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Goormaghtigh’s equation : small parameters

By Michael A. Bennett, Ben Garbuz and Adam Marten

Abstract. We explicitly solve the polynomial-exponential Diophantine equation
xm−1
x−1

= yn−1
y−1

for various small fixed choices of the parameters (x, y,m, n), generaliz-

ing classical work of Makowski and Schinzel. Rather than elementary arguments, our

proofs utilize a wide range of techniques from the theory of Diophantine approximation,

together with extensive computer computations.

1. Introduction

The frequently studied polynomial-exponential equation of Goormaghtigh

[10]
xm − 1

x− 1
=
yn − 1

y − 1
, m > n > 2, y > x ≥ 2 (1)

is conjectured to have precisely the solutions

(x, y,m, n) ∈ {(2, 5, 5, 3), (2, 90, 13, 3)} (2)

in integers. Unconditionally, however, the number of such solutions is not known

to be finite, even if one fixes one of the variables x, y or n (though recent work

of the first author, Gherga and Kreso [4] establishes such a result for a given n

under the additional assumption that gcd(m− 1, n− 1) > 1).

If one fixes any two of the variables x, y, m or n, however, then the number

of solutions to (1) is, in fact, finite. This was proven for a given pair (x, y) by
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Kanold [14] and for fixed (m,n) by Davenport, Lewis and Schinzel [8]. Explicit

versions of these results for small parameters (x, y) and (m,n) date back to work

of Makowski and Schinzel [20], who proved the following pair of theorems.

Theorem 1 (Makowski-Schinzel). The only solution to equation (1) with

2 ≤ x < y ≤ 10 (3)

is given by (x, y,m, n) = (2, 5, 5, 3).

Theorem 2 (Makowski-Schinzel). The only solution to equation (1) with m ≤ 5

is given by (x, y,m, n) = (2, 5, 5, 3).

The first of these is of an entirely elementary nature, based upon congruen-

tial arguments, while the second applies the classical method of Runge [22]. Our

goal in this paper is to introduce new techniques to improve the first of these

results substantially, and to extend the second to take advantage of both im-

provements in computational power, and in the technical machinery underlying

Runge’s method. We prove the following.

Theorem 3. If (x, y,m, n) is a a solution to (1) with

2 ≤ x < y ≤ 105,

then (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3).

Theorem 4. The only solutions to equation (1) with either

m = n+ 1 and 3 ≤ n ≤ 17, (4)

or

gcd(m− 1, n− 1) > 1 and m ≤ 50 (5)

or

(n,m) ∈ {(3, 6), (3, 8)} (6)

are given by (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3).

Equation (1) has been the subject of much study. A good survey of results

up to 2001 or so can be found in the paper of Shorey [24]. For more recent work,

the reader may consult [11], [12], [17], [18], [19] and [30]. The current state of

the art for applying techniques from Diophantine Approximation to (1) can be

found in [4], and in the papers of Nesterenko and Shorey [21], and of Bugeaud

and Shorey [7]. In the last of these, by way of example, one finds the following

result.
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Theorem 5 (Bugeaud-Shorey). Let α > 1. Equation (1) with

gcd(m− 1, n− 1) > 4α+ 6 +
1

α
and

m− 1

n− 1
≤ α

implies that max{x, y,m, n} is bounded above by an effectively computable con-

stant depending only on α.

This theorem is a strong effective generalization of a classical result of Karan-

icoloff [15] which showed that (x, y,m, n) = (2, 5, 5, 3) is the only solution to equa-

tion (1) with the property that (m − 1)/(n − 1) = 2. We apply the arguments

leading to Theorem 5 to deduce

Theorem 6. There are no solutions to equation (1) with (m− 1)/(n− 1) = 3.

The outline of this paper is as follows. In Section 2, we prove Theorem 3

while Theorem 4 is proved in Sections 3, 4 and 5. The first of these sections

is devoted to equation (1) with (m,n) as in (4), the second to (m,n) satisfying

(5), and the third to (m,n) = (6, 3) and (m,n) = (8, 3). In Section 6, we prove

Theorem 6. A variety of code to support the computations we undertake in this

paper can be found at

http://www.math.ubc.ca/~bennett/BeGaMa

2. Fixed values of x and y : Theorem 3

In this section, we will prove Theorem 3. For fixed values of x and y,

an explicit finiteness statement for solutions to equation (1) is provided by the

following result of He and Togbé (Lemma 2.3 of [12]). This is a slight sharpening

of earlier work of Bugeaud and Shorey [7] and is based upon bounds for linear

forms in logarithms.

Lemma 2.1. If (x, y,m, n) satisfy (1), then

m− 1

1 + logm
< 1.391 · 1011(log y)2.

For the remainder of this section, we will assume that 2 ≤ x < y ≤ 105,

whence it follows from Lemma 2.1 by routine calculation that if (x, y,m, n) satisfy

equation (1), then

m < 1015 (7)

Our main tool for handling the a priori roughly 1040 remaining tuples (x, y,m, n)

is the following result, which is easily derived from equation (1) (see the proof of

Lemma 2 of Bugeaud and Shorey [7]).
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Lemma 2.2. If (x, y,m, n) satisfy equation (1), then

0 < m log x− n log y + log

(
y − 1

x− 1

)
< 2 · x−m. (8)

To reduce the number of cases under consideration to a manageable quantity,

we will begin by proving the following.

Proposition 2.3. Suppose that (x, y,m, n) is a a solution to (1) with

2 ≤ x < y ≤ 105.

Then either (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3), or we have that m > 100.

Proof. We consider the precisely 4753 pairs (n,m), with 3 ≤ n < m ≤ 100.

For each such pair, we have that

xm − 1

x− 1
=
yn − 1

y − 1
≤ 105n − 1

105 − 1

which provides an upper bound of the shape x ≤ x0(n,m) (the largest of which

corresponds to x0(99, 100) = 89021). For each fixed pair (m,n), we may employ

a local sieve (modulo 8 and, say, the odd primes 3 ≤ p ≤ 20) to eliminate many

of the remaining values of x. By way of example, if (m,n) = (11, 8), we have

x0(8, 11) = 3162 and precisely 567 of the values of x with 2 ≤ x ≤ x0(m,n)

survive our local sieve.

For each pair (m,n) and each remaining (unsieved) x with 2 ≤ x ≤ x0(m,n),

we solve numerically the equation

n log y − log(y − 1) = m log x− log(x− 1)

and let y0 denote the value of y we find with x < y0 ≤ 105. Applying the Mean

Value Theorem to the function

f(y) = n log y − log(y − 1)−m log x+ log(x− 1),

if there exists a solution to equation (1) corresponding to the given triple (m,n, x),

then, for some z between y and y0,

y − y0 =
z(z − 1)

(nz − n− z)
f(y).
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If we assume that y is an integer, we necessarily have, from inequality (8), that

|y − y0| ≤
2z(z − 1)

(nz − n− z) · xm
. (9)

It is easy to check that the right-hand side of inequality (9) is bounded above by

1, so that necessarily

‖y0‖ <
2y0(y0 + 1)

(n(y0 + 1)− n− y0 − 1) · xm
, (10)

where ‖y0‖ denotes the distance to an integer of y0. We verify that inequality

(10) fails for all y0 under consideration, except for (x,m, n) = (2, 5, 3) or (2, 13, 3),

where we find that y = 5 and y = 90, respectively. This completes the proof of

Proposition 2.3. The computation here took approximately 100 hours in Maple,

on a single core of a MacPro (2013 vintage), but is readily parallelized.

We note that, apart from these two examples, the closest we come to sat-

isfying (10) is for x = 5, n = 3 and m even, corresponding to the family of

“near”-solutions arising from the identity(
5m0−1

2

)3 − 1
5m0−1

2 − 1
=

52m0 − 1

5− 1
+ 1.

�

We next treat the cases with gcd(x, y) > 1, appealing to Théorème 4 of

Makowski and Schinzel [20].

Proposition 2.4 (Makowski-Schinzel). If (x, y,m, n) satisfy (1) with y > x ≥ 2

and d = gcd(x, y), then

y ≡ x (mod dn). (11)

Applying this result, for 2 ≤ x < y ≤ 105 with gcd(x, y) = d > 1, it follows

that

105 ≥ y > y − x ≥ dn,

and so

n ≤ 16 if d = 2 and n ≤ 10 if d ≥ 3.

If x = d = 2, we thus have

2m − 1 =
xm − 1

x− 1
≤ 1080 − 1

105 − 1
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and so m ≤ 249. If x = 4, d = 2, then

4m − 1

3
=
xm − 1

x− 1
≤ 1080 − 1

105 − 1
,

and so m ≤ 125. If d = 2 and x ≥ 6,

6m − 1

5
≤ xm − 1

x− 1
≤ 1080 − 1

105 − 1
,

and hence m ≤ 97, contradicting Proposition 2.3. Similarly, if d ≥ 3,

3m − 1

2
≤ xm − 1

x− 1
≤ 1050 − 1

105 − 1
,

whence m ≤ 94, again contradicting Proposition 2.3. We may thus suppose that

either x = d = 2 and 101 ≤ m ≤ 249, or that x = 4, d = 2 and 101 ≤ m ≤ 125.

A short computation as in the proof of Proposition 2.3 (only with x now fixed

rather than y), with m in these ranges, n ≤ 16 and x ∈ {2, 4} leads, in each case,

to a contradiction.

We may thus assume that gcd(x, y) = 1. This already reduces the num-

ber of pairs (x, y) we need to consider to prove Theorem 3 from 4999850001 to

3039550754. We can, in fact, eliminate many more by appealing further to other

elementary results of Makowski and Schinzel. The “best” of these for our purposes

is Théorème 6 of Makowski and Schinzel [20].

Proposition 2.5 (Makowski-Schinzel). Suppose that (x, y,m, n) satisfy (1) with

gcd(x, y) = 1. If a and b are coprime positive integers, denote by orda(b) the

smallest positive integer t with the property that bt ≡ 1 (mod a). Writing

µ = ordxy−y(x) and ν = ordxy−x(y), we have that gcd
(
y2, x

µ−1
x−1

)
= y and

gcd
(
x2, y

ν−1
y−1

)
= x.

A routine corollary of this result (combining Corollaires 1 and 2 of [20]) is

the following.

Corollary 2.6. Suppose that (x, y,m, n) satisfy (1). Then

gcd(y2, x+ 1) | y, gcd(x2, y + 1) | x, gcd(y2, x2 + 1) | y and gcd(x2, y2 + 1) | x.

Application of this corollary reduces the number of pairs (x, y) under con-

sideration to 2099765696.

Other elementary results from [20] serve to eliminate more cases (we observe

that the “smallest” pair not treated by the arguments of [20] is (x, y) = (4, 11)).
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Since, for the values of (x, y) under consideration, these total rather less than 1%

of the remaining cases, we will instead appeal to Lemma 2.2 which provides a

computationally efficient way to search for small solutions (x, y) to (1), in con-

junction at least with a version of a lemma of Baker and Davenport [3]. For the

latter, we will use Lemma 5 of Dujella and Pethő [9]:

Lemma 2.7 (Dujella and Pethő). Suppose that M is a positive integer and that

κ and µ are real numbers. Let p/q be a convergent in the infinite simple continued

fraction expansion of κ satisfying q > 6M and let

ε = ‖µq‖ −M · ‖κq‖,

where ‖ · ‖ denotes the distance from the nearest integer.

If ε > 0, and A and B are positive real numbers with B > 1, then there is

no solution to the inequality

0 < mκ− n+ µ < A ·B−m (12)

in integers m and n with
log(Aq/ε)

logB
≤ m ≤M.

We will apply this result with

κ =
log x

log y
, µ =

log
(
y−1
x−1

)
log y

, A =
2

log y
, B = x and M = 1015.

For a given pair (x, y), our problem thus reduces to finding convergents pk/qk in

the infinite simple continued fraction expansion to κ = log x
log y which satisfy certain

properties. Note that, since gcd(x, y) = 1, such a κ is necessarily irrational.

Suppose that, given (x, y) and a fixed real number t > 20, we can find a k such

that we have

1020 ≤ qk < 10t and ‖µqk‖ > 10−4. (13)

Since any such convergent necessarily satisfies∣∣∣∣κ− pk
qk

∣∣∣∣ < 1

q2k
,

it follows that

‖κqk‖ = |κqk − pk| <
1

qk
,
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whence, from (13) and M = 1015, we thus have

‖µq‖ −M · ‖κq‖ = ε > 9 · 10−5.

From Lemma 2.7, (13) and inequality (7), it follows that

m <
log(Aqk/ε)

logB
=

log
(

2·10t+5

9 log y

)
log x

. (14)

Since we may suppose that y ≥ 11 and x ≥ 2, if we take t = 26, the right-

hand side here is smaller than 100, contradicting Proposition 2.3. Similarly, if we

suppose that x > 40, then (14) contradicts Proposition 2.3 for all t ≤ 155.

It remains then, to check to see if there exists a convergent pk/qk to κ =
log x
log y for which (13) holds, with t = 26 for 2 ≤ x ≤ 40, and, say, t = 40, for

40 < x < 105. In case log x and log
(
y−1
x−1

)
are Q-linearly dependent, this can fail

to occur. Indeed, if there exists a positive integer s such that

y − 1

x− 1
= xs, (15)

then

µ =
log
(
y−1
x−1

)
log y

=
s log x

log y
= sκ

and so

‖µqk‖ ≤ |sκqk − spk| <
s

qk
≤ 16

1020
< 10−4,

whereby (13) fails to hold. In this case, however, inequality (8) becomes

0 < (m+ s) log x− n log y < 2 · x−m. (16)

We may apply Corollary 2 of Laurent [16] to deduce a lower bound for this linear

form with, in the notation of that paper, m = 30, D = 1 and

b′ <
2(m+ s)

log y
,

where this last inequality is a consequence of (8). From s < log y/ log x, inequality

(7) and y ≥ 11, it follows from Corollary 2 of Laurent [16] that

log |(m+ s) log x− n log y| > −17.9 · 34.742 ·max {log x, 1} · log y,
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which, with (16), implies that

m <
log 2

log x
+ 21603 log y and so m ≤ 248714

if x ≥ 3, and

m < 1 + 31167 log y whence m ≤ 358824,

if x = 2. In any case, we have from (16) that

∣∣∣∣ log x

log y
− n

m+ s

∣∣∣∣ < 2

(m+ s) log y · xm

and hence, from m ≥ 101 and s ≤ 16, which together imply that

xm log y > 4(m+ s),

we have that n
m+s = pk

qk
for some convergent pk/qk to log x

log y . Further, since

∣∣∣∣ log x

log y
− pk
qk

∣∣∣∣ > 1

(ak+1 + 2)q2k
,

where ak+1 is the corresponding (k + 1)st partial quotient, it follows that

ak+1 >
log(y) · xm

2(m+ s)
− 2 ≥ log(11) · 2101

234
− 2 > 1028,

while qk ≤ m+s ≤ 358840. A routine computation of the 409 continued fractions

involved shows that this does not occur.

We may thus suppose that identity (15) is not satisfied for any positive

integer s. For the remaining roughly 2× 109 pairs (x, y), we used code written in

Maple to calculate the simple continued fraction of κ and verify that there exists a

convergent pk/qk to κ = log x
log y for which (8) holds, with t = 26 for 2 ≤ x ≤ 40, and

t = 40, for 40 < x < 105. This is easy to do in parallel, though not an especially

short computation (taking approximately 2000 hours of processor time). Full

details (and the relevant pk/qk) are available from the authors upon request.

The storage of these convergents takes roughly 100 gigabytes of memory. This

completes the proof of Theorem 3.
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3. The case gcd(m − 1, n − 1) > 1

We next turn our attention to equation (1) where the exponents m and n

have the property that

gcd(m− 1, n− 1) = d > 1. (17)

As it transpires, this condition allows one to apply a wide variety of effective meth-

ods from Diophantine Approximation to the problem, including lower bounds for

linear forms in logarithms, Runge’s method and the hypergeometric method of

Thue and Siegel. Combining results from [4] and [21], we have

Theorem 7 (Nesterenko-Shorey, B-Gherga-Kreso). If there is a solution in inte-

gers x, y, n and m to equation (1), satisfying (17), then

x < (3d)4n/d (18)

and

x < max

9, 1 +
1

2
(d+ 1)dr−2

∏
p|d

pνp(r!)

 , (19)

where r = (m− 1)/d and νp(t) is the largest power of p dividing a given positive

integer t.

Theorem 8 (B-Gherga-Kreso). If there is a solution in integers x, y and m to

equation (1), with n ∈ {3, 4, 5} and satisfying (17), then

(x, y,m, n) = (2, 5, 5, 3) and (2, 90, 13, 3).

From these results, to prove Theorem 4, we may thus suppose that 6 ≤
n < m ≤ 50 and that gcd(m − 1, n − 1) > 1. In many cases, the upper bounds

upon x afforded by (18) and (19) are sufficiently strong, that we can eliminate the

corresponding pair (m,n) by simply checking that inequality (8) is never satisfied

for each such “small” x. We carry this out whenever

min

(3d)4n/d,max

9, 1 +
1

2
(d+ 1)dr−2

∏
p|d

pνp(r!)


 < 107.

We are left to treat precisely 201 pairs (m,n) in the set

{(7, 27), (7, 29), . . . , (47, 49)}.
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For these, we will need a more precise implementation of Runge’s method than

that leading to inequality (19). For this, we will turn to an algorithm described

in Tengely [28] and Beukers-Tengely [5] (see also [29]) for explicitly solving equa-

tions of the shape P (X,Y ) = 0 whenever P (X,Y ) ∈ Z[X,Y ] satisfies Runge’s

Condition [22]. For more details on the theoretical underpinnings of this algo-

rithm, the reader would profit from reading the papers of Hilliker and Straus [13],

Sankaranarayanan and Saradha [23], and Walsh [31]. Recall that an irreducible

polynomial with integer coefficients P (X,Y ) =
M∑
i=0

N∑
j=0

aijX
iY j is said to satisfy

Runge’s Condition unless all of the following hold :

(1) aiN = aMj = 0 for all non-zero i, j,

(2) for every monomial aijX
iY j of P , Ni+Mj ≥MN ,

(3) the sum of all monomials of P for which Ni + Mj = NM is a constant

multiple of a power of an irreducible polynomial in Z[X,Y ],

(4) there is only one system of conjugate Puiseux expansions at x =∞ for the

algebraic function y = y(x) defined by P (x, y) = 0.

From equation (1), we find that

P (X,Y ) =

m−1∑
i=1

Xi −
n−1∑
j=1

Y j = 0 (20)

which clearly satisfies Runge’s condition, since the sum of all monomials satisfying

(n− 1)i+ (m− 1)j = (m− 1)(n− 1) is simply 0. We implemented the algorithm

described by Tengely [28] and Beukers-Tengely [5], in Maple. With this, we were

able to verify that the only solutions to equation (1) with 2 < n < m ≤ 50 and

gcd(m− 1, n− 1) > 1 are given by (x, y,m, n) = (2, 5, 5, 3) and (2, 90, 13, 3). Our

code and data is available upon request.

4. The case m = n + 1

We now turn to the case where m = n + 1. From Theorem 2, we may

suppose that n ≥ 5. Again Runge’s method turns out to be applicable (to an

auxiliary equation) and, in fact, works particularly well, since here the Puisseux

expansions are actually Laurent expansions with positive coefficients. We start, as

in Davenport, Lewis, and Schinzel [8] (this argument has its genesis in the paper
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of Makowski and Schinzel [20]), with the fact that we can re-write Goormaghtigh’s

equation for m = n+ 1 as

xn = (y − x)

n−1∑
k=1

yk − xk

y − x
= (y − x)

(
1 + (x+ y) + · · ·+ (xn−2 + yn−2)

)
. (21)

If a prime p | y−x then, from (21), p | x and hence p | y, whereby p -
∑n−1
k=1

yk−xk
y−x .

It follows that there exist positive integers a and b such that y − x = an,
n−1∑
k=1

yk−xk
y−x = bn, and ab = x. Substituting these back into (21), we are led to

the equation

F (a, b) = bn −
n−2∑
j=0

(
n−j−2∑
i=0

(
i+ j + 1

j

)
aj+ni

)
bj = 0. (22)

From this, we may write b as a Laurent series expansion in a,

b = an−2 +
pn−3
qn−3

an−3 + · · ·+ p1
q1
a+

p0
q0

+
p−1
q−1

a−1 + · · · ,

where the pi and qi are positive integers, with gcd(pi, qi) = 1, for each i. We may

check that, at least for the values of n under consideration, we always have that

qi | q0, for i = 1, 2, . . . , n− 3 and hence

Pn(a) = q0a
n−2 +

q0pn−3
qn−3

an−3 + · · ·+ q0p1
q1

a+ p0 (23)

is a polynomial in a with positive integer coefficients. If we have a solution to (22)

in positive integers a and b, then necessarily q0b = Pn(a) + k for some positive

integer k, where we have, additionally, that

Pn(a) ≡ −k (mod q0). (24)

Let us now define, for each positive integer k,

Gk(a) = (Pn(a) + k)n −
n−2∑
j=0

(
n−j−2∑
i=0

(
i+ j + 1

j

)
aj+ni

)
qn−j0 (Pn(a) + k)j .

If there exists a solution to (22) in positive integers a and b, then, necessarily,

there exists a solution to Gk(a) = 0 in positive integers a and k, satisfying (24).
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Defining ak,n to be the largest real number for which Gk(ak,n) = 0, it follows, via

calculus, that ak,n is decreasing in k and that Gk(a) < 0 for a > ak,n.

To illustrate how we may turn these observations into an efficient algorithm

for solving equation (22), let us consider the case n = 6. Here, we have

P6(a) = 31104a4 + 25920a3 + 19440a2 + 13440a+ 8645,

q0 = 31104 and a1,6 = 61.52146 . . .. It follows immediately that we have that

a ≤ 61. For these values of a, a short computation reveals that, from (24), we

have k ≥ 379 (corresponding to a = 46). Since a379,6 = 3.418385 . . ., we thus

have 1 ≤ a ≤ 3. A short check that F (a, b) has no integral roots for these values

of a completes this case.

For larger values of n, we actually argue somewhat differently. Let us illus-

trate this in case n = 16. We find that

a1,16 ∼ 2.75× 109 and q0 = 147573952589676412928.

Rather than looping through this (large) collection of values of a, we instead solve

the congruence (24), to find that the only solutions with k < k0 = 4 × 107 are

with

k ∈ {2445, 6541, 10637, 14221, 14733, 18829, . . . , 39999885},

a set with precisely 13023 elements. In each case, ak,16 is not an integer and

we find that, in each case, the smallest positive solution a to the congruence

(24) for any of these values k exceeds a1,16. Since a4×107,16 < 435359, we may

thus conclude that 1 ≤ a ≤ 435358. For each of these values, we check to see

whether or not the polynomial F (a, b) has an integer root. The total time for this

computation was somewhat less than eight hours on a single core in Maple. The

only case when the resulting polynomial (in b) failed to be irreducible was with

a = 1, where we find the root b = −1.

A program was written in Maple to implement the above algorithm, and

with it we were able to show that there are no solutions to the m = n + 1

case for 3 ≤ n ≤ 17; the only roots encountered for F (a, b) corresponded to

(a, b) = (1,−1). We tabulate our data as follows. Here, the column headed #

counts the solutions to congruence (24) with k < k0.
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n [a1,n] k0 # [ak0,n] time

5 4 20 4 1 < 1s

6 61 20 0 13 < 1s

7 42 20 3 9 < 1s

8 627 20 0 140 < 1s

9 1909 1000 111 60 < 1s

10 70325 4000 5 1112 3s

11 12954 4000 364 205 2s

12 9205553 6× 105 1042 11884 354s

13 332194 5× 104 3847 1485 28s

14 153170043 3× 106 4463 88433 1382s

15 801682738 4× 106 266666 400841 10044s

16 2753445124 4× 107 13023 435358 27400s

17 373406096 3× 106 176471 215586 8490s

For larger values of n, the computation rapidly becomes rather unwieldy. By

way of example, if n = 18, we find that a1,18 > 1013, whence our corresponding

computations would take several thousand hours (which seems rather excessive,

even if parallelized).

5. The cases (n,m) = (3, 6) and (3, 8)

In case (n,m) = (3, 6), equation (1) becomes

y2 + y + 1 = x5 + x4 + x3 + x2 + x+ 1

whereby Y = 16(2y + 1) and X = 4x satisfies

Y 2 = X5 + 4X4 + 16X3 + 64X2 + 256X + 256. (25)

We would like to show that the only rational solutions to this equation are with

X = 0. Appealing to Magma [6], we use the following commands

_<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^5+4*x^4+16*x^3+64*x^2+256*x+256);

> ptsC := Points(C : Bound:=1000); ptsC;

{@ (1 : 0 : 0), (0 : -16 : 1), (0 : 16 : 1) @}

> J := Jacobian(C);
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> RankBound(J);

1

> TorsionSubgroup(J);

Abelian Group of order 1

> PJ := J! [ ptsC[2], ptsC[1]];

> Order(PJ);

0

to deduce that the Jacobian of the curve corresponding to (25) has Mordell-Weil

group with rank 1 and trivial torsion, and that the point we are calling PJ has

infinite order in this group. The commands

> Height(PJ);

0.0594215465492475716871323583279

> LogarithmicBound := Height(PJ)+HeightConstant(J);

> AbsoluteBound := Ceiling(Exp(LogarithmicBound));

> PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound );

> ReducedBasis( [ pt : pt in PtsUpToAbsBound ]);

[ (x, -16, 1) ]

[0.0594215465492475716871323583279]

then show that PJ is in fact a generator of the Mordell-Weil group. Finally,

applying a Chabauty argument with p = 7

> BadPrimes(C);

[ 2, 3, 23 ]

> Chabauty(PJ,7);

{@ <0, 1, 4, 1> @}

leads to the desired conclusion. We note that the theory behind this code, as

implemented in Magma, depends primarily on work of Stoll [25], [26], [27].

In case (n,m) = (3, 8), equation (1) also leads to a question of determining

(integral) points on a hyperelliptic curve, this time one of genus three, corre-

sponding to the equation

Y 2 = X7 + 4X6 + 16X5 + 64X4 + 256X3 + 1024X2 + 4096X + 4096. (26)

Since one can show that the Jacobian of this curve has rank one, this problem

is also accessible to Chabauty-type arguments. In particular, recent work of

Balakrishnan, Bianchi, Cantoral-Farfan, Ciperiani and Etropolski [1] (see https:

//github.com/jbalakrishnan/WIN4 for a detailed Sage implementation) allows

us to show, using a Chabauty argument with the prime p = 17, that the set of

rational points on the curve corresponding to equation (26) is just {∞, (0,±1)}.
This complete the proof of Theorem 4.
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6. The case (m − 1) = 3(n − 1)

Finally, we will focus our attention on the situation when the ratio m−1
n−1 is

a small fixed positive integer. In 1963, Karanicoloff [15] showed that the only

solution to (1) with m−1
n−1 = 2 is given by (x, y,m, n) = (2, 5, 5, 3). We will treat

the case k = 3 with a rather different argument.

To start, we will appeal to a result of Bugeaud and Shorey [7], whose proof

is based upon lower bounds for linear forms in logarithms.

Lemma 6.1. Let (x, y,m, n) be a solution of (1). Then we have

gcd(m− 1, n− 1) ≤ 33.4m1/2.

From this, if m−1
n−1 = 3, it follows that n ≤ 3348. Further, from Theorems 3

and 4, we may suppose that n ≥ 18 and that x ≥ 47. In this case, from equation

(1) with m = 3n− 2, we may write y as a Laurent expansion in terms of x :

y = x3+
x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

+
6n3 − 7n2 + 2n

24(n− 1)4x
+

∞∑
k=2

Ek(x, n) (27)

where each Ek(x, n) is positive and bounded above by

Fk(x, n) =
nk+2

(k + 3)(n− 1)k+3xk
.

Since n ≥ 18, we have

Fk(x, n)

Fk+1(x, n)
=

(k + 4)(n− 1)x

(k + 3)n
>

17x

18
,

whence, from x ≥ 47,

∞∑
k=2

Ek(x, n) < 1.1E2(k, n) < 1.1
n4

5(n− 1)5x2
<

0.28

(n− 1)x2
.

We may thus write

y = x3 +
x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

+ E(x, n), (28)

where

0 < E(x, n) <
1

3(n− 1)x
.
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It follows that∥∥∥∥ x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

∥∥∥∥ < 1

3(n− 1)x
. (29)

Since inequality (19) implies that

x ≤ 3n(n− 1),

it remains to check to see whether or not inequality (29) is satisfied for each n

with 18 ≤ n ≤ 3348 and each x with 47 ≤ x ≤ 3n(n− 1).

A Maple calculation (of roughly 80 hours on a single core) verifies, for

the values of n and x under consideration, that (29) holds precisely when n ≡
1 (mod 6) and x = x0 for

x0 =
1

3

(
(2j − 1)n2 − (4j + 3)n+ 2j + 1

)
.

Here, j ∈ {1, 2, 3} and n ≡ 6j − 11 (mod 18). Defining

f(x, n) = 6(n− 1)2x2 + 3n(n− 1)x+ 2n2 − n,

it follows, after a little work, that f(x0,n)
6(n−1)3 is equal to

(2j − 1)2n3

9
− (12j2 + 8j − 7)n2

9
+

(24j2 + 38j + 25)n

18
− 8j2 + 8j − 1

18
+

1

6(n− 1)3
,

whence∥∥∥∥ x20
n− 1

+

(
n

2(n− 1)2

)
x0 +

2n2 − n
6(n− 1)3

∥∥∥∥ =
1

6(n− 1)3
<

1

3(n− 1)x0
.

Notice that if n ≡ 1 (mod 6) and x0 corresponds to a solution to (1) with m =

3n− 2, then we necessarily have

E(x0, n) =
1

6(n− 1)3
,

so that
6n3 − 7n2 + 2n

24(n− 1)4x0
+

∞∑
k=2

Ek(x0, n) =
1

6(n− 1)3
,

whence, arguing as previously,

6n3 − 7n2 + 2n

24(n− 1)4x0
<

1

6(n− 1)3
<

6n3 − 7n2 + 2n

24(n− 1)4x0
+

0.28

(n− 1)x20
. (30)
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On the other hand, since n ≥ 18, we may readily show that

6n3 − 7n2 + 2n

24(n− 1)4x0
>

1

6(n− 1)3

for j ∈ {1, 2}, and that

6n3 − 7n2 + 2n

24(n− 1)4x0
<

1

6(n− 1)3

for j = 3 and n ≥ 43, in each case contradicting (30). Finally, if n = 25 and

x0 = 919, we simply check that equation (1) fails to be satisfied. This completes

the proof of Theorem 6.
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