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COMPUTING ELLIPTIC CURVES OVER Q

MICHAEL A. BENNETT, ADELA GHERGA, AND ANDREW RECHNITZER

Abstract. We discuss an algorithm for finding all elliptic curves over Q with
a given conductor. Though based on classical ideas derived from reducing the
problem to one of solving associated Thue-Mahler equations, our approach, in
many cases at least, appears to be reasonably efficient computationally. We
provide details of the output derived from running the algorithm, concentrating
on the cases of conductor p or p2, for p prime, with comparisons to existing
data.

1. Introduction

A classical result of Shafarevich [58] implies that, given a fixed set of prime
numbers S, there are only finitely many Q-isomorphism classes of elliptic curves
defined over Q with good reduction outside S. In 1970, Coates [13] proved an
effective version of this theorem, using bounds for linear forms in p-adic and complex
logarithms. Early attempts to make these results explicit, for fixed sets of small
primes, overlap with the arguments of [13], in that they reduce the problem to
solving a number of Thue-Mahler equations. These are Diophantine equations of
the form

(1) F (x, y) = u.

Here, F is a binary form of degree 3 or greater, with integer coefficients, and u
is an S-unit—an integer whose prime factors are contained in S. The number of
solutions in relatively prime integers x and y to equation (1), provided that F is
irreducible, is known to be finite, via the work of Mahler [39]. This generalizes a
classical result of Thue [66] who had proved an analogous statement for the case
of u fixed in equation (1). When F is a reducible form in Z[x, y], equation (1) is
typically less difficult to solve; in the context of finding elliptic curves, this situation
arises from consideration of elliptic curves with at least one nontrivial rational 2-
torsion point. The first examples where all elliptic curves E/Q with good reduction
outside a given set S were determined for S = {2, 3} by Coghlan [14] and Stephens
[64] (see also [8]), and for S = {p} for certain small primes p; see, e.g., Setzer [57]
and Neumann [48]. Each of these examples corresponds, via our approach, to cases
with reducible forms. Agrawal, Coates, Hunt, and van der Poorten [1] carried out
the first analysis where irreducible forms in equation (1) were treated to find elliptic
curves of given conductor (dealing with the case S = {11}). In this situation, the
reduction to equation (1) is not particularly involved, but subsequent computations
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are quite difficult; they use arguments from [13] and a range of techniques from
computational Diophantine approximation.

It appears that there are very few subsequent attempts in the literature to com-
pute elliptic curves of a given conductor through the solution of Thue-Mahler equa-
tions. Instead, one finds a wealth of results which approach the problem via modular
forms. This route relies upon the Modularity theorem (see Wiles [73] and Breuil,
Conrad, Diamond, and Taylor [10]), which was actually still conjectural when these
ideas were first implemented. To find all E/Q of conductor N by this method, one
computes the space of Γ0(N) modular symbols and the action of the Hecke algebra
on it, and then searches for one-dimensional rational eigenspaces. After calculating
a large number of Hecke eigenvalues, one is then able to extract corresponding el-
liptic curves. For a detailed description of how this technique works, the reader is
directed to [16]. The great computational success of this approach can be primarily
attributed to Cremona (see, e.g., [15], [16]) and his collaborators; they have devoted
many years of work to it and are responsible for the current state-of-the-art. In
particular, at the time of writing in 2017, all E/Q of conductor N ≤ 400000 have
been determined by these methods.

In the paper at hand, we return to techniques based upon solving Thue-Mahler
equations, using a number of results from classical invariant theory. Our aim is to
give a straightforward demonstration of the link between the conductors in ques-
tion and the corresponding equations, and to make the Diophantine approximation
problem that follows as easy to tackle as possible. It is worth noting here that
these connections are quite straightforward for primes p > 3, but require careful
analysis at the primes 2 and 3. We will demonstrate our approach for a number of
specific conductors and sets S, and then focus our main computational efforts on
curves with bad reduction at a single prime (i.e., curves of conductor p or p2 for
p prime). In these cases, the computations simplify significantly and we are able
to find all curves of prime conductor up to 2 × 109 (1010 in the case of curves of
positive discriminant) and conductor p2 for p ≤ 5 × 105. We then extend these
computations in the case of conductor p, for prime p ≤ 2× 1013, and conductor p2

for prime p ≤ 1010. We are not, however, able to guarantee completeness for these
extended computations (we will discuss this further in what follows).

The outline of this paper is as follows. In Section 2, we discuss some basic
facts about elliptic curves, with corresponding notation. In Section 3, we review
the invariant theory of cubic forms and state our main theorem upon which our
algorithm is based. Section 4 contains the proof of this theorem. Section 5 is
devoted to the actual computation of the cubic forms we require. We provide a few
examples of our approach for composite conductors in Section 6. Specifically, we
find all elliptic curves E/Q with conductor N for

N ∈ {399993, 999999, 999999999, 2655632887, 3305354359}
and all E/Q with good reduction outside S, where

S = {2, 3, 23} and S = {2, 3, 5, 7, 11}.
These last two examples have been considered recently by other authors ([36] and
[37]), using different techniques.

The remainder of the paper is devoted to finding curves with bad reduction at
a single prime p, i.e., those of conductor N = p or p2. We indicate in Section 7
how the problem of computing elliptic curves over Q of fixed conductor simplifies
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considerably in such a situation and set the stage for our main computation. In
Section 8, we provide a variety of further details for these cases and an outline of a
heuristic approach to the problem that enables us to work with curves of quite large
conductor (allowing us to find, in all likelihood, all elliptic curves of prime conductor
p for p < 2×1013). Here, the obstruction to a deterministic solution to our problem
for such large values of p is provided by the existence of extremely large fundamental
units in corresponding cubic fields. Section 9 contains an overview of our output,
with comparisons to previous results in the literature. Finally, in Section 10, we
provide an argument to show that any elliptic curve that has not been detected by
our “heuristic” approach corresponds to a record-setting “Hall ratio”, that is, an
example of integers x and y where the (nonzero) difference |x3 − y2| is unusually
small.

2. Elliptic curves

Our basic problem is to find a model for each isomorphism class of elliptic curves
over Q with a given conductor. Let S = {p1, p2, . . . , pk}, where the pi are distinct
primes, and fix a conductor N = pη1

1 · · · pηk

k for ηi ∈ N. Any curve of conductor N
has a minimal model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai integral and discriminant

ΔE = (−1)δpγ1

1 · · · pγk

k ,

where the γi are positive integers satisfying γi ≥ ηi, for each i = 1, 2, . . . , k, and
δ ∈ {0, 1}.

Writing

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6, c4 = b22 − 24b4

and

c6 = −b32 + 36b2b4 − 216b6,

we have 1728ΔE = c34 − c26 and jE = c34/ΔE . It follows that

c26 = c34 + (−1)δ+126 · 33 · pγ1

1 · · · pγk

k .(2)

In fact, it is equation (2) that lies at the heart of our method (see also Cremona
and Lingham [19] for an approach to the problem that takes as its starting point
equation (2), but subsequently heads in a rather different direction).

Let νp(x) be the largest power of a prime p dividing a nonzero integer x. Since
our model is minimal, we may suppose (via Tate’s algorithm; see, for example,
Papadopoulos [49]) that

min{3νp(c4), 2νp(c6)} < 12 + 12νp(2) + 6νp(3),

for each prime p, while

νp(NE) ≤ 2 + νp(1728).

For future use, it will be helpful to have a somewhat more precise determination of
the possible values of νp(c4) and νp(c6) we encounter. We compile this data from
Papadopoulos [49] and summarize it in Tables 1, 2, and 3.
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Table 1. The possible values of ν2(c4), ν2(c6), ν2(ΔE) and ν2(N).

ν2(c4) ν2(c6) ν2(ΔE) ν2(N)
0 0 ≥ 0 min{1, ν2(ΔE)}

≥ 4 3 0 0
≥ 4 5 4 2, 3 or 4
≥ 4 ≥ 6 6 5 or 6

4 6 7 7
4 6 8 2, 3 or 4
4 6 9 5
4 6 10 or 11 3 or 4
4 6 ≥ 12 4
5 7 8 7

≥ 6 7 8 2, 3 or 4

ν2(c4) ν2(c6) ν2(ΔE) ν2(N)
5 ≥ 8 9 8

≥ 6 8 10 6
6 ≥ 9 12 5 or 6
6 9 ≥ 14 6
7 9 12 5

≥ 8 9 12 4
6 9 13 7
7 10 14 7
7 ≥ 11 15 8

≥ 8 10 14 6

Table 2. The possible values of ν3(c4), ν3(c6), ν3(ΔE) and ν3(N).

ν3(c4) ν3(c6) ν3(ΔE) ν3(N)
0 0 ≥ 0 min{1, ν3(ΔE)}
1 ≥ 3 0 0

≥ 2 3 3 2 or 3
2 4 3 3
2 ≥ 5 3 2
2 3 4 4
2 3 5 3
2 3 ≥ 6 2

≥ 3 4 5 5
3 5 6 4

ν3(c4) ν3(c6) ν3(ΔE) ν3(N)
3 ≥ 6 6 2

≥ 4 5 7 5
≥ 4 6 9 2 or 3

4 7 9 3
4 ≥ 8 9 2
4 6 10 4
4 6 11 3

≥ 5 7 11 5
5 8 12 4

≥ 6 8 13 5

Table 3. The possible values of νp(c4), νp(c6), νp(ΔE) and νp(N)
when p > 3 is prime and p | ΔE .

νp(c4) νp(c6) νp(ΔE) νp(N)
0 0 ≥ 1 1

≥ 1 1 2 2
1 ≥ 2 3 2

≥ 2 2 4 2
≥ 2 ≥ 3 6 2

νp(c4) νp(c6) νp(ΔE) νp(N)
2 3 ≥ 7 2

≥ 3 4 8 2
3 ≥ 5 9 2

≥ 4 5 10 2

3. Cubic forms: the main theorem and algorithm

Having introduced the notation we require for elliptic curves, we now turn our
attention to cubic forms and our main result. Fix integers a, b, c, and d, and consider
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the binary cubic form

F (x, y) = ax3 + bx2y + cxy2 + dy3,(3)

with discriminant

(4) DF = −27a2d2 + b2c2 + 18abcd− 4ac3 − 4b3d.

To any such form, we can associate a pair of covariants, the Hessian H = HF :

H = HF (x, y) = −1

4

(
∂2F

∂x2

∂2F

∂y2
−
(

∂2F

∂x∂y

)2
)

and the Jacobian determinant of F and H, a cubic form G = GF defined by

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

A quick computation reveals that, explicitly,

H = (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2

and

G = (−27a2d+ 9abc− 2b3)x3 + (−3b2c− 27abd+ 18ac2)x2y

+(3bc2 − 18b2d+ 27acd)xy2 + (−9bcd+ 2c3 + 27ad2)y3.

These satisfy the syzygy

4H(x, y)3 = G(x, y)2 + 27DFF (x, y)2(5)

as well as the resultant identities:

(6) Res(F,G) = −8D3
F and Res(F,H) = D2

F .

Note here that we could just as readily work with −G instead of G here (corre-
sponding to taking the Jacobian determinant of H and F , rather than of F and
H). Indeed, as we shall observe in Section 5.4, for our applications we will, in some
sense, need to consider both possibilities.

Notice that if we set (x, y) = (1, 0) and multiply through by D6/4 (for any
rational D), then this syzygy can be rewritten as

(D2H(1, 0))3 −
(
D3

2
G(1, 0)

)2

= 1728 · D
6DF

256
F (1, 0)2.

Given an elliptic curve with corresponding invariants c4, c6, and ΔE , we will show
that it is always possible to construct a binary cubic form F , with corresponding
D for which

D2H(1, 0) = c4, −1

2
D3G(1, 0) = c6 and ΔE =

D6DFF (1, 0)2

256

(and hence equation (2) is satisfied). This is the basis of the proof of our main
result, which provides an algorithm for computing all isomorphism classes of elliptic
curves E/Q with conductor a fixed positive integer N . Though we state our result
for curves with jE �= 0, the case jE = 0 is easy to treat separately (see Section
3.1.7).
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Theorem 1. Let E/Q be an elliptic curve of conductor N = 2α3βN0, where N0 is
coprime to 6 and 0 ≤ α ≤ 8, 0 ≤ β ≤ 5. Suppose further that jE �= 0. Then there
exists an integral binary cubic form F of discriminant

DF = sign(ΔE)2
α03β0N1,

and relatively prime integers u and v with

(7) F (u, v) = ω0u
3 + ω1u

2v + ω2uv
2 + ω3v

3 = 2α1 · 3β1 ·
∏
p|N0

pκp ,

such that E is isomorphic over Q to ED, where

(8) ED : 3[β0/3]y2 = x3 − 27D2HF (u, v)x+ 27D3GF (u, v)

and, for [r] the greatest integer not exceeding a real number r,

D =
∏

p|gcd(c4(E),c6(E))

pmin{[νp(c4(E))/2],[νp(c6(E))/3]}.(9)

The α0, α1, β0, β1, and N1 are nonnegative integers satisfying N1 | N0,

(α0, α1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2, 0) or (2, 3) if α = 0,

(3,≥ 3) or (2,≥ 4) if α = 1,

(2, 1), (4, 0) or (4, 1) if α = 2,

(2, 1), (2, 2), (3, 2), (4, 0) or (4, 1) if α = 3,

(2,≥ 0), (3,≥ 2), (4, 0) or (4, 1) if α = 4,

(2, 0) or (3, 1) if α = 5,

(2,≥ 0), (3,≥ 1), (4, 0) or (4, 1) if α = 6,

(3, 0) or (4, 0) if α = 7,

(3, 1) if α = 8

and

(β0, β1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, 0) if β = 0,

(0,≥ 1) or (1,≥ 0) if β = 1,

(3, 0), (0,≥ 0) or (1,≥ 0) if β = 2,

(β, 0) or (β, 1) if β ≥ 3.

The κp are nonnegative integers with

(10) νp(ΔE) =

{
νp(DF ) + 2κp if p � D,
νp(DF ) + 2κp + 6 if p | D

and

(11) κp ∈ {0, 1} whenever p2 | N1.

Further, we have

(12) if β0 ≥ 3, then 3 | ω1 and 3 | ω2,

and

(13) if νp(N) = 1, for p ≥ 3, then p | DFF (u, v).
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Here, as we shall make explicit in the next subsection, the form F corresponding
to the curve E in Theorem 1 determines the 2-division field of E. This connection
was noted by Rubin and Silverberg [55] in a somewhat different context—they
proved that if K is a field of characteristic �= 2, 3, F (u, v) is a binary cubic form
defined over K, E is an elliptic curve defined by y2 = F (x, 1), and E0 is another
elliptic curve over K with the property that E[2] ∼= E0[2] (as Galois modules), then
E0 is isomorphic to the curve

y2 = x3 − 3HF (u, v)x+GF (u, v),

for some u, v ∈ K. We thank the referee for bringing this paper to our attention.

3.1. Remarks. Before we proceed, there are a number of observations we should
make regarding Theorem 1.

3.1.1. Historical comments. Theorem 1 is based upon a generalization of classical
work of Mordell [45] (see also Theorem 3 of Chapter 24 of Mordell [46]), in which
the Diophantine equation

X2 + kY 2 = Z3

is treated through reduction to binary cubic forms and their covariants, under the
assumption that X and Z are coprime. That this last restriction can, with some
care, be eliminated, was noted by Sprindzuk (see Chapter VI of [62]). A similar
approach to this problem can be made through the invariant theory of binary
quartic forms, where one is led to solve, instead, equations of the shape

X2 + kY 3 = Z3.

We will not carry out the analogous analysis here.

3.1.2. 2-division fields and reducible forms. It might happen that the form F whose
existence is guaranteed by Theorem 1 is reducible over Z[x, y]. This occurs precisely
when the elliptic curve E has a nontrivial rational 2-torsion point. This follows from
the more general fact that the cubic form F (u, v) = ω0u

3 + ω1u
2v + ω2uv

2 + ω3v
3

corresponding to an elliptic curve E has the property that the splitting field of
F (u, 1) is isomorphic to the 2-division field of E. This is almost immediate from
the identity

33 ω2
0 F

(
x−ω1

3ω0
, 1
)
= x3 + (9ω0ω2 − 3ω2

1)x+ 27ω2
0ω3 − 9ω0ω1ω2 + 2ω3

1

= x3 − 3HF (1, 0)x+GF (1, 0).

Indeed, from (8), the elliptic curve defined by the equation y2 = x3 − 3HF (1, 0)x+
GF (1, 0) is a quadratic twist of that given by the model y2 = x3 − 27c4(E)x −
54c6(E), and hence also of E (whereby they have the same 2-division field).

3.1.3. Imprimitive forms. It is also the case that the cubic forms arising need not
be primitive (in the sense that gcd(ω0, ω1, ω2, ω3) = 1). This situation can occur
if each of the coefficients of F is divisible by some integer g ∈ {2, 3, 6}. Since the
discriminant is a quartic form in the coefficients of F , for this to take place one
requires that

DF ≡ 0 (mod g4).
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This is a necessary but not sufficient condition for the form F to be imprimitive. It
follows, if we wish to restrict attention to primitive forms in Theorem 1, that the
possible values for νp(DF ) that can arise are
(14)
ν2(DF ) ∈ {0, 2, 3, 4}, ν3(DF ) ∈ {0, 1, 3, 4, 5} and νp(DF ) ∈ {0, 1, 2} for p > 3.

3.1.4. Possible twists. We note that necessarily

D | 23 · 32 ·
∏
p|N0

p,(15)

so that, given N , there is a finite set of ED to consider (we can restrict our attention
to quadratic twists of the curve defined via y2 = x3 − 3HF (1, 0)x + GF (1, 0), by
squarefree divisors of 6N). In case we are dealing with the squarefree conductor
N (i.e., for semistable curves E), then, from Tables 1, 2, and 3, it follows that
D ∈ {1, 2}.

3.1.5. Necessity, but not sufficiency. If we search for elliptic curves of conductor
N , say, there may exist a cubic form F for which the corresponding Thue-Mahler
equation (7) has a solution, where all of the conditions of Theorem 1 are satis-
fied, but for which the corresponding ED has conductor NED �= N for all possible
D. This can happen when certain local conditions at primes dividing 6N are not
met; these local conditions are, in practice, easy to check and only a minor issue
when performing computations. Indeed, when producing tables of elliptic curves
of conductor up to some given bound, we will, in many cases, apply Theorem 1 to
find all curves with good reduction outside a fixed set of primes—in effect, working
with multiple conductors simultaneously. For such a computation, the conductor
of every twist ED we encounter will be of interest to us.

3.1.6. Special binary cubic forms. If, for a given binary form F (x, y) = ax3+bx2y+
cxy2 + dy3, 3 divides both the coefficients b and c (say b = 3b0 and c = 3c0), then

27 | DF and, consequently, we can write DF = 27D̃F , where

D̃F = −a2d2 + 6ab0c0d+ 3b20c
2
0 − 4ac30 − 4b30d.

One can show that the set of binary cubic forms with b ≡ c ≡ 0 (mod 3) is closed
within the larger set of all binary cubic forms in Z[x, y], under the action of either
SL2(Z) or GL2(Z). Also note that for such forms we have

H̃F (x, y) =
HF (x, y)

9
= (b20 − ac0)x

2 + (b0c0 − ad)xy + (c20 − b0d)y
2

and G̃F (x, y) = GF (x, y)/27, so that

G̃F (x, y) = (−a2d+ 3ab0c0 − 2b30)x
3 + 3(−b20c0 − ab0d+ 2ac20)x

2y

+ 3(b0c
2
0 − 2b20d+ ac0d)xy

2 + (−3b0c0d+ 2c30 + ad2)y3.

The syzygy now becomes

4H̃F (x, y)
3 = G̃F (x, y)

2 + D̃FF (x, y)2.(16)

We note, from Theorem 1, that we will be working exclusively with forms of this
shape whenever we wish to treat elliptic curves of conductor N ≡ 0 (mod 33).
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3.1.7. The case jE = 0. This case is treated over a general number field in Propo-
sition 4.1 of Cremona and Lingham [19]. The elliptic curves E/Q with jE = 0
and a given conductor N are particularly easy to determine, since a curve with
this property is necessarily isomorphic over Q to a Mordell curve with a model of
the shape Y 2 = X3 − 54c6, where c6 = c6(E). Such a model is minimal except
possibly at 2 and 3 and has discriminant −26 · 39 · c26 (whereby any primes p > 2
which divide c6 necessarily also divide N). Here, without loss of generality, we may
suppose that c6 is sixth-power-free. Further, from Tables 1, 2, and 3, we have that
ν2(N) ∈ {0, 2, 3, 4, 6}, that ν3(N) ∈ {2, 3, 5}, and that νp(N) = 2 whenever p | N
for p > 3. Given a positive integer N satisfying these constraints, it is therefore a
simple matter to check to see if there are elliptic curves E/Q with conductor N and
j-invariant 0. One needs only to compute the conductors of the curves given by
Y 2 = X3 − 54c6 for each sixth-power-free integer (positive or negative) c6 dividing
64N3.

3.2. The algorithm. It is straightforward to convert Theorem 1 into an algorithm
for finding all E/Q of conductor N . We can proceed as follows.

(1) Begin by finding all E/Q of conductor N with jE = 0, as outlined in Section
3.1.7.

(2) Next, compute GL2(Z)-representatives for every binary form F with dis-
criminant

ΔF = ±2α03β0N1

for each divisor N1 of N0, and each possible pair (α0, β0) given in the
statement of Theorem 1 (see (14) for specifics). We describe an algorithm
for listing these forms in Section 5.

(3) Solve the corresponding Thue-Mahler equations, finding pairs of integers
(u, v) such that F (u, v) is an S-unit, where S = {p prime : p | N} ∪ {2}
and F (u, v) satisfies the additional conditions given in the statement of
Theorem 1.

(4) For each cubic form F and pair of integers (u, v), consider the elliptic curve

E1 : y2 = x3 − 27HF (u, v)x+ 27GF (u, v)

and all its quadratic twists by squarefree divisors of 6N . Output those
curves with conductor N (if any).

The first, second, and fourth steps here are straightforward; the first and second
can be done efficiently, while the fourth is essentially trivial. The main bottleneck
is step (3). While there is a deterministic procedure for carrying this out (see
Tzanakis and de Weger [68], [69]), it is both involved and, often, computationally
taxing. An earlier implementation of this method in Magma due to Hambrook
[31] has subsequently been refined by the second author [28]; the most up-to-date
version of this code (which we will reference here and henceforth as UBC-TM) is
available at

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode.

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode
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We give a number of examples of this general procedure in Section 6. In Section 7,
we show that in the special cases where the conductor is prime or the square of a
prime, the Thue-Mahler equations (7) (happily) reduce to Thue equations (i.e., the
exponents on the right-hand side of (7) are absolutely bounded). This situation
occurs because, for such elliptic curves, a very strong form of Szpiro’s conjecture
(bounding the minimal discriminant of an elliptic curve from above in terms of its
conductor) is known to hold. Thue equations can be solved by routines that are
computationally much easier than is currently the case for Thue-Mahler equations;
such procedures have been implemented in Pari/GP [50] and Magma [9]. Further,
in this situation, it is possible to apply a much more computationally efficient
argument to find all such elliptic curves heuristically but not, perhaps, completely
(see Section 8).

4. Proof of Theorem 1

Proof. Given an elliptic curve E/Q of conductor N = 2α3βN0 and invariants
c4 = c4(E) �= 0 and c6 = c6(E), we will construct a corresponding cubic form
F explicitly. In fact, our form F will have the property that its leading coefficient
will be supported on the primes dividing 6N , i.e., that

F (1, 0) = 2α1 · 3β1 ·
∏
p|N0

pκp .

Define D as in (9), i.e., take D to be the largest integer whose square divides c4
and whose cube divides c6. We then set

X = c4/D2 and Y = c6/D3,

whereby, from (2),

(17) Y 2 = X3 + (−1)δ+1M

for

M = D−6 · 26 · 33 · |ΔE |.
Note that the assumption that c4(E) �= 0 ensures that both the j-invariant jE �= 0
and that X �= 0.

It will prove useful to us later to understand precisely the possible common
factors among X,Y,D, and M . For any p > 3, we have νp(N) ≤ 2. When νp(N) =
1, from Table 3 we find that

(18) (νp(D), νp(X), νp(Y ), νp(M)) = (0, 0, 0,≥ 1),

while, if νp(N) = 2, then either

(19) νp(D) = 1 and min{νp(X), νp(Y )} = 0, νp(M) = 0

or
(20)
νp(D) ≤ 1, (νp(X), νp(Y ), νp(M)) = (0, 0,≥ 1), (≥ 1, 1, 2), (1,≥ 2, 3) or (≥ 2, 2, 4).

Things are rather more complicated for the primes 2 and 3; we summarize this in
Tables 4 and 5 (which are, in turn, compiled from the data in Tables 1 and 2).
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Table 4. The possible values of ν2(N), ν2(X), ν2(Y ), ν2(M) and ν2(D)

ν2(N) (ν2(X), ν2(Y ), ν2(M), ν2(D))
0 (≥ 2, 0, 0, 1) or (0, 0, 6, 0)
1 (0, 0,≥ 7, 0)
2 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2) or (0, 0, 2, 2)
3 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2) or (0, 0, t, 2), t = 2, 4 or 5
4 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2), (≥ 2, 0, 0, 3) or (0, 0, t, 2), t = 2 or t ≥ 4
5 (≥ 0,≥ 0, 0, 2), (0,≥ 0, 0, 3), (0, 0, 3, 2) or (1, 0, 0, 3)
6 (≥ 0,≥ 0, 0, 2), (0,≥ 0, 0, 3), (≥ 2, 2, 4, 2), (≥ 2, 1, 2, 3) or (0, 0,≥ 2, 3)
7 (0, 0, 1, 2), (0, 0, 1, 3), (1, 1, 2, 2) or (1, 1, 2, 3)
8 (1,≥ 2, 3, 2) or (1,≥ 2, 3, 3).

Table 5. The possible values of ν3(N), ν3(X), ν3(Y ), ν3(M), and ν3(D)

ν3(N) (ν3(X), ν3(Y ), ν3(M), ν3(D))
0 (1,≥ 3, 3, 0) or (0, 0, 3, 0)
1 (0, 0,≥ 4, 0)
2 (≥ 0, 0, 0, 1), (0,≥ 2, 0, 1), (0, 0,≥ 3, 1), (1,≥ 3, 3, 1), (≥ 0, 0, 0, 2) or (0,≥ 2, 0, 2)
3 (≥ 0, 0, 0, 1), (≥ 0, 0, 0, 2), (0, 1, 0, 1), (0, 1, 0, 2), (0, 0, 2, 1) or (0, 0, 2, 2)
4 (0, 0, 1, 1), (0, 0, 1, 2), (1, 2, 3, 1) or (1, 2, 3, 2)
5 (≥ 1, 1, 2, 1), (≥ 1, 1, 2, 2), (≥ 2, 2, 4, 1) or (≥ 2, 2, 4, 2).

We will construct a cubic form

F1(x, y) = ax3 + 3b0x
2y + 3c0xy

2 + dy3,

one coefficient at a time; our main challenge will be to ensure that the a, b0, c0 and
d we produce are actually integral rather than just rational. The form F whose
existence is asserted in the statement of Theorem 1 will turn out to be either F1 or
F1/3.

Let us write

M = M1 ·M2,

where M2 is the largest integer divisor of M that is coprime to X, so that

M1 =
∏
p |X

pνp(M) and M2 =
∏
p �X

pνp(M).

We define

(21) a1 =
∏
p|M1

p

[
νp(M)−1

2

]

and set

(22) a2 =

⎧⎨⎩ 3−1
∏

p|M2
p

[
νp(M)

2

]
if ν3(X) = 0, ν3(M) = 2t, t ∈ Z, t ≥ 2,∏

p|M2
p

[
νp(M)

2

]
otherwise.
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Define a = a1 · a2. It follows that a21 | M1 and, from (18), (19), (20), and Tables 4
and 5, that both

a1 | X and a21 | Y.
We write X = a1 ·X1 and observe that a22 | M2. Note that a2 is coprime to X and
hence to a1. Since a2 | M , we may thus define a positive integer K via K = M/a2,
so that (17) becomes

Y 2 −X3 = (−1)δ+1Ka2.

From the fact that gcd(a2, X) = 1 and X �= 0, we may choose B so that

a2B ≡ −Y/a1 (mod X3),

whereby

(23) aB + Y ≡ 0 (mod a1X
3).

Note that, since a21 | Y and a1 | X, it follows that a1 | B. Let us define

(24) b0 =
aB + Y

X
, c0 =

b20 −X

a
, and d =

b0c0 − 2B

a
.

We now demonstrate that these are all integers. That b0 ∈ Z is immediate from
(23). Since b0X − Y = aB, we know that b0X ≡ Y (mod a). Squaring both sides
thus gives

b20X
2 ≡ Y 2 ≡ X3 + (−1)δ+1Ka2 ≡ X3 (mod a1 · a2),

and, since gcd(a2, X) = 1,

b20 ≡ X (mod a2).

From (23), we have b0 ≡ 0 (mod a1X
2), whereby, since a1 | X,

b20 ≡ X ≡ 0 (mod a1).

The fact that gcd(a1, a2) = 1 thus allows us to conclude that b20 ≡ X (mod a) and
hence that c0 ∈ Z.

It remains to show that d is an integer. Let us rewrite ad as

ad = b0c0 − 2B =

(
aB + Y

aX

)((
aB + Y

X

)2

−X

)
− 2B,

so that

ad =

(
aB + Y

aX

)(
(−1)δ+1Ka2 + 2aBY + a2B2

X2

)
− 2B.

Expanding, we find that

(25) X3d = (−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB.

We wish to show that

(−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB ≡ 0 (mod X3).

From (23), we have that

(−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB ≡ 2Y
(
B2 + (−1)δK

)
(mod a1X

3).

Multiplying congruence (23) by aB−Y (which, from our prior discussion, is divisible
by a21), we find that

a2B2 ≡ Y 2 ≡ X3 + (−1)δ+1Ka2 (mod a31X
3)
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and hence, dividing through by a21,

a22B
2 ≡ a1X

3
1 + (−1)δ+1Ka22 (mod a1X

3).

It follows that

(26) B2 + (−1)δK ≡ a−2
2 a1X

3
1 (mod a1X

3),

and so, since a21 | Y ,

Y
(
B2 + (−1)δK

)
≡ 0 (mod X3),

whence we conclude that d is an integer, as desired.
With these values of a, b0, c0, and d, we can then confirm (with a quick compu-

tation) that the cubic form

F1(x, y) = ax3 + 3b0x
2y + 3c0xy

2 + dy3

has discriminant

DF1
=

108

a2
(X3 − Y 2) = (−1)δ · 22 · 33 ·K.

We also note that

F1(1, 0) = a, H̃F1
(1, 0) = b20 − ac0 = X

and

−1

2
G̃F1

(1, 0) =
1

2
(a2d− 3ab0c0 + 2b30) = Y,

where G̃F and H̃F are as in Section 3.1.6.
Summarizing Table 5, we find that we are in one of the following four cases:

(i) ν3(X) = 1, ν3(Y ) = 2, ν3(M) = 3, and ν3(N) = 4,
(ii) ν3(X) ≥ 2, ν3(Y ) = 2, ν3(M) = 4, ν3(N) = 5,
(iii) ν3(M) ≤ 2 and ν3(N) ≥ 2, or
(iv) ν3(M) ≥ 3 and either ν3(XY ) = 0 or ν3(X) = 1, ν3(Y ) ≥ 3.

In cases (i), (ii), and (iii), we choose F = F1, i.e.,

(ω0, ω1, ω2, ω3) = (a, 3b0, 3c0, d),

so that

F (1, 0) = a, DF = (−1)δ22 · 33 ·K, c4 = D2H̃F (1, 0) and c6 = −1

2
D3G̃F (1, 0).

It follows that E is isomorphic over Q to the curve

y2 = x3 − 27c4x− 54c6 = x3 − 3D2HF (1, 0)x+D3GF (1, 0).

In case (iv), observe that, from definitions (21) and (22),

(27) ν3(a) =

[
ν3(M)− 1

2

]
and ν3(K) = ν3(M)− 2ν3(a),

so that 3 | a and 3 | K. From equation (25), 3 | X3d. If ν3(X) = 0 this implies
that 3 | d. On the other hand, if ν3(X) = 1, then, from (26), we may conclude that
3 | B. Since each of a,B and K is divisible by 3, while ν3(X) = 1 and ν3(Y ) ≥ 3,
equation (25) once again implies that 3 | d. In this case, we can therefore write
a = 3a0 and d = 3d0, for integers a0 and d0 and set F = F1/3, i.e., take

(ω0, ω1, ω2, ω3) = (a0, b0, c0, d0).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1354 M. A. BENNETT, A. GHERGA, AND A. RECHNITZER

We have

F (1, 0) = a/3, DF = (−1)δ22 ·K/3, c4 = D2HF (1, 0) and c6 = −1

2
D3GF (1, 0).

The curve E is now isomorphic over Q to the model

y2 = x3 − 27c4x− 54c6 = x3 − 27D2HF (1, 0)x+ 27D3GF (1, 0).

Since |DF |/DF = (−1)δ and a2K | 1728ΔE , we may write

F (1, 0) = 2α1 · 3β1 ·
∏
p|N0

pκp and DF = (|ΔE |/ΔE)2
α03β0N1,

for nonnegative integers α0, α1, β0, β1, κp and a positive integer N1, divisible only
by primes dividing N0. More explicitly, we have

α0 = ν2(K) + 2 and β0 = ν3(K) +

{
3 in case (i), (ii) or (iii), or

−1 in case (iv),

and

α1 = ν2(a) and β1 = ν3(a) +

{
0 in case (i), (ii) or (iii), or

−1 in case (iv).

It remains for us to prove that these integers satisfy the conditions listed in the
statement of the theorem. It is straightforward to check this, considering in turn
each possible triple (X,Y,M) from (18), (19), (20), and Tables 4 and 5, and using
the fact that K = M/a2.

In particular, if p > 3, we have νp(ΔE) = 6νp(D) + νp(DF ) + 2κp. From Table
3 and (9), we have νp(D) ≤ 1, whereby (10) follows. Further,

(28) νp(a) =

⎧⎨⎩
[
νp(M)−1

2

]
if p | X,[

νp(M)
2

]
if p � X,

and so, if p � X,

νp(M)− 2νp(a) ≤ 1.

Since a2K = M , if p2 | DF , then νp(N) = 2 and it follows that we are in case (20),
with p | X. We may thus conclude that νp(M) ∈ {2, 3, 4} and hence, from (28),
that νp(a) ≤ 1. This proves (11).

For (12), note that, in cases (i), (ii), and (iii), we clearly have that 3 | ω1 and
3 | ω2. In case (iv), from (27),

β0 = ν3(DF ) = ν3(K)− 1 = ν3(M)− 2

[
ν3(M)− 1

2

]
− 1 ∈ {0, 1}.

Finally, to see (13), note that if νp(N) = 1, for p > 3, then we have (18) and hence

νp(DF ) + 2νp(F (u, v)) = νp(M) ≥ 1,

whereby p | DF or p | F (u, v). We may also readily check that the same conclusion
obtains for p = 3 (since, equivalently, β0 + β1 ≥ 1). This completes the proof of
Theorem 1. �

To illustrate this argument, suppose we consider the elliptic curve (denoted 109a1
in Cremona’s database) defined via

E : y2 + xy = x3 − x2 − 8x− 7,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPUTING ELLIPTIC CURVES OVER Q 1355

with ΔE = −109. We have

c4(E) = 393 and c6(E) = 7803,

so that gcd(c4(E), c6(E)) = 3. It follows that

D = 1, X = 393, Y = 7803, δ = 1, M = 26 · 33 · 109,
and hence we have

M1 = 33, M2 = 26 · 109, a1 = 3, a2 = 23, a = 23 · 3, and K = 3 · 109.
We solve the congruence 8B ≡ −2601 (mod 3933) to find that we may choose
B = 7586982, so that

b0 = 463347, c0 = 8945435084 and d = 172701687278841.

We are in case (iv) and thus set

F (x, y) = 8x3 + 463347x2y + 8945435084xy2 + 57567229092947y3,

with discriminant DF = −4 · 109,
GF (1, 0) = −15606 = −2c6(E) and HF (1, 0) = 393 = c4(E).

The curve E is thus isomorphic to the model

(29) ED : y2 = x3 − 27D2HF (1, 0)x+ 27D3GF (1, 0) = x3 − 10611x− 421362.

We observe that the form F is GL2(Z)-equivalent to a “reduced” form (see
Section 5 for details), given by

F̃ (x, y) = x3 + 3x2y + 4xy2 + 6y3.

In fact, this is the only form (up to GL2(Z)-equivalence) of discriminant ±4 · 109.
We can check that the solutions to the Thue equation F̃ (u, v) = 8 are given by
(u, v) = (2, 0) and (u, v) = (−7, 3). The minimal quadratic twist of

y2 = x3 − 27HF̃ (2, 0)x+ 27GF̃ (2, 0)

has conductor 25 · 109 and hence cannot correspond to E. For the solution (u, v) =
(−7, 3), we find that the curve given by the model

y2 = x3 − 27HF̃ (−7, 3)x+ 27GF̃ (−7, 3) = x3 − 10611x+ 421362,

is the quadratic twist by −1 of the curve (29). This situation arises from the fact
that GF is an SL2(Z)-covariant, but not a GL2(Z)-covariant of F (we will discuss
this more in the next section).

5. Finding representative forms

As Theorem 1 illustrates, we are able to tabulate elliptic curves over Q with
good reduction outside a given set of primes, by finding a set of representatives for
GL2(Z)-equivalence classes of binary cubic forms with certain discriminants, and
then solving a number of Thue-Mahler equations. In this section, we will provide
a brief description of techniques to find distinguished reduced representatives for
equivalence classes of cubic forms over a given range of discriminants. For both
positive and negative discriminants, the notion of reduction arises from associating
a particular definite quadratic form to a given cubic form.
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5.1. Irreducible forms. For forms of positive discriminant, there is a well devel-
oped classical theory of reduction dating back to work of Hermite [33], [34] and,
later, Davenport (see, e.g., [20], [21], and [23]). We can actually apply this method
to both reducible and irreducible forms. Initially, though, we will assume the forms
are irreducible, since we will treat the elliptic curves corresponding to reducible
forms by a somewhat different approach (see Section 5.2). Note that when one
speaks of “irreducible, reduced forms”, as Davenport observes, “the terminology is
unfortunate, but can hardly be avoided” ([22], p. 184).

In each of Belabas [3], Belabas and Cohen [4], and Cremona [17], we find very
efficient algorithms for computing cubic forms of both positive and negative dis-
criminant, refining classical work of Hermite, Berwick and Mathews [42], and Julia
[35]. These are readily translated into computer code to loop over valid (a, b, c, d)-
values (with corresponding forms ax3+bx2y+cxy2+dy3). The running time in each
case is linear in the upper bound X. Realistically, this step (finding representatives
for our cubic forms) is highly unlikely to be the bottleneck in our computations.

5.2. Reducible forms. One can make similar definitions of reduction for reducible
forms (see [5] for example). However, for our purposes, it is sufficient to note that
a reducible form is equivalent to

F (x, y) = bx2y + cxy2 + dy3 with 0 ≤ d ≤ c,

which has discriminant

ΔF = b2(c2 − 4bd).

To find all elliptic curves with good reduction outside S = {p1, p2, . . . , pk}, cor-
responding to reducible cubics in Theorem 1 (i.e., those E with at least one rational
2-torsion point), it is enough to find all such triples (b, c, d) for which there exist
integers x and y so that both

b2(c2 − 4bd) and bx2y + cxy2 + dy3

are S∗-units (with S∗ = S ∪ {2}). For this to be true, it is necessary that each of
the integers

b, c2 − 4bd, y, and μ = bx2 + cxy + dy2

is an S∗-unit. Taking the discriminant of μ as a function of x, we thus require that

(c2 − 4bd)y2 + 4bμ = Z2,(30)

for some integer Z. This is an equation of the shape

X + Y = Z2(31)

in S∗-units X and Y .
An algorithm for solving such equations is described in detail in Chapter 7 of

de Weger [71] (see also [72]); it relies on bounds for linear forms in p-adic and com-
plex logarithms and various reduction techniques from Diophantine approximation.
An implementation of this is available at

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode.

While a priori equation (31) arises as only a necessary condition for the existence
of an elliptic curve of the desired form, given any solution to (31) in S∗-units X
and Y and integer Z, the curves

E1(X,Y ) : y2 = x3 + Zx2 +
X

4
x

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode
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and

E2(X,Y ) : y2 = x3 + Zx2 +
Y

4
x

have nontrivial rational 2-torsion (i.e., the point corresponding to (x, y) = (0, 0))
and discriminant X2Y and XY 2, respectively (and hence good reduction at all
primes outside S∗).

Though a detailed analysis of running times for solving equations of the shape
(31), or for solving more general cubic Thue-Mahler equations, has not to our
knowledge been carried out, our experience from carrying out such computations
for several thousand sets S is that, typically, the former can be done significantly
faster than the latter. By way of example, solving (31) for S = {2, 3, 5, 7, 11} takes
only a few hours on a laptop, while treating the analogous problem of determining
all elliptic curves over Q with trivial rational 2-torsion and good reduction outside
S (see Section 6.4) requires many thousand machine-hours.

5.3. Computing forms of fixed discriminant. For our purposes, we will typi-
cally compute and tabulate a large list of irreducible forms of absolute discriminant
bounded by a given positive number X (of size up to 1012 or so, beyond which
storage becomes problematical). In certain situations, however, we will want to
compute all forms of a given fixed, larger discriminant (perhaps up to size 1015).
To carry this out and find desired forms of the shape ax3 + bx2y + cxy2 + dy3, we
can argue as in, for example, Cremona [17], to restrict our attention to O(X3/4)
triples (a, b, c). From (4), the definition of DF , we have that

d =
9abc− 2b3 ±

√
4(b2 − 3ac)3 − 27a2DF

27a2

and hence it remains to check that the quantity 4(b2−3ac)3−27a2DF is an integer
square, that the relevant conditions modulo 27a2 are satisfied, and that a variety
of further inequalities from [17] are satisfied. The running time for finding forms
with discriminants of absolute value of size X via this approach is of order X3/4.

5.4. GL2(Z) vs SL2(Z). One last observation which is very important to make
before we proceed, is that while G2

F is GL2(Z)-covariant, the same is not actually
true for GF (it is, however, an SL2(Z)-covariant). This may seem like a subtle point,
but what it means for us in practice is that, having found our GL2(Z)-representative
forms F and corresponding curves of the shape ED from Theorem 1, we need, in
every case, to also check to see if

ẼD : 3[β0/3]y2 = x3 − 27D2HF (u, v)x− 27D3GF (u, v),

the quadratic twist of ED by −1, yields a curve of the desired conductor.

6. Examples

In this section, we will describe a few applications of Theorem 1 to computing
all elliptic curves of a fixed conductor N , or all curves with good reduction outside
a given set of primes S. We restrict our attention to examples with composite
conductors, since the case of conductors p and p2, for p prime, will be treated at
length in Section 7 (and subsequently). For the examples in Sections 6.1, 6.2.1,
6.2.2, and 6.2.3, since the conductors under discussion are not “square-full”, there
are necessarily no curves E encountered with jE = 0.
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In our computations in this section, we executed all jobs in parallel via the shell
tool [65]. We note that our Magma code lends itself easily to parallelization, and
we made full use of this fact throughout.

We carried out a one-time computation of all irreducible cubic forms that can
arise in Theorem 1, of an absolute discriminant bounded by 1010. This computa-
tion took slightly more than 3 hours on a cluster of 40 cores; roughly half this time
was taken up with sorting and organizing output files. There are 996198693 classes
of irreducible cubic forms of positive discriminant and 3079102475 of negative dis-
criminant in the range in question; storing them requires roughly 120 gigabytes.
We could also have tabulated and stored representatives for each class of reducible
form of absolute discriminant up to 1010, but chose not to since our approach to
solving equation (31) does not require them.

6.1. Cases without irreducible forms. We begin by noting an obvious corollary
to Theorem 1 that, in many cases, makes it a relatively routine matter to determine
all elliptic curves of a given conductor, provided we can show the nonexistence of
certain corresponding cubic forms.

Corollary 2. Let N be a squarefree positive integer with gcd(N, 6) = 1 and sup-
pose that there do not exist irreducible binary cubic forms in Z[x, y] of discriminant
±4N1, for each positive integer N1 | N . Then every elliptic curve over Q of con-
ductor N1, for each N1 | N , has nontrivial rational 2-torsion.

We will apply this result to a pair of examples (chosen somewhat arbitrarily).
Currently, such an approach is feasible for forms of absolute discriminant (and hence
potentially conductors) up to roughly 1015. We observe that, among the positive
integers N < 108 satisfying

ν2(N) ≤ 8, ν3(N) ≤ 5 and νp(N) ≤ 2 for p > 3,

i.e., those for which there might actually exist elliptic curves E/Q of conductor N ,
we find that 708639 satisfies the hypotheses of Corollary 2.

It is somewhat harder to modify the statement of Corollary 2 to include reducible
forms (with corresponding elliptic curves having nontrivial rational 2-torsion). One
of the difficulties one encounters is that there actually do exist reducible forms of,
by way of example, discriminant 4p for every p ≡ 1 (mod 8); writing p = 8k + 1,
for instance, the form

F (x, y) = 2x2y + xy2 − ky3

has this property.

6.1.1. Conductor 2655632887 = 31 · 9007 · 9511. In the notation of Theorem 1, we
have α = β = 0 and hence α0 = 2 and β0 = 0, so that, in order for there to be
an elliptic curve with trivial rational 2-torsion and this conductor, we require the
existence of an irreducible cubic form of discriminant 4N1 where N1 | 31·9007·9511,
i.e., discriminant ±4 · 31δ1 · 9007δ2 · 9511δ3 for δi ∈ {0, 1}. We check that there
are no such forms, directly from our table of forms, except for the possibility of
DF = ±4 · 31 · 9007 · 9511, which exceeds 1010 in absolute value. For these latter
possibilities, we argue as in Section 5.3 to show that no such forms exist. We may
thus appeal to Corollary 2.

For the possible cases with rational 2-torsion, we solve X + Y = Z2 with X and
Y S-units for S = {2, 31, 9007, 9511}. The solutions to this equation with X ≥ Y ,
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Z > 0, and gcd(X,Y ) squarefree are precisely those with

(X,Y ) = (2,−1), (2, 2), (8, 1), (32,−31), (62, 2), (256,−31), (961, 128),

(992,−31), (3968, 1), (76088,−9007), (294841, 8) and (492032,−9007).

A short calculation confirms that each elliptic curve arising from these solutions via
quadratic twist has bad reduction at the prime 2 (and, in particular, cannot have
conductor 2655632887). There are thus no elliptic curves over Q with conductor
2655632887. Observe that these calculations in fact ensure that there do not exist
elliptic curves over Q with conductor dividing 2655632887.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2655632887-data.

We should observe that it is much more challenging computationally to try to
extend this argument to tabulate curves E with good reduction outside S =
{31, 9007, 9511}. To do this, we would have to first determine whether or not there
exist irreducible cubic forms of discriminant, say, DF = ±4 · 312 · 90072 · 95112 >
2.8× 1019. This appears to be at or beyond current computational limits.

6.1.2. Conductor 3305354359 = 41·409·439·449. For there to exist an elliptic curve
with trivial rational 2-torsion and conductor 3305354359, we require the existence
of an irreducible cubic form of discriminant ±4 · 41δ1 · 409δ2 · 439δ3 · 449δ4 , with
δi ∈ {0, 1}. We check that, again, there are no such forms (once more employing
a short auxiliary computation in the case DF = ±4 · 41 · 409 · 439 · 449). If we
solve X+Y = Z2 with X and Y S-units for S = {2, 41, 409, 439, 449}, we find that
the solutions to this equation with X ≥ Y , Z > 0 and gcd(X,Y ) squarefree are
precisely:

(X,Y ) = (2,−1), (2, 2), (8, 1), (41,−16), (41,−32), (41, 8), (82,−1), (128, 41),

(409,−328), (409, 32), (439, 2), (449,−328), (449,−8), (512, 449),

(818, 82), (898, 2), (3272, 449), (3362, 2), (7184, 41), (16769,−128),

(16769,−14368), (18409,−16384), (33538,−18409), (36818, 818),

(41984, 41), (68921,−57472), (183641,−1312), (183641,−56192),

(183641, 41984), (359102, 898), (403202,−33538), (403202,−359102),

(403202, 17999), (737959, 183641), (754769,−6544), (6858521,−919552),

(8265641,−16), and (7095601778,−5610270178).

Once again, a short calculation confirms that each elliptic curve arising from these
solutions via twists has even conductor. There are thus no elliptic curves over Q
with conductor 3305354359.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/3305354359-data.

6.2. Cases with fixed conductor (and corresponding irreducible forms).

6.2.1. Conductor 399993 = 3 · 11 · 17 · 23 · 31. We next choose an example where
full data is already available for comparison in the LMFDB [38]. In particular,
there are precisely 10 isogeny classes of curves of this conductor (labelled 399993a
to 399993j in the LMFDB), containing a total of 21 isomorphism classes. Of these,
7 isogeny classes (and 18 isomorphism classes) have nontrivial rational 2-torsion.

http://www.nt.math.ubc.ca/BeGhRe/Examples/2655632887-data
http://www.nt.math.ubc.ca/BeGhRe/Examples/3305354359-data
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According to Theorem 1, the curves arise from consideration of cubic forms
of discriminant discriminant ±4K, where K | 3 · 11 · 17 · 23 · 31. The (reduced)
irreducible cubic forms F (u, v) of these discriminants are as follows, where F (u, v) =
ω0u

3 + ω1u
2v + ω2uv

2 + ω3v
3:

(ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF

(1, 1, 1, 3) −4 · 3 · 17 (2, 4,−6,−3) 4 · 3 · 17 · 23
(1, 2, 2, 2) −4 · 11 (2, 5, 2, 6) −4 · 3 · 17 · 23
(1, 2, 2, 6) −4 · 11 · 17 (3, 3,−8,−2) 4 · 3 · 23 · 31

(1, 4,−16,−2) 4 · 11 · 17 · 31 (3, 3, 44, 66) −4 · 3 · 11 · 17 · 23 · 31
(1, 8,−2, 42) −4 · 3 · 17 · 23 · 31 (3, 4, 10, 14) −4 · 11 · 23 · 31

(1, 11,−12,−6) 4 · 3 · 11 · 17 · 31 (3, 7, 5, 7) −4 · 3 · 23 · 31
(2, 0, 7, 1) −4 · 23 · 31 (4, 17, 10, 28) −4 · 11 · 17 · 23 · 31

(2, 1, 14,−2) −4 · 11 · 17 · 31
In each case, we are thus led to solve the Thue-Mahler equation

(32) F (u, v) = 23δ3β111κ1117κ1723κ2331κ31 ,

where gcd(u, v) = 1, δ ∈ {0, 1} and β1, κ11, κ17, κ23 and κ31 are arbitrary non-
negative integers. Applying (13), in order to find a curve of conductor 399993, we
require additionally that, for a corresponding solution to (32),

(33) F (u, v)DF ≡ 0 (mod 3 · 11 · 17 · 23 · 31).

We readily check that the congruence F (u, v) ≡ 0 (mod p) has only the solution
u ≡ v ≡ 0 (mod p) for the following forms F and primes p (whereby (33) cannot
be satisfied by coprime integers u and v for these forms):

(ω0, ω1, ω2, ω3) p (ω0, ω1, ω2, ω3) p
(1, 1, 1, 3) 11, 23 (2, 0, 7, 1) 3, 17
(1, 2, 2, 2) 3, 23, 31 (2, 5, 2, 6) 11, 31

(1, 4,−16,−2) 3, 23 (3, 3,−8,−2) 11
(1, 8,−2, 42) 11 (4, 17, 10, 28) 3

(1, 11,−12,−6) 23

For the remaining 6 forms under consideration, we appeal to UBC-TM. The only
solutions we find satisfying (33) are as follows:

(ω0, ω1, ω2, ω3) (u, v)
(1, 2, 2, 6) (−1851, 892), (14133,−3790)

(2, 1, 14,−2) (13,−5), (−29,−923)
(2, 4,−6,−3) (10,−3), (64, 49), (−95, 199), (−3395, 1189),

(3677,−1069), (5158, 4045), (−23546, 57259), (−77755, 30999)
(3, 3, 44, 66) (1, 0), (1, 2), (−3, 4), (3,−2), (−11, 9), (25,−3),

(231, 2), (−317, 240), (489, 61), (1263,−878), (6853,−4119)
(3, 7, 5, 7) (1, 12), (−29, 26), (78, 1), (423,−160)

(3, 4, 10, 14) (−41, 84), (95,−69), (307, 90)

From these, we compute the conductors of ED in (8), where D ∈ {1, 2}, together
with their twists by −1. The only curves with conductor 399993 arise from the
form F with (ω0, ω1, ω2, ω3) = (2, 4,−6,−3) and the solutions

(u, v) ∈ {(10,−3), (5158, 4045), (−23546, 57259)} .
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In each case, D = 2. The solution (u, v) = (10,−3) corresponds to, in the notation
of the LMFBD, curve 399993.j1, (u, v) = (5158, 4045) to 399993.i1, and (u, v) =
(−23546, 57259) to 399993.h1. Note that every form and solution we consider leads
to elliptic curves with good reduction outside {2, 3, 11, 17, 23, 31}, just not necessar-
ily of conductor 399993. By way of example, if (ω0, ω1, ω2, ω3) = (2, 4,−6,−3) and
(u, v) = (−77755, 30999), we find curves with minimal quadratic twists of conductor

25 · 3 · 11 · 17 · 23 · 31 = 25 · 399993.

To determine the curves of conductor 399993 with nontrivial rational 2-torsion,
we are led to solve the equation X + Y = Z2 in S-units X and Y , and integers Z,
where S = {2, 3, 11, 17, 23, 31}. We employ Magma code available at

http://nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode

to find precisely 2858 solutions with X ≥ |Y | and gcd(X,Y ) squarefree (this com-
putation took slightly less than 2 hours). Of these, 1397 have Z > 0, with Z largest
for the solution corresponding to the identity

48539191572432− 40649300451407 = 24 · 34 · 11 · 237 − 175 · 315 = 28088952.

As in subsection 5.2, we attach to each solution a pair of elliptic curves E1(X,Y )
and E2(X,Y ). Of these, the only twists we find to have conductor 399993 are the
quadratic twists by t of Ei(X,Y ) given in the following table. Note that there is
some duplication—the curve labelled 399993.f2 in the LMFDB, for example, arises
from three distinct solutions to X + Y = Z2:

X Y Ei t LMFDB X Y Ei t LMFDB
16192 −4743 E1 −1 399993.g2 534336 −506447 E2 2 399993.e1
16192 −4743 E2 2 399993.g1 1311552 −527 E1 1 399993.a2
23529 18496 E1 −2 399993.f2 1311552 −527 E2 −2 399993.a1
23529 18496 E2 1 399993.f3 1414017 −1045568 E1 2 399993.b2
116281 −75072 E1 2 399993.f4 1414017 −1045568 E2 −1 399993.b1
116281 −75072 E2 −1 399993.f2 6305121 3027904 E1 2 399993.c1
371008 4761 E1 1 399993.f2 6305121 3027904 E2 −1 399993.c2
371008 4761 E2 −2 399993.f1 6988113 18496 E1 2 399993.c2
519777 −131648 E1 2 399993.d2 6988113 18496 E2 −1 399993.c3
519777 −131648 E2 −1 399993.d1 7745089 −2731968 E1 2 399993.c4
534336 −506447 E1 −1 399993.e2 7745089 −2731968 E2 −1 399993.c2

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/399993-data.

6.2.2. Conductor 106 − 1. We next treat a slightly larger conductor, which is not
available in the LMFDB currently (but probably within computational range). We
have

106 − 1 = 33 · 7 · 11 · 13 · 37.

From Theorem 1, we thus need to consider binary cubic forms F (u, v) = ω0u
3 +

ω1u
2v+ω2uv

2 +ω3v
3 of discriminant DF = ±108N1, where N1 | 7 · 11 · 13 · 37 and

http://nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode
http://www.nt.math.ubc.ca/BeGhRe/Examples/399993-data
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ω1 ≡ ω2 ≡ 0 (mod 3). The irreducible forms of this shape are as follows:

(ω0, ω1, ω2, ω3) DF p (ω0, ω1, ω2, ω3) DF p
(1, 0,−6,−2) 108 · 7 37 (2, 3,−78,−26) 108 · 7 · 11 · 13 · 37 none
(1, 0, 21, 16) −108 · 11 · 37 7, 13 (2, 3, 6, 3) −108 · 7 11, 37
(1, 0, 30, 2) −108 · 7 · 11 · 13 none (2, 3, 6, 8) −108 · 37 7
(1, 3, 3, 3) −108 7, 13, 37 (2, 6,−12, 1) 108 · 11 · 13 7
(1, 3, 6, 16) −108 · 37 7 (2, 6, 21, 88) −108 · 11 · 13 · 37 none
(1, 3, 12, 26) −108 · 7 · 13 none (2, 12, 0, 13) −108 · 7 · 11 · 13 none
(1, 3, 33, 117) −108 · 7 · 11 · 37 none (2, 21,−6, 80) −108 · 7 · 11 · 13 · 37 none

(1, 6,−36,−34) 108 · 7 · 13 · 37 11 (3, 3, 18, 20) −108 · 7 · 11 · 13 none
(1, 6, 3, 6) −108 · 37 7 (4, 6, 15, 14) −108 · 13 · 37 11
(1, 6, 9, 26) −108 · 11 · 13 none (5, 6, 27, 14) −108 · 7 · 11 · 37 none
(1, 9, 0, 74) −108 · 7 · 13 · 37 none (5, 9, 3, 21) −108 · 7 · 11 · 37 none
(1, 12, 12, 14) −108 · 13 · 37 11 (7, 0, 12, 14) −108 · 7 · 11 · 37 none
(2, 0,−18,−5) 108 · 11 · 37 13 (10, 3, 42,−16) −108 · 7 · 11 · 13 · 37 none

(2, 0, 3, 3) −108 · 11 7, 37 (10, 6, 12, 3) −108 · 13 · 37 none
(2, 0, 15, 3) −108 · 7 · 37 11, 13 (11, 6, 12, 6) −108 · 7 · 11 · 13 none
(2, 0, 18, 7) −108 · 13 · 37 11 (21, 12, 27, 20) −108 · 7 · 11 · 13 · 37 none

Here, we list primes p for which a local obstruction exists modulo p to finding
coprime integers u and v satisfying (13). It is worth noting at this point that the
restriction to forms with ω1 ≡ ω2 ≡ 0 (mod 3) that follows from the fact that we
are considering a conductor divisible by 33 is a helpful one. There certainly can and
do exist irreducible forms F with 108 | DF that fail to satisfy ω1 ≡ ω2 ≡ 0 (mod 3).

We are thus left to treat 17 Thue-Mahler equations which we solve using UBC-
TM; see

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999-data

for computational details. From (13), we require that

DFF (u, v) ≡ 0 (mod 7 · 11 · 13 · 37);

the only solutions we find satisfying this constraint are as follows:

(ω0, ω1, ω2, ω3) (u, v)
(1, 0, 30, 2) (−1, 21), (1, 16), (27, 25)
(1, 3, 33, 117) (26,−7)
(1, 9, 0, 74) (−19, 2)

(2, 3,−78,−26) (−1, 3), (−3, 2), (−5,−1), (9,−1), (13, 2), (−17,−58), (−39,−61),
(−57,−10), (−59, 9), (65,−6), (79,−330), (159,−23)

(2, 6, 21, 88) (3, 1), (165,−43)
(2, 12, 0, 13) (−1, 9), (18, 23)
(2, 21,−6, 80) (1,−10), (2, 1), (4,−3), (4,−1), (17, 1),

(19,−5), (21,−2), (138,−11), (1356,−127)
(3, 3, 18, 20) (9, 13), (97,−12)
(5, 6, 27, 14) (14, 1), (19, 6), (−21, 44)
(5, 9, 3, 21) (−1, 2), (6, 1), (8,−3), (−649, 284), (1077,−464)
(7, 0, 12, 14) (−1, 5), (−7, 9), (301,−62), (−459, 553)

(10, 3, 42,−16) (1, 1), (1, 2), (2,−1), (3, 1), (4,−17), (20, 19), (−22,−69), (127, 339)
(10, 6, 12, 3) (2,−1), (5,−13), (−12, 83), (−24, 89), (81,−107), (125,−437)
(11, 6, 12, 6) (−1, 22), (47,−72), (223,−429)
(21, 12, 27, 20) (1,−3), (1, 0), (1, 5), (4,−9), (4, 3), (9,−29),

(19,−15), (29,−40), (316,−455), (551,−805)

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999-data
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The only ones of these for which we find an ED in (8) of conductor 999999 are
as follows, where ED is isomorphic over Q to a curve with model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(ω0, ω1, ω2, ω3) (u, v) D a1 a2 a3 a4 a6
(1, 0, 30, 2) (27, 25) 6 0 0 1 −40395 5402579
(1, 0, 30, 2) (27, 25) −2 0 0 1 −363555 −145869640
(5, 6, 27, 14) (14, 1) 1 1 −1 0 14700 55223
(5, 6, 27, 14) (14, 1) −3 1 −1 1 1633 −2590
(5, 9, 3, 21) (−1, 2) 6 0 0 1 30 2254
(5, 9, 3, 21) (−1, 2) −2 0 0 1 270 −60865
(10, 6, 12, 3) (125,−437) 2 0 0 1 −17205345 −27554570341
(10, 6, 12, 3) (125,−437) −6 0 0 1 −1911705 1020539642
(21, 12, 27, 20) (4, 3) −1 1 −1 0 12432 −164125
(21, 12, 27, 20) (4, 3) 3 1 −1 1 1381 5618

Each of these listed curves has trivial rational 2-torsion. To search for curves of
conductor 999999 with nontrivial rational 2-torsion, we solve the equation X+Y =
Z2 in S-units X and Y , and integers Z, where S = {2, 3, 7, 11, 13, 37}. We find that
there are precisely 4336 solutions with X ≥ |Y | and gcd(X,Y ) squarefree. Of these,
2136 have Z > 0, with Z largest for the solution corresponding to the identity

103934571636753− 68209863326528 = 315 · 11 · 13 · 373 − 26 · 713 · 11 = 59770152.

Once again, we attach to each solution a pair of elliptic curves E1(X,Y ) and
E2(X,Y ). We find 505270 isomorphism classes of E/Q with good reduction outside
of {2, 3, 7, 11, 13, 37} and nontrivial rational 2-torsion. None of them have conduc-
tor 999999, whereby we conclude that there are precisely 10 isomorphism classes
of elliptic curves over Q with conductor 106 − 1. Checking that these curves each
have distinct traces of Frobenius a47 shows that they are nonisogenous.

6.2.3. Conductor 109 − 1. This example is chosen to be somewhat beyond the cur-
rent scope of the LMFDB. We have

109 − 1 = 34 · 37 · 333667

and so, applying Theorem 1, we are led to consider binary cubic forms of discrim-
inant ±4 · 34 · 37δ1 · 333667δ2 , where δi ∈ {0, 1}. These include imprimitive forms
with the property that each of its coefficients ωi is divisible by 3. For such forms,
from Theorem 1, we necessarily have β1 ∈ {0, 1} and hence β1 = 1. Dividing
through by 3, we may thus restrict our attention to primitive forms of discriminant
±4·3κ ·37δ1 ·333667δ2 , where δi ∈ {0, 1} and κ ∈ {0, 4}. For the irreducible forms, we
have, by slight abuse of notation (since, for the F listed here with DF �≡ 0 (mod 3),
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the form whose existence is guaranteed by Theorem 1 is actually 3F ), the following.

(ω0, ω1, ω2, ω3) DF p (ω0, ω1, ω2, ω3) DF p
(1, 1,−3,−1) 4 · 37 333667 (5, 14, 19, 54) −4 · 333667 37
(1, 4, 52, 250) −4 · 333667 37 (6, 18, 168, 323) −4 · 34 · 333667 37
(1, 9, 37, 279) −4 · 333667 none (6, 27, 42, 356) −4 · 34 · 333667 37

(1, 21, 117, 2135) −4 · 34 · 333667 37 (6, 54,−48, 115) −4 · 34 · 333667 37
(2, 0, 3, 1) −4 · 34 37 (10, 18, 96, 229) −4 · 34 · 333667 37

(2, 17,−26,−31) 4 · 333667 37 (26, 9, 102, 4) −4 · 34 · 333667 none
(4, 30, 117, 665) −4 · 34 · 333667 37 (27, 7, 70, 32) −4 · 37 · 333667 none
(4, 35, 14, 216) −4 · 37 · 333667 none (31, 9, 87,−25) −4 · 34 · 333667 none
(5, 6, 9, 6) −4 · 34 · 37 none (49, 51, 63, 55) −4 · 34 · 333667 none
(5, 7, 19, 51) −4 · 333667 37 (52, 55, 72, 37) −4 · 37 · 333667 none

Once again, we list primes p for which a local obstruction exists modulo p to finding
coprime integers u and v satisfying (13). There are thus 8 Thue-Mahler equations
left to solve. In the (four) cases where DF �≡ 0 (mod 3), these take the shape

F (u, v) = 23δ1 · 37γ1 · 333667γ2 ,

where δ1 ∈ {0, 1}, γ1 and γ2 are nonnegative integers, and u and v are coprime
integers. For the remaining F , the analogous equation is

F (u, v) = 23δ1 · 3δ2 · 37γ1 · 333667γ2 ,

where δi ∈ {0, 1}, γ1, γ2 ∈ Z+ and u, v ∈ Z with gcd(u, v) = 1. We solve these
equations using the UBC-TM Thue-Mahler solver. The only cases where we find
that

DFF (u, v) ≡ 0 (mod 37 · 333667)
occur for (ω0, ω1, ω2, ω3) = (4, 35, 14, 216) and (u, v) = (−8, 1) or (u, v) = (−2, 1),
for (ω0, ω1, ω2, ω3) = (27, 7, 70, 32) and (u, v) = (1,−2) or (2,−1), and for (ω0, ω1,
ω2, ω3) = (52, 55, 72, 37) and (u, v) = (0, 1) or (−3, 5). In each case, all resulting
twists have bad reduction at 2 (and hence cannot have conductor 109 − 1).

To search for curves with nontrivial rational 2-torsion and conductor 109 − 1,
we solve the equation X + Y = Z2 in S-units X and Y , and integers Z, where
S = {2, 3, 37, 333667}. There are precisely 98 solutions withX ≥ |Y | and gcd(X,Y )
squarefree. Of these, 41 have Z > 0, with Z largest for the solution coming from
the identity

27027027− 101306 = 34 · 333667− 2 · 373 = 51892.

These correspond via twists to elliptic curves of conductor as large as 28 · 32 ·
372 · 3336672, but none of conductor 109 − 1. There thus exist no curves E/Q of
conductor 109 − 1.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999999-data.

6.3. Curves with good reduction outside {2, 3, 23}: An example of Kout-
sianis and of von Kanel and Matchke. This case was worked out by Koutsianis
[37] (and also by von Kanel and Matschke [36], who actually computed E/Q with
good reduction outside {2, 3, p} for all prime p ≤ 163), by rather different methods
from those employed here. We include it here to provide an example where we de-
termine all E/Q with good reduction outside a specific set S, which is of somewhat

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999999-data
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manageable size in terms of the set of cubic forms encountered. Our data agrees
with that of [36] and [37].

To begin, we observe that the elliptic curves with good reduction outside {2, 3, 23}
and j-invariant 0 are precisely those with models of the shape

E : Y 2 = X3 ± 2a3b23c, where 0 ≤ a, b, c ≤ 5.

Appealing to (14), we next look through our precomputed list to find all the irre-
ducible primitive cubic forms of discriminant ±2α3β23γ , where

α ∈ {0, 2, 3, 4}, β ∈ {0, 1, 3, 4, 5}, and γ ∈ {0, 1, 2}.
The imprimitive forms we need consider correspond to primitive forms F with either
ν2(DF ) = 0 or ν3(DF ) ∈ {0, 1}. We find precisely 95 irreducible, primitive cubic
forms of the desired discriminants.

(ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF

(1, 0,−18,−6) 22 · 35 · 23 (2, 0, 3, 4) −23 · 35 (4, 9, 24, 29) −22 · 34 · 232
(1, 0,−3,−1) 34 (2, 3, 6, 4) −22 · 35 (4, 12, 12, 27) −24 · 33 · 232
(1, 0, 3, 2) −23 · 33 (2, 3, 12, 8) −24 · 33 · 23 (4, 12, 12, 73) −24 · 35 · 232
(1, 0, 6, 2) −22 · 35 (2, 3, 36, 29) −23 · 34 · 232 (4, 18, 9, 24) −22 · 35 · 232
(1, 0, 6, 4) −24 · 34 (2, 3, 36, 98) −23 · 35 · 232 (4, 18, 27, 48) −22 · 35 · 232
(1, 0, 9, 6) −24 · 35 (2, 5, 8, 15) −23 · 3 · 232 (5, 6, 7, 4) −23 · 232
(1, 0, 33, 32) −22 · 34 · 232 (2, 6,−12,−1) 22 · 35 · 23 (5, 6, 15, 8) −23 · 35 · 23
(1, 1, 2, 1) −23 (2, 6, 6, 5) −22 · 35 (5, 9, 12, 10) −22 · 35 · 23
(1, 1, 8, 6) −22 · 232 (2, 6, 6, 25) −22 · 33 · 232 (5, 12, 18, 20) −24 · 35 · 23

(1, 3,−9,−4) 35 · 23 (2, 6, 27, 117) −23 · 35 · 232 (5, 18, 30, 46) −22 · 35 · 232
(1, 3,−6,−4) 22 · 33 · 23 (2, 9,−6,−4) 22 · 35 · 23 (5, 24,−3, 26) −24 · 35 · 232
(1, 3,−3,−2) 33 · 23 (2, 9, 0,−4) 24 · 33 · 23 (6, 3, 12,−7) −23 · 33 · 232
(1, 3,−6,−2) 23 · 35 (2, 9, 48, 185) −24 · 35 · 232 (6, 3, 12, 16) −24 · 33 · 232
(1, 3, 3, 3) −22 · 33 (2, 12, 24, 85) −22 · 35 · 232 (6, 6, 9, 13) −23 · 33 · 232
(1, 3, 3, 5) −24 · 33 (2, 18,−15, 31) −23 · 35 · 232 (6, 9, 12, 23) −23 · 34 · 232
(1, 3, 3, 7) −22 · 35 (3, 0, 3, 2) −24 · 34 (6, 18, 18, 29) −22 · 35 · 232
(1, 3, 3, 13) −24 · 35 (3, 4, 12, 12) −24 · 3 · 232 (7, 6, 9, 4) −23 · 34 · 23
(1, 3, 18, 50) −23 · 35 · 23 (3, 6, 4, 6) −22 · 3 · 232 (7, 15, 3, 17) −22 · 35 · 232

(1, 6,−24,−4) 24 · 35 · 23 (3, 6, 9, 8) −23 · 33 · 23 (8, 9, 12, 13) −22 · 34 · 232
(1, 6, 3, 32) −23 · 35 · 23 (3, 9, 9, 7) −24 · 35 (8, 15, 18, 21) −23 · 34 · 232
(1, 6, 6, 16) −24 · 33 · 23 (3, 9, 9, 49) −22 · 35 · 232 (9, 9, 3, 31) −24 · 35 · 232
(1, 6, 12, 54) −22 · 33 · 232 (3, 18, 36, 116) −24 · 35 · 232 (10, 6, 15, 1) −23 · 33 · 232
(1, 6, 12, 100) −24 · 33 · 232 (3, 27, 9, 29) −24 · 35 · 232 (11, 6, 12, 2) −22 · 33 · 232

(1, 9,−12,−16) 24 · 35 · 23 (4, 0,−18,−3) 24 · 35 · 23 (11, 15, 15, 17) −22 · 35 · 232
(1, 9,−9,−3) 22 · 35 · 23 (4, 0, 6, 1) −24 · 35 (12, 9, 36, 16) −24 · 35 · 232
(1, 9, 27, 165) −22 · 35 · 232 (4, 2, 8, 3) −24 · 232 (12, 36, 36, 35) −24 · 35 · 232
(1, 9, 27, 303) −24 · 35 · 232 (4, 3, 6, 2) −22 · 33 · 23 (13, 9, 18, 12) −22 · 35 · 232
(1, 12, 9, 18) −24 · 35 · 23 (4, 3, 12, 10) −23 · 35 · 23 (13, 15, 27, 7) −22 · 35 · 232
(1, 12, 12, 44) −24 · 33 · 232 (4, 3, 18, 13) −23 · 33 · 232 (21, 9, 27, 11) −24 · 35 · 232
(1, 15, 3,−7) 24 · 35 · 23 (4, 3, 18, 36) −22 · 35 · 232 (23, 30, 36, 20) −24 · 35 · 232
(2, 0, 3, 1) −22 · 34 (4, 4, 9, 1) −24 · 232 (24, 27, 36, 16) −24 · 35 · 232
(2, 0, 3, 2) −23 · 34 (4, 6, 3, 12) −22 · 33 · 232

In each case, we solve the corresponding Thue-Mahler equation specified by
Theorem 1. For example, if DF = ±24 · 3t · 232, with t ≥ 3, then we actually need
only solve the (eight) Thue equations of the shape

F (u, v) = 2δ13δ223δ3 , where δi ∈ {0, 1}.
For all other discriminants, we must treat “genuine” Thue-Mahler equations (where
at least one of the exponents on the right-hand side of equation (7) is, a priori,
unconstrained). Details of this computation are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-23-data.

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-23-data
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In total, we found precisely 730 solutions to these equations, leading, after twisting,
to 3856 isomorphism classes of E/Q with good reduction outside {2, 3, 23} and
trivial rational 2-torsion.

Once again, to find the curves with nontrivial rational 2-torsion, we solved X +
Y = Z2 in S-units X and Y , and integers Z, where S = {2, 3, 23}. There are
precisely 118 solutions with X ≥ |Y | and gcd(X,Y ) squarefree (this computation
took less than 1 hour). Of these, 55 have Z > 0, with Z largest for the solution
coming from the identity

89424− 23 = 24 · 35 · 23− 23 = 2992.

These correspond via twists to elliptic curves of conductor as large as 28 · 32 · 232,
a total of 1664 isomorphism classes. Thus, there exist a total of 5520 isomorphism
classes (in 3968 isogeny classes) of elliptic curves E/Q with good reduction outside
{2, 3, 23}. Note that 432 = 2× 63 of these have jE = 0.

6.4. Curves with good reduction outside {2, 3, 5, 7, 11}: An example of von
Kanel and Matschke. This is the largest computation carried out along these
lines by von Kanel and Matschke [36] (and also a very substantial computation via
our approach, taking many thousand machine hours on 80 cores).

As in the preceding example, note that the curves with models of the shape

E : Y 2 = X3 ± 2a3b5c7d11e, 0 ≤ a, b, c, d, e ≤ 5

are precisely the E/Q with good reduction outside {2, 3, 5, 7, 11} and j-invariant
0. We next proceed by searching our precomputed list for all irreducible primitive
cubic forms of discriminant 2α3βM , where

α ∈ {0, 2, 3, 4}, β ∈ {0, 1, 3, 4, 5}, and M | 52 · 72 · 112.
The imprimitive forms we need consider again correspond to primitive forms F
with either ν2(DF ) = 0 or ν3(DF ) ∈ {0, 1}. We encounter 1796 irreducible cubic
forms, which we tabulate at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-5-7-11-data,

where details on the resulting Thue-Mahler computation may also be found. Con-
firming the results of von Kanel and Matschke [36], we find that there exist a total
of 592192 isomorphism classes (in 453632 isogeny classes) of elliptic curves E/Q
with good reduction outside {2, 3, 5, 7, 11}, including 15552 = 2× 65 with jE = 0.

7. Good reduction outside a single prime

For the remainder of this paper, we will focus our attention on the case of
elliptic curves with bad reduction at a single prime, i.e., curves of conductor p
or p2, for p prime. In this case, our approach simplifies considerably and rather
than being required to solve Thue-Mahler equations, the problem reduces to one
of solving Thue equations, i.e., equations of the shape F (x, y) = m, where F is
a form and m is a fixed integer. While, once again, we do not have a detailed
computational complexity analysis of either algorithms for solving Thue equations
or more general algorithms for solving Thue-Mahler equations, computations to
date strongly support the contention that the former is, usually, much, much faster
than the latter, particularly if the set of primes S considered for the Thue-Mahler
equations is anything other than tiny. Since none of these conductors are divisible
by 9, we may always suppose that jE �= 0. We note that the data we have produced

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-5-7-11-data
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in these cases totals several terabytes. As a result, we have not yet determined how
best to make it publicly available; interested readers should contact the authors for
further details.

7.1. Conductor N = p. Suppose that E is a curve with conductor N = p prime
with invariants c4 and c6. From Tables 1, 2, and 3, we necessarily have one of

(ν2(c4), ν2(c6)) = (0, 0) or (≥ 4, 3), and ν2(ΔE) = 0, or

(ν3(c4), ν3(c6)) = (0, 0) or (1,≥ 3), and ν3(ΔE) = 0, or

(νp(c4), νp(c6)) = (0, 0) and νp(ΔE) ≥ 1.

From this we see that D = 1 or 2. Theorem 1 then implies that there is a cubic
form of discriminant ±4 or ±4p, and integers u, v, with

F (u, v) = pκp or 8pκp , c4 = D2HF (u, v) and c6 = −1

2
D3GF (u, v),

for D ∈ {1, 2} and κp a nonnegative integer. Note that, while the smallest absolute
discriminant for an irreducible cubic form in Z[x, y] is 23, there do exist reducible
cubic forms of discriminants 4 and −4 which we must consider.

Appealing to Théorème 2 of Mestre and Oesterlé [43] (and using [10]), we can
actually restrict the choices for n dramatically. In fact, we have 3 possibilities:
either p ∈ {11, 17, 19, 37}, or p = t2 + 64 for some integer t, or, in all other cases,
ΔE = ±p. There are precisely 14 isomorphism classes of E/Q with conductor in
{11, 17, 19, 37}; one may consult Cremona [15] for details. If we can write p =
t2 +64 for an integer t (which we may, without loss of generality, assume to satisfy
t ≡ 1 (mod 4)), then the (2-isogenous) curves defined by

y2 + xy = x3 +
t− 1

4
· x2 − x

and

y2 + xy = x3 +
t− 1

4
· x2 + 4x+ t

have rational points of order 2 given by (x, y) = (0, 0) and (x, y) = (−t/4, t/8),
respectively, and discriminants t2+64 and −(t2+64)2, respectively. In the final case
(in which ΔE = ±p), we have (using the notation of Section 3 and, in particular,
appealing to (10) which, in this case yields the equation 1 = νp(ΔE) = νp(DF ) +
2κp)

α0 = 2, α1 ∈ {0, 3}, β0 = β1 = 0, κp = 0, and N1 ∈ {1, p}.

Theorem 1 thus tells us that to determine the elliptic curves of conductor p, we are
led to to find all binary cubic forms (reducible and irreducible) F of discriminant
±4 and ±4p and then solve the Thue equations

F (x, y) = 1 and F (x, y) = 8.

Since for any solution (x, y) to the equation F (x, y) = 1, we have F (2x, 2y) = 8,
we may thus restrict our attention to the equation F (x, y) = 8 (where we assume
that gcd(x, y) | 2).
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7.2. Conductor N = p2. In case E has conductor N = p2, we have that either E
is a either a quadratic twist of a curve of conductor p, or we have νp(ΔE) ∈ {2, 3, 4}.
To see this, note that, via Table 3, p | c4, p | c6, and D | 2p, and we may suppose
that (νp(c4(E)), νp(c6(E)), νp(ΔE)) is one of

(≥ 1, 1, 2), (1,≥ 2, 3), (≥ 2, 2, 4), (≥ 2,≥ 3, 6), (2, 3,≥ 7),

(≥ 3, 4, 8), (3,≥ 5, 9), (≥ 4, 5, 10).

In each case with νp(c6(E)) ≥ 3, denote by E1 the quadratic twist of E by

(−1)(p−1)/2p. For curves E with

(νp(c4(E)), νp(c6(E)), νp(ΔE)) = (≥ 2,≥ 3, 6),

one may verify that E1 has good reduction at p and hence conductor 1, a contra-
diction. If we have

(νp(c4(E)), νp(c6(E)), νp(ΔE)) = (2, 3,≥ 7),

then

(νp(c4(E1)), νp(c6(E1)), νp(ΔE1
)) = (0, 0, νp(ΔE)− 6)

and so E1 has conductor p. In the remaining cases, where

(νp(c4(E)), νp(c6(E)), νp(ΔE)) ∈ {(≥ 3, 4, 8), (3,≥ 5, 9), (≥ 4, 5, 10)},

we check that

(νp(c4(E1)), νp(c6(E1)), νp(ΔE1
)) ∈ {(≥ 1, 1, 2), (1,≥ 2, 3), (≥ 2, 2, 4)}.

It follows that, in order to determine all isomorphism classes of E/Q of conductor
p2, it suffices to carry out the following program:

• Find all curves of conductor p.
• Find E/Q with minimal discriminant ΔE ∈ {±p2,±p3,±p4}, and then
• consider all appropriate quadratic twists of these curves.

The fact that we can essentially restrict attention to E/Q with minimal discriminant

(34) ΔE ∈ {±p2,±p3,±p4}

(once we have all curves of conductor p) was noted by Edixhoven, de Groot, and
Top in Lemma 1 of [24]. To find the E satisfying (34), Theorem 1 (with specific
appeal to (10)) leads us to consider Thue equations of the shape

F (x, y) = 8 for F a form of discriminant ± 4p2,(35)

F (x, y) = 8p for F a form of discriminant ± 4p,(36)

and

F (x, y) = 8p for F a form of discriminant ± 4p2,(37)

corresponding to ΔE = ±p2, ±p3 and ±p4, respectively.
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Table 6. All curves of conductor p and p2, for p prime, cor-
responding to reducible forms (i.e., with nontrivial rational 2-
torsion). Note that t is any integer so that t2+64 is prime. For the
sake of brevity, we have omitted curves that are quadratic twists
by ±p of curves of conductor p.

c4 c6 p ΔE NE

4353 287199 17 17 17
33 −81 17 17 17

t2 + 48 −t(t2 + 72) t2 + 64 t2 + 64 t2 + 64
273 4455 17 172 17

t2 − 192 −t(t2 + 576) t2 + 64 −(t2 + 64)2 t2 + 64
1785 75411 7 73 72

105 1323 7 −73 72

33 12015 17 −174 17

7.3. Reducible forms. To find all elliptic curves E/Q with conductor p or p2

arising from reducible forms, via Theorem 1 we are led to solve equations

(38) F (x, y) = 8pn with n ∈ Z and gcd(x, y) | 2,

where F is a reducible binary cubic form of discriminant ±4, ±4p and ±4p2. This
is an essentially elementary, though rather painful, exercise. Alternatively, we may
observe that curves of conductor p or p2 arising from reducible cubic forms are
exactly those with at least one rational 2-torsion point. We can then use Theorem I
of Hadano [29] to show that the only such p are p = 7, 17 and p = t2+64 for integer
t. In any case, after some rather tedious but straightforward work, we can show
that the elliptic curves of conductor p or p2 corresponding to reducible forms, are
precisely those given in Table 6 (up to quadratic twists by ±p).

7.4. Irreducible forms: Conductor p. A quick search demonstrates that there
are no irreducible cubic forms of discriminant ±4. Consequently, if we wish to find
elliptic curves of conductor p coming from irreducible cubics in Theorem 1, we need
to solve equations of the shape F (x, y) = 8 for all cubic forms of discriminant ±4p.
An almost immediate consequence of this is the following.

Proposition 3. Let p > 17 be prime. If there exists an elliptic curve E/Q of
conductor p, then either p = t2+64 for some integer t, or there exists an irreducible
binary cubic form of discriminant ±4p.

On the other hand, if we denote by h(K) the class number of a number field K,
classical results of Hasse [32] imply the following.

Proposition 4. Let p ≡ ±1 (mod 8) be prime and δ ∈ {0, 1}. If there exists an
irreducible cubic form of discriminant (−1)δ4p, then

h

(
Q(

√
(−1)δp)

)
≡ 0 (mod 3).

Combining Propositions 3 and 4, we thus have the following.
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Corollary 5 (Theorem 1 of Setzer [57]). Let p ≡ ±1 (mod 8) be prime. If there
exists an elliptic curve E/Q of conductor p, then either p = t2+64 for some integer
t, or we have

h (Q(
√
p)) · h

(
Q(

√
−p)

)
≡ 0 (mod 3).

We remark that Proposition 3 is actually a rather stronger criterion for guaran-
teeing the nonexistence of elliptic curves of conductor p than Corollary 5. Indeed,
by way of example, we may readily check that there are no irreducible cubic forms
of discriminant ±4p for

p ∈ {23, 31, 199, 239, 257, 367, 439},

(and hence no elliptic curves of conductor p for these primes) while, in each case,
we have that 3 | h

(
Q(

√
p)
)
· h (Q(

√−p)).

7.5. Irreducible forms: Conductor p2. As noted earlier, to determine all elliptic
curves of conductor p2 for p prime, arising via Theorem 1 from irreducible cubics, it
suffices to find those of conductor p and those of conductor p2 with ΔF = ±p2,±p3,
and ±p4 (and subsequently twist them). We explore these cases below.

7.5.1. Elliptic curves of discriminant ±p3. To find elliptic curves of discriminant
±p3, we need to solve Thue equations of the shape F (x, y) = 8p, where F runs
over all cubic forms of discriminant ΔF = ±4p. These forms are already required
to compute curves of conductor p. Now, we can either proceed directly to solve
F (x, y) = 8p or transform the problem into one of solving a pair of new Thue
equations of the shape Gi(x, y) = 8. In practice, we used the former when solving
rigorously and the latter when solving heuristically (see Section 8.3).

We now describe this transformation. Let F (x, y) = ax3 + bx2y+ cxy2 + dy3 be
a reduced form of discriminant ±4p. Since p | ΔF , we have

F (x, y) ≡ a(x− r0y)
2(x− r1y) (mod p),

where we must have that p � a, since F is a reduced form (which implies that
1 ≤ a < p). Comparing coefficients of x shows that

2r0 + r1 ≡ −b/a (mod p), r20 + 2r0r1 ≡ c/a (mod p)

and

r20r1 ≡ −d/a (mod p).

Multiply the first two of these by a and add them to get

3ar20 + 2br0 + c ≡ 0 (mod p).

We can solve this for r0 and hence r1:

(r0, r1) ≡ (3a)−1 (−b± t,−b∓ 2t) (mod p),

where we require that t satisfies t2 ≡ b2−3ac (mod p). Finding square roots modulo
p can be done efficiently via the Tonelli-Shanks algorithm, for example (see, e.g.,
Shanks [59]), and almost trivially if, say, p ≡ 3 (mod 4). Once we have these
(r0, r1), we can readily check which pair satisfies r20r1 ≡ −d/a (mod p).

Now if F (x, y) = 8p, then we must have either

x ≡ r0y (mod p) or x ≡ r1y (mod p).
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In either case, write x = riy + pu, which maps the equation F (x, y) = 8p to a pair
of equations of the shape

Gi(u, y) = 8,

where

Gi(u, y) = ap2u3+(3apri+ bp)u2y+(3ar2i +2bri+ c)uy2+
1

p
(ar3i + br2i + cri+d)y3.

Notice that ΔGi
= p2ΔF . In practice, for our deterministic approach, we will ac-

tually solve the equation F (x, y) = 8p directly. For our heuristic approach (where
a substantial increase in the size of the form’s discriminant is not especially prob-
lematic), we will reduce to consideration of the equations Gi(x, y) = 8.

7.5.2. A (conjecturally infinite) family of forms and solutions. We note that there
are families of primes for which we can guarantee that the equation F (x, y) = 8p
has solutions. By way of example, define a quartic form pr,s via

pr,s = r4 + 9r2s2 + 27s4.

Then for a given r, s and p = pr,s the cubic form

F (x, y) = sx3 + rx2y − 3sxy2 − ry3

has discriminant 4p. Additionally one can readily verify the polynomial identities

F (2r2/s+ 6s,−2r) = 8p and F (6s,−18s2/r − 2r) = 8p.

If we set s ∈ {1, 2} in the first of these, or r ∈ {1, 2} in the second, then we arrive
at four one-parameter families of forms of discriminant 4p for which the equation
F (x, y) = 8p has a solution, namely:

(p, x, y) = (r4 + 9r2 + 27, 2r2 + 6,−2r), (r4 + 36r2 + 432, r2 + 12,−2r),

(27s4 + 9s2 + 1, 6s,−18s2 − 2), (27s4 + 36s2 + 16, 6s,−9s2 − 4).

Similarly, if we define

pr,s = r4 − 9r2s2 + 27s4

then the form

F (x, y) = sx3 + rx2y + 3sxy2 + ry3

has discriminant −4p, and the equation F (x, y) = 8p has solutions

(x, y) = (−2r2/s+ 6s, 2r) and (6s,−18s2/r + 2r)

and hence we again find (one-parameter) families of primes corresponding to either
r ∈ {1, 2} or s ∈ {1, 2}:

(p, x, y) =(r4 − 9r2 + 27,−2r2 + 6, 2r), (r4 − 36r2 + 432,−r2 + 12, 2r),

(27s4 − 9s2 + 1, 6s,−18s2 + 2), (27s4 − 36s2 + 16, 6s,−9s2 + 4).

We expect that each of the quartic families described here attains infinitely many
prime values, but proving this is beyond current technology.
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7.5.3. Elliptic curves of discriminant p2 and p4. To find elliptic curves of discrim-
inant p2 and p4 via Theorem 1, we need to solve Thue equations F (x, y) = 8 and
F (x, y) = 8p, respectively, for cubic forms F of discriminant 4p2. Such forms are
quite special and it turns out that they form a 2-parameter family.

Indeed, in order for there to exist a cubic form of discriminant 4p2, it is necessary
and sufficient that we are able to write p = r2 + 27s2 for positive integers r and s,
whereby F is equivalent to the form

Fr,s(x, y) = sx3 + rx2y − 9sxy2 − ry3.

To see this, note that the existence of an irreducible cubic form of discriminant 4p2

for prime p necessarily implies that of a (cyclic) cubic field of discriminant p2 and
field index 2. From Silvester, Spearman, and Williams [60], there is a unique such
field up to isomorphism, which exists precisely when the prime p can be represented
by the quadratic form r2 + 27s2. We conclude as desired upon observing that

DFr,s
= 4

(
r2 + 27s2

)2
.

It remains, then, to solve the Thue equations

Fr,s(x, y) = 8 and Fr,s(x, y) = 8p.

We can transform the problem of solving the second of these equations to one of
solving a related Thue equation of the form Gr,s(x, y) = 8. This transformation is
quite similar to the one described in the previous subsection.

First note that we may assume that p � y, since otherwise, we would require that
p | sx, contradicting the facts that s <

√
p and p2 � F . Since p2 | ΔF , it follows

that the congruence

su3 + ru2 − 9su− r ≡ 0 (mod p)

has a unique solution modulo p; one may readily check that this satisfies u ≡
9s/r (mod p):

su3 + ru2 − 9su− r ≡ −r−3 · (r2 − 27s2)(r2 + 27s2) ≡ 0 (mod p).

Consequently, we know that x ≡ uy (mod p). Substituting x = uy + vp into F
gives

Fr,s(uy + vp, y) = a0v
3 + b0v

2y + c0vy
2 + d0y

3

so, with a quick renaming of variables, we obtain

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where

a0 = sp2, b0 = (3us+r)p, c0 = 3u2s+2ru−9s and d0 = (u3s+ru2−9us−r)/p.

A little algebra confirms that

ΔGr,s
= 4p4.

As noted in the previous subsection, we have solved Fr,s(x, y) = 8p directly in our
deterministic approach, while we solved equation Gr,s(x, y) = 8 for our heuristic
method.
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7.5.4. Elliptic curves of discriminant −p2 and −p4. Elliptic curves of discriminant
−p2 and −p4 can be found through Theorem 1 by solving the Thue equations
F (x, y) = 8 and F (x, y) = 8p, respectively, this time for cubic forms F of discrim-
inant −4p2. As in the cases treated in the preceding subsection, these forms can
be described as a 2-parameter family. Specifically, such forms arise precisely when
there exist integers r and s such that p = |r2 − 27s2|, in which case the form F is
equivalent to

Fr,s(x, y) = sx3 + rx2y + 9sxy2 + ry3.

The primes p for which we can write p = |r2−27s2| are those with p ≡ ±1 (mod 12).
To see this, note first that if p ≡ 1 (mod 3) and p = |r2−27s2|, then necessarily p =
r2−27s2, so that p ≡ 1 (mod 4), while, if p ≡ −1 (mod 3) and p = |r2−27s2|, then
p = 27s2−r2 so that p ≡ −1 (mod 4). It follows that necessarily p ≡ ±1 (mod 12).
To show that this is sufficient to have p = |r2−27s2| for integers r and s, we appeal
to the following.

Proposition 6. If p ≡ 1 (mod 12) is prime, there exist positive integers r and s
such that

r2 − 27s2 = p, with r <
3

2

√
6p and s <

5

18

√
6p.

If p ≡ −1 (mod 12) is prime, there exist positive integers r and s such that

r2 − 27s2 = −p, with r <
5

2

√
2p and s <

1

2

√
2p.

This result is, in fact, an almost direct consequence of the following.

Theorem 7 (Theorem 112 from Nagell [47]). If p ≡ 1 (mod 12) is prime, there
exist positive integers u and v such that

p = u2 − 3v2, u <
√
3p/2 and v <

√
p/6.

If p ≡ −1 (mod 12) is prime, there exist positive integers u and v such that

−p = u2 − 3v2, u <
√
p/2 and v <

√
p/2.

Proof of Proposition 6. If p ≡ ±1 (mod 12), Theorem 7 guarantees the existence
of integers u and v such that p = |u2 − 3v2|. If 3 | v, then we set r = u, s = v/3.
Clearly, 3 � u, so if 3 � v, then we have (replacing v by −v is necessary) that
u ≡ v (mod 3). If we now set r = 2u+ 3v and s = (2v + u)/3, then it follows that

|r2 − 27v2| = |(2u+ 3v)2 − 3(2v + u)2| = |u2 − 3v2| = p

and hence either

|r| ≤ 2
√
3p/2 + 3

√
p/6 =

3

2

√
6p and |s| ≤ 1

3
(2
√
p/6 +

√
3p/2) =

5

18

√
6p,

or

|r| ≤ 2
√
p/2 + 3

√
p/2 =

5

2

√
2p and |s| ≤ 1

3
(2
√
p/2 +

√
p/2) =

1

2

√
2p. �

Again, we are able to reduce the problem of solving Fr,s(x, y) = 8p to that of
treating a related equationGr,s(x, y)=8. As before, note that if u ≡ −9s/r (mod p),
then

su3 + ru2 + 9su+ r ≡ r−3(r2 − 27s2)(r2 + 27s2) ≡ 0 (mod p).
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Again, write x = r0y + vp so that, after renaming v, we have

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where

a0 = sp2, b0 = (3us+r)p, c0 = 3u2s+2ru+9s, and d0 = (u3s+ru2+9us+r)/p.

Note that, in contrast to the case where p = r2 + 27s2, here p is represented by
an indefinite quadratic form and so the presence of infinitely many units in Q(

√
3)

implies that a given representation is not unique. If, however, we have two solutions
to the equation |r2 − 27s2| = p, say (r1, s1) and (r2, s2), then the corresponding
forms

s1x
3 + r1x

2y + 9s1xy
2 + r1y

3 and s2x
3 + r2x

2y + 9s2xy
2 + r2y

3

may be shown to be GL2(Z)-equivalent.

8. Computational details

As noted earlier, the computations required to generate curves of prime conduc-
tor p (and subsequently conductor p2) fall into a small number of distinct parts.

8.1. Generating the required forms. To find the irreducible forms potentially
corresponding to elliptic curves of prime conductor p ≤ X for some fixed positive
real X, arguing as in Section 5, we tabulated all reduced forms F (x, y) = ax3 +
bx2y + cxy2 + d with discriminants in (0, 4X] and [−4X, 0), separately. As each
form was generated, we checked to see if it actually satisfied the desired definition
of reduction. Of course, this does not only produce forms with discriminant ±4p;
as each form was produced, we kept only those whose discriminant was in the
appropriate range, and equal to ±4p for some prime p. Checking primality was
done using the Miller-Rabin primality test (see [44], [54]; to make this deterministic
for the range we require, we appeal to [61]). While it is straightforward to code the
above in computer algebra packages such as sage [56], maple [7] or Magma [9], we
instead implemented it in c++ for speed. To avoid possible numerical overflows, we
used the CLN library [30] for c++.

We computed forms of discriminant ±4p in two separate runs—first to p ≤ 1012

and then a second run to p ≤ 2 × 1013. In the first of these, we constructed
all the forms and explicitly saved them to files. Constructing all the required
positive discriminant forms took approximately 40 days of CPU time on a modern
server, and about 300 gigabytes of disc space. Thankfully, the computation is
easily parallelized and it only took about 1 day of real time. We split the jobs by
running a manager which distributed a-values to the other cores. The output from
each a-value was stored as a tab-delimited text file with one tuple of p, a, b, c, d
on each line. Generating all forms of negative discriminant took about 3 times
longer and required about 900 gigabytes of disc space. The distribution of forms
is heavily weighted to small values of a. To allow us to spread the load across
many CPUs we actually split the task into 2 parts. We first ran a ≥ 3, with the
master node distributing a-values to the other cores. We then ran a = 1 and 2 with
the master node distributing b-values to the other cores. The total CPU time was
about three times longer than for the positive case (there being essentially three
times as many forms), but more real time was required due to these complications.
Thus generating all forms took less than 1 week of real time but required about 1.2
terabytes of disc space.
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These forms were then sorted by discriminant while keeping positive and nega-
tive discriminant forms separated. Sorting a terabyte of data is a nontrivial task,
and in practice we did this by first sorting1 the forms for each a-value and then
splitting them into files of discriminants in the ranges [n × 109, (n + 1) × 109) for
n ∈ [0, 999]. Finally, all the files of each discriminant range were sorted together.
This process for positive and negative discriminant forms took around two days of
real time. We found 9247369050 forms of positive discriminant 4p and 27938060315
of negative discriminant −4p, with p bounded by 1012. Of these, 475831852 and
828238359, respectively, had F (x, y) = 8 solvable (by the heuristic method de-
scribed below), leading to 159552514 and 276339267 elliptic curves of positive and
negative discriminant, respectively, with prime conductor up to 1012.

The second run to p ≤ 2× 1013 required a different workflow due to space con-
straints. Saving all forms to disc was simply impractical—we estimated it to require
over 20 terabytes of space! Because of this we combined the form-generation code
with the heuristic solution method (see below) and kept only those forms F (x, y)
for which solutions to F (x, y) = 8 existed. Since only a small fraction of forms
(asymptotically likely 0) have solutions, the disc space required was considerably
less. Indeed to store all the required forms took about 250 and 400 gigabytes
for positive and negative forms, respectively. This then translated into about 65
and 115 gigabytes of positive and negative discriminant curves, respectively, with
prime conductor up to 2 × 1013. This second computation took roughly 20 times
longer than the first, requiring about 4 months of real time. This led to a final
count of 1738595275 and 3011354026 (isomorphism classes of) curves of positive
and negative discriminant, respectively, with prime conductor up to 2× 1013.

8.2. Complete solution of Thue equations: Conductor p. For each form
encountered, we needed to solve the Thue equation

ax3 + bx2y + cxy2 + dy3 = 8

in integers x and y with gcd(x, y) ∈ {1, 2}. We approached this in two distinct
ways.

To solve the Thue equation rigorously, we appealed to by now well-known argu-
ments of Tzanakis and de Weger [67], based upon lower bounds for linear forms in
complex logarithms, together with lattice basis reduction; these are implemented
in several computer algebra packages, including Magma [9] and Pari/GP [50]. The
main computational bottleneck in this approach is typically that of computing the
fundamental units in the corresponding cubic fields; for computations p of size up
to 109 or so, we encountered no difficulties with any of the Thue equations arising
(in particular, the fundamental units occurring can be certified without reliance
upon the Generalized Riemann Hypothesis).

We ran this computation in Magma [9], using its built-in Thue equation solver.
Due to memory consumption issues, we fed the forms into Magma in small batches,
restarting Magma after each set. We saved the output as a tuple

p, a, b, c, d, n, {(x1, y1), . . . , (xn, yn)},
where p, a, b, c, d came from the form, n counts the number of solutions of the
Thue equation and (xi, yi) the solutions. These solutions can then be converted

1Using the standard unix sort command and taking advantage of multiple cores.
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into corresponding elliptic curves in minimal form using Theorem 1 and standard
techniques.

For positive discriminant, this approach works without issue for p < 1010. For
forms of negative discriminant −4p, however, the fundamental unit εp in the associ-
ated cubic field can be extremely large (i.e., log |εp| can be roughly of size

√
p). For

this reason, finding all negative discriminant curves with prime conductor exceed-
ing 2 · 109 or so proves to be extremely time-consuming. Consequently, for large p,
we turned to a nonexhaustive method, which, though it finds solutions to the Thue
equation, is not actually guaranteed to find them all.

8.3. Nonexhaustive, heuristic solution of Thue equations. If we wish to find
all “small” solutions to a Thue equation (which, subject to various well-accepted
conjectures, might actually prove to be all solutions), there is an obvious and very
computationally efficient approach we can take, based upon the idea that, given
any solution to the equation F (x, y) = m for fixed integer m, we necessarily either
have that x and y are (very) small, relative to m, or that x/y is a convergent in the
infinite simple continued fraction expansion to a root of the equation F (x, 1) = 0.

Such techniques were developed in detail by Pethő [52], [53]; in particular, he
provides a precise and computationally efficient distinction between “large” and
“small” solutions. Following this, for each form F under consideration, we expanded
the roots of F (x, 1) = 0 to high precision, again using the CLN library for c++. We
then computed the continued fraction expansion for each real root, along with its
associated convergents. Each convergent x/y was then substituted into F (x, y) and
checked to see if F (x, y) = ±1,±8. Replacing (x, y) by one of (−x,−y), (2x, 2y)
or (−2x,−2y), if necessary, then provided the required solutions of F (x, y) = 8.
The precision was chosen so that we could compute convergents x/y with |x|, |y| ≤
2128 ≈ 3.4× 1038. We then looked for solutions of small height using a brute force
search over a relatively small range of values.

To “solve” F (x, y) = 8 by this method, for all forms with discriminant ±4p
with p ≤ 1012, took about 1 week of real time using 80 cores. The resulting
solutions files (in which we stored also forms with no corresponding solutions)
required about 1.5 terabytes of disc space. Again, the files were split into files of
absolute discriminant (or more precisely absolute discriminant divided by 4) in the
ranges [n× 109, (n+ 1)× 109) for n ∈ [0, 999]. For the second computation run to
p ≤ 2×1013, we combined the form-generation and heuristic-solutions steps, storing
only forms which had solutions. This produced about 235 and 405 gigabytes of data
for positive and negative discriminants, respectively.

8.4. Conversion to curves. Once one has a tuple (a, b, c, d, x, y), one then com-
putes GF (x, y) and HF (x, y), appeals to Theorem 1 and checks twists. This leaves
us with a list of pairs (c4, c6) corresponding to elliptic curves. It is now straightfor-
ward to derive a1, a2, a3, a4 and a6 for a corresponding elliptic curve in minimal form
(see, e.g., Cremona [16]). For each curve, we saved a tuple p, a1, a2, a3, a4, a6,±1
with the last entry being the sign of the discriminant of the form used to generate
the curve (which coincides with the sign of the discriminant of the curve). We then
merged the curves with positive and negative discriminants and added the curves
with prime conductor arising from reducible forms (i.e., of small conductor or for
primes of the form t2 + 64). After sorting by conductor, this formed a single file
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of about 17 gigabytes for all curves with prime conductor p < 1012 and about 180
gigabytes for all curves with conductor p < 2× 1013.

8.5. Conductor p2. The conductor p2 computation was quite similar, but was
split further into parts.

8.5.1. Twisting conductor p. The vast majority of curves of conductor p2 that we
encountered arose as quadratic twists of curves of conductor p. To compute these,
we took all curves with conductor p ≤ 1010 and calculated the invariants c4 and c6.
The twisted curve then has corresponding c-invariants

c′4 = p2c4 and c′6 = (−1)(p−1)/2p3c6.

The minimal a-invariants were then computed as for curves of conductor p.
We wrote a simple c++ program to read curves of conductor p and then twist

them, recompute the a-invariants and output them as a tuple p2, a1, a2, a3, a4, a6,±1.
The resulting code only took a few minutes to process the approximately 1.1× 107

curves.

8.5.2. Solving F (x, y) = 8p with F of discriminant ±4p. There was no need to
retabulate forms for this computation; we reused the positive and negative forms
of discriminant ±4p with p ≤ 1010 from the conductor-p computations. We subse-
quently rigorously solved the corresponding equations F (x, y) = 8p for p ≤ 108. To
solve the Thue equation F (x, y) = 8p for 108 < p ≤ 1010, using the nonexhaustive,
heuristic method, we first converted the equation to a pair of new Thue equations
of the form Gi(u, y) = 8 as described in Section 7.5.1 and then applied Pethő’s so-
lution search method (where we searched for solutions to these new equations with
|y| bounded by 2128 and |u| = |(x − riy)/p| bounded in such way as to guarantee
that our original |x| is also bounded by 2128).

The solutions were then processed into curves as for the conductor p case above,
and the resulting curves were twisted by ±p in order to obtain more curves of
conductor p2.

8.5.3. Solving F (x, y) ∈ {8, 8p} with F of discriminant ±4p2. To find forms of
discriminant 4p2 with p ≤ 1010 we need only check to see which primes are of
the form p = r2 + 27s2 in the desired range. To do so, we simply looped over r
and s values and then again checked primality using Miller-Rabin. As each prime
was found, the corresponding p, r, s tuple was converted to a form as in Section
7.5.3, and the Thue equations F (x, y) = 8 and F (x, y) = 8p were solved, using the
rigorous approach for p < 106 and the nonexhaustive method described previously
for 106 < p ≤ 1010. Again, in the latter situation, the equation F (x, y) = 8p
was converted to a new equation G(x, y) = 8 as described in Section 7.5.3. The
process for forms of discriminant −4p2 was very similar, excepting that more care is
required with the range of r and s (appealing to Proposition 6). The nonexhaustive
method solving both F (x, y) = 8 and F (x, y) = 8p for positive and negative forms
took a total of approximately 5 days of real time on a smaller server of 20 cores.
The rigorous approach, even restricted to prime p < 106 was much, much slower.

The solutions were then converted to curves as with the previous cases and each
resulting curve was twisted by ±p to find other curves of conductor p2.
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9. Data

9.1. Previous work. The principal prior work on computing the table of elliptic
curves of a prime conductor was carried out in two lengthy computations, by Brumer
and McGuinness [11] in the late 1980s and by Stein and Watkins [63] slightly more
than ten years later. For the first of these computations, the authors fixed the
a1, a2, and a3 invariants (12 possibilities) and looped over a4 and a6 chosen to
make the corresponding discriminant small. By this approach, they were able to
find 311243 curves of prime conductor p < 108 (representing approximately 99.6%
of such curves). In the latter case, the authors looped instead over c4 and c6,
subject to (necessary) local conditions. They obtained a large collection of elliptic
curves of general conductor to 108, and 11378912 of those with prime conductor to
1010 (which we estimate to be slightly in excess of 99.8% of such curves).

9.2. Counts: Conductor p. By way of comparison, we found the following num-
bers of isomorphism classes of elliptic curves over Q with prime conductor p ≤ X:

X ΔE > 0 ΔE < 0 Ratio2 Total Expected Total / Expected
103 33 51 2.3884 84 68 1.2353
104 129 228 3.1239 357 321 1.1122
105 624 1116 3.1986 1740 1669 1.0425
106 3388 5912 3.0450 9300 9223 1.0084
107 19605 34006 3.0087 53611 52916 1.0131
108 114452 198041 2.9941 312493 311587 1.0029
109 685278 1187686 3.0038 1872964 1869757 1.0017

2× 109 1178204 2040736 3.0001 3218940 3216245 1.0008
1010 4171055 7226982 3.0021 11398037 11383665 1.0013
1011 25661634 44466339 3.0026 70127973 70107401 1.0003
1012 159552514 276341397 2.9997 435893911 435810488 1.0002
1013 999385394 1731017588 3.0001 2730402982 2730189484 1.00008

2× 1013 1738595275 3011354026 3.0000 4749949301 4749609116 1.00007

The data above the line is rigorous; for positive discriminant, we actually have a
rigorous result to 1010. For the positive forms this took about one week of real time
using 80 cores. Unfortunately, the negative discriminant forms took significantly
longer, roughly 2 months of real time using 80 cores. Heuristics given by Brumer and
McGuinness [11] suggest that the number of elliptic curves of negative discriminant

of absolute discriminant up to X should be asymptotically
√
3 times as many as

those of positive discriminant in the same range; here we report the square of
this ratio in the given ranges. The aforementioned heuristic count of Brumer and
McGuinness suggests that the expected number of E with prime NE ≤ X should
be √

3

12

(∫ ∞

1

1√
u3 − 1

du+

∫ ∞

−1

1√
u3 + 1

du

)
Li(X5/6),

which we list (after rounding) in the table above. It should not be surprising that
this “expected” number of curves appears to slightly undercount the actual number,
since it does not take into account the roughly

√
X/ logX curves of conductor

p = n2 + 64 and discriminant −p2 (counting only curves of discriminant ±p).

9.3. Counts: conductor p2. To compile the final list of curves of conductor p2, we
combined the five lists of curves: twists of curves of conductor p, curves from forms
of discriminant +4p and −4p, and curves from discriminant +4p2 and −4p2. The
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list was then sorted and any duplicates removed. The resulting list is approximately
one gigabyte in size. The counts of curves are as follows; here we list numbers of
isomorphism classes of curves of conductor p2 for p prime with p ≤ X:

X ΔE > 0 ΔE < 0 Total Ratio2

103 53 93 146 3.0790
104 191 322 513 2.8421
105 764 1304 2068 2.9132
106 3764 6356 10120 2.8515
107 20539 35096 55635 2.9198
108 116894 200799 317693 2.9508
109 691806 1195262 1887068 2.9851
1010 4189445 7247980 11437425 2.9931

Subsequently we decided that we should recompute the discriminants of these
curves as a sanity check, by reading the curves into sage and using its built-in
elliptic curve routines to compute and then factor the discriminant. This took
about one day on a single core.

The only curves of genuine interest are those that do not arise from twisting,
i.e., those of discriminant ±p2, ±p3 and ±p4. In the last of these categories, we
found only 5 curves, of conductors 112, 432, 4312, 4332. and 330132. The first four
of these were noted by Edixhoven, de Groot, and Top [24] (and are of small enough
conductor to now appear in Cremona’s tables). The fifth, satisfying

(a1, a2, a3, a4, a6) = (1,−1, 1,−1294206576, 17920963598714),

has discriminant 330134. For discriminants ±p2 and ±p3, we found the following
numbers of curves, for conductors p2 with p ≤ X:

X ΔE = −p2 ΔE = p2 ΔE = −p3 ΔE = p3

103 12 4 7 4
104 36 24 9 5
105 80 58 12 9
106 203 170 17 15
107 519 441 24 23
108 1345 1182 32 36
109 3738 3203 48 58
1010 10437 9106 60 86

It is perhaps worth observing that the majority of these curves arise from, in the
case of discriminant ±p2, forms with, in the notation of Sections 7.5.3 and 7.5.4,
either r or s in {1, 8}. Similarly, for ΔE = ±p3, most of the curves we found come
from forms in the eight one-parameter families described in Section 7.5.1. We are
unaware of a heuristic predicting the number of curves of conductor p2 up to X
that do not arise from twisting curves of conductor p.

9.4. Thue equations. It is noteworthy that all solutions we encountered to the
Thue equations F (x, y) = 8 and F (x, y) = 8p under consideration satisfied |x|, |y| <
230. The “largest” such solution corresponded to the equation

355x3 + 293x2y − 1310xy2 − 292y3 = 8,

where we have

(x, y) = (188455233,−82526573).
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This leads to the elliptic curve of conductor 948762329069,

E : y2 + xy + y = x2 − 2x2 + a4x+ a6,

with

a4 = −1197791024934480813341

and

a6 = 15955840837175565243579564368641.

Note that this curve does not actually correspond to a particularly impressive abc
or Hall conjecture (see Section 10 for the definition of this term) example.

In the following table, we collect data on the number of GL2(Z)-equivalence
classes of irreducible binary cubic forms of discriminant 4p or −4p for p in [0, X],
denoted P3(0, X) and P3(−X, 0), respectively. We also provide counts for those
forms where the corresponding equation F (x, y) = 8 has at least one integer solu-
tion, denoted P ∗

3 (0, X) and P ∗
3 (−X, 0) for positive and negative discriminant forms,

respectively:

X P3(0, X) P ∗
3 (0, X) P3(−X, 0) P ∗

3 (−X, 0)
103 23 22 78 61
104 204 163 740 453
105 1851 1159 6104 2641
106 16333 7668 53202 16079
107 147653 49866 466601 97074
108 1330934 314722 4126541 582792
109 12050910 1966105 36979557 3530820

2× 109 23418535 3408656 71676647 6080245
1010 109730653 12229663 334260481 21576585
1011 1004607003 76122366 3045402451 133115651
1012 9247369050 475831852 27938060315 828238359

Due to space limitations we did not compute these statistics in the second large
computational run.

Our expectation is that the number of forms for which the equation F (x, y) = 8
has solutions with absolute discriminant up to X is o(X) (i.e., this occurs for
essentially “zero” percent of forms; a first step in proving something is this direction
can be found in recent work of Akhtari and Bhargava [2]).

9.5. Elliptic curves with the same prime conductor. One might ask how
many isomorphism classes of curves of a given prime conductor can occur. If one
accepts recent heuristics that predict that the Mordell-Weil rank of E/Q is abso-
lutely bounded (see, e.g., [51] and [70]), then this number should also be so bounded.
As noted by Brumer and Silverman [12], there are 13 curves of conductor 61263451.
Up to p < 1012, the largest number we encountered was for p = 530956036043, with
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20 isogeny classes, corresponding to (a1, a2, a3, a4, a6) as follows:

(0,−1, 1,−1003, 37465) , (0,−1, 1,−1775, 45957) , (0,−1, 1,−38939, 2970729) ,
(0,−1, 1,−659,−35439) , (0,−1, 1, 2011, 4311) , (0,−2, 1,−27597,−1746656) ,
(0,−2, 1, 57, 35020) , (1,−1, 0,−13337473, 18751485796) , (0, 0, 1,−13921, 633170) ,
(0, 0, 1,−30292,−2029574) , (0, 0, 1,−6721,−214958) ,
(0, 0, 1,−845710,−299350726) , (0, 0, 1,−86411851, 309177638530) ,
(0, 0, 1,−10717, 428466) , (1,−1, 0,−5632177, 5146137924) , (1,−1, 0, 878, 33379) ,
(1,−1, 1, 1080, 32014) , (1,−2, 1,−8117,−278943) ,
(1,−3, 0,−2879, 71732) , (1,−3, 0,−30415,−2014316) .

All have discriminant −p. Elkies [25] found examples of rather larger conductor
with more curves, including 21 classes for p = 14425386253757 and discriminant p,
and 24 classes for p = 998820191314747 and discriminant −p. Our computations
confirm, with high likelihood, that, for p < 2 × 1013, the number of isomorphism
classes of elliptic curves of conductor a fixed prime p is at most 21.

9.6. Rank and discriminant records. In the following table, we list the smallest
prime conductor with a given Mordell-Weil rank. These were computed by running
through our data, using Rubinstein’s upper bounds for analytic ranks (as imple-
mented in Sage) to search for candidate curves of “large” rank which were then
checked using mwrank [18]. The last entry corresponds to a curve of rank 6 with
minimal positive prime discriminant; we have not yet ruled out the existence of a
rank 6 curve with smaller absolute (negative) discriminant.

N (a1, a2, a3, a4, a6) sign(ΔE) rk(E(Q)
37 (0, 0, 1,−1, 0) + 1
389 (0, 1, 1,−2, 0) + 2
5077 (0, 0, 1,−7, 6) + 3
501029 (0, 1, 1,−72, 210) + 4
19047851 (0, 0, 1,−79, 342) − 5
6756532597 (0, 0, 1,−547,−2934) + 6

It is perhaps noteworthy that the curve listed here of rank 6 has the smallest
known minimal discriminant for such a curve (see Table 4 of Elkies and Watkins
[27]).

If we are interested in similar records over all curves, including composite con-
ductors, we have

N (a1, a2, a3, a4, a6) sign(ΔE) rk(E(Q)
37 (0, 0, 1,−1, 0) + 1
389 (0, 1, 1,−2, 0] + 2
5077 (0, 0, 1,−7, 6) + 3
234446 (1,−1, 0,−79, 289) + 4
19047851 (0, 0, 1,−79, 342) − 5
5187563742 (1, 1, 0,−2582, 48720) + 6
382623908456 (0, 0, 0,−10012, 346900) + 7

Here, the curves listed above the line are proven to be those of smallest conductor
with the given rank. Those listed below the line have the smallest known conductor
for the corresponding rank. It is our belief that the techniques of this paper should
enable one to determine whether the curve listed here of rank 5 has the smallest
conductor of any curve with this property.
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10. Completeness of our data

As a final result, we will present something that might, optimistically, be viewed
as evidence that our “heuristic” approach, in practice, enables us to actually find
all elliptic curves of prime conductor p < 2× 1013.

A conjecture of Hall, admittedly one that without modification is widely disbe-
lieved at present, is that if x and y are integers for which x3 − y2 is nonzero, then
the Hall ratio

Hx,y =
|x|1/2

|x3 − y2|
is absolutely bounded. The pair (x, y) corresponding to the largest known Hall
ratio comes from the identity

58538865167812233 − 4478849284284020423079182 = 1641843,

noted by Elkies [26], with Hx,y > 46.6. All other examples known currently have
Hx,y < 7. We prove the following.

Proposition 8. If there is an elliptic curve E with conductor p < 2× 1013, corre-
sponding via Theorem 1 to a cubic form F and u, v ∈ Z, such that

F (u, v) = 8 and max{|u|, |v|} ≥ 2128,

then

(39) Hc4(E),c6(E) > 1.5× 106.

In other words, if there is an elliptic curve E with conductor p < 2×1013 that we
have missed in our heuristic search, then we necessarily have inequality (39) (and
hence a record-setting Hall ratio).

Proof. The main idea behind our proof is that the roots of the Hessian HF (x, 1)
have no particularly good reason to be close to those of the polynomial F (x, 1). It
follows that, if we have relatively large integers u and v satisfying the Thue equation
F (u, v) = 8 (so that u/v is close to a root of F (x, 1) = 0), our expectation is that
not only does HF (u, v) fail to be small, but, in fact, we should have inequalities of
the order of

HF (u, v) � (max{|u|, |v|})2 and GF (u, v) � (max{|u|, |v|})3

(where the Vinogradov symbol hides a possible dependence on p). Since

c4(E) = D2HF (u, v) and c6(E) = −1

2
D3GF (u, v),

where D ∈ {1, 2}, these would imply that

Hc4(E),c6(E) �p
1

p
max{|u|, |v|}.

In fact, for forms (and curves) of positive discriminant, we can deduce inequalities
of the shape

Hc4(E),c6(E) �p p−3/4 min{|u|, |v|} � p−5/4max{|u|, |v|},
where the implicit constants are absolute. For curves of negative discriminant, we
have a slightly weaker result:

Hc4(E),c6(E) �p p−1 min{|u|, |v|} � p−3/2 max{|u|, |v|}.
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To make this argument precise, let us write, for concision, c4 = c4(E) and
c6 = c6(E). From the identity |c34 − c26| = 1728p, we have a Hall ratio

Hc4,c6 =
|c4|1/2
1728p

>
|c4|1/2

3.456× 1016
≥ |HF (u, v)|1/2

3.456× 1016
.

Our goal will thus be to obtain a lower bound upon |HF (u, v)|; we claim that, in
fact, |HF (u, v)| > 3 × 1045, whereby this Hall ratio exceeds 1.5 × 106, as stated.
Suppose that we have a cubic form F and integers u and v with DF = ±4p for p
prime,

(40) max{|u|, |v|} ≥ 2128 and 2× 109 < p < 2× 1013.

Notice that F (u, 0) = ω0u
3 = 8 and hence (40) implies that v �= 0.

Write

F (u, v) = ω0(u− α1v)(u− α2v)(u− α3v)

and suppose that

|u− α1v| = min{|u− αiv|, i = 1, 2, 3}.
We may further assume, without loss of generality, that the form F is reduced.
From (6), we have

(41) ω2
0 |HF (α1, 1)HF (α2, 1)HF (α3, 1)| = 16 p2.

For future use, we note that the main result of Mahler [40] implies the inequality

(42) |ω0|
3∏

i=1

max{1, |αi|} ≤ |ω0|+ |ω1|+ |ω2|+ |ω3|.

Let us assume first that DF > 0, whereby HF has negative discriminant (DHF
=

−3DF ). Since F is reduced, we have

|ω1ω2 − 9ω0ω3| ≤ ω2
1 − 3ω0ω2 ≤ ω2

2 − 3ω1ω3,

and hence the identity

(43) (ω1ω2 − 9ω0ω3)
2 − 4(ω2

1 − 3ω0ω2)(ω
2
2 − 3ω1ω3) = −3DF

yields the inequalities

(44) DF ≥ (ω2
1 − 3ω0ω2)(ω

2
2 − 3ω1ω3) ≥ (ω2

1 − 3ω0ω2)
2.

Since (43) and DF > 0 imply that ω2
1 − 3ω0ω2 �= 0, we may write

HF (α1, 1)

ω2
1 − 3ω0ω2

=

(
α1−

9ω0ω3 − ω1ω2 +
√
−3DF

2(ω2
1 − 3ω0ω2)

)(
α1−

9ω0ω3 − ω1ω2 −
√
−3DF

2(ω2
1 − 3ω0ω2)

)
.

Defining

Γ1 = α1 −
9ω0ω3 − ω1ω2

2(ω2
1 − 3ω0ω2)

and Γ2 =

√
3DF

2(ω2
1 − 3ω0ω2)

,

we have

HF (α1, 1) =
(
ω2
1 − 3ω0ω2

) (
Γ2
1 + Γ2

2

)
and so

(45) |HF (α1, 1)| >
3DF

4(ω2
1 − 3ω0ω2)

.
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Since α1 is “close” to u/v, it follows that the same is true for HF (α1, 1) and
HF (u/v, 1) = v−2HF (u, v). To make this precise, note that, via the Mean Value
Theorem,

(46) |HF (α1, 1)−HF (u/v, 1)| =
∣∣2(ω2

1 − 3ω0ω2)y + ω1ω2 − 9ω0ω3

∣∣ ∣∣∣α1 −
u

v

∣∣∣ ,
for some y lying between α1 and u/v. We thus have
(47)

|HF (α1, 1)−HF (u/v, 1)| ≤ (ω2
1 − 3ω0ω2)

(
2
(
|α1|+

∣∣∣α1 −
u

v

∣∣∣)+ 1
) ∣∣∣α1 −

u

v

∣∣∣ .
To derive an upper bound upon

∣∣α1 − u
v

∣∣, we can argue as in the proof of Theorem
2 of Pethő [53] to obtain the inequality

(48)
∣∣∣α1 −

u

v

∣∣∣ ≤ 27/3D
−1/6
F v−2.

Since |v| ≥ 1 and DF = 4p > 8× 109, we thus have that

(49)
∣∣∣α1 −

u

v

∣∣∣ < 0.12.

We may suppose that F is reduced, whereby, crudely, from Lemma 3.5 of
Belebas [3],

|ω0| ≤
2D

1/4
F

3
√
3

and |ω1| ≤
3ω0

2
+

(√
DF − 27ω2

0

4

)1/2

<

(
1 +

1√
3

)
D

1/4
F .

From Proposition 5.5 of Belabas and Cohen [4],

|ω2| ≤
(
35 + 13

√
13

216

)1/3

D
1/3
F and |ω3| ≤

4

27
D

1/2
F ,

whence, after a little computation, we find that

|ω0|+ |ω1|+ |ω2|+ |ω3| < D
1/2
F = 2p1/2.

From (42), it follows that

|α1| ≤ |ω0|+ |ω1|+ |ω2|+ |ω3| < 2p1/2,

whereby inequalities (49) and (40) thus yield

|u/v| < 2p1/2 + 0.12 < 223.1,

and so, again appealing to (40), min{|u|, |v|} > 2104. Returning to inequality (47),
we find that, after applying (44),

|HF (α1, 1)−HF (u/v, 1)| ≤ 2p1/2
(
4p1/2 + 1.24

)
27/3(2p)−1/6v−2.

From p < 2× 1013 and |v| > 2104, it follows that

|HF (α1, 1)−HF (u/v, 1)| < 10−50.

Combining this with (44) and (45) yields the inequality

|HF (u/v, 1)| >
2p

|ω2
1 − 3ω0ω2|

,

whence

|HF (u, v)| = v2 |HF (u/v, 1)| >
2v2p

|ω2
1 − 3ω0ω2|

≥ v2
√
p,
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where the last inequality follows from (44). From (40) and the fact that |v| > 2104,
we conclude that

|HF (u, v)| > 1067.

Next, suppose that F has negative discriminant, so that HF has positive dis-
criminant DHF

= −3DF . If ω
2
1 − 3ω0ω2 = 0, then, from (43), we have that

3p = −(ω2
1 − 3ω0ω2)(ω

2
2 − 3ω1ω3),

which implies that

max
{
|ω2

1 − 3ω0ω2|, |ω2
2 − 3ω1ω3|

}
≥ p.

On the other hand, from Lemma 6.4 of Belabas and Cohen [4], we have

(50)
|ω0| ≤ 23/2p1/4

33/4
, |ω1| ≤ 23/2p1/4

31/4
, max{|ω0ω

3
2 |, |ω3

1ω3|} ≤ (11+5
√
5)p

2 ,

|ω1ω2| ≤ 8p1/2

31/2
and |ω0ω3| ≤ 2p1/2

31/2
,

whereby a short calculation, together with the fact that p > 2 × 109, yields a
contradiction. We may thus suppose that ω2

1 − 3ω0ω2 �= 0. We have

HF (αi, 1) = (ω2
1 − 3ω0ω2) (αi − β1) (αi − β2) ,

where

βj =
9ω0ω3 − ω1ω2 + (−1)j

√
12p

2(ω2
1 − 3ω0ω2)

for j ∈ {1, 2}.

It follows that
|βj | ≤ |ω2

1 − 3ω0ω2|−144 · 3−1/2p1/2

and, again from (42),

|ω0αi| ≤ |ω0|+ |ω1|+ |ω2|+ |ω3|,
whereby

|ω0αi| ≤
23/2p1/4

33/4
+

23/2p1/4

31/4
+

22/3
(
11 + 5

√
5
)1/3

p1/2

31/2|ω0|
+

2p1/2

31/2|ω0|
,

whence we find that

|αi| ≤
3.4 p1/4

|ω0|
+

2.1 p1/2

|ω0|2
<

6.4 p1/2

|ω0|2
.

From (41), we thus have

|HF (α1, 1)| ≥ ω−2
0 (ω2

1 − 3ω0ω2)
−2min

{
ω2
0

3.2
,
|ω2

1 − 3ω0ω2|
12.8

}2

.

If |ω2
1 − 3ω0ω2| > 4ω2

0 , it follows that

|HF (α1, 1)| ≥
ω2
0

10.24 (ω2
1 − 3ω0ω2)2

and so

|HF (α1, 1)| ≥
1

10.24 (233−1/2p1/2 + 22/331/2
(
11 + 5

√
5
)1/3

p1/2)2

which implies that

(51) |HF (α1, 1)| >
1

1561 p
.
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If, conversely, |ω2
1 − 3ω0ω2| ≤ 4ω2

0 , then

|HF (α1, 1)| ≥
1

163.84ω2
0

>
1

253
√
p

and hence (51) holds in either case.
Now, if α1 �∈ R, then, via Mahler [41],

|Im(α1)| ≥
1

18
(|ω0|+ |ω1|+ |ω2|+ |ω3|)−2

>
ω2
0

738 p
,

so that ∣∣∣α1 −
u

v

∣∣∣ > ω2
0

738 p
and hence

8 = |ω0||v|3
∣∣∣α1 −

u

v

∣∣∣ ∣∣∣α2 −
u

v

∣∣∣ ∣∣∣α3 −
u

v

∣∣∣ > |ω0||v|3
(

ω2
0

738 p

)3

.

It follows that
|v| < 1476p < 2.952× 1016,

via (40). Since max{|u|, |v|} > 2128, we thus have

|u/v| > 1.15× 1022.

From

|α1| < 6.4p1/2 < 6.4
(
2× 1013

)1/2
< 3× 107,

we may thus conclude that ∣∣∣α1 −
u

v

∣∣∣ > 1.14× 1022

and so
8 ≥

(
1.14× 1022

)3
,

an immediate contradiction.
We may thus suppose that α1 ∈ R (so that α2, α3 �∈ R). It follows from Mahler

[41] that ∣∣∣αi −
u

v

∣∣∣ > ω2
0

738 p
for i ∈ {2, 3},

and so

(52)
∣∣∣α1 −

u

v

∣∣∣ < 8

|ω0||v|3

(
738p

ω2
0

)2

.

Appealing to (40) and the inequalities |α1| < 3×107 and |v| ≥ 1, we thus have that

|u/v| < 1.75× 1033 + 3× 107 < 1.76× 1033,

and so, from max{|u|, |v|} > 2128, |v| > 1.9× 105. Inequality (52) thus now implies

|u/v| < 2.6× 1017,

whence |v| > 1.3× 1021. Substituting this a third time into (52),∣∣∣α1 −
u

v

∣∣∣ < 10−30,

so that |u/v| < 3.1 × 107 and |v| > 1031. One final use of (52) thus yields the
inequality ∣∣∣α1 −

u

v

∣∣∣ < 10−59.
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Appealing to (40), (46), (50), and the fact that |α1| < 3× 107, we thus have, after
a little work,

|HF (α1, 1)−HF (u/v, 1)| < 3.4× 10−44.

With (51), this implies that

|HF (u/v, 1)| >
1

1562 p

and so

|HF (u, v)| = v2 |HF (u/v, 1)| >
v2

1562p
>

1062

3124× 1013
> 3× 1045,

as claimed. �

11. Concluding remarks

Many of the techniques of this paper can be generalized to potentially treat the
problem of determining elliptic curves of a given conductor over a number field K.
In case K is an imaginary quadratic field of class number 1, then, in fact, such
an approach works without any especially new ingredients. We will discuss this in
subsequent work.
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[53] A. Pethő, On the representation of 1 by binary cubic forms with positive discriminant, Num-
ber theory (Ulm, 1987), Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 185–
196, DOI 10.1007/BFb0086553. MR1009801

[54] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980),
no. 1, 128–138, DOI 10.1016/0022-314X(80)90084-0. MR566880

[55] K. Rubin and A. Silverberg, Mod 2 representations of elliptic curves, Proc. Amer. Math. Soc.
129 (2001), no. 1, 53–57, DOI 10.1090/S0002-9939-00-05539-8. MR1694877

[56] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1),
http://www.sagemath.org, 2018.

[57] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367–378,
DOI 10.1112/jlms/s2-10.3.367. MR0371904
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