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Extremal families of cubic Thue equations

par Michael A. BENNETT et Amir GHADERMARZI

On the occasion of Axel Thue’s 150th birthday

Résumé. Nous déterminons les solutions entières d’une nouvelle
famille infinie d’équations de Thue cubiques, chacune de ces équa-
tions ayant exactement cinq solutions. Notre approche combine
des arguments élémentaires avec des limites inférieures pour les
formes linéaires en logarithmes et la réduction L3.

Abstract. We exactly determine the integral solutions to a
previously untreated infinite family of cubic Thue equations of the
form F (x, y) = 1 with at least 5 such solutions. Our approach com-
bines elementary arguments, with lower bounds for linear forms
in logarithms and lattice-basis reduction.

1. Introduction

If F (x, y) is an irreducible binary form (i.e. homogenous polynomial)
with integer coefficients and degree n ≥ 3, and m is a nonzero integer, the
Diophantine equation F (x, y) = m is called a Thue equation in honour of
Axel Thue [33] who proved, more than a century ago, that the associated
number of solutions in integers x and y is finite. Such equations arise some-
what naturally in a wide variety of number theoretic contexts, including
questions about the existence of primitive divisors in binary recurrence se-
quences and in the only known algorithm (in the strict sense of the term)
for finding integral points on genus one curves over Q. Our current under-
standing of such equations is a rather refined one and we now have excellent
upper bounds upon their number of solutions, depending only on n and m
(and, in particular, not upon the coefficients of the form; see Evertse [13]
and Bombieri and Schmidt [9]). These bounds arise from treating the ap-
parently special case m = 1 and applying “lifting” arguments, dating back
to Lagrange (see page 673 of Dickson [12] and also Mahler [21]).

The case when n = 3, i.e. that of cubic forms, is a relatively simple one
and is well understood. This is primarily because cubic Thue equations may
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be attacked with a wide variety of approaches that do not apparently gener-
alize to those of higher degree. The particular case of cubic Thue equations
of the shape F (x, y) = 1 where the form F has a negative discriminant is
especially simple, as the presence of a single fundamental unit in the corre-
sponding cubic field makes application of Skolem’s p-adic method or similar
local techniques relatively routine. Using such an approach (where we write
NF for the number of integral solutions to the equation F (x, y) = 1 and
DF for the discriminant of F ), Delone [11] and Nagell [26] independently
proved

Theorem 1.1. (Delone and Nagell) If F is an irreducible binary cubic
form with integer coefficients and DF < 0, then NF ≤ 5. Moreover, if
NF = 5, then F is GL2(Z)-equivalent to

x3 − xy2 + y3,

with DF = −23 and, if NF = 4, then F is GL2(Z)-equivalent to either
x3 + xy2 + y3 or x3 − x2y + xy2 + y3,

with discriminant −31 or −44, respectively.

In the case of cubic forms of positive discriminant, the situation is rather
more complicated and there are a number of forms for which NF exceeds 5.
The following table collects representatives of all known equivalence classes
of irreducible cubic forms for which NF ≥ 6.

F (x, y) DF NF References
x3 − x2y − 2xy2 + y3 49 9 [4], [14], [20], [30]

x3 − 3xy2 + y3 81 6 [14], [20], [34]
x3 − 4xy2 + y3 229 6 [10], [14], [30]
x3 − 5xy2 + 3y3 257 6 [14]

x3 + 2x2y − 5xy2 + y3 361 6 [14]

Presumably, we always have NF ≤ 9. A striking theorem of Okazaki [28] is
that NF ≤ 7 provided DF is suitable large (see also Akhtari [1]); we have
NF ≤ 10 in all cases, via an old result of the first author [8].

A stronger conjecture, due originally to Nagell [27] and subsequently
refined by Pethő [29] and Lippok [19], is that the forms in the above table
are, up to equivalence, the only irreducible cubics with NF ≥ 6, so that,
for all other classes, we have NF ≤ 5. If true, this upper bound for NF is
sharp, as we know of a number of infinite families of cubic forms where the
number of integer solutions to the corresponding equation F (x, y) = 1 is at
least 5. Let us define
(1.1) F1,t(x, y) = x3 − (t+ 1)x2y + txy2 + y3,

(1.2) F2,t(x, y) = x3 − t2xy2 + y3
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and
(1.3) F3,t(x, y) = x3 − (t4 − t)x2y + (t5 − 2t2)xy2 + y3.

In each case, Fi(x, y) is irreducible over Q[x, y], with NFi,t ≥ 5, at least pro-
vided we exclude “small” values of the integer parameter t (the assumption
that |t| > 2 is sufficient).

It is plausible to believe that (1.1), (1.2) and (1.3) represent the only in-
finite cubic families for which the corresponding Thue equation F (x, y) = 1
has five or more integral solutions, partially explaining our (misleading) ti-
tle. The evidence does not admittedly seem especially compelling, one way
or the other. That being said, we will take this opportunity to solve those
equations corresponding to the third family, which has not previously been
treated in the literature. We note that the equation F1,t(x, y) = 1 was com-
pletely solved by Lee [18], Mignotte and Tzanakis [25] and Mignotte [23],
while F2,t(x, y) = 1 has been treated for |t| ≥ 1.35 · 1014 by Wakabayashi
[36]. We prove

Theorem 1.2. If t is an integer, then the Diophantine equation
(1.4) F3,t(x, y) = x3 − (t4 − t)x2y + (t5 − 2t2)xy2 + y3 = 1,
has only the integer solutions

(x, y) ∈ {(1, 0), (0, 1), (t, 1), (t4 − 2t, 1),
(
1− t3, t8 − 3t5 + 3t2

)
},

unless t = −1, in which case there is an additional solution given by (x, y) =
(6,−5).

Our argument follows the now-traditional approach originated byThomas
[31], [32]. A nice survey of families of Thue equations solved to date (by
these and other methods) can be found in Heuberger [15] (see also [16] and
[17] for other good expositions along these lines).

2. The equation F3,t(x, y) = 1 : units in cubic fields

For the remainder of the paper, we will concern ourselves with the para-
metric equation (1.4). Note that NF3,t ≥ 5 (with solutions given in the
statement of Theorem 1.2) for t 6∈ {0, 1}. We have

DF3,t = t18 − 10t15 + 41t12 − 90t9 + 102t6 − 40t3 − 27,
which is positive, except for t ∈ {0, 1}. That NF3,t ≥ 5 was noted by Ziegler
[37] who observed that one also has NF4,t ≥ 5, for the families of forms
given by

F4,t(x, y) = x3 − (t4 + 4t)x2y + (t5 + 3t2)xy2 + y3.

We have F3,−t(x, y) ∼ F4,t(x, y) under GL2(Z) action, via the identity
F3,−t(x− ty, y) = F4,t(x, y).
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Let us suppose for the next few sections that t ≥ 10; our argument for
negative values of t is very similar and will not be reproduced here, while
the treatment of “small” values of t requires rather different techniques.
Defining P (x) = F3,t(x, 1), then P (x) has three real roots, which we denote
by θ1 < θ2 < θ3. By studying the sign of P (x), we can deduce the following
expressions for these roots :

(2.1) θ1 = − 1
t5
− 2
t8
− κ1
t11 , θ2 = t+ 1

t5
+ 3
t8

+ κ2
t11 and θ3 = t4−2t− 1

t8
− κ3
t11 .

Here, the κi are certain real numbers with κ1 ∈ (3, 3.1), κ2 ∈ (8, 8.03) and
κ3 ∈ (5, 5.02).

Suppose that (x, y) is a solution to equation (1.4). It follows, for each
i ∈ {1, 2, 3}, that x − yθi is a unit in Q(θi) and hence, since Lemma 4.11
of [32] implies that t− θi and θi form a pair of fundamental units in Q(θi),
we may write

(2.2) x− yθi = (−1)δ(t− θi)nθ−mi for m,n ∈ Z, δ ∈ {0, 1}.

In particular, we have

(2.3) x− yθ3
x− yθ2

=
(
t− θ3
t− θ2

)n (θ3
θ2

)−m
> 0,

and so, from the fact that

(x− yθ1)(x− yθ2)(x− yθ3) = 1,

we conclude that x− yθ1 > 0 (whereby at least one of x and y is positive).
If |y| ≤ 1, we observe after a little work, since we assume t ≥ 10, that

(x, y) ∈ {(1, 0), (0, 1), (t, 1), (t4 − 2t, 1)}.

Let us therefore suppose that (x, y) is a solution in integers to equation
(1.4), with |y| ≥ 2. A routine calculation ensures, provided t ≥ 10, that
necessarily x/y lies in one of the intervals

I1 =

−1.13
t5

,
−1 + 1

|y|3

t5

 , I2 =

t+
1− 1

|y|3

t5
, t+ 1.13

t5


or

I3 =

t4 − 2t− 1.13
t8

, t4 − 2t−
1− 1

|y|3

t8

 .
As is readily observed, these intervals are disjoint and hence we will call
solutions (x, y) to equation (1.4) with x/y in I1, I2 and I3 solutions of types
I, II and III, respectively. It is easy to show (and valuable to note, for later
use) that |x− yθi| < 1 for i = 1, 2 or 3, provided (x, y) is a solution of type
I, II or III, respectively.
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From here, we will proceed as follows. We first will use elementary ar-
guments and a careful analysis of equation (2.3) to deduce lower bounds
upon max{|m|, |n|} in (2.2). We then combine this information with lower
bounds upon

(2.4)
∣∣∣∣∣x− yθix− yθj

∣∣∣∣∣
for suitably chosen pairs (i, j), depending on the solution type of (x, y).
The latter bounds arise from invoking lower bounds for linear forms in
logarithms of algebraic numbers à la Baker and yield upper bounds for
t. Finally, we appeal to a classical lemma of Baker and Davenport [3] (in
essence, a simple version of Lenstra-Lenstra-Lovacz lattice basis reduction)
to treat (most of) the remaining values of t.

3. Lower bounds for max{|m|, |n|} in equation (2.3)

In general, it is always possible to reduce the problem of solving fami-
lies of Thue equations to that of treating unit equations similar to (2.2).
A crucial step in solving such families is to ensure suitably rapid growth
(Thomas [32] terms this stable growth) of the exponents of the fundamental
units. That is the content of this section. Our arguments vary somewhat
depending on the solution type of (x, y); we will treat each in turn.

3.1. Solutions of type I. Let us suppose first that x/y ∈ I1, i.e. that
x/y satisfies

(3.1) − 1.13
t5

<
x

y
<
−1 + 1

|y|3

t5
.

If we have y < 0 and x > 0 then from x − yθ1 > 0, it follows that x/y ∈
(−1.13

t5 , θ1). From (2.1), we thus have

t3 − 2 + 1
t6 + 1

t9 −
2.02
t12

1 + 2.13
t6 + 3

t9 + 8.03
t12

<
x− yθ3
x− yθ2

<
t3 − 2 + 1.13

t6 −
1
t9

1 + 2
t6 + 5

t9 + 11
t12

.

If, on the other hand, we have y > 0 (so that y ≥ 2) and x < 0, then
x/y ∈

(
θ1,
−0.875
t5

)
, whereby

t3 − 2 + 0.875
t6 −

1
t9 −

5.02
t12

1 + 2
t6 + 5

t9 + 11.13
t12

<
x− yθ3
x− yθ2

<
t3 − 2 + 1

t6 + 1
t9

1 + 1.875
t6 + 3

t9 + 8
t12
.

In either case, we thus may write
x− yθ3
x− yθ2

= t3 − 2− κ4
t3
,
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where κ4 ∈ (1.8, 2.2). Arguing similarly, we find that

log
(
t− θ3
t− θ2

)
= 9 log t− 6

t3
− κ5
t6
,

log (θ3/θ2) = 3 log t− 2
t3
− κ6
t6

and

log
(
x− yθ3
x− yθ2

)
= 3 log t− 2

t3
− κ7
t6
,

where κ5 ∈ (7.99, 8.03), κ6 ∈ (3, 3.01) and κ7 ∈ (3.8, 4.3).
We may thus conclude from (2.3) that

(3.2) k := 3n−m− 1 = 1
3 log t

(6n− 2m− 2
t3

+ κ5n− κ6m− κ7
t6

)
.

If k = 0 (so that m = 3n− 1), then it follows that

0 = κ5n− κ6(3n− 1)− κ7 = (κ5 − 3κ6)n+ κ6 − κ7

and so

n = κ6 − κ7
3κ6 − κ5

∈ (−1.25,−0.8), i.e. n = −1, m = −4.

Equation (2.2) thus implies, after a little work, that

(x, y) =
(
1− t3, t8 − 3t5 + 3t2

)
.

We may thus suppose that k is a nonzero integer whence, from equation
(3.2), we have

k
(
3t6 log t− 2t3

)
= κ5n− κ6m− κ7 = κ5

3 k + κ5 − 3κ6
3 m+ κ5 − 3κ7

3 .

It follows that

(3.3) m = k

κ5 − 3κ6

(
9t6 log t− 6t3 − κ5

)
+ 3κ7 − κ5
κ5 − 3κ6

.

We may conclude from this that m and k are necessarily of opposite sign
and, since t ≥ 10, that

|m| > 8.6 |k| t6 log t.

From k = 3n−m−1,m and n thus have the same sign whereby, considering
(2.2) and the fact that |x − yθ1| < 1, we may conclude that m < n < 0,
|m| > 3|n| and, since k is nonzero,

(3.4) |m| = max{|m|, |n|} > 8.6 t6 log t.
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3.2. Solutions of type II. Let us next suppose that x/y satisfies

(3.5) t+ 1
t6
<
x

y
< t+ 2

t5
.

Since at least one of x and y is positive, it follows that both are positive.
We therefore have (again appealing to (2.1) and (2.2))

x− yθ1 > 0, x− yθ2 < 0 and x− yθ3 < 0.

It follows that

0 > x− yθ3
x− yθ1

=
(
t− θ3
t− θ1

)n (θ3
θ1

)−m
and hence n and m are of opposite parity.

Using the inequalities in (2.1) and (3.5), we find that

t3 − 3− 2
t6 −

1
t9 −

5.02
t12

1 + 3
t6 + 2

t9 + 3.1
t12

<
yθ3 − x
x− yθ1

<
t3 − 3− 1

t7 −
1
t9

1 + 1
t6 + 1

t7 + 2
t9

and hence
yθ3 − x
x− yθ1

= t3 − 3− κ8
t3
, where κ8 ∈ (0, 3.1).

Similarly,
θ3 − t
t− θ1

= t3 − 3− κ9
t3
, where κ9 ∈ (0, 1.1)

and
θ3
|θ1|

= t9 − 4t6 + κ10t
3 with κ10 ∈ (4.9, 5).

We thus have

(3.6) log
(
t3 − 3− κ8

t3

)
= n log

(
t3 − 3− κ9

t3

)
−m log

(
t9 − 4t6 + κ10t

3
)
.

If m = 0, it thus follows that n = 1 which, with positive sign, leads us to
the solution (x, y) = (t, 1). If m < 0 then necessarily n < 0 and so

|x− yθ2| = |(t− θ2)nθ−m2 | > 1,

contradicting the fact that (x, y) is a solution of type II. We may thus
conclude that m > 0 (whereby also n > 0). Since

log
(
t3 − 3− κ8

t3

)
= 3 log t− 3

t3
− κ11

t6
for κ11 ∈ (4.5, 7.7),

log
(
t3 − 3− κ9

t3

)
= 3 log t− 3

t3
− κ12

t6
for κ12 ∈ (4.5, 5.7)

and

log
(
t9 − 4t6 + κ10t

3
)

= 9 log t− 4
t3
− κ13

t6
for κ13 ∈ (2.9, 3.1),



396 Michael A. Bennett, Amir Ghadermarzi

we may conclude that

(3.7) k := n− 3m− 1 = 1
3 log t

(3n− 4m− 3
t3

+ κ12n− κ13m− κ11
t6

)
.

Since equation (3.6) readily implies that n > 2m, (3.7) and the fact that n
andm are of opposite parity allows us to conclude that k is an even positive
integer (so that, in particular, n ≥ 3m+ 3). From (3.7) and the definitions
of κ11, κ12 and κ13, we have

(3.8) k <
1

3 log t

(5n+ 4k − 5
3t3 + 5n+ k − 3

t6

)
.

If k = 2, then, since t ≥ 10, (3.8) implies that n > 8000 = 4000k, whence

2 < 1
3 log t ×

5.1n
3t3 and hence n > 3.5 t3 log t.

If k ≥ 4, since n > k, we have

4 ≤ k < 1
3 log t

(3n
t3

+ 6n
t6

)
<

1
3 log t ×

3.1n
t3

and hence may conclude, in all cases, that
(3.9) n = max{|m|, |n|} > 3.5 t3 log t.

3.3. Solutions of type III. Suppose now that we have a solution (x, y)
with x/y in I3, i.e.

t4 − 2t− 1.13
t8

<
x

y
< t4 − 2t−

1− 1
|y|3

t8
.

As with solutions of type II, we may suppose that both x and y are positive
integers (with, say, y ≥ 2). We have

0 < x− yθ1
x− yθ2

=
(
t− θ1
t− θ2

)n (θ1
θ2

)−m
,

and hence n and m have the same parity. Arguing as for type II solutions,
we may write

log
(
x− yθ1
x− yθ2

)
= 1
t3

+ 5
2t6 + 25

3t9 + κ14
t12 , with κ14 ∈ (25.9, 26.6),

log
(
t− θ1
θ2 − t

)
= 6 log t− κ15

t3
, with κ15 ∈ (2.9, 3.1),

log
(
θ2
|θ1|

)
= 6 log t− 2

t3
− κ16

t6
, for κ16 ∈ (−0.1, 0.1),

and consider the identity

log
(
x− yθ1
x− yθ2

)
= n log

(
t− θ1
θ2 − t

)
+m log

(
θ2
|θ1|

)
.
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We thus have

(3.10) n+m = 1
6 log t

(2m+ κ15n+ 1
t3

+ 5/2 + κ16m

t6
+ 25

3t9 + κ14
t12

)
.

It is easy to show from this that nm 6= 0 and, indeed, that n and m have
opposite signs. From (2.3), since necessarily |x − θ3y| < 1, we have m > 0
and n < 0, say n = −n0.

If m ≥ n0 + 2, then (3.10) and the inequality t ≥ 10 imply that

m− n0 <
1

6 log t

(2m− 2.9n0 + 1
t3

+ 2.6 + 0.1m
t6

)
<

m− n0
2 t3 log t ,

a contradiction. Since m and n have the same parity, we may thus conclude
that either m = n0 or n0 ≥ m+ 2. In the first case, we have

(κ15 − 2)m− 1
t3

− 5/2 + κ16m

t6
− 25

3t9 −
κ14
t12 = 0,

and hence, after a little work, that m = 1, n = −1, corresponding to the
solution (x, y) = (t4 − 2t, 1). We may therefore assume that n0 ≥ m + 2
and hence, from (3.10),

2 ≤ n0 −m <
3.1n0 − 1.9m

6t3 log t = 3.1(n0 −m)
6t3 log t + m

5t3 log t
and so
(3.11) |n| > m > 4.9 (n0 −m) t3 log t ≥ 9.8 t3 log t.

We may thus conclude, in all cases (i.e. for solutions of type I, II or III),
that
(3.12) max {|m|, |n|} ≥ 3.5 t3 log t.

4. Linear forms in logarithms

With a lower bound upon max {|m|, |n|} in hand, we now turn our atten-
tion to extracting bounds for expressions of the shape (2.4). Our starting
point is Siegel’s identity :

(θ2 − θ3)(x− yθ1) + (θ3 − θ1)(x− yθ2) + (θ1 − θ2)(x− yθ3) = 0.

From this, we have, for example, that x−yθ3
x−yθ2

not only satisfies equation
(2.3), but also

x− yθ3
x− yθ2

= θ1 − θ3
θ1 − θ2

+ θ3 − θ2
θ1 − θ2

(
x− yθ1
x− yθ2

)
.

It follows, if (x, y) is a type I solution, say, that x−yθ3
x−yθ2

and θ1−θ3
θ1−θ2

are ex-
tremely close together, whereby, from (2.3), the linear form

(4.1) Λ1 = log
(
θ1 − θ3
θ1 − θ2

)
+ n log

(
t− θ2
t− θ3

)
−m log

(
θ2
θ3

)
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is necessarily small. Explicitly, we may write Λ1 = log (1 + τ1) , where

τ1 = (θ2 − θ3)(x− yθ1)
(θ1 − θ2)(x− yθ3) .

We have, since m and n are negative in (2.2) for solutions of type I, with
|m| > 3|n|,

|τ1| =
θ3 − θ2
θ2 − θ1

(
t− θ1
θ3 − t

)n ( θ3
|θ1|

)m
< (t3−3)

(
t3 − 3

)−n (
t9 − 4t6

)m
< t7.7m,

where, in the last inequality, we are assuming that (m,n) 6= (−4,−1) (a
case we treated earlier). From the fact that | log(1 + z)| < 2|z|, valid for
|z| < 1/2, we may thus conclude that
(4.2) log |Λ1| < log 2− 7.7 |m| log t.

We argue similarly in the case of solutions of types II and III, considering
the linear forms

(4.3) Λ2 = log
(
θ3 − θ2
θ2 − θ1

)
+ n log

∣∣∣∣ t− θ1
t− θ3

∣∣∣∣+m log
∣∣∣∣θ3
θ1

∣∣∣∣
and

(4.4) Λ3 = log
(
θ3 − θ2
θ3 − θ1

)
+ n log

∣∣∣∣ t− θ1
t− θ2

∣∣∣∣+m log
∣∣∣∣θ2
θ1

∣∣∣∣ .
Corresponding to (4.2), we have, after some work, the inequalities
(4.5) log |Λ2| < log 2− 7.9n log t
and
(4.6) log |Λ3| < log 2− 8.9 |n| log t

To find lower bounds for our |Λi|, we require estimates for linear forms in
logarithms of algebraic numbers. The following is the main result (Theorem
2.1) of Matveev [22] :

Proposition 4.1. Let K be an algebraic number field of degree D over Q
and set χ = 1 if K is real and χ = 2 otherwise. Suppose that α1, α2, . . . , αn ∈
K∗ with absolute logarithmic heights h(αi) for 1 ≤ i ≤ n, and that

Ai ≥ max{Dh(αi), |logαi|}, 1 ≤ i ≤ n,
for some fixed choice of the logarithm. Define

Λ = b1 logα1 + · · ·+ bn logαn,
where the bi are rational integers and set

B = max{1,max{|bi|Ai/An : 1 ≤ i ≤ n}}.
Define, further, Ω = A1 · · ·An,

C = 16
n!χe

n(2n+ 1 + 2χ)(n+ 2)(4n+ 4)n+1 (en/2)χ ,
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C0 = log
(
exp(4.4n+ 7)n5.5D2 log(eD)

)
and W0 = log (1.5eBD log(eD)) . Then, if logα1, . . . , logαn are linearly
independent over Z and bn 6= 0, we have

log |Λ| > −C C0W0D
2 Ω.

We can apply this result, with suitable parameter choices, to find lower
bounds upon Λi, for each i ∈ {1, 2, 3}. We will focus our attention on the
case of Λ2 (where the resulting upper bound upon t is largest). The other
cases proceed similarly; details are available from the authors on request.

To treat Λ2, we choose

α3 = θ3 − θ2
θ2 − θ1

,α2 =
∣∣∣∣ t− θ1
t− θ3

∣∣∣∣ ,α1 =
∣∣∣∣θ3
θ1

∣∣∣∣ ,b3 = 1,b2 = n,b1 = m and D = 6.

From (2.1), we have

h

(
θ3 − θ2
θ3 − θ1

)
≤ 2h (θ3 − θ2) = 2

3 log ((θ3 − θ2)(θ3 − θ1)(θ2 − θ1)) < 6 log t,

h

(
θ3
θ1

)
= 1

6 log
(
θ3
θ1

)2
< 3 log t

and
h

(
t− θ1
t− θ3

)
= 1

6 log
(
t− θ3
t− θ2

)2
< 3 log t.

Therefore we can take
A3 = 36 log t, A1 = A2 = 18 log t and B = n

2
in Proposition 4.1 to conclude that

log |Λ2| > −8.4 · 1015 log3 t log (35n).
Combining this with (4.5), we thus have that

(4.7) n

log (35n) < 1.07 · 1015 log2 t.

Appealing to (3.9), we may therefore conclude that t ≤ 576241 (so that
n < 8.9 · 1018).

4.0.1. Small values of t. At this point, there are a number of ways to
proceed to handle the remaining values of t. One of which, which would
be particularly valuable if our bound upon t was less good, would be to
observe that we can rewrite our linear form Λ2 as

Λ2 = m logα2 − logα1,

where

α1 =
(
θ2 − θ1
θ3 − θ2

) ∣∣∣∣ t− θ3
t− θ1

∣∣∣∣k+1
and α2 =

∣∣∣∣ t− θ1
t− θ3

∣∣∣∣3 ∣∣∣∣θ3
θ1

∣∣∣∣ .
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Since (3.7) ensures that k is small, the height of α1 is not too large and so
we can profitably apply lower bounds for linear forms in two logarithms,
rather than three; typically, this leads to much improved numerical results.

In our case, since the values of t under consideration are not especially
large, we will instead appeal to a result from Diophantine approximation.
Specifically, we will use a lemma of Mignotte [23], a variant of a classical
result by Baker and Davenport [3].

Lemma 4.1. Let Λ = µα + νβ + δ where α, β and δ are nonzero real
numbers and where µ, ν are rational integers with |µ| < A. Let Q > 0 be a
real number and suppose that γ1 and γ2 satisfy∣∣∣∣γ1 −

α

β

∣∣∣∣ < 1
100Q2 and

∣∣∣∣γ2 −
δ

β

∣∣∣∣ < 1
Q2 .

Further, let p/q be a rational number with 1 ≤ q ≤ Q and |γ1 − p/q| < q−2,
and suppose q ||qγ2|| ≥ 1.01A+ 2, where ||·|| denotes the distance to nearest
integer. Then

(4.8) |Λ| > |β|
Q2 .

To apply this lemma in our situation, we choose

α = log
∣∣∣∣θ3
θ1

∣∣∣∣ , β = log
∣∣∣∣ t− θ1
t− θ3

∣∣∣∣ , δ = log
(
θ3 − θ2
θ2 − θ1

)
, µ = m, ν = n

and A = 3 · 1018. For each t with 10 ≤ t ≤ 576241, we compute α, β and
δ with suitable precision, choosing Q = 1060. In each case, searching the
continued fraction expansion of γ1, we are able to find a convergent p/q
with the desired properties. We may thus conclude that |Λ2| > 10−120. On
the other hand, combining (3.9) and (4.5), we have

log |Λ2| < −27.65 t3 log2 t,

an immediate contradiction. Full details of this computation are available
from the authors upon request.

5. Closing remarks

It is a relatively routine exercise nowadays to solve a given cubic Thue
equation (or even a fairly large number of them). Algorithmic routines,
based on a paper of Tzanakis and de Weger [35], building on the founda-
tional work of Baker [2], exist in a number of computer algebra packages,
including PARI and Magma. We used code based on the latter to solve the
equations corresponding to (1.4) with |t| < 10 (where our previous argu-
ments may fail), as well as all cubic Thue equations of the shape F (x, y) = 1
for forms of positive discriminant DF ≤ 107. For the latter, we argued as
in [8], appealing to work of Belabas [5] and Belabas and Cohen [6], [7].
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For such forms, there are precisely 9 equivalence classes with NF ≥ 5
which are inequivalent to Fi,t(x, y) for any i ∈ {1, 2, 3} and t ∈ Z. These
are

F (x, y) DF NF

x3 − 3xy2 + y3 81 6
x3 + x2y − 3xy2 − y3 148 5
x3 + 2x2y − 5xy2 + y3 361 6

x3 − 5xy2 − y3 473 5
x3 − 7xy2 − y3 1345 5

x3 + 9x2y − 12xy2 − 21y3 108729 5
x3 + 21x2y − 2xy2 − 21y3 783689 5
x3 + 21x2y − xy2 − 22y3 810661 5
x3 + 18x2y − 21xy2 − 37y3 1257849 5

It is also worth noting that the families of forms F1,t1 , F2,t2 and F3,t3 are
essentially disjoint. It is a routine exercise (since the discriminants in each
family are essentially squares, whereby we may apply Runge’s method) to
show that the only cases where we have

Fi,ti(x, y) ∼ Fj,tj (x, y) with i, j ∈ {1, 2, 3}, i 6= j

correspond to

F1,0(x, y) ∼ F1,2(x, y) ∼ F2,1(x, y) ∼ F3,1(x, y), F1,4(x, y) ∼ F3,−1(x, y)

and
F2,0(x, y) ∼ F3,0(x, y).

Here, since F1,−t(x, y) = F1,t−1(y, x) and F2,t(x, y) = F2,−t(x, y) we suppose
that t1, t2 ≥ 0.

The solution of the remaining cases of the equation F2,t(x, y) = 1, i.e
those with 0 ≤ t < 1.35 · 1014, is within computational range nowadays,
requiring slight refinements of the arguments of [36], in conjunction with
appeal to state-of-the-art lower bounds for linear forms in three complex
logarithms, due to Mignotte [24]. The reason why this family is somewhat
harder to solve is that the lower bounds upon the growth of the exponents
of the corresponding fundamental units is less strong in this case. Indeed
one has only that the larger exponent is of size � t3/2. To obtain this,
Wakabayashi [36] employs local arguments reminiscent of Skolem’s p-adic
method.
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