
MULTI-FREY Q-CURVES AND THE DIOPHANTINE EQUATION a2 + b6 = cn

MICHAEL A. BENNETT AND IMIN CHEN

Abstract. We show that the equation a2 +b6 = cn has no nontrivial positive integer solutions with

(a, b) = 1 via a combination of techniques based upon the modularity of Galois representations at-

tached to certain Q -curves, corresponding surjectivity results of Ellenberg for these representations,

and extensions of multi-Frey curve arguments of Siksek.

1. Introduction

Following the proof of Fermat’s Last Theorem by Wiles [54], there has developed an extensive

literature on connections between the arithmetic of modular abelian varieties and classical Diophantine

problems, much of it devoted to solving generalized Fermat equations of the shape

(1) ap + bq = cr,
1

p
+

1

q
+

1

r
< 1,

in coprime integers a, b and c, and positive integers p, q and r. That the number of such solutions

(a, b, c) is finite, for a fixed triple (p, q, r), is a consequence of work of Darmon and Granville [26]. It

has been conjectured that there are in fact at most finitely many such solutions, even when we allow

the triples (p, q, r) to vary, provided we count solutions corresponding to 1p+23 = 32 only once. Being

extremely optimistic, one might even believe that the “known” solutions constitute a complete list,

namely (a, b, c, p, q, r) corresponding to

1p + 23 = 32,

for p ≥ 7, and to nine other identities (see [6], [26]) :

25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222, 177 + 762713 = 210639282,

14143 + 22134592 = 657, 92623 + 153122832 = 1137, 438 + 962223 = 300429072,

and 338 + 15490342 = 156133.
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Note, for brevity, we omit listing the solutions which differ only by sign changes and permutation of

coordinates (for instance, if p is even, (−1)p + 23 = 32, etc).

Since all known solutions have min{p, q, r} < 3, a closely related formulation is that there are no

nontrivial solutions in coprime integers once min{p, q, r} ≥ 3.

There are a variety of names associated to the above conjectures, including, alphabetically, Beal

[39], Darmon and Granville [26], Granville, van der Poorten, Tijdeman and Zagier (see e.g. [6], [53]),

and it appears that some of them are even willing to offer financial rewards for their resolution,

positively or negatively.

Techniques based upon the modularity of Galois representations associated to putative solutions of

equation (1) have, in many cases, provided a fruitful approach to these problems, though the limita-

tions of such methods are still unclear. Each situation where finiteness results have been established

for infinite families of triples (p, q, r) has followed along these lines. We summarize results to date; in

each case, no solutions outside those mentioned above have been discovered :

(p, q, r) reference(s)

(n, n, n), n ≥ 3 Wiles [54], Taylor-Wiles [52]

(n, n, 2), n ≥ 4 Darmon-Merel [27], Poonen [42]

(n, n, 3), n ≥ 3 Darmon-Merel [27], Poonen [42]

(2n, 2n, 5), n ≥ 2 Bennett [1]

(2, 4, n), n ≥ 4 Ellenberg [29], Bennett-Ellenberg-Ng [3], Bruin [9]

(2, n, 4), n ≥ 4 immediate from Bennett-Skinner [4], Bruin [11]

(2, 2n, k), n ≥ 2, k ∈ {9, 10, 15} Bennett-Chen-Dahmen-Yazdani [2]

(4, 2n, 3), n ≥ 2 Bennett-Chen-Dahmen-Yazdani [2]

(2, n, 6), n ≥ 3 Bennett-Chen-Dahmen-Yazdani [2]

(3, 3, n), n ≥ 3∗ Chen-Siksek [20], Kraus [37], Bruin [10], Dahmen [22]

(3j, 3k, n), j, k, n ≥ 2 Kraus [37]

(3, 3, 2n), n ≥ 2 Bennett-Chen-Dahmen-Yazdani [2]

(3, 6, n), n ≥ 2 Bennett-Chen-Dahmen-Yazdani [2]

(2, 2n, 3), n ≥ 3∗ Bruin [9], Chen [17], Dahmen [22], [23], Siksek [50]

(2, 2n, 5), n ≥ 3∗ Chen [18]

(2, 3, n), 6 ≤ n ≤ 10 Poonen-Schaeffer-Stoll [43], Bruin [9], [11], [12], Brown [8], Siksek [49]
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The (∗) here indicates that the result has been proven for a family of exponents of natural density

one (but that there remain infinitely many cases of positive Dirichlet density untreated).

In this paper, we will prove the following theorem.

Theorem 1. Let n ≥ 3 be an integer. Then the equation

(2) a2 + b6 = cn

has no solutions in positive integers a, b and c, with a and b coprime.

Our motivations for considering this problem are two-fold. Firstly, the exponents (2, 6, n) provides

one of the final examples of an exponent family for which there is known to exist a corresponding

family of Frey-Hellegouarch elliptic Q-curves. A remarkable program for attacking generalized Fermat

equation of signature (n, n,m) (and perhaps others) is outlined in Darmon [24], relying upon the

construction of Frey-Hellegouarch abelian varieties. Currently, however, it does not appear that the

corresponding technology is suitably advanced to allow the application of such arguments to completely

solve families of such equations for fixed m ≥ 5.

In some sense, the signatures (2, 6, n) and (2, n, 6) (the latter equations are treated in [2]) represent

the final remaining families of generalized Fermat equations approachable by current techniques.

More specifically, following [26], associated to a generalized Fermat equation xp+yq = zr is a triangle

Fuchsian group with signature (1/p, 1/q, 1/r). A reasonable precondition to apply the modular method

using rational elliptic curves or Q-curves is that this triangle group be commensurable with the full

modular group. Such a classification has been performed by Takeuchi [51]. He shows that the possible

signatures which contain ∞ are given by (2, 3,∞), (2, 4,∞), (2, 6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞),

(4, 4,∞), (6, 6,∞), (∞,∞,∞). A related classification of Frey representations for prime exponents

can be found in [24] and [26]. The above list does not, admittedly, explain all the possible families of

generalized Fermat equations that have been amenable to the modular method. In all other known

cases, however, the Frey curve utilized is derived from a descent step to one of the above “pure” Frey

curve families. Concerning the applicability of using certain families of Q-curves, see the conclusions

section of [18] for further remarks.

Our secondary motivation is as an illustration of the utility of the multi-Frey techniques of Siksek

(cf. [13] and [14]). A fundamental difference between the case of signature (2, 4, n) considered in

[29] and that of (2, 6, n) is the existence, in this latter situation, of a potential obstruction to our

arguments in the guise of a particular modular form without complex multiplication. To eliminate the

possibility of a solution to the equation x2 + y6 = zn arising from this form requires fundamentally
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new techniques, based upon a generalization of the multi-Frey technique to Q-curves (rather than just

curves over Q).

The computations in this paper were performed in MAGMA [7]. The programs, data, and output

files are posted at http://people.math.sfu.ca/∼ichen/firstb3i-data. Throughout the text, we have

included specific references to the MAGMA code employed, indicated as follows : sample.txt .

2. Review of Q-curves and their attached Galois representations

The exposition of Q-curves and their attached Galois representations we provide in this section

closely follows that of references [19], [30], [44] and [46]; we include it in the interest of keeping our

exposition reasonably self-contained.

Let K be a number field and C/K be a non-CM elliptic curve such that there is an isogeny

µ(σ) : σC → C defined over K for each σ ∈ GQ. Such a curve C/K is called a Q-curve defined over

K. Let φ̂C,p : GK → GL2(Zp) be the representation of GK on the Tate module V̂p(C). One can

attach a representation

ρ̂C,β,p : GQ → Q∗p GL2(Qp)

to C such that Pρ̂C,β,p |GK∼= Pφ̂C,p. The representation depends on a choice of splitting map β (in

what follows, we will provide more details of this choice). Let π be a prime above p of the field Mβ

generated by the values of β. In practice, the representation ρ̂C,β,π is constructed in a way so that its

image lies in M∗β,π GL2(Qp), and we choose to use the notation ρ̂C,β,p = ρ̂C,β,π to indicate the choice

of π in this explicit construction.

Let

cC(σ, τ) = µC(σ)
σ
µC(τ)µC(στ)−1 ∈ (HomK(C,C)⊗Z Q)∗ = Q∗,

where µ−1C := (1/ degµC)µ′C and µ′C is the dual of µC . Then cC(σ, τ) determines a class in H2(GQ,Q∗)

which depends only on the Q-isogeny class of C. The class cC(σ, τ) factors through H2(GK/Q,Q∗),

depending now only on the K-isogeny class of C. Alternatively,

cC(σ, τ) = α(σ)
σ
α(τ)α(στ)−1

arises from a class α ∈ H1(GQ,Q
∗
/Q∗) through the map

H1(GQ,Q
∗
/Q∗)→ H2(GQ,Q∗),

resulting from the short exact sequence

1→ Q∗ → Q∗ → Q∗/Q∗ → 1.
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Explicitly, α(σ) is defined by σ∗(ωC) = α(σ)ωC .

Tate showed that H2(GQ,Q
∗
) is trivial where the action of GQ on Q∗ is trivial. Thus, there is a

continuous map β : GQ → Q∗ such that

cC(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles, and we call β a splitting map for cC . We define

ρ̂C,β,π(σ)(1⊗ x) = β(σ)−1 ⊗ µC(σ)(σ(x)).

Given a splitting cC(σ, τ) = β(σ)β(τ)β(στ)−1, Ribet attaches an abelian variety Aβ defined over Q

of GL2-type having C as a simple factor over Q.

In practice, what we do in this paper is to find a continuous β : GQ → Q∗, factoring over an

extension of low degree, such that cC(σ, τ) = β(σ)β(τ)β(στ)−1 as elements in H2(GQ,Q
∗
), using

results in [44]. Then we choose a suitable twist Cβ/Kβ of C, where Kβ is the splitting field of β,

such that cCβ (σ, τ) is exactly the cocycle cβ(σ, τ) = β(σ)β(τ)β(στ)−1. In this situation, the abelian

variety Aβ is constructed as a quotient over Q of Res
Kβ
Q Cβ .

The endomorphism algebra of Aβ is given by Mβ = Q({β(σ)}) and the representation on the

πn-torsion points of Aβ coincides with the representation ρ̂C,β,π defined earlier.

Let ε : GQ → Q∗ be defined by

(3) ε(σ) = β(σ)2/ degµ(σ).

Then ε is a character and

(4) det ρ̂C,β,π = ε−1 · χp,

where χp : GQ → Z∗p is the p-th cyclotomic character.

3. Q-curves attached to a2 + b6 = cp and their Galois representations

Let (a, b, c) ∈ Z3 be a solution to a2 + b6 = cp where we suppose that p is a prime. We call

(a, b, c) proper if gcd(a, b, c) = 1 and trivial if |c| = 1. Note that a solution (a, b, c) ∈ Z3 is proper

if and only if the integers a, b and c are pairwise coprime. In what follows, we will always assume

that the triple (a, b, c) is a proper, nontrivial solution. We consider the following associated (Frey or

Frey-Hellegouarch) elliptic curve

E : Y 2 = X3 − 3(5b3 + 4ai)bX + 2(11b6 + 14ib3a− 2a2),
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with j-invariant

(5) j = 432 i
b3(4a− 5ib3)3

(a− ib3)(a+ ib3)3

and discriminant ∆ = −28 · 33 · (a− ib3) · (a+ ib3)3.

Lemma 2. Suppose a/b3 ∈ P1(Q). Then the j-invariant of E does not lie in Q except when

• a/b3 = 0 and j = 54000, or

• a/b3 =∞ and j = 0.

Proof. This can be seen by solving the polynomial equation in Q[i][j, a/b3] derived from (5) by clearing

denominators and collecting terms with respect to {1, i}, using the restriction that j, a/b3 ∈ P1(Q). �

Corollary 3. E does not have complex multiplication unless

• a/b3 = 0, j = 54000, d(O) = −12, or

• a/b3 =∞, j = 0, d(O) = −3.

Proof. If E has complex multiplication by an order O in an imaginary quadratic field, then j(E) has

a real conjugate over Q (for instance, arising from j(E0), where E0 is the elliptic curve associated to

the lattice O itself). Hence, j(E) ∈ Q in fact. For a list of the j-invariants of elliptic curves with

complex multiplication by a class number 1 order, see for instance [21, p. 261]. �

Lemma 4. If (a, b, c) ∈ Z3 with gcd(a, b, c) = 1 and a2 + b6 = cp, then either c = 1 or c is divisible

by a prime not equal to 2 or 3.

Proof. The condition gcd(a, b, c) = 1 together with inspection of a2 + b6 modulo 3 shows that c is

never divisible by 3. Similar reasoning allows us to conclude, since p > 1, that c is necessarily odd,

whereby the lemma follows. �

From here on, let us suppose that E arises from a non-trivial proper solution to a2 + b6 = cp where

p is an odd prime. Note that ab is even and, from the preceding discussion, that a− b3i and a + b3i

are coprime p-th powers in Z[i].

The elliptic curve E is defined over Q(i). Its conjugate over Q(i) is 3-isogenous to E over Q(
√

3, i);

see isogeny.txt . This is in contrast to the situation in [29], where the corresponding isogeny is defined

over Q(i). We make a choice of isogenies µ(σ) : σE → E such that µ(σ) = 1 for σ ∈ GQ(i) and µ(σ)

is the 3-isogeny above when σ /∈ GQ(i).

Let d(σ) denote the degree of µ(σ). We have that d(GQ) = {1, 3} ⊆ Q∗/Q∗2. The fixed field Kd

of the kernel of d(σ) is Q(i) and so (a, d) = (−1, 3) is a dual basis in the terminology of Quer [44].
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The quaternion algebra (−1, 3) is ramified at 2, 3 and so a choice of splitting character for cE(σ, τ) is

given by ε = ε2ε3 where ε2 is the non-trivial character of Z/4Z× and ε3 is the non-trivial character of

Z/3Z×. The fixed field of ε is Kε = Q(
√

3).

Let GQ(i)/Q = {σ1, σ−1}. We have that

α(σ1) = 1 and α(σ−1) = i
√

3.

This can be checked by noting that the quotient of E by the 3-torsion point of E using Vélu multiplies

the invariant differential by 1. The resulting quotient elliptic curve is then a twist over Q(
√

3, i) of

the original E. This twisting multiplies the invariant differential by i
√

3.

So now we can express cE(σ, τ) = α(σ)
σ
α(τ)α(στ)−1. Let β(σ) =

√
ε(σ)

√
d(σ) and cβ(σ, τ) =

β(σ)β(τ)β(στ)−1 ∈ H2(GQ,Q∗). We know from Quer [44] that cβ(σ, τ) and cE(σ, τ) represent the

same class in H2(GQ,Q∗). The fixed field of β is Kβ = Kε ·Kd = Q(
√

3, i) and Mβ = Q(
√

3, i).

Our goal is to find a γ ∈ Q∗ so that cβ(σ, τ) = α1(σ)
σ
α1(τ)α1(στ)−1, where α1(σ) = α(σ)

σ√γ√
γ .

Using a similar technique as for the equation a2 + b2p = c5 (cf. [18], where the corresponding Kβ is

cyclic quartic), we can narrow down the possibilities for choices of γ and subsequently verify that a

particular choice actually works.

In more detail, recall that Kβ = Q(
√

3, i) = Q(z), where z = e2πi/12 = i+
√
3

2 is a primitive 12-th

root of unity. Let GQ(
√
3,i)/Q = {σ1, σ−1, σ3, σ−3} and assume that α1(σ−3)2/α(σ−3)2 = α1(σ−3)2/−3

is a unit, say 1. This implies that
σ−3γ
γ = 1 whereby γ ∈ Q(

√
−3). Furthermore, let us assume that

σ−1γ
γ is a square in Kβ of a unit in Q(

√
−3), say z2 (the other choices produce isomorphic twists).

Solving for γ, we obtain that γ = −3+i
√
3

2 is one possible choice.

The resulting values of α2(σ) = α(σ)
√

σγ
γ are

α2(σ1) = 1, α2(σ−1) = i
√

3z, α2(σ3) = z and α2(σ−3) = i
√

3,

where we have fixed a choice of square root for each σ ∈ GK/Q. It can be verified that cβ(σ, τ) =

α2(σ)
σ
α2(τ)α2(στ)−1.

Consider the twist Eβ of E given by the equation

(6) Eβ : Y 2 = X3 − 3(5b3 + 4ai)bγ2X + 2(11b6 + 14ib3a− 2a2)γ3.

From the relationship between Eβ and E, the initial µ(σ)’s for E give rise to choices for µβ(σ) for

Eβ which are, in general, locally constant on a smaller subgroup than GK . For these choices of

µβ(σ) we have that αEβ (σ) = α1(σ) = α(σ)
σ√γ√
γ . Now,

√
σγ
γ = ξ(σ)δ(σ) where δ(σ) =

σ√γ√
γ and

ξ(σ) = ±1. Since δ(σ)
σ
δ(τ)δ(στ)−1 = 1, it follows that cEβ (σ, τ) = cβ(σ, τ)ξ(σ)ξ(τ)ξ(στ)−1. Hence,
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by using the alternate set of isogenies µ′β(σ) = µβ(σ)ξ(σ), which are now locally constant on GK , the

corresponding αEβ (σ) = α(σ)
√

σγ
γ = α2(σ), and hence cEβ (σ, τ) = α2(σ)

σ
α2(τ)α2(στ)−1 = cβ(σ, τ)

as cocycles, not just as classes in H2(GK/Q,Q∗). The elliptic curve Eβ/Kβ is a Q-curve defined over

Kβ ; cf. isogenyp.txt .

Another way to motivate the preceding calculation is as follows. Without loss of generality, we may

assume that γ is square-free in the ring of integers of Kβ (if γ is a square, then the corresponding Eβ

is isomorphic over Kβ to E). The field Kβ has class number one. If γ = λγ′ where λ ∈ Z, then using

γ′ instead of γ yields an Eβ whose cEβ (σ, τ) is the same cocycle in H2(GK/Q,Q∗). The condition that√
σγ
γ be a square in Kβ for all σ ∈ GK/Q shows that only ramified primes divide γ and there are two

such primes in Kβ = Q(
√

3, i).

The discriminant of Kβ is dKβ/Q = 24 · 32 = 144. The prime factorizations of (2), (3) in Kβ are

given by

(2) = q22 and (3) = q23.

Let ν2, ν3 be uniformizers at q2, q3 respectively with associated valuations v2, v3. The units in Kβ are

generated by z of order 12 and a unit u2 of infinite order. Thus, up to squares, γ is product of a

subset of the elements {z, u2, ν2, ν3}.

The authors have subsequently learned that a similar technique for finding γ also appeared in [28]

(where Kβ is polyquadratic).

It would be interesting to study the twists Eβ which arise from other choices of splitting maps. We

will not undertake this here.

Lemma 5. Suppose that E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where the ai, a
′
i lie in a discrete valuation ring O with uniformizer ν.

(1) Suppose the valuation at ν of the discriminants is, in each case, equal to 12. If E has reduction

type II∗ and a′i ≡ ai (mod ν6), then E′ also has reduction type II∗. If E has reduction type

I0 and a′i ≡ ai (mod ν6), then E′ also has reduction type I0.

(2) Suppose the valuation at ν of the discriminants is, in each case, equal to 16. If E has reduction

type II and a′i ≡ ai (mod ν8), then E′ also has reduction type II.
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(3) Suppose the Weierstrass equation of E is in minimal form, and E has reduction type II or

III. If a′i ≡ ai (mod ν8), then E′ has the same reduction type as E and is also in minimal

form.

Proof. We give a proof for case (1), the remaining cases are similar. Since the discriminants of E

and E′ have valuation 12, when E and E′ are processed through Tate’s algorithm [48], the algorithm

terminates at one of Steps 1–10 or reaches Step 11 to loop back a second time at most once.

If E has reduction type II∗, the algorithm applied to E terminates at Step 10. Since the transfor-

mations used in Steps 1–10 are translations, they preserve the congruence ai ≡ a′i (mod ν6) as E and

E′ are processed through the algorithm, and since the conditions to exit at Steps 1–10 are congruence

conditions modulo ν6 on the coefficients of the Weierstrass equations, we see that if the algorithm

applied to E terminates at Step 10, it must also terminate at Step 10 for E′.

If E has reduction type I0, the algorithm applied to E reaches Step 11 to loop back a second time

to terminate at Step 1 (because the valuation of the discriminant of the model for E is equal to 12).

Again, since a′i ≡ ai (mod ν6), it follows that the algorithm applied to E′ also reaches Step 11 to loop

back a second time and terminate at Step 1 (again because the valuation of the discriminant of the

model for E′ is equal to 12).

�

Theorem 6. The conductor of Eβ is

m = q42 · qε3
∏

q|c,q-2,3

q,

where ε = 0, 4.

Proof. cf. tate2m.txt, tate3m.txt for the computations. Recall that Eβ is given by

Eβ : Y 2 = X3 − 3(5b3 + 4ai)bγ2X + 2(11b6 + 14ib3a− 2a2)γ3.(7)

with

(8) ∆Eβ = −28 · 33 · (a− ib3)(a+ ib3)3 · γ6.

Then

c4 = 24 · 32 · b(4ia+ 5b3) · γ2(9)

c6 = 25 · 33 · (2a+ (−7i− 6z2 + 3)b3)(2a+ (−7i+ 6z2 − 3)b3) · γ3.
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Let q be a prime not dividing 2 · 3 but dividing ∆Eβ . The elliptic curve Eβ has multiplicative bad

reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is not divisible by q and gcd(a, b) = 1, we note

that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

b3 ≡ 0 (mod q), or 4ia+ 5b3 ≡ 0 (mod q),

and

2a+ (−7i− 6z2 + 3)b3 ≡ 0 (mod q), or 2a+ (−7i+ 6z2 − 3)b3 ≡ 0 (mod q).

The determinants of the resulting linear system in the variables a, b3, in all 4 cases, are only divisible

by primes above 2 and 3. It follows that Eβ has multiplicative bad reduction at q.

By equation (8), since gcd(a, b) = 1, we have v3(∆Eβ ) = 12. We run through all possibilities for

(a, b) modulo ν63 and, in each case, we compute the reduction type of Eβ at q3 using MAGMA [7];

in every case, said reduction type turns out to be of type II∗ or I0. By Lemma 5, case (1), this

determines all the possible conductor exponents for Eβ at q3.

Since a and b are of opposite parity, equation(8) implies that v2(∆Eβ ) = 16. Checking all possibil-

ities for (a, b) modulo ν82 , and in each case computing the reduction type of Eβ at q2, via MAGMA

[7], we always arrive at reduction type II. By Lemma 5, case (2), this determines all the possible

conductor exponents for Eβ at q2. �

Theorem 7. The conductor of Res
Kβ
Q Eβ is

dKβ/Q
2 ·NKβ/Q(m) = 216 · 34+2ε ·

∏
q|c,q 6=2,3

q4,

where ε = 0, 4.

Proof. cf. [41, Lemma, p. 178]. We also note that Kβ is unramified outside {2, 3} so the product is of

the form stated. �

Corollary 8. The elliptic curve Eβ has potentially good reduction at q2 and q3. In the latter case,

the reduction is potentially supersingular.

Let A = Res
Kβ
Q Eβ . By [44, Theorem 5.4], A is an abelian variety of GL2-type with Mβ = Q(

√
3, i).

The conductor of the system of Mβ,π[GQ]-modules
{
V̂π(A)

}
is given by

(10) 24 · 31+ε/2 ·
∏

q|c,q 6=2,3

q,

using the conductor results explained in cf. [18].
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For the next two theorems, it is useful to recall that a− b3i and a+ b3i are coprime p-th powers in

Z[i].

Theorem 9. The representation φE,p |Ip is finite flat for p 6= 2, 3.

Proof. This follows from the fact that E has good or multiplicative bad reduction at primes above p

when p 6= 2, 3, and in the case of multiplicative bad reduction, the exponent of a prime above p in the

minimal discriminant of E is divisible by p. Also, p is unramified in Kβ so that Ip ⊆ GKβ . �

Theorem 10. The representation φE,p |I` is trivial for ` 6= 2, 3, p.

Proof. This follows from the fact that E has good or multiplicative bad reduction at primes above `

when ` 6= 2, 3, and, in the case of multiplicative bad reduction, the exponent of a prime above ` in the

minimal discriminant of E is divisible by p. Also, ` is unramified in Kβ so that I` ⊆ GKβ . �

Theorem 11. Suppose p 6= 2, 3. The conductor of ρ = ρE,β,π is one of 48 or 432.

Proof. Since we are determining the Artin conductor of ρ, we consider only ramification at primes

above ` 6= p.

Suppose ` 6= 2, 3, p. Since ` 6= 2, 3, we see that Kβ is unramified at ` and hence GKβ contains I`.

Now, in our case, ρ |GKβ is isomorphic to φE,p. Since φE,p |I` is trivial, we have that ρ |I` is trivial so

ρ is unramified outside {2, 3, p}.

Suppose ` = 2, 3. The representation φ̂E,p |I` factors through a finite group of order only divisible

by the primes 2, 3. Now, in our case, ρ̂ |GKβ is isomorphic to φ̂E,p. Hence, the representation ρ̂ |I` also

factors through a finite group of order only divisible by the primes 2, 3. It follows that the exponent

of ` in the conductor of ρ is the same as in the conductor of ρ̂ as p 6= 2, 3. �

Proposition 12. Suppose p 6= 2, 3. Then the weight of ρ = ρE,β,π is 2.

Proof. The weight of ρ is determined by ρ |Ip . Since p 6= 2, 3, we see that Kβ is unramified at p and

hence GKβ contains Ip. Now, in our case, ρ |GKβ is isomorphic to φE,p. Since φE,p |Ip is finite flat

and its determinant is the p-th cyclotomic character, we have that the weight of ρ is necessarily 2 [47,

Proposition 4]. �

Proposition 13. The character of ρE,β,π is ε.

Proof. This follows from equation (4). �
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Let XK
0,B(d, p), XK

0,N (d, p), XK
0,N ′(d, p) be the modular curves with level p structure corresponding

to a Borel subgroup B, the normalizer of a split Cartan subgroup N , the normalizer of a non-split

Cartan subgroup N ′ of GL2(Fp), and level d structure consisting of a cyclic subgroup of order d,

twisted by the quadratic character associated to K through the action of the Fricke involution wd.

Lemma 14. Let E be a Q-curve defined over K ′, K be a quadratic number field contained in K ′, and

d a prime number such that

(1) the elliptic curve E is defined over K,

(2) the choices of µE(σ) are constant on GK cosets, µE(σ) = 1 when σ ∈ GK , and degµE(σ) = d

when σ 6∈ GK ,

(3) µE(σ)
σ
µE(σ) = ±d whenever σ /∈ GK .

If ρE,β,π has image lying in a Borel subgroup, normalizer of a split Cartan subgroup, or normalizer of a

non-split Cartan subgroup of F×p GL2(Fp), then E gives rise to a Q-rational point on the corresponding

modular curve above.

Proof. This proof is based on [29, Proposition 2.2]. Recall the action of GQ on PE[d] is given by x 7→

µE(σ)(σx). Suppose PρE,β,p has image lying in a Borel subgroup. Then we have that µE(σ)(σCp) = Cp

for some cyclic subgroup Cp of order p in E[p] and all σ ∈ GQ. Let Cd be the cyclic subgroup of order

d in E[d] defined by µE(σ)(σE[d]) where σ is an element of GQ which is non-trivial on K. This does

not depend on the choice of σ. Suppose σ is an element of GQ which is non-trivial on K. The kernel

of µE(σ) is precisely σCd as µE(σ)(σCd) = µE(σ)σµE(σ)
(
σ2

E[d]
)

= [±d]
(
σ2

E[d]
)

= 0. Hence, we

see that

wd
σ
(E,Cd, Cp) = wd(

σE, σCd,
σCp)

= (µE(σ)(σE), µE(σ)(σE[d]), µE(σ)(σCp))

= (E,Cd, Cp)

so
σ
(E,Cd, Cp) = wd(E,Cd, Cp), where wd is the Fricke involution. Suppose σ is an element of GQ

which is trivial on K. In this case, we have that
σ
(E,Cd, Cp) = (E,Cd, Cp). Thus, (E,Cd, Cp) gives

rise to a Q-rational point on X0,B(d, p).

The case when the image of ρE,β,π lies in the normalizer of a Cartan subgroup is similar except

now we have the existence of a set of distinct points Sp = {αp, βp} of PE[p]⊗Fp2 such that the action

of σ ∈ GQ by x 7→ µE(σ)(σx) fixes Sp as a set. �
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Theorem 15. Suppose the representation ρE,β,π is reducible for p 6= 2, 3, 5, 7, 13. Then E has poten-

tially good reduction at all primes above ` > 3.

Proof. cf. [29, Proposition 3.2]. We note that E gives rise to a Q-rational point on XK
0,N (3, p) by

Lemma 14, even though the isogeny between E and its conjugate is only defined over Q(
√

3, i). �

Corollary 16. The representation ρE,β,π is irreducible for p 6= 2, 3, 5, 7, 13.

Proof. Lemma 4 shows that E must have multiplicative bad reduction at some prime of K above

` > 3. �

Proposition 17. If p = 13, then ρE,β,π is irreducible.

Proof. By Lemma 14, if ρE,β,π were reducible, then E would give rise to a non-cuspidal K-rational

point on X0(39) where K = Q(i) and a non-cuspidal Q-rational point on X0(39)/w3. We can now

use the work of [32] which says that X0(39)/w3 has four Q-rational points. Two of them are cuspidal.

Two of them arise from points in X0(39) defined over Q(
√
−7). Hence, no such E can exist, since

a K-rational point on X0(39) which is also Q(
√
−7)-rational must be Q-rational (and again by [32],

X0(39) has no non-cuspidal Q-rational points). �

Outline of Proof of Theorem 1. Using modularity of E, which now follows from Serre’s conjecture

[47], [33], [34], [35], plus the usual level lowering arguments based on results in [45], we have that

ρE,π,β ∼= ρg,π where g is a newform in S2(Γ0(M), ε) where M = 48 or M = 432. This holds for

n = p ≥ 11.

There is one newform F1 in S2(Γ0(48), ε) and this has CM by Q(−3); inner-48.txt,cm-48.txt . At

level 432, we find three newforms G1, G2, G3 in S2(Γ0(432), ε); inner-432.txt . As it transpires, both

G1 and G2 have CM by Q(−3); cm-432.txt . The form G3 is harder to eliminate as it does not

have complex multiplication and its field of coefficients is Mβ = Q(
√

3, i). Furthermore, the complex

conjugate of G3 is a twist of G3 by ε−1. In fact, G3 arises from the near solution 12 +16 = 2 (this near

solution gives rise to a form at level 432 and it is the unique non-CM form at that level) so it shares

many of the same properties g should have as both arise from the same geometric construction. Note

however one cannot have a ≡ b ≡ 1 (mod 2) in the equation a2 + b6 = cp as p > 1.

Unfortunately, it is not possible to eliminate the possibility of g = G3 by considering the fields cut

out by images of inertia at 2. Using [36, Théorème 3] and its proof, it can be checked that these fields

are the same regardless of whether or not a ≡ b ≡ 1 (mod 2).
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In the next two sections, we show that in each case g = Gi, for i = 1, 2 (CM case), and i = 3, we are

led to a contradiction, if n = p ≥ 11. Finally, in the last section, we deal with the cases n = 3, 4, 5, 7.

This suffices to prove the theorem as any integer n ≥ 3 is either divisible by an odd prime or by 4.

4. Eliminating the CM forms

When g = Gi for i = 1 or 2, g has complex multiplication by Q(
√
−3) so that ρE,β,π has image

lying in the normalizer of a Cartan subgroup for p > 3. However, this leads to a contradiction using

the arguments below.

Proposition 18. Let p ≥ 7 be prime and suppose there exists either, a p-newform in S2(Γ0(3p2)) with

wpf = f , w3f = −f or a p-newform in S2(Γ0(p2)) with wpf = f , such that L(f ⊗ χ−4, 1) 6= 0, where

χ−4 is the Dirichlet character associated to K = Q(i). Let E be an elliptic curve which gives rise to

a non-cuspidal Q-rational point on XK
0,N (3, p) or XK

0,N ′(3, p). Then E has potentially good reduction

at all primes of K above ` > 3.

Proof. cf. [29] and comments in [3, Proposition 6] about the applicability to the split case (see also

the argument in [29, Lemma 3.5] which shows potentially good reduction at a prime of K above p in

the split case). �

Proposition 19. If p ≥ 11 is prime, then there exists a p-newform f ∈ S2(Γ0(p2)) with wpf = f and

L(f ⊗ χ−4, 1) 6= 0.

Proof. For p ≥ 61, this is, essentially, the content of the proof of Proposition 7 of [3] (note that the

proof applies to p ≡ 1 (mod 8), not just to p 6≡ 1 (mod 8) as stated). Further, a relatively short

Magma computation newform-twists.txt reveals the same to be true for smaller values of p with the

following forms f (the number following the level indicates Magma’s ordering of forms; one should note

that this numbering is consistent neither with Stein’s modular forms database nor with Cremona’s

tables)

p f dimf p f dimf p f dimf

11 121(1) 1 29 841(1) 2 47 2209(9) 16

13 169(2) 3 31 961(1) 2 53 2809(1) 1

17 289(1) 1 37 1369(1) 1 59 3481(1) 2

19 361(1) 1 41 1681(1) 2

23 529(7) 4 43 1849(1) 1

�
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Theorem 20. Suppose the representation ρE,β,π has image lying in the normalizer of a Cartan

subgroup for p ≥ 11. Then E has potentially good reduction at all primes of K above ` > 3.

Proof. We note that E still gives rise to a Q-rational point on XK
0,N (3, p) or XK

0,N ′(3, p) with K = Q(i),

even though, as a consequence of Lemma 14, the isogeny between E and its conjugate is only defined

over Q(
√

3, i). �

Theorem 21. If p ≥ 11 is prime, the representation ρE,β,π does not have image lying in the normalizer

of a Cartan subgroup.

Proof. Lemma 4 immediately implies that E necessarily has multiplicative bad reduction at a prime

of K lying above some ` > 3. �

5. Eliminating the newform G3

Recall that E = Ea,b is given by

E : Y 2 = X3 − 3(5b3 + 4ai)bX + 2(11b6 + 14ib3a− 2a2).

Let E′ = E′a,b be the elliptic curve

E′ : Y 2 = X3 + 3b2X + 2a.

which is a Frey-Hellegouarch elliptic curve over Q for the equation a2 + (b2)3 = cp. We will show how

to eliminate the case of g = G3 using a combination of congruences from the two Frey curves E and

E′. This is an example of the multi-Frey technique (cf. [13] and [14]), as applied to the situation

when one of the Frey curves is a Q-curve. We are grateful to S. Siksek for suggesting a version of

Lemma 24 which allows us to do this.

The discriminant of E′ is given by

(11) ∆′ = −26 · 33(a2 + b6).

For a 6≡ b (mod 2), v2(∆′) = 6 so E′ is in minimal form at 2. Since (a, b) 6≡ (0, 0) (mod 3), we have

that v3(∆′) = 3 and so E′ is also minimal at 3. For q | ∆′ and q 6= 2, 3, E′ has multiplicative bad

reduction at q.

For each congruence class of (a, b) modulo 24 where a 6≡ b (mod 2), we compute the conductor

exponent at 2 of E′ using MAGMA. The conductor exponent at 2 of each test case was 5 (reduction

type III) or 6 (reduction type II) : tate2m-3.txt . By Lemma 5, case (3), the conductor exponent
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at 2 of E′ is 5 or 6. In a similar way, the conductor exponent at 3 of E′ is 2 (reduction type III) or

3 (reduction type II) : tate3m-3.txt .

We are now almost in position to apply the modular method to E′. We need only show that the

representation ρE′,p arising from the p-torsion points of E′ is irreducible.

Lemma 22. If p ≥ 11 is prime, then ρE′,p is irreducible.

Proof. If p 6= 13, the result follows essentially from work of Mazur [40] (see Theorem 22 of [22]),

provided jE′ is not one of

−215,−112,−11 · 1313,
−17 · 3733

217
,
−172 · 1013

2
,−215 · 33,−7 · 1373 · 20833,

−7 · 113,−218 · 33 · 53,−215 · 33 · 53 · 113,−218 · 33 · 53 · 233 · 293.

Since

jE′ =
1728 b6

a2 + b6
> 0,

we may thus suppose that p = 13. In this case, if ρE′,p were reducible, the representation would

correspond to a rational point on the curve defined via the equation j13(t) = jE′ , where j13(t) is the

map from the modular curve X0(13) to X(1), given by

j13(t) =
(t4 + 7t3 + 20t2 + 19t+ 1)3(t2 + 5t+ 13)

t

=
(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)2(t2 + 6t+ 13)

t
+ 1728.

Writing s = a/b3, we thus have 1728
s2+1 = j13(t), for some t ∈ Q, and so

s2 =
1728− j13(t)

j13(t)
= − (t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)2(t2 + 6t+ 13)

(t4 + 7t3 + 20t2 + 19t+ 1)3(t2 + 5t+ 13)
.

It follows that there exist rational numbers x and y with

y2 = −(x2 + 6x+ 13)(x2 + 5x+ 13)(x4 + 7x3 + 20x2 + 19x+ 1),

and hence coprime, nonzero integers u and v, and an integer z for which

(u2 + 6uv + 13v2)(u2 + 5uv + 13v2)(u4 + 7u3v + 20u2v2 + 19uv3 + v4) = −z2.

Note that, via a routine resultant calculation, if a prime p divides both u2 + 6uv+ 13v2 and the term

(u2+5uv+13v2)(u4+7u3v+20u2v2+19uv3+v4), then necessarily p ∈ {2, 3, 13}. Since u2+6uv+13v2

is positive definite and u, v are coprime (whereby u2 + 6uv + 13v2 ≡ ±1 (mod 3)), we thus have

u2 + 6uv + 13v2 = 2δ113δ2z21 , and

(u2 + 5uv + 13v2)(u4 + 7u3v + 20u2v2 + 19uv3 + v4) = −2δ113δ2z22 ,
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for z1, z2 ∈ Z and δi ∈ {0, 1}. The first equation, with δ1 = 1, implies that u ≡ v ≡ 1 (mod 2),

contradicting the second. We thus have δ1 = 0, whence

u2 + 6uv + 13v2 ≡ u2 + v2 ≡ z21 ≡ 1 (mod 3),

so that 3 divides one of u and v, again contradicting the second equation, this time modulo 3. �

Applying the modular method with E′ as the Frey curve thus shows that ρE′,p ∼= ρg′,π′ for some

newform g′ ∈ S2(Γ0(M)) where M = 2r3s, r ∈ {5, 6}, and s ∈ {2, 3} (here π′ is a prime above p in the

field of coefficients of g′). The possible forms g′ were computed using b3i-modformagain.txt . The

reason the multi-Frey method works is because when a 6≡ b (mod 2), we have that r ∈ {5, 6}, whereas

when a ≡ b ≡ 1 (mod 2), we have that r = 7. Thus, the 2-part of the conductor of ρE′,π separates

the cases a 6≡ b (mod 2) and a ≡ b (mod 2). Hence, the newform g′ that the near solution a = b = 1

produces does not cause trouble from the point of view of the Frey curve E′. By linking the two Frey

curves E and E′, it is possible to pass this information from the Frey curve E′ to the Frey curve E,

by appealing to the multi-Frey technique.

The following lemma results from the condition ρE′,p ∼= ρg′,π′ and standard modular method

arguments.

Lemma 23. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is a prime. Let

Cx,y(q, g′) =

aq(E
′
x,y)− aq(g′) if x2 + y6 6≡ 0 (mod q)

(q + 1)2 − aq(g′)2 if x2 + y6 ≡ 0 (mod q)

.

If (a, b) ≡ (x, y) (mod q), then p | Cx,y(q, g′).

For our choice of splitting map β, we attached a Galois representation ρE,β,π to E such that

ρE,β,π ∼= ρg,π for some newform g ∈ S2(Γ0(M), ε) where M = 48, 432. We wish to eliminate the case

of g = G3. The following is the analog of Lemma 23 for E = Ea,b.

Lemma 24. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is prime. Let

Bx,y(q, g) =


N(aq(Ex,y)2 − ε(q)aq(g)2) if x2 + y6 6≡ 0 (mod q) and

(−4
q

)
= 1

N(aq(g)2 − aq2(Ex,y)− 2qε(q)) if x2 + y6 6≡ 0 (mod q) and
(−4
q

)
= −1

N(ε(q)(q + 1)2 − aq(g)2) if x2 + y6 ≡ 0 (mod q)

,

where aqi(Ex,y) is the trace of Frobiq acting on the Tate module Tp(Ex,y).

If (a, b) ≡ (x, y) (mod q), then p | Bx,y(q, g).
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Proof. Recall the set-up in Section 2 and Section 3. Let π be a prime of Mβ above p. The mod π

representation ρAβ ,π of GQ attached to Aβ is related to Eβ by

PρAβ ,π |GK∼= PφEβ ,p,

where φEβ ,p is the representation of GK on the p-adic Tate module Tp(Eβ) of Eβ , and the P indicates

that we are considering isomorphism up to scalars. The algebraic formula which describes ρEβ ,β,π =

ρAβ ,π
∼= ρf,π is

ρAβ ,π(σ)(1⊗ x) = β(σ)−1 ⊗ µ′β(σ)(φEβ ,p(σ)(x))

where 1⊗ x ∈Mβ,π ⊗ Tp(Eβ). Here, µ′β(σ) is the chosen isogeny from σEβ → Eβ for each σ which is

constant on GK (see the paragraph after (6)).

x2 + y6 ≡ 0 (mod q), then q | c. Recall the conductor of Aβ is given by

24 · 31+ε/2 ·
∏

q|c,q 6=2,3

q

so that q exactly divides the conductor of Aβ . Using the condition ρf,π ∼= ρg,π, we can deduce from

cf. [15, Théorème 2.1], [16, Théorème (A)], [25, Theorem 3.1], [31, (0.1)] that

p | N
(
aq(g)2 − ε−1(q) (q + 1)

2
)
.

If x2 + y6 6≡ 0 (mod q), then let q be a prime of Kβ over q. Let E = Ea,b be the reduction modulo

q of E. Since (a, b) ≡ (x, y) (mod q), we have the E = Ex,y. Furthermore, since q is a prime of good

reduction, Tp(E) ∼= Tp(E).

We now wish to relate the representation ρEβ ,β,π = ρAβ ,π
∼= ρf,π to the representation φE,p for the

original E. We know that

cEβ (σ, τ) = β(σ)β(τ)β(στ)−1

cEβ (σ, τ) = cE(σ, τ)κ(σ)κ(τ)κ(στ)−1

where κ(σ) =
σ√γ√
γ and γ = −3+i

√
3

2 . It follows that

cE(σ, τ) = β′(σ)β′(τ)β′(στ)−1,

where β′(σ) = β(σ)κ(σ), so that β′ is a splitting map for the original cocycle cE(σ, τ). Also, recall

that ε(Frobq) =
(
12
q

)
.

Now we have that

ρAβ′ ,π(σ)(1⊗ x) = β′(σ)−1 ⊗ µ(σ)(φE,p(σ)(x)),



THE EQUATION a2 + b6 = cn 19

where 1⊗ x ∈Mβ,π ⊗ Tp(E). For this choice of β′(σ),

ρAβ′ ,π
∼= κ(σ)ξ(σ)⊗ ρAβ ,π ∼= κ(σ)ξ(σ)⊗ ρf,π.

This can be seen by fixing the isomorphism ι : E ∼= Eβ , using standard Weierstrass models and then

appealing to the following commutative diagram.

Eβ
σ−−−−→ σEβ

µEβ (σ)−−−−−→ Eβ

ι

x σι

x ι

x
E

σ−−−−→ σE
µE(σ)−−−−→ E

Recall β(σ) =
√
ε(σ)

√
d(σ) so that β′(σ) =

√
ε(σ)

√
d(σ)κ(σ). We note that d(σ) = 1 if σ ∈ GQ(

√
−1)

and d(σ) = 3 if σ 6∈ GQ(
√
−1).

Now
(−4
q

)
= 1 means σ = Frobq ∈ GQ(

√
−1). If σ ∈ GQ(

√
−1), then µ(σ) = id and d(σ) = 1

so ρAβ′ ,π(σ)(1 ⊗ x) = β′(σ)−1 ⊗ µ(σ)(φE,p(σ)(x)) =
√
ε(σ)

−1
κ(σ)−1 ⊗ φE,p(σ)(x) so tr ρAβ′ ,π(σ) =√

ε(σ)
−1
κ(σ)−1 · trφE,p(σ) and ε(q)aq(f)2 = aq(E)2. And we have that aq(f) ≡ aq(g) (mod π),

giving the assertion that p | Bα(q, g) in the case
(−4
q

)
= 1.

If
(−4
q

)
= −1, then σ = Frobq 6∈ GQ(

√
−1). But then σ2 ∈ GQ(

√
−1), and in fact, σ2 ∈ GQ(

√
−1,
√
3),

so by the above argument we get that tr ρAβ′ ,π(σ2) =
√
ε(σ)

−1
κ(σ)−1 · trφE,p(σ2) = trφE,p(σ

2) =

aq2(E). Also, tr ρAβ′ ,π(σ) = κ(σ)ξ(σ)aq(f) so tr ρAβ′ ,π(σ)2 = aq(f)2. We have that

1

det(1− ρAβ′ ,π(σ)q−s)
= exp

∞∑
r=1

tr ρAβ′ ,π(σr)
q−sr

r

=
1

1− tr ρAβ′ ,π(σ)q−s + qε(q)q−2s
.

The determinant and traces are of vector spaces over Mβ,π. Computing the coefficient of q−2s and

equating, we find that tr ρAβ′ ,π(σ2) = tr ρAβ′ ,π(σ)2−2qε(q) and hence conclude that aq(f)2−2qε(q) =

aq2(E). Since aq(f) ≡ aq(g) (mod π), it follows that p | Bα(q, g) in the case
(−4
q

)
= −1 as well. �

Let

Aq(g, g
′) :=

∏
(x,y)∈F2

q−{(0,0)}

gcd(Bx,y(q, g), Cx,y(q, g′)).

Then we must have that p | Aq(g, g′). For a pair g, g′, we can pick a prime q and compute Aq(g, g
′).

Whenever this Aq(g, g
′) 6= 0, we obtain a bound on p so that the pair g, g′ cannot arise for p larger

than this bound.

For g = G3, and g′ running through the newforms in S2(Γ0(2r3s)) where r ∈ {5, 6} and s ∈ {2, 3},

the above process eliminates all possible pairs g = G3 and g′; see multi-frey.txt . In particular, using
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q = 5 or q = 7 for each pair shows that p ∈ {2, 3, 5}. Hence, if p 6∈ {2, 3, 5, 7}, then a solution to our

original equation cannot arise from the newform g = G3.

6. The cases n = 3, 4, 5 and 7

It thus remains only to treat the equation a2 + b6 = cn for n ∈ {3, 4, 5, 7}. In each case, without

loss of generality, we may suppose that we have a proper, nontrivial solution in positive integers a, b

and c. If n = 4 or 7, the desired result is immediate from work of Bruin [9] and Poonen-Schaefer-Stoll

[43], respectively. In the case n = 3, a solution with b 6= 0 implies, via the equation( a
b3

)2
=
( c
b2

)3
− 1,

a rational point on the elliptic curve given by E : y2 = x3 − 1, Cremona’s 144A1 of rank 0 over Q

with E(Q) ∼= Z/2Z. It follows that c = b2 and hence a = 0.

Finally, we suppose that a2+b6 = c5, for coprime positive integers a, b and c. From parametrizations

for solutions to x2 + y2 = z5 (see e.g. [18, Lemma 2]), it is easy to show that there exist coprime

integers u and v (and z) for which

(12) v4 − 10v2u2 + 5u4 = 5δz3

with either (a) v = β3, δ = 0, β coprime to 5; or (b) v = 52β3, δ = 1, for some integer β. Let us begin

by treating the latter case. From (12), we have that

(
u2 − v2

)2 − 4 · 57 · β12 = z3

and hence taking

x =
z

52β4
, y =

u2 − v2

53β6
,

we have a rational point on E : y2 = x3 + 20, Cremona’s 2700E1 of rank 0 and trivial torsion (with

no corresponding solutions of interest to our original equation).

We may thus suppose that we are situation (a), so that

(13) β12 − 10β6u2 + 5u4 = z3.

Since β and u are coprime, we may assume that they are of opposite parity (and hence that z is

odd), since β ≡ u ≡ 1 (mod 2) with (13) leads to an immediate contradiction modulo 8. Writing

T = β6 − 5u2, (13) becomes T 2 − 20u4 = z3, where T is coprime to 10. Factoring over Q(
√

5) (which
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has class number 1), we deduce the existence of integers m and n, of the same parity, such that

(14) T + 2
√

5u2 =

(
1 +
√

5

2

)δ (
m+ n

√
5

2

)3

,

with δ ∈ {0, 1, 2}.

Let us first suppose that δ = 1. Then, expanding (14), we have

m3 + 15m2n+ 15mn2 + 25n3 = 16T and m3 + 3m2n+ 15mn2 + 5n3 = 32u2.

It follows that

3m2n+ 5n3 = 4T − 8u2 ≡ 4 (mod 8),

contradicting the fact that m and n have the same parity. Similarly, if δ = 2, we find that

3m3 + 15m2n+ 45mn2 + 25n3 = 16T and m3 + 9m2n+ 15mn2 + 15n3 = 32u2,

and so

3m2n+ 5n3 = 24u2 − 4T ≡ 4 (mod 8),

again a contradiction.

We thus have that δ = 0, and so

(15) m(m2 + 15n2) = 8T = 8(β6 − 5u2) and n(3m2 + 5n2) = 16u2.

Combining these equations, we may write

(16) 16β6 = (m+ 5n)(2m2 + 5mn+ 5n2).

Returning to the last equation of (15), since gcd(m,n) divides 2, we necessarily have that n = 2δ13δ2r2

for some integers r and δi ∈ {0, 1}. Considering the equation n(3m2 + 5n2) = 16u2 modulo 5 implies

that (δ1, δ2) = (1, 0) or (0, 1). In case (δ1, δ2) = (1, 0), the two equations in (15), taken together, imply

a contradiction modulo 9.

We may thus suppose that (δ1, δ2) = (0, 1) and, setting y = (2β/r)3 and x = 6m/n in (16), we find

that

y2 = (x+ 30)(x2 + 15x+ 90).

This elliptic curve is Cremona’s 3600G1, of rank 0 with nontrivial torsion corresponding to x =

−30, y = 0.

It follows that there do not exist positive coprime integers a, b and c for which a2 + b6 = c5, which

completes the proof of Theorem 1.
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