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Goormaghtigh’s equation : small parameters

By Michael A. Bennett, Ben Garbuz and Adam Marten

Abstract. We explicitly solve the polynomial-exponential Diophantine equation
x;”__ll = yy“:11 for various small fixed choices of the parameters (z,y,m,n), generaliz-
ing classical work of Makowski and Schinzel. Rather than elementary arguments, our
proofs utilize a wide range of techniques from the theory of Diophantine approximation,
together with extensive computer computations.

1. Introduction

The frequently studied polynomial-exponential equation of Goormaghtigh
[10]
-1 y* -1
= >n>2 >z > 2 1
=i men>2 ysa (1)

is conjectured to have precisely the solutions
(z,y,m,n) € {(2,5,5,3),(2,90,13,3)} (2)

in integers. Unconditionally, however, the number of such solutions is not known
to be finite, even if one fixes one of the variables x,y or n (though recent work
of the first author, Gherga and Kreso [4] establishes such a result for a given n
under the additional assumption that ged(m — 1,n — 1) > 1).

If one fixes any two of the variables z,y, m or n, however, then the number
of solutions to (1) is, in fact, finite. This was proven for a given pair (x,y) by
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Kanold [14] and for fixed (m,n) by Davenport, Lewis and Schinzel [8]. Explicit
versions of these results for small parameters (z,y) and (m, n) date back to work
of Makowski and Schinzel [20], who proved the following pair of theorems.

Theorem 1 (Makowski-Schinzel). The only solution to equation (1) with
2<zr<y<10 (3)

is given by (z,y,m,n) = (2,5,5,3).

Theorem 2 (Makowski-Schinzel). The only solution to equation (1) with m <5
is given by (z,y,m,n) = (2,5,5,3).

The first of these is of an entirely elementary nature, based upon congruen-
tial arguments, while the second applies the classical method of Runge [22]. Our
goal in this paper is to introduce new techniques to improve the first of these
results substantially, and to extend the second to take advantage of both im-
provements in computational power, and in the technical machinery underlying
Runge’s method. We prove the following.

Theorem 3. If (x,y,m,n) is a a solution to (1) with
2<x<y<10°,
then (z,y,m,n) = (2,5,5,3) or (2,90,13, 3).
Theorem 4. The only solutions to equation (1) with either
m=n+1 and 3<n<17, (4)

or

ged(lm —1,n—1)>1 and m < 50 (5)
or
(n,m) € {(3,6),(3,8)} (6)
are given by (z,y,m,n) = (2,5,5,3) or (2,90, 13, 3).

Equation (1) has been the subject of much study. A good survey of results
up to 2001 or so can be found in the paper of Shorey [24]. For more recent work,
the reader may consult [11], [12], [17], [18], [19] and [30]. The current state of
the art for applying techniques from Diophantine Approximation to (1) can be
found in [4], and in the papers of Nesterenko and Shorey [21], and of Bugeaud
and Shorey [7]. In the last of these, by way of example, one finds the following
result.
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Theorem 5 (Bugeaud-Shorey). Let a > 1. Equation (1) with
m—1
<

(07

1
ged(im —1,n—1)>4a+6+ — and
« n—1

implies that max{z,y, m,n} is bounded above by an effectively computable con-
stant depending only on .

This theorem is a strong effective generalization of a classical result of Karan-
icoloff [15] which showed that (z,y,m,n) = (2,5, 5, 3) is the only solution to equa-
tion (1) with the property that (m —1)/(n — 1) = 2. We apply the arguments
leading to Theorem 5 to deduce

Theorem 6. There are no solutions to equation (1) with (m —1)/(n —1) = 3.

The outline of this paper is as follows. In Section 2, we prove Theorem 3
while Theorem 4 is proved in Sections 3, 4 and 5. The first of these sections
is devoted to equation (1) with (m,n) as in (4), the second to (m,n) satisfying
(5), and the third to (m,n) = (6,3) and (m,n) = (8,3). In Section 6, we prove
Theorem 6. A variety of code to support the computations we undertake in this
paper can be found at

http://www.math.ubc.ca/ bennett/BeGaMa

2. Fixed values of ¢ and y : Theorem 3

In this section, we will prove Theorem 3. For fixed values of x and v,
an explicit finiteness statement for solutions to equation (1) is provided by the
following result of He and Togbé (Lemma 2.3 of [12]). This is a slight sharpening
of earlier work of Bugeaud and Shorey [7] and is based upon bounds for linear
forms in logarithms.

Lemma 2.1. If (x,y,m,n) satisfy (1), then

m—1
— < 1.391-10%(1 2,
1+ logm (logy)

For the remainder of this section, we will assume that 2 < z < y < 10,
whence it follows from Lemma 2.1 by routine calculation that if (z,y, m, n) satisfy
equation (1), then

m < 101 (7)

0% remaining tuples (z,y, m,n)

Our main tool for handling the a priori roughly 1
is the following result, which is easily derived from equation (1) (see the proof of

Lemma 2 of Bugeaud and Shorey [7]).
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Lemma 2.2. If (x,y,m,n) satisfy equation (1), then

-1
0 <mlogx —nlogy + log <y1> <2-x7™. (8)
T —

To reduce the number of cases under consideration to a manageable quantity,
we will begin by proving the following.

Proposition 2.3. Suppose that (x,y,m,n) is a a solution to (1) with
2<x<y<10°.

Then either (z,y,m,n) = (2,5,5,3) or (2,90, 13,3), or we have that m > 100.

PROOF. We consider the precisely 4753 pairs (n,m), with 3 < n < m < 100.
For each such pair, we have that

™ -1 y"—1 10" -1
= <

z—1 y—1  10°-1

which provides an upper bound of the shape x < xz¢(n,m) (the largest of which
corresponds to (99, 100) = 89021). For each fixed pair (m,n), we may employ
a local sieve (modulo 8 and, say, the odd primes 3 < p < 20) to eliminate many
of the remaining values of x. By way of example, if (m,n) = (11,8), we have
20(8,11) = 3162 and precisely 567 of the values of x with 2 < x < xo(m,n)
survive our local sieve.

For each pair (m,n) and each remaining (unsieved) z with 2 < z < xz¢(m, n),
we solve numerically the equation

nlogy — log(y — 1) = mlogx — log(z — 1)

and let yo denote the value of y we find with z < g < 10°. Applying the Mean
Value Theorem to the function

f(y) =nlogy —log(y — 1) — mlogx + log(z — 1),

if there exists a solution to equation (1) corresponding to the given triple (m, n, x),
then, for some z between y and yq,
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If we assume that y is an integer, we necessarily have, from inequality (8), that

2z(z—1)
nz—n-—z)-xm

9)

|y—yo|§<

It is easy to check that the right-hand side of inequality (9) is bounded above by
1, so that necessarily

2y0(yo + 1)
Yo+1)—n—yo—1)-zm’

ool < o (10)
where ||yo|| denotes the distance to an integer of yo. We verify that inequality
(10) fails for all yo under consideration, except for (z,m,n) = (2,5,3) or (2,13, 3),
where we find that y = 5 and y = 90, respectively. This completes the proof of
Proposition 2.3. The computation here took approximately 100 hours in Maple,
on a single core of a MacPro (2013 vintage), but is readily parallelized.

We note that, apart from these two examples, the closest we come to sat-
isfying (10) is for = 5, n = 3 and m even, corresponding to the family of
“near”-solutions arising from the identity

(5*";71)3 1 5]

5mM0 —1 -

+ 1.

O

We next treat the cases with ged(z,y) > 1, appealing to Théoréme 4 of
Makowski and Schinzel [20].

Proposition 2.4 (Makowski-Schinzel). If (z,y, m,n) satisfy (1) withy > x > 2
and d = ged(x,y), then
y = (mod d"). (11)

Applying this result, for 2 < z < y < 10° with ged(x,y) = d > 1, it follows
that
10°>y >y —ax>d",

and so
n<l6ifd=2andn <10if d > 3.

If x = d = 2, we thus have

™ —1 1080 —1
<

2m 1=
z—1 ~ 1051
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and so m < 249. If x =4,d = 2, then

4m —1 g™ —1 1080 -1
<

3 r—1 — 105-1"

and som < 125. If d =2 and = > 6,

6m—1 zm—1 1089 —1
< < ,
5 — x—1 — 105-1

and hence m < 97, contradicting Proposition 2.3. Similarly, if d > 3,

3m—1 _azm™—-1 _10°° -1
< < 5 )
2~ -1 7 10°-1

whence m < 94, again contradicting Proposition 2.3. We may thus suppose that
either x = d = 2 and 101 < m < 249, or that x = 4,d = 2 and 101 < m < 125.
A short computation as in the proof of Proposition 2.3 (only with z now fixed
rather than y), with m in these ranges, n < 16 and x € {2,4} leads, in each case,
to a contradiction.

We may thus assume that ged(z,y) = 1. This already reduces the num-
ber of pairs (z,y) we need to consider to prove Theorem 3 from 4999850001 to
3039550754. We can, in fact, eliminate many more by appealing further to other
elementary results of Makowski and Schinzel. The “best” of these for our purposes
is Théoreme 6 of Makowski and Schinzel [20].

Proposition 2.5 (Makowski-Schinzel). Suppose that (z,y, m,n) satisty (1) with
ged(z,y) = 1. If a and b are coprime positive integers, denote by ord,(b) the
smallest positive integer t with the property that b' = 1 (mod a). Writing

p = ordyy—y(x) and v = ordyy_,(y), we have that gcd (yz, ‘””;:11) = y and
Y1
ged (ch, yy71 ) =zx.
A routine corollary of this result (combining Corollaires 1 and 2 of [20]) is
the following.

Corollary 2.6. Suppose that (x,y, m,n) satisty (1). Then
ged(y®,z +1) |y, ged(a?,y +1) |, ged(y?, 2 + 1) |y and ged(a®,y* +1) | 2.

Application of this corollary reduces the number of pairs (z,y) under con-
sideration to 2099765696.

Other elementary results from [20] serve to eliminate more cases (we observe
that the “smallest” pair not treated by the arguments of [20] is (z,y) = (4,11)).
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Since, for the values of (z,y) under consideration, these total rather less than 1%
of the remaining cases, we will instead appeal to Lemma 2.2 which provides a
computationally efficient way to search for small solutions (z,y) to (1), in con-
junction at least with a version of a lemma of Baker and Davenport [3]. For the
latter, we will use Lemma 5 of Dujella and Pethd [9]:

Lemma 2.7 (Dujella and Pethé). Suppose that M is a positive integer and that
k and p are real numbers. Let p/q be a convergent in the infinite simple continued
fraction expansion of k satisfying ¢ > 6M and let

€= |lngll = M -||xqf,

where || - || denotes the distance from the nearest integer.
If e > 0, and A and B are positive real numbers with B > 1, then there is
no solution to the inequality

O<mk—n+p<A-B™™ (12)

in integers m and n with
log(Ag/€)

<m <M.
log B =M=

We will apply this result with

—1
1 log (if) 2
o — ogx o 1 A

= , W , = , B=x and M =10%.
logy logy logy

For a given pair (z,y), our problem thus reduces to finding convergents py /gy in

the infinite simple continued fraction expansion to k = }ggz which satisfy certain
properties. Note that, since ged(z,y) = 1, such a k is necessarily irrational.

Suppose that, given (z,y) and a fixed real number ¢ > 20, we can find a k such
that we have
102 < g < 10" and |jugy| > 1072 (13)

Since any such convergent necessarily satisfies

1
a’

H_pi <
gk

it follows that 1
kgl = |kar — pi] < —,
qk
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whence, from (13) and M = 10'®, we thus have
gl = M - ||rgll = € >9-107°.

From Lemma 2.7, (13) and inequality (7), it follows that

2-10t+5
< lOg(Aqk/E) _ IOg ( 9logy ) (14)
log B logz

Since we may suppose that y > 11 and = > 2, if we take t = 26, the right-
hand side here is smaller than 100, contradicting Proposition 2.3. Similarly, if we
suppose that « > 40, then (14) contradicts Proposition 2.3 for all ¢ < 155.

It remains then, to check to see if there exists a convergent py/qx to kK =

}Zgz for which (13) holds, with ¢ = 26 for 2 < z < 40, and, say, t = 40, for

40 < x < 10°. In case log z and log (%) are Q-linearly dependent, this can fail

to occur. Indeed, if there exists a positive integer s such that

y—1 s
c_1 H (15)
then
y—1
log (b) slogx
'LL = = = SK
logy logy
and so 16
s
< — << — <1074,
llarll < Issqe — spil o = 10

whereby (13) fails to hold. In this case, however, inequality (8) becomes
0<(m+s)logr —nlogy <2- -z~ ™. (16)

We may apply Corollary 2 of Laurent [16] to deduce a lower bound for this linear
form with, in the notation of that paper, m = 30, D = 1 and
logy

)

where this last inequality is a consequence of (8). From s < log y/ log x, inequality
(7) and y > 11, it follows from Corollary 2 of Laurent [16] that

log |(m + s)logz — nlogy| > —17.9 - 34.74% - max {log z, 1} - log ¥,
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which, with (16), implies that

log 2
m < 282 1 216031ogy and so m < 248714
log x

if x > 3, and
m <14 31167logy whence m < 358824,

if x = 2. In any case, we have from (16) that

2

log n
<
(m+ s)logy - x™

logy m+s

and hence, from m > 101 and s < 16, which together imply that

x™logy > 4(m + s),

n g "Fyrther, since
m-—+s

we have that l(o)gy

= % for some convergent px/qi to

1

gz pp|_ 1
(ak+1 +2)q2’

logy  qx

where agy; is the corresponding (k + 1)st partial quotient, it follows that

Lm 9101
log(y) - = 9 log(11) - 2

—2>10%8
2(m + s) = 234 - ’

Ap41 >

while g, < m+s < 358840. A routine computation of the 409 continued fractions
involved shows that this does not occur.

We may thus suppose that identity (15) is not satisfied for any positive
integer s. For the remaining roughly 2 x 10° pairs (x,), we used code written in
Maple to calculate the simple continued fraction of x and verify that there exists a
convergent py/qi to Kk = 1252 for which (8) holds, with ¢ = 26 for 2 < z < 40, and

logy
t = 40, for 40 < x < 10°. This is easy to do in parallel, though not an especially

short computation (taking approximately 2000 hours of processor time). Full
details (and the relevant py/qr) are available from the authors upon request.
The storage of these convergents takes roughly 100 gigabytes of memory. This
completes the proof of Theorem 3.
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3. The case gcd(m —1,n —1) > 1

We next turn our attention to equation (1) where the exponents m and n
have the property that

gedim —1,n—1)=d> 1. (17)

As it transpires, this condition allows one to apply a wide variety of effective meth-
ods from Diophantine Approximation to the problem, including lower bounds for
linear forms in logarithms, Runge’s method and the hypergeometric method of
Thue and Siegel. Combining results from [4] and [21], we have

Theorem 7 (Nesterenko-Shorey, B-Gherga-Kreso). If there is a solution in inte-
gers x,y,n and m to equation (1), satisfying (17), then
x < (3d)*n/? (18)
and
r <max<{ 9,1+ %(d +1)d" 2 lgp”l’(r!) , (19)
P

where r = (m — 1) /d and v,(t) is the largest power of p dividing a given positive
integer t.

Theorem 8 (B-Gherga-Kreso). If there is a solution in integers x,y and m to
equation (1), with n € {3,4,5} and satisfying (17), then

(z,y,m,n) = (2,5,5,3) and (2,90,13,3).

From these results, to prove Theorem 4, we may thus suppose that 6 <
n < m < 50 and that ged(m — 1,n — 1) > 1. In many cases, the upper bounds
upon z afforded by (18) and (19) are sufficiently strong, that we can eliminate the
corresponding pair (m,n) by simply checking that inequality (8) is never satisfied
for each such “small” . We carry this out whenever

1 .
min { (3d)*/? max { 9,1+ §(d +1)d 2 Hp””(r!) <107,
pld

We are left to treat precisely 201 pairs (m,n) in the set

((7.27),(7,29), ..., (47,49)}.
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For these, we will need a more precise implementation of Runge’s method than

that leading to inequality (19). For this, we will turn to an algorithm described

in Tengely [28] and Beukers-Tengely [5] (see also [29]) for explicitly solving equa-

tions of the shape P(X,Y) = 0 whenever P(X,Y) € Z[X,Y] satisfies Runge’s

Condition [22]. For more details on the theoretical underpinnings of this algo-

rithm, the reader would profit from reading the papers of Hilliker and Straus [13],

Sankaranarayanan and Saradha [23], and Walsh [31]. Recall that an irreducible
M N o

polynomial with integer coefficients P(X,Y) = > > a;; X"Y7 is said to satisfy
i=0j=0

Runge’s Condition unless all of the following hold :

(1) a;n = anrj =0 for all non-zero 1, j,
(2) for every monomial a;; X'Y7 of P, Ni+ Mj > MN,

(3) the sum of all monomials of P for which Ni+ Mj = NM is a constant
multiple of a power of an irreducible polynomial in Z[X, Y],

(4) there is only one system of conjugate Puiseux expansions at = oo for the
algebraic function y = y(z) defined by P(z,y) = 0.

From equation (1), we find that

m—1 n—1
P(X,Y)=Y X'=> Y/ =0 (20)
i=1 j=1

which clearly satisfies Runge’s condition, since the sum of all monomials satisfying
(n—1)i+(m—1)j =(m—1)(n—1) is simply 0. We implemented the algorithm
described by Tengely [28] and Beukers-Tengely [5], in Maple. With this, we were
able to verify that the only solutions to equation (1) with 2 < n < m < 50 and
ged(m —1,n—1) > 1 are given by (z,y,m,n) = (2,5,5,3) and (2,90, 13, 3). Our
code and data is available upon request.

4. Thecase m =n+1

We now turn to the case where m = n + 1. From Theorem 2, we may
suppose that n > 5. Again Runge’s method turns out to be applicable (to an
auxiliary equation) and, in fact, works particularly well, since here the Puisseux
expansions are actually Laurent expansions with positive coefficients. We start, as
in Davenport, Lewis, and Schinzel [8] (this argument has its genesis in the paper
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of Makowski and Schinzel [20]), with the fact that we can re-write Goormaghtigh’s
equation for m =n+1 as

n—1 L
" = (y—z)
k

SCk
= =y-z)(I+@+y+--+E@"2+y"?). (21)

n—1 ykfwk

If a prime p | y—x then, from (21), p | # and hence p | y, whereby p { > =1 “ =~

It follows that there exist positive integers a and b such that y — x = a™,

n—1 . 4

> 4= =", and ab = x. Substituting these back into (21), we are led to
k=1

the equation

F(a, b) — ni ("—J_ <z +]‘.+ 1> aj+ni> B = 0. (22>
0

j=0 \ i= J
From this, we may write b as a Laurent series expansion in a,

b:an—2_~_m;3an—3+...+1£a+p70+pfla_1+._.’
In—3 @ g  q-1

where the p; and ¢; are positive integers, with ged(p;, ¢;) = 1, for each i. We may

check that, at least for the values of n under consideration, we always have that
qi | go, for t =1,2,...,n — 3 and hence

%an—3+,,.+%a+po (23)

Pala) = goa™ +
dn—3 q1

is a polynomial in a with positive integer coefficients. If we have a solution to (22)
in positive integers a and b, then necessarily qob = P,(a) 4+ k for some positive
integer k, where we have, additionally, that

P,(a) = —k (mod o). (24)

Let us now define, for each positive integer k,

n—2 /m—j—2 ,. . ) ]
Grla) = (Pala) +B)" =) ( 2 <Z o 1> aj+m> 0 ' (Pula) + k).
7=0

=0 J

If there exists a solution to (22) in positive integers a and b, then, necessarily,
there exists a solution to G (a) = 0 in positive integers a and k, satisfying (24).
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Defining ay, ., to be the largest real number for which G (ax,,) = 0, it follows, via
calculus, that ay ,, is decreasing in k and that Gi(a) < 0 for a > ag .

To illustrate how we may turn these observations into an efficient algorithm
for solving equation (22), let us consider the case n = 6. Here, we have

Pgs(a) = 31104a* + 25920a® + 1944042 + 13440a + 8645,

go = 31104 and a1 = 61.52146.... It follows immediately that we have that
a < 61. For these values of a, a short computation reveals that, from (24), we
have k > 379 (corresponding to a = 46). Since agrg¢ = 3.418385..., we thus
have 1 <a < 3. A short check that F'(a,b) has no integral roots for these values
of a completes this case.

For larger values of n, we actually argue somewhat differently. Let us illus-
trate this in case n = 16. We find that

a116 ~ 2.75 x 10° and gp = 147573952589676412928.

Rather than looping through this (large) collection of values of a, we instead solve
the congruence (24), to find that the only solutions with k& < ky = 4 x 107 are
with

k € {2445,6541,10637,14221,14733,18829, . ..,39999885},

a set with precisely 13023 elements. In each case, ax,16 is not an integer and
we find that, in each case, the smallest positive solution a to the congruence
(24) for any of these values k exceeds a1,16. Since asx107,16 < 435359, we may
thus conclude that 1 < a < 435358. For each of these values, we check to see
whether or not the polynomial F'(a,b) has an integer root. The total time for this
computation was somewhat less than eight hours on a single core in Maple. The
only case when the resulting polynomial (in b) failed to be irreducible was with
a = 1, where we find the root b = —1.

A program was written in Maple to implement the above algorithm, and
with it we were able to show that there are no solutions to the m = n + 1
case for 3 < n < 17; the only roots encountered for F'(a,b) corresponded to
(a,b) = (1,—1). We tabulate our data as follows. Here, the column headed #
counts the solutions to congruence (24) with k < ko.
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n (a1 n] ko # [k, n] | time
5 4 20 4 1 <1s
6 61 20 0 13 <1s
7 42 20 3 9 < 1s
8 627 20 0 140 <1s
9 1909 1000 111 60 < 1s
10 70325 4000 5 1112 3s

11 12954 4000 364 205 2s

12 | 9205553 | 6 x 10° | 1042 | 11884 | 354s
13 332194 5x 10% | 3847 1485 285
14 | 153170043 | 3 x 10 | 4463 | 88433 | 1382s
15 | 801682738 | 4 x 10° | 266666 | 400841 | 10044s
16 | 2753445124 | 4 x 107 | 13023 | 435358 | 27400s
17 | 373406096 | 3 x 106 | 176471 | 215586 | 8490s

For larger values of n, the computation rapidly becomes rather unwieldy. By
way of example, if n = 18, we find that a; 15 > 10'3, whence our corresponding
computations would take several thousand hours (which seems rather excessive,
even if parallelized).

5. The cases (n,m) = (3,6) and (3, 8)
In case (n,m) = (3,6), equation (1) becomes
Vryt+l=a"+a'+2°+27 + 2 +1
whereby Y = 16(2y + 1) and X = 4z satisfies
Y2 =X%4+4X* +16X3 +64X% + 256X + 256. (25)

We would like to show that the only rational solutions to this equation are with
X = 0. Appealing to Magma [6], we use the following commands

_<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x"5+4*x"4+16%x"~3+64*x"2+256*x+256) ;

> ptsC := Points(C : Bound:=1000); ptsC;

{@ (1 :0:0), (0:-16:1), (0 : 16 : 1) @}

> J := Jacobian(C);
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> RankBound (J) ;

1

> TorsionSubgroup(J);
Abelian Group of order 1

> PJ := J! [ ptsC[2], ptsC[1]];

> Order(PJ);

0
to deduce that the Jacobian of the curve corresponding to (25) has Mordell-Weil
group with rank 1 and trivial torsion, and that the point we are calling PJ has
infinite order in this group. The commands

Height (PJ);
.0594215465492475716871323583279

LogarithmicBound := Height (PJ)+HeightConstant(J);

AbsoluteBound := Ceiling(Exp(LogarithmicBound)) ;

PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound ) ;
ReducedBasis( [ pt : pt in PtsUpToAbsBound 1) ;

(x, -16, 1) ]

[0.0594215465492475716871323583279]
then show that PJ is in fact a generator of the Mordell-Weil group. Finally,

—m V V VvV VvV O V

applying a Chabauty argument with p =7
> BadPrimes(C);
[ 2, 3, 23]
> Chabauty(PJ,7);
{@ <0, 1, 4, 1> @}
leads to the desired conclusion. We note that the theory behind this code, as
implemented in Magma, depends primarily on work of Stoll [25], [26], [27].

In case (n,m) = (3,8), equation (1) also leads to a question of determining
(integral) points on a hyperelliptic curve, this time one of genus three, corre-
sponding to the equation

V2= X" 4+4X5 +16X° + 64X* + 256 X3 + 1024X2 4 4096 X + 4096.  (26)

Since one can show that the Jacobian of this curve has rank one, this problem
is also accessible to Chabauty-type arguments. In particular, recent work of
Balakrishnan, Bianchi, Cantoral-Farfan, Ciperiani and Etropolski [1] (see https:
//github.com/jbalakrishnan/WIN4 for a detailed Sage implementation) allows
us to show, using a Chabauty argument with the prime p = 17, that the set of
rational points on the curve corresponding to equation (26) is just {oo, (0,£1)}.
This complete the proof of Theorem 4.
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6. The case (m — 1) =3(n—1)

m—1

n_1 1S

Finally, we will focus our attention on the situation when the ratio
a small fixed positive integer. In 1963, Karanicoloff [15] showed that the only
solution to (1) with % = 2 is given by (z,y,m,n) = (2,5,5,3). We will treat
the case k = 3 with a rather different argument.

To start, we will appeal to a result of Bugeaud and Shorey [7], whose proof
is based upon lower bounds for linear forms in logarithms.

Lemma 6.1. Let (z,y,m,n) be a solution of (1). Then we have
ged(m —1,n —1) < 33.4m'/2,

From this, if %’11 = 3, it follows that n < 3348. Further, from Theorems 3
and 4, we may suppose that n > 18 and that x > 47. In this case, from equation
(1) with m = 3n — 2, we may write y as a Laurent expansion in terms of z :

2 oo

3, 7 n 2% —n  6n3—Tn%+2n
T 1+<2(n1)2>x+6(n1)3+ 24(n — 1)z +k2=2 k(z,n) (27)

where each Fy(x,n) is positive and bounded above by

nk+2

Fel@n) = grgym - npaer

Since n > 18, we have

Fy(z,n) (k+4)(n—1Dz 17z

= >
Friq(z,n) (k+3)n 18

whence, from z > 47,

> nt 0.28
FE < 1.1E5(k <1.1 < .
kzﬂ kla,n) 2(k,m) 5(n—1)%z2 = (n—1)2?

We may thus write

3 x n 2 —n
y=ux>+ 1+<2( )m+6(n_1)3+E(x,n), (28)

where
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It follows that

1
< 3(n—1)x

z? n m?—n
n—l+(2(n—1)2)x+6(n_1)3 (29)

Since inequality (19) implies that

x < 3n(n—1),

it remains to check to see whether or not inequality (29) is satisfied for each n
with 18 < n < 3348 and each x with 47 < x < 3n(n — 1).

A Maple calculation (of roughly 80 hours on a single core) verifies, for
the values of n and z under consideration, that (29) holds precisely when n =
1 (mod 6) and z = z for

1
w0 =3 (27 - n? — (4 +3)n +2j +1).
Here, j € {1,2,3} and n =65 — 11 (mod 18). Defining
f(z,n) =6(n —1)%2% + 3n(n — )z + 2n* —n,

f(mf)’n)

it follows, after a little work, that §n—1)?

is equal to

(25 —1)2n3 u%2+8j—nn€+@@2+3&+2@n_aﬂ+8j—1+ 1
9 9 18 18 6(n —1)3’
whence

- 1 _ 1
~ 6(n—1)3 " 3(n—1)zo

x3 n n n 2n? —n
x
n—1" \2m-12)""" 6(n—1)3
Notice that if n = 1 (mod 6) and z corresponds to a solution to (1) with m =
3n — 2, then we necessarily have

1

E(xg,n) = ma

so that
oo

6n3 — Tn2 + 2n 1
o e ren E - -
24(7’1—1)41‘0 +kZ:2 k(x07n) 6(”—1)37

whence, arguing as previously,

6n3 — Tn? + 2n < 1 < 6n3 — Tn? + 2n n 0.28
24(n — 1)*zo 6(n—1)3 24(n — 1)%x (n—1)23"

(30)
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On the other hand, since n > 18, we may readily show that

6n3 —Tn? 4 2n - 1
24(n — 1)*xg 6(n—1)3

for j € {1,2}, and that

6n% — Tn? + 2n < 1
24(n — 1) 6(n—1)3

for j = 3 and n > 43, in each case contradicting (30). Finally, if n = 25 and
o = 919, we simply check that equation (1) fails to be satisfied. This completes
the proof of Theorem 6.
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