+B+C)/t, then we may conclude that
p‘(AJ’C_’)(B“)foralzr=0,1,...,A.

C 7
Proof. Since p > M,, we have

A/p < [Z_*_—/ll;_r_a] +1,
while p < (4 +B+C)/t implies A/p > At/(A +B+C) and we may conclude that
{4/p} > {4t/(A+B+C)}
(where {x} denotes the fractional part of x). Similarly,
{B/p} > {Bt/(A+B+()}
and {C/p} =z {Ct/(A+B+C)}.

Now (10) is readily seen to be equivalent to

{ At }+ Bt }+ Ct _s
A+B+C) " |\A+B+C) \4+B+C|

and hence we have
CRORCR
P P P

and thus, if r is an integer, 0 < r < 4, either

ef
- (g )

In the first instance,
-G
P P

so that P ‘ (B + T)

(since ord,(n!) = X [n/pi]). If, however, (12) holds, we must have {4/p} > {r/p}
i=1

=66
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ooy (2] (9

which is = 1 by (12). It follows that

e [ g

whence p ‘ (A +g—r) |

195

As a final preliminary lemma, motivated by the integral representations for @ ,(z)

and K ,(z) we prove:

(4A+B+0)! LJ(A+B+C).(A+B+C)A+B+C
2m

LEMMA 4. 11BIOT ABC AABBCC

Proof. Using an explicit version of Stirling’s formula (see e.g. Stromberg[12]), we

have the above inequality with the right hand side multiplied by e* where

1 1 1 1

T12A+B+C) 124+1/4 12B+1/4 120+1/4

Since 4, B and C are positive integers, X < 0 and so e¥ < 1. i

3. Bounding the approximants

In what follows, we take ¢ > d > 1 and m to be integers, n = dm or dm—1 and
s =c/d. Here and subsequently, let 4 =C =n and B=cm—n—1. If we further

define
Qs) = (max IF(s,t)l)-a(s)
te[0,1]
and E(s) = (max |G(s,t)|)-4,
tel0,1]
where F(s,t) =t"1(1—1) (1 —(Z—V%l) t)
G(s,t) =t(1—-0) (1 +1%)8_1
_ (8+ 1)8+1
and a(s) _4_(8_1)8—1’

then the following lemma provides us with upper bounds for the denominator and

error terms in our approximation.

LeEMma 5. We have
(a) 1@, (—1/N)| < (4-Q(s))*™

(b) |E(—1/N)| < (a(s) E(s))*™ where the implied constants are independent of m.

Proof. (a) From (7) we may write

1@a(— 1/)) < — et I f gem=n-1(1 — ( (N“))dt

(cm—n—1)n!n!

https://doi.org/10.1017/50305004100071528 Published online by Cambridge University Press



https://doi.org/10.1017/S0305004100071528

196 M. BENNETT

and so, via Lemma 4, we conclude that
1@n(—1/N)| < O, (4-a(s))*™ ],

where I is the above integral and

1 2 3 —

%\/(s—l) if n=dm
C, = .

V(1) if n=dm—1.

Now from the definition of F(s,t), we have

m—1
lIl<(max [F(s, )| ) -1,

te[0,1]

th-d t d( (N“)) dt if n=dm,
I, = N "
ftc‘d(l—t)d‘l(l—(;l)t) dt if n=dm—1,
0 N

and thus 1@ (—1/N)| < Cy4-Q(s))*™

where C, = C,-I,/max, ., ;|F(s,t)|* is independent of m.
(b) Repeating the above argument yields

1B, (—1/N)| < Cy(s) E(s))*™
With 03 = OI'IZ/ma/xte[oyl] IG(S’ t)ld a’nd

1 ¢ c—d-1
f td(l—t)d(1+—) dt if n=dm
° N

where

2 1 c—d
ftd—l(l_t)dﬂ(l-{-Z%) dt it n=dm—1. |

1]
The following lemma motivates the definitions of @(s) and E(s).
LemmaA 6. If N > max {4, a(s)}, then
Q(s) < 1< E(s) <1.07565. (13)

Proof. To bound @(s), we note that |[F(s,t)| is maximal in {0, 1] either for some

N N
tOE(O,m) or for tIE(m,l).

N . . 1 N+1 1
Now tl > m—l‘ lmphes that 1 —tl < Z'm and '1 —(T) tl N’
so that I1F(s, )] < _1
TS NN+

N
On the other hand, ¢, <m implies |F(s,t,)] < (1—¢,)%t57* < a(s)™'. From
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N = a(s), we have

Qs) = (max |F(s, t)|)-a(s) <1.
tef0,1]

We now consider E(s). That E(s) > 1 is immediate. It is also readily observed that

G(s,t) is increasing in s and hence to find an upper bound it suffices to suppose (for

N = 4) that a(s) = N. This implies that

E(s) < (1 +a(s) 1)t

and hence the inequality in (13) for N > 72. Computing the cases 4 < N < 71 from
the definition of E(s) yields (13) (with E(s) attaining the value 1.075644...for
N = 6).

4. Some remarks on primes diwiding binomial coefficients

To date, in all effective Padé-type lower bounds for |(3/2)%||, a crucial factor
has been the estimation of common divisors of binomial coefficients (see e.g.
F. Beukers[4], D. Easton[6] and A. K. Dubitskas[5]). In fact, the strongest effective
bound known is by Dubitskas[5], who showed that for k> k, (a computable
constant), we have

1(3/2)*I > (1.734)7*.

The proof of this utilizes a special case of Lemma 3. In our situation, we define

2n—r\fem—n—1+r
sea= g (7))

and have, by Lemma 3,

g(c,d)?ﬂ(np), (14)
)

t

nt {em—n—1)¢
=t—2
2[cm+n-—1]+[ cm+n—1 ] d
and p is prime with M, < p < (cm+n—1)/t (where M, is as in the statement of the
lemma, remembering that we take 4 = C=n,B=cm—n—1,n =dm or dm—1 and

where t satisfies

s=c/d).
L(s) = exp(Z(%—@(s, t)))
t
where [ 1 s—1
0O(s,t) = max ¢ T(s—1)¢t
l[s+1]+1 [ s+1 ]H

and ¢ is such that {t/(s+1)} > 1/2. By (9), both %(c,d)™-P,(z) and %(c,d)'-Q,(z)

have integer coefficients and also:

Lemma 7. If € > 0, there is an effective constant my = my(e, ¢, d) such that if m = m,
then
Y(c,d) > L(s)t1-a9m,
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Proof. The bound follows immediately from the definition of L(s) and the fact that
2, »<y 108D ~ y—2x (where p is prime). To quantify this statement, see e.g. Rosser
and Schoenfeld[9, 10} and Schoenfeld[11].

One may observe that this lemma represents a sharpening of a result of
D. Easton[6, Lemma 5-2-8] in that

lim L(s) = m/e* ~ 1.76387 ..., (15)

8§ >0
where y is Euler’s constant, while the analogous function of Easton’s approaches
unity as s— 00. For a proof of (15), lovers of mysterious constants may refer to
Bennett[3]. In the work that follows, however, we will not specifically apply Lemma
7, instead computing bounds via Rosser and Schoenfeld[9, 10] and Schoenfeld[11],
directly from (14) (for certain fixed ¢ and d). We include the lemma here to give an
approximate indication of the bounds obtained by this method and note that it is
asymptotically best possible (in the sense that lim G(c,dyVam = [(s)).

m-—>a

5. Proof of the theorem
We separate the proof into two cases. If N > 729, we will prove that the inequality

(]

holds for all £ > N/2. To extend this to k < N/2, observe that in this case
((N+1)/N)¥ < e'/2 ~ 1.6487 and hence

N+1)\* k
— | —1>=>3%*
(N) 1>N/3

> 3k (16)

so that (16) holds for these k also. In the second case, if 4 < N < 728, we compute
explicit &k, = ky(N) such that for k > k,, we have (16). By checking the remaining
values of k, we complete the proof.

To start, we define
N+1)\™
A=(—""| —MN-?
()

where 4 is an integer, 0 < § < ¢, and M is an arbitrary integer. It follows from (9) that
Al 1Qn(—1/N)|+ N2 B, (—1/N)| = |P,(—1/N)—MN~°Q,(—1/N)l.  (17)

By Lemma 2, we can choose n = dm or dm—1 such that the right hand side of (17)
does not vanish and therefore, by the remarks of the previous section,

Al 1@, (—1/N)+N*"YE (~1/N)| = 9(c,d)-N"°.

2

we can conclude from Lemma 5(a) that

|A] > Cy9(c, d) N~°(4Q(s) N)™*",
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where C, = 1/(2C,). Hence, it follows, defining & = cm— 4, that

() -+

v > Cy%(c,d)(4Q(s) Ny /s, (19)

where C; = C,((N+1)- (4Q(s)-N)*¥)™%. The inequality in (16) then obtains if the right
hand side of (19) exceeds 37* (since M was chosen an arbitrary integer).

Let us now suppose that N > 729, ¢ = [N'/3] and d = 1. We first show that (18) is
satisfied for k > N/2.

Since a(s) < e2s?/4 by calculus, Lemma 6 yields (in conjunction with Lemma 5)

B, (— 1/N)] < Cy(28%)™.

To bound C,, we suppose n = m and hence that

12=J1t(1—t)(1+t/n)°‘2dt.

Now G(s,t) = t(1—t) (1+¢/N)e?

which implies I,/max, o 13|G(s, )l < 1/(1+¢/N) < 1 where ¢’ maximizes the function
t(1—8)(L+¢t/N)"% on [0,1]. It follows that C, < C, < c¢/(2m). The case n =m—1 is
similar, with a sharper bound for C;. We may conclude, therefore, that

¢ 2\ym
B~ 1/N)] < (2%,

Since %(c,d) = 1, the above implies (18) provided m is such that

(ﬁ)’"zg.NH

2¢? i

n

c—1
or equivalently, m = log (CN ) / log (—2—%) (20)

Now log(cN¢'/m) <clogN by our choice of ¢ and N while log(N/(2c?)) >
log (NY3/2) > (2/9)log N (since N > 729). We conclude that the right hand side of
{20) is bounded above by 9¢/2 and so if k = N/2, it follows that m = N/(2¢) = 9¢/2.
Now by Lemmas 5 and 6
1Qu(—1/N)| < Cy4m

and we wish to bound C,. If n = m, we have

I, = thc‘2(1—t)(1+(l%)t)dt _2tU=o/N 2

ct—c ct—c

c—1 2 \fc—1\1/ 2 c—1
d 0= Fle, = - .
o max [F(c, ) (C c+1> (c+ 1)(c+1) (c+1 N(c+1))
This last quantity is > 81a(s)™ since c—1 < N/91, whence

1
max |[F(c,t)| > —.
tel0, 1) 2¢?
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Table 1
N ¢ d k, g N c d ky g
4 25 13 28375 1-736 68 16 17 5 16728 142391
5 17 8 66045 1-74651 17 7 2 10276 1-40421
6 30 13 162600 1-70934 18 25 7 10325 140286
7 37 15 127391 1-68958 1921 11 3 < 12749 1-42202
8 60 23 177060 1-64959 22-28 4 1 < 11288 1-45226
9 52 19 219180 1-61823 29-31 13 3 < 11466 1-34021
10 20 7 269480 1-586 54 32-37 9 2 < 8703 1-30645
11 86 29 359050 1-55299 38-77 5 1 < 6175 1-30678
12 46 15 170890 1-52125 78-135 6 1 < 1359 1
13 79 25 63437 1-48979 136274 7 1 < 647 1
14 13 4 36491 1-46801 275-545 8 1 < 422 1
15 10 3 19900 1-44074 546-728 9 1 < 382 1
1 R 2 . 2 c?
Thus C, < 271\/((; 1) F—0) 2¢ 7“/(02_1).

Similarly if » = m—1, we have

1 1\t ,_, 1 c?
Ce <§;/(;Tl) P —;/(—02_1)

and in either case, we can write
|@a(—1/N)| < 4™.
The result, then, will follow from (using Lemma 6)

(3/(4N)Ve)* = 8N(N+ 1)
or equivalently
k > log (8N(N+1)°"1)/log (3/(4N)¥).

Now since ¢ = [N¥?] and N > 729, we have
log (3/(4N)"%) > log (3/(3996)"%) > 0.177 16
and log (BN(NV+1)"') < log8+clog (N+1)

so that
log (8N(N+1)°"")/log (3/(4N)V*) < 11.74 +5.65N*log (N +1).

Since this is less than N/2, the result obtains.

For 4 < N < 728, we choose values ¢ and d and use Lemma 3 to find intervals
containing primes dividing %(c,d). To estimate the contribution of these primes, we
apply upper and lower bounds on the Chebyshev function 6(z) = Zpszlog p from
theorem 10 of Rosser and Schoenfeld[9], the corollary to theorem 6 of Rosser and
Schoenfeld[10], corollary 2 (9-8) of Schoenfeld[11] and the closing remarks to this
last paper. We deduce explicit k, = ky(V) for each such N beyond which (16) holds
and tabulate the results in Table 1, together with the choices of ¢ and d, and the lower
bound derived for %(c,d)"®™ (denoted by ¥). By checking the required inequality
for smaller values of k, we complete the proof. This calculation utilizes Fortran code
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which computes the N-ary expansion of (N+ 1)* and searches for long strings of Os or
(N—1)s.

6. Concluding remarks
If one desires only to find effective (rather than explicit) bounds, it is possible to
sharpen the theorem to
N+1)\*
N

forall k = k, = ky(V), a computable constant (where N > 4 as before). The case N = 3
appears to be intractable by this method. For larger values of N, however, the lower
bound may be improved in the direction of (4). In fact, we can find an effective
ky = ko(N) such that k£ = k, implies

N+1)F
N
Here ¢, and ¢, are explicit constants which can be taken to be 4 and /2, respectively,

without the use of Lemma 7 and decreased somewhat with its application. It follows
that, given € > 0, there is an effective N, such that if N> N;, we may find a

computable k, = k, (V) with
N+1)F
N

for all k& > k,. In general, though, an effective version of (4) seems unlikely to be
forthcoming.

> (2.85)7%

> (o, NYSIVA,

e—ek
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