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COMPUTING ELLIPTIC CURVES OVER Q

MICHAEL A. BENNETT, ADELA GHERGA, AND ANDREW RECHNITZER

ABSTRACT. We discuss an algorithm for finding all elliptic curves over Q with
a given conductor. Though based on classical ideas derived from reducing the
problem to one of solving associated Thue-Mahler equations, our approach, in
many cases at least, appears to be reasonably efficient computationally. We
provide details of the output derived from running the algorithm, concentrating
on the cases of conductor p or p?, for p prime, with comparisons to existing
data.

1. INTRODUCTION

A classical result of Shafarevich [58] implies that, given a fixed set of prime
numbers S, there are only finitely many Q-isomorphism classes of elliptic curves
defined over Q with good reduction outside S. In 1970, Coates [I3] proved an
effective version of this theorem, using bounds for linear forms in p-adic and complex
logarithms. Early attempts to make these results explicit, for fixed sets of small
primes, overlap with the arguments of [13], in that they reduce the problem to
solving a number of Thue-Mahler equations. These are Diophantine equations of
the form

(1) F(z,y) = u.

Here, F' is a binary form of degree 3 or greater, with integer coefficients, and u
is an S-unit—an integer whose prime factors are contained in S. The number of
solutions in relatively prime integers x and y to equation (), provided that F is
irreducible, is known to be finite, via the work of Mahler [39]. This generalizes a
classical result of Thue [66] who had proved an analogous statement for the case
of u fixed in equation (). When F' is a reducible form in Z[z,y], equation () is
typically less difficult to solve; in the context of finding elliptic curves, this situation
arises from consideration of elliptic curves with at least one nontrivial rational 2-
torsion point. The first examples where all elliptic curves E/Q with good reduction
outside a given set S were determined for S = {2,3} by Coghlan [14] and Stephens
[64] (see also [8]), and for S = {p} for certain small primes p; see, e.g., Setzer [57]
and Neumann [48]. Each of these examples corresponds, via our approach, to cases
with reducible forms. Agrawal, Coates, Hunt, and van der Poorten [I] carried out
the first analysis where irreducible forms in equation (Il) were treated to find elliptic
curves of given conductor (dealing with the case S = {11}). In this situation, the
reduction to equation ([IJ) is not particularly involved, but subsequent computations
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are quite difficult; they use arguments from [I3] and a range of techniques from
computational Diophantine approximation.

It appears that there are very few subsequent attempts in the literature to com-
pute elliptic curves of a given conductor through the solution of Thue-Mahler equa-
tions. Instead, one finds a wealth of results which approach the problem via modular
forms. This route relies upon the Modularity theorem (see Wiles [73] and Breuil,
Conrad, Diamond, and Taylor [10]), which was actually still conjectural when these
ideas were first implemented. To find all E/Q of conductor N by this method, one
computes the space of I'g(N) modular symbols and the action of the Hecke algebra
on it, and then searches for one-dimensional rational eigenspaces. After calculating
a large number of Hecke eigenvalues, one is then able to extract corresponding el-
liptic curves. For a detailed description of how this technique works, the reader is
directed to [16]. The great computational success of this approach can be primarily
attributed to Cremona (see, e.g., [I5], [16]) and his collaborators; they have devoted
many years of work to it and are responsible for the current state-of-the-art. In
particular, at the time of writing in 2017, all E/Q of conductor N < 400000 have
been determined by these methods.

In the paper at hand, we return to techniques based upon solving Thue-Mahler
equations, using a number of results from classical invariant theory. Our aim is to
give a straightforward demonstration of the link between the conductors in ques-
tion and the corresponding equations, and to make the Diophantine approximation
problem that follows as easy to tackle as possible. It is worth noting here that
these connections are quite straightforward for primes p > 3, but require careful
analysis at the primes 2 and 3. We will demonstrate our approach for a number of
specific conductors and sets S, and then focus our main computational efforts on
curves with bad reduction at a single prime (i.e., curves of conductor p or p? for
p prime). In these cases, the computations simplify significantly and we are able
to find all curves of prime conductor up to 2 x 10° (1019 in the case of curves of
positive discriminant) and conductor p? for p < 5 x 105. We then extend these
computations in the case of conductor p, for prime p < 2 x 103, and conductor p?
for prime p < 10'%. We are not, however, able to guarantee completeness for these
extended computations (we will discuss this further in what follows).

The outline of this paper is as follows. In Section 2] we discuss some basic
facts about elliptic curves, with corresponding notation. In Section [3] we review
the invariant theory of cubic forms and state our main theorem upon which our
algorithm is based. Section Hl contains the proof of this theorem. Section [l is
devoted to the actual computation of the cubic forms we require. We provide a few
examples of our approach for composite conductors in Section Specifically, we
find all elliptic curves E/Q with conductor N for

N € {399993, 999999, 999999999, 2655632887, 3305354359 }
and all £/Q with good reduction outside S, where
S=1{2,3,23} and S=1{2,3,57,11}.

These last two examples have been considered recently by other authors ([36] and
[37]), using different techniques.

The remainder of the paper is devoted to finding curves with bad reduction at
a single prime p, i.e., those of conductor N = p or p?. We indicate in Section [T
how the problem of computing elliptic curves over Q of fixed conductor simplifies
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considerably in such a situation and set the stage for our main computation. In
Section 8] we provide a variety of further details for these cases and an outline of a
heuristic approach to the problem that enables us to work with curves of quite large
conductor (allowing us to find, in all likelihood, all elliptic curves of prime conductor
p for p < 2x10'3). Here, the obstruction to a deterministic solution to our problem
for such large values of p is provided by the existence of extremely large fundamental
units in corresponding cubic fields. Section [0 contains an overview of our output,
with comparisons to previous results in the literature. Finally, in Section [0, we
provide an argument to show that any elliptic curve that has not been detected by
our “heuristic” approach corresponds to a record-setting “Hall ratio”, that is, an
example of integers x and y where the (nonzero) difference |2® — 32| is unusually
small.

2. ELLIPTIC CURVES

Our basic problem is to find a model for each isomorphism class of elliptic curves
over Q with a given conductor. Let S = {p1,po,...,pr}, where the p; are distinct
primes, and fix a conductor N = p{* ---p/* for n; € N. Any curve of conductor N
has a minimal model

E: v? +aizy + agy = 2° + axx? + aux + ag
with the a; integral and discriminant
Ap = (=1)°p]" - p}*,
where the 7; are positive integers satisfying v; > n;, for each i = 1,2,... k, and

0 €{0,1}.
Writing

by = a% + 4as, by = araz + 2a4, bg = ag + dag, c4 = bg — 24by
and
cg = —bi + 36byby — 216bg,
we have 1728Ag = ¢} — ¢2 and jg = cj/Ag. It follows that
(2) cg =ci+(=1)°F12%- 3% plt oo plt.

In fact, it is equation (2) that lies at the heart of our method (see also Cremona
and Lingham [I9] for an approach to the problem that takes as its starting point
equation (@), but subsequently heads in a rather different direction).

Let vp(z) be the largest power of a prime p dividing a nonzero integer z. Since
our model is minimal, we may suppose (via Tate’s algorithm; see, for example,
Papadopoulos [49]) that

min{3v,(ca), 2vp(c) } < 12 4 1205(2) + 6vp(3),

for each prime p, while
vp(Ng) < 24 1,(1728).

For future use, it will be helpful to have a somewhat more precise determination of
the possible values of v,(cs) and vp(cg) we encounter. We compile this data from
Papadopoulos [49] and summarize it in Tables [ 2 and Bl
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TABLE 1. The possible values of v2(cy), v2(c), v2(Ag) and vo(N).

1/2(04) UQ(CG) Z/Q(AE) Z/Q(N) V2(C4) 1/2((36) VQ(AE) Z/Q(N)
0 0 >0 | min{1,(Ag)} 5 >8 9 8
>4 3 0 0 >6 8 10 6
>4 5 4 2,3 or4 6 >9 12| 50r6
>4 >6 6 5or6 6 9 > 14 6
4 6 7 7 7 9 12 5
4 6 8 2,3 or4 >8 9 12 4
4 6 9 5 6 9 13 7
4 6|10 or 11 3or4 7 10 14 7
4 6 > 12 4 7 > 11 15 8
5 7 8 7 >8 10 14 6
>6 7 8 2,3 or4
TABLE 2. The possible values of v3(c4),v3(cs), v3(Ag) and v5(N).
I/3(C4) 1/3(06) 1/3(AE) 1/3(N) 1/3(04) 1/3(66) Vg(AE) 1/3(N)
0 0 >0 | min{1, v5(Ag)} 3] >6 6 2
1 >3 0 0 >4 ) 7 5
>2 3 3 2o0r3 >4 6 91 2o0r3
2 4 3 3 4 7 9 3
2 >5 3 2 4 >8 9 2
2 3 4 4 4 6 10 4
2 3 ) 3 4 6 11 3
2 3 >6 2 >5 7 11 )
>3 4 5 5 5 8 12 4
3 5 6 4 >6 8 13 5
TABLE 3. The possible values of v,(c4), vp(c6), Vp(Ag) and vp(N)
when p > 3 is prime and p | Ag.
Vp(ca) | vp(cs) | vp(AE) | vp(N) Vp(ca) | vp(cs) | vp(AE) | vp(N)
0 0 >1 1 2 3 > 2
>1 1 2 2 >3 4 8 2
1 >2 3 2 3 >5 9 2
>2 2 4 2 >4 5 10 2
>2| >3 6 P

3. CUBIC FORMS: THE MAIN THEOREM AND ALGORITHM

Having introduced the notation we require for elliptic curves, we now turn our
attention to cubic forms and our main result. Fix integers a, b, ¢, and d, and consider
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the binary cubic form

(3) F(z,y) = ax® + bx?y + cxy® + dy®,

with discriminant

(4) Dp = —27a%d* + b + 18abed — 4ac® — 4bd.

To any such form, we can associate a pair of covariants, the Hessian H = Hp:

1 (PF&F [ 9*F\°
H = H —_ —— —_
F(@y) 4 (83&2 0y? (89&83/) )
and the Jacobian determinant of F' and H, a cubic form G = G defined by

OFO0H O0F OH
G=Gr(z,y) = 9 0y 0y Oz

A quick computation reveals that, explicitly,

H = (b* — 3ac)z? + (be — 9ad)zy + (c* — 3bd)y?

and
G = (—27a%d+ 9abc — 2b3)x3 + (—3b%c — 27abd + 18ac?®)x?y
+(3bc? — 18b%d + 27acd)xy? + (—9bed + 2¢3 + 27ad?)y3.
These satisfy the syzygy
(5) 4H (z,y)* = G(z,y)* + 21DpF(x,y)?
as well as the resultant identities:
(6) Res(F,G) = —8D% and Res(F,H) = D%.

Note here that we could just as readily work with —G instead of G here (corre-
sponding to taking the Jacobian determinant of H and F', rather than of F' and
H). Indeed, as we shall observe in Section [54] for our applications we will, in some
sense, need to consider both possibilities.

Notice that if we set (x,y) = (1,0) and multiply through by D%/4 (for any
rational D), then this syzygy can be rewritten as

3

(D*H(1,0))® — (%G(1,0)> = 1728 D°Dr

F(1,0)2.
556 (1,0)

Given an elliptic curve with corresponding invariants ¢y, cg, and Ag, we will show
that it is always possible to construct a binary cubic form F, with corresponding
D for which

DSDrF(1,0)?

256
(and hence equation (2]) is satisfied). This is the basis of the proof of our main
result, which provides an algorithm for computing all isomorphism classes of elliptic

curves E/Q with conductor a fixed positive integer N. Though we state our result
for curves with jg # 0, the case jg = 0 is easy to treat separately (see Section

E17).

1
D*H(1,0) = ¢4, —§D3G(1,0) =cs and Ap =
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Theorem 1. Let E/Q be an elliptic curve of conductor N = 2°3° Ny, where Ny is
coprime to 6 and 0 < a < 8, 0 < B < 5. Suppose further that jg # 0. Then there
exists an integral binary cubic form F of discriminant

Dr = sign(Ag)2°°3°%0 Ny,
and relatively prime integers u and v with

(7) F(u,v) = wou® + wiu?v + wouv? + wyv® = 201 . 351 . H p"r
p|No
such that E is isomorphic over Q to Ep, where
(8) Ep : 3P/3ly2 — o3 _ 97TD?Hp(u,v)x + 27D°Gp(u,v)
and, for [r] the greatest integer not exceeding a real number r,
(9) D= H prind{[vp(ea(B)) /2] [vp (e (B))/3]}
plged(ca(E),ce(E))

The ag, a1, Po, B1, and N1 are nonnegative integers satisfying Ny | Ny,

(2,0) or(2,3) if a=0,
(3,>3) or(2,>4) if a=1,
(2.1),(4,0) or (4,1) ifa=2
(2,1),(2,2), (3,2),(4,0) o (4,1) if a =3,
(a0sa1) = 4 (2,2 0), (3,2 2),(4,0) or (4,1)  ifa=4,
(2,0) or (3,1) if a =5,
(2,>0),(3,>1),(4,0) or (4,1) if « =6,
(3,0) or (4,0) ifa=7,
(3,1) ifa=8
and
(0,0) if B=0,
_J(0,=21) or (1,=0) ifp=1,
o021 (3,00, 0.2 0) o (1,2 0) i 5 =2,
(8,0) or (5,1) if >3
The K, are nonnegative integers with
| vp(Dp) +2k if pt D,
(10) vp(Ap) = { Z/Z(Di) + 2&2 +6 ifp|D
and
(11) kp € {0,1}  whenever p* | Ny.
Further, we have
(12) if Bo >3, then 3|wy and 3 | wa,
and
(13) if vp(N) =1, forp>3, thenp| DpF(u,v).
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Here, as we shall make explicit in the next subsection, the form F' corresponding
to the curve E in Theorem [l determines the 2-division field of E. This connection
was noted by Rubin and Silverberg [55] in a somewhat different context—they
proved that if K is a field of characteristic # 2,3, F(u,v) is a binary cubic form
defined over K, E is an elliptic curve defined by y? = F(x,1), and Ey is another
elliptic curve over K with the property that E[2] = Ey[2] (as Galois modules), then
E) is isomorphic to the curve

y? =23 — 3Hp(u,v)x + Gp(u,v),

for some u,v € K. We thank the referee for bringing this paper to our attention.

3.1. Remarks. Before we proceed, there are a number of observations we should
make regarding Theorem [l

3.1.1. Historical comments. Theorem [l is based upon a generalization of classical
work of Mordell [45] (see also Theorem 3 of Chapter 24 of Mordell [46]), in which
the Diophantine equation

X?+kY?=2°

is treated through reduction to binary cubic forms and their covariants, under the
assumption that X and Z are coprime. That this last restriction can, with some
care, be eliminated, was noted by Sprindzuk (see Chapter VI of [62]). A similar
approach to this problem can be made through the invariant theory of binary
quartic forms, where one is led to solve, instead, equations of the shape

X?+kY? = 2%,
We will not carry out the analogous analysis here.

3.1.2. 2-division fields and reducible forms. It might happen that the form F' whose
existence is guaranteed by Theorem[Ilis reducible over Z[x, y]. This occurs precisely
when the elliptic curve E has a nontrivial rational 2-torsion point. This follows from
the more general fact that the cubic form F(u,v) = wou® + wiu?v + wouv? + wzv?
corresponding to an elliptic curve E has the property that the splitting field of
F(u, 1) is isomorphic to the 2-division field of E. This is almost immediate from
the identity

BV F (%_—ujwol, 1) = 23 + (Ywowz — 3wz + 27Twiws — Jwowiwa + 2w3
= 2% — 3Hp(1,0)z + Gp(1,0).

Indeed, from (), the elliptic curve defined by the equation y? = 2® — 3Hp(1,0)x +
Gr(1,0) is a quadratic twist of that given by the model y? = x3 — 27cy(E)x —
54ce(E), and hence also of E (whereby they have the same 2-division field).

3.1.3. Imprimitive forms. It is also the case that the cubic forms arising need not
be primitive (in the sense that ged(wg,wr,ws,ws) = 1). This situation can occur
if each of the coefficients of F' is divisible by some integer g € {2,3,6}. Since the
discriminant is a quartic form in the coefficients of F, for this to take place one
requires that

Dr =0 (mod g*).
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This is a necessary but not sufficient condition for the form F' to be imprimitive. It
follows, if we wish to restrict attention to primitive forms in Theorem [I] that the
possible values for v,(Dp) that can arise are

(14)

va(Dr) € {0,2,3,4}, v3(Dp) €{0,1,3,4,5} and v,(Dp) € {0,1,2} for p > 3.

3.1.4. Possible twists. We note that necessarily

(15) D[2°-3% [] p.
p|No

so that, given N, there is a finite set of Ep to consider (we can restrict our attention
to quadratic twists of the curve defined via y*> = 2® — 3Hp(1,0)x + Gr(1,0), by
squarefree divisors of 6N). In case we are dealing with the squarefree conductor
N (i.e., for semistable curves FE), then, from Tables [l Bl and Bl it follows that
D e {1,2}.

3.1.5. Necessity, but not sufficiency. If we search for elliptic curves of conductor
N, say, there may exist a cubic form F' for which the corresponding Thue-Mahler
equation (7)) has a solution, where all of the conditions of Theorem [ are satis-
fied, but for which the corresponding Ep has conductor Ng, # N for all possible
D. This can happen when certain local conditions at primes dividing 6N are not
met; these local conditions are, in practice, easy to check and only a minor issue
when performing computations. Indeed, when producing tables of elliptic curves
of conductor up to some given bound, we will, in many cases, apply Theorem [ to
find all curves with good reduction outside a fixed set of primes—in effect, working
with multiple conductors simultaneously. For such a computation, the conductor
of every twist Ep we encounter will be of interest to us.

3.1.6. Special binary cubic forms. If, for a given binary form F(z,y) = ax®+bx?y+
cxy? + dy?, 3 divides both the coefficients b and ¢ (say b = 3by and ¢ = 3cg), then
27| Dp and, consequently, we can write Dp = 27D, where

Dp = —a*d? + 6abocod + 3b2c2 — dac — 4b3d.

One can show that the set of binary cubic forms with b = ¢ = 0 (mod 3) is closed
within the larger set of all binary cubic forms in Z[z,y], under the action of either
SLa(Z) or GL2(Z). Also note that for such forms we have

ﬁF(w7y) = HF(ngy)

and Gp(z,y) = Gp(x,y)/27, so that

= (b3 — aco)x? + (boco — ad)zy + (c3 — bod)y?

Gr(z,y) = (—a2d + 3abycy — 203)x3 4 3(—b3co — abod + 2acd)x?y
+ 3(boc? — 2b3d + acod)zy? + (—3bocod + 2¢3 + ad?)y3.
The syzygy now becomes
(16) 4Hp(z,y)® = Gpl(z,y)? + DpF(z,y)?.

We note, from Theorem [I that we will be working exclusively with forms of this
shape whenever we wish to treat elliptic curves of conductor N = 0 (mod 33).
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3.1.7. The case jg = 0. This case is treated over a general number field in Propo-
sition 4.1 of Cremona and Lingham [I9]. The elliptic curves E/Q with jg = 0
and a given conductor N are particularly easy to determine, since a curve with
this property is necessarily isomorphic over Q to a Mordell curve with a model of
the shape Y2 = X3 — 54cg, where c¢g = c6(E). Such a model is minimal except
possibly at 2 and 3 and has discriminant —26 - 39 - ¢2 (whereby any primes p > 2
which divide ¢g necessarily also divide V). Here, without loss of generality, we may
suppose that cg is sixth-power-free. Further, from Tables [l 2] and [B] we have that
v (N) € {0,2,3,4,6}, that v3(N) € {2,3,5}, and that v,(N) = 2 whenever p | N
for p > 3. Given a positive integer N satisfying these constraints, it is therefore a
simple matter to check to see if there are elliptic curves E/Q with conductor N and
j-invariant 0. One needs only to compute the conductors of the curves given by
Y? = X3 — 54cg for each sixth-power-free integer (positive or negative) cg dividing
64N3.

3.2. The algorithm. It is straightforward to convert Theorem [linto an algorithm
for finding all £/Q of conductor N. We can proceed as follows.

(1) Begin by finding all E/Q of conductor N with jr = 0, as outlined in Section
B.17

(2) Next, compute GLo(Z)-representatives for every binary form F with dis-
criminant

Ap = +£2%3P0 N,

for each divisor N; of Ny, and each possible pair (ag,Sp) given in the
statement of Theorem [I] (see ([[4]) for specifics). We describe an algorithm
for listing these forms in Section

(3) Solve the corresponding Thue-Mahler equations, finding pairs of integers
(u,v) such that F(u,v) is an S-unit, where S = {p prime :p | N} U {2}
and F'(u,v) satisfies the additional conditions given in the statement of
Theorem [l

(4) For each cubic form F and pair of integers (u,v), consider the elliptic curve

By : 9y =2 —2THp(u, v)x + 27TGp(u, v)

and all its quadratic twists by squarefree divisors of 6/N. Output those
curves with conductor N (if any).

The first, second, and fourth steps here are straightforward; the first and second
can be done efficiently, while the fourth is essentially trivial. The main bottleneck
is step (3). While there is a deterministic procedure for carrying this out (see
Tzanakis and de Weger [68], [69)]), it is both involved and, often, computationally
taxing. An earlier implementation of this method in Magma due to Hambrook
[31] has subsequently been refined by the second author [28]; the most up-to-date
version of this code (which we will reference here and henceforth as UBC-TM) is
available at

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode.
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We give a number of examples of this general procedure in Section[6l In Section [7]
we show that in the special cases where the conductor is prime or the square of a
prime, the Thue-Mahler equations (7)) (happily) reduce to Thue equations (i.e., the
exponents on the right-hand side of () are absolutely bounded). This situation
occurs because, for such elliptic curves, a very strong form of Szpiro’s conjecture
(bounding the minimal discriminant of an elliptic curve from above in terms of its
conductor) is known to hold. Thue equations can be solved by routines that are
computationally much easier than is currently the case for Thue-Mahler equations;
such procedures have been implemented in Pari/GP [50] and Magma [9]. Further,
in this situation, it is possible to apply a much more computationally efficient
argument to find all such elliptic curves heuristically but not, perhaps, completely
(see Section [{).

4. PROOF OF THEOREM [II

Proof. Given an elliptic curve E/Q of conductor N = 2°3°N, and invariants
¢y = c4(F) # 0 and ¢g = c(F), we will construct a corresponding cubic form
F explicitly. In fact, our form F' will have the property that its leading coefficient
will be supported on the primes dividing 6V, i.e., that

F(1,0) =235 I p.
p|No

Define D as in (@), i.e., take D to be the largest integer whose square divides ¢4
and whose cube divides cg. We then set

X =¢;/D? and Y =¢g/D?,
whereby, from (),
(17) V2= X34 (-1 M
for
M =D"°%.20.3%.|Ag|.

Note that the assumption that c4(F) # 0 ensures that both the j-invariant jg # 0
and that X # 0.

It will prove useful to us later to understand precisely the possible common
factors among X, Y, D, and M. For any p > 3, we have v,(N) < 2. When v,(N) =
1, from Table 3] we find that

(18) (vp(D), vp(X), vp(Y), vp(M)) = (0,0,0, = 1),
while, if v,(N) = 2, then either
(19) vp(D) =1 and min{v,(X),v,(Y)} =0, v,(M) =0

(20)
vp(D) <1, (vp(X),vp,(Y),vp,(M)) =(0,0,> 1), (> 1,1,2),(1,> 2,3) or (>2,2,4).

Things are rather more complicated for the primes 2 and 3; we summarize this in
Tables @] and [ (which are, in turn, compiled from the data in Tables [l and [2I).
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TABLE 4. The possible values of vo(N), v2(X), v2(Y), (M) and v2(D)

V2(N) (V2(X)’V2(Y)’V2(M)7V2(D))
0 | (>2,0,0,1) or (0,0,6,0)
1 |(0,0,>7,0)
2 | (>2,2,4,1),(>2,1,2,2) or (0,0,2,2)
3 (>2,2,4,1),(>2,1,2,2) or (0,0,£,2),t = 2,4 or 5
4 | (>2,2,4,1),(>2,1,2,2),(>2,0,0,3) or (0,0,£,2),t =2 ort >4
5 | (>0,>0,0,2),(0,>0,0,3),(0,0,3,2) or (1,0,0,3)
6 | (>0,>0,0,2),(0,>0,0,3),(>224,2),(>21,2,3) or (0,0,>2,3)
7 1(0,0,1,2),(0,0,1,3),(1,1,2,2) or (1,1,2,3)
8 [(1,>2,3,2)0r(1,>23,3).

TABLE 5. The possible values of v3(N), v3(X),v3(Y),v3(M), and v3(D)

v3(N) | (na(X), v3(Y),v3(M), 3(D))
0 (1,> 3,3,0) or (0,0, ,0)
1 (0,0,>4,0)
2 (>0,0,0,1),(0,>2,0,1),(0,0,> 3,1),(1,> 3,3,1),(> 0,0,0,2) or (0,>2,0,2)
3 (>0,0,0,1),(>0,0,0,2),(0,1,0,1),(0,1,0,2),(0,0,2,1) or (0,0,2,2)
4 (0,0,1,1,( ,071,2),(1,2,3,1)01“( ,2,372)
5 (Z 1, 1,2,1)7 (Z 1,1,2,2),(2 2,274,1) or (> 272,4,2)

We will construct a cubic form
Fi(2,y) = az® + 3boxy + 3cowy® + dy?,

one coefficient at a time; our main challenge will be to ensure that the a, by, ¢y and
d we produce are actually integral rather than just rational. The form F whose
existence is asserted in the statement of Theorem [[]will turn out to be either F} or
F/3.

Let us write

M = My - Ms,
where M is the largest integer divisor of M that is coprime to X, so that

M, = H pr(M) and M, = H pr(M)_

p|X ptX

We define

vp(M)—1
(21) a; = H p{ ]

p| My
and set
o]
(22) 4y = 37 [ Pt 2 ifv3(X) =0, v3(M)=2t, t € Z,t > 2,
= vp (M)
[, P ] otherwise.
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Define a = a; - ap. It follows that a? | M; and, from (X)), (I3), ([20), and Tables &
and Bl that both
a1 | X and a?|Y.

We write X = a; - X7 and observe that a% | Ms. Note that ao is coprime to X and
hence to a;. Since a? | M, we may thus define a positive integer K via K = M/a?,
so that (I7) becomes

Y2 _ X3 _ (—1)6+1KCL2.
From the fact that ged(az, X) =1 and X # 0, we may choose B so that
asB = —Y/a; (mod X?),

whereby
(23) aB+Y =0 (mod a; X?).
Note that, since a? | Y and a; | X, it follows that a; | B. Let us define
B+Y b2 — X boco — 2B
(24) bO:a + . co=-2—"_ and d= 00" =2
X a a

We now demonstrate that these are all integers. That by € Z is immediate from
[@3). Since bpX —Y = aB, we know that bpX =Y (mod a). Squaring both sides
thus gives
BX?2=Y?= X%+ (-1)°"'Ka® = X3 (mod a; - as),
and, since ged(ag, X) = 1,
b = X (mod ay).
From (23)), we have by = 0 (mod a1 X?), whereby, since a; | X,
b2 =X =0 (mod ay).

The fact that ged(ag, as) = 1 thus allows us to conclude that b3 = X (mod a) and
hence that ¢y € Z.
It remains to show that d is an integer. Let us rewrite ad as

aB+Y aB+Y 2
d=bycy — 2B = -X|-2B
oo =28 = (20 (25) - x) -2»

so that st o -
aB+Y)\ [((-1)°"'Ka? + 2aBY + a*’B
i (P (P _a
Expanding, we find that
(25) X3d = (-1)°"'KY 4+ 3YB% 4+ aB3 + (-1)°"'3KaB.

We wish to show that
(-1’ KY +3YB? + aB® + (-1)°"'3KaB = 0 (mod X?).
From (23), we have that
(-1)°"'KY +3YB? +aB* + (-1)°"'38KaB = 2Y (B* + (-1)°K) (mod a; X?).

Multiplying congruence [23]) by aB—Y (which, from our prior discussion, is divisible
by a?), we find that

a®?B?>=Y?= X3+ (-1)°"'Ka? (mod a$ X?)
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and hence, dividing through by a?,
a2B? = a, X} + (—1)°" Ka2 (mod a3 X?).
It follows that
(26) B% 4 (-1)°K = a3 %a; X} (mod a; X?),
and so, since a? | Y,
Y (B?+ (-1)°K) =0 (mod X?),
whence we conclude that d is an integer, as desired.

With these values of a, by, ¢o, and d, we can then confirm (with a quick compu-
tation) that the cubic form

Fi(z,y) = ax® + 3box?y + 3coxy® + dy?
has discriminant

Dp, = —(X?-Y?)=(-1)°-22.3% . K.

a?
We also note that
Fi(1,0) = a, Hp,(1,0)=b2 —aco=X
and
—%ém(l, 0) = %(a2d — 3aboco + 2b3) =Y,
where ép and fIF are as in Section
Summarizing Table [ we find that we are in one of the following four cases:
(i) v3(X) =1, 15(Y) =2, v3(M) =3, and v3(N) =4,
(i) 3(X) > 2, 15(Y) =2, v3(M) =4, v3(N) =5,
(iii) v3(M) <2 and v5(N) > 2, or
(iv) v3(M) > 3 and either v3(XY) =0or v3(X) =1, v5(Y) > 3.
In cases (i), (ii), and (iii), we choose F' = F7, i.e.,
(wo, w1, ws,ws) = (a,3bg, 3¢, d),
so that
F(1,0) =a, Dp=(-1)°2%-3%-K, ¢, = D*Hp(1,0) and cg = —%D3ép(1,0).
It follows that E' is isomorphic over QQ to the curve
y? =23 — 2Tcqx — 54cg = 2 — 3D*Hp(1,0)z + D3Gr(1,0).
In case (iv), observe that, from definitions (21 and ([22),

(27) () = | 2D

so that 3 | @ and 3 | K. From equation (25)), 3 | X3d. If v3(X) = 0 this implies
that 3 | d. On the other hand, if v3(X) = 1, then, from (26]), we may conclude that
3 | B. Since each of a, B and K is divisible by 3, while v3(X) =1 and v3(Y) > 3,
equation (25) once again implies that 3 | d. In this case, we can therefore write
a = 3ag and d = 3dy, for integers ag and dy and set F' = F;/3, i.e., take

} and v3(K) =v3(M) — 2v3(a),

(wo, w1, w2, ws) = (ag, bo, co, do)-
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We have
1

F(1,0) = a/3, Dp = (-1)°2*.K/3, ¢y = D?H(1,0) wdcwriﬁWﬂLm
The curve FE is now isomorphic over Q to the model

y* = 2% — 27cyx — Hdeg = 2° — 2TD*Hp(1,0)x + 27D*Gp(1,0).

Since |Dp|/Dp = (—1)? and K | 1728A g, we may write
F(1,0)=2 3% [[ p™» and Dp = (|Ap|/Ag)2°°37 Ny,
p|No
for nonnegative integers oy, a1, Bo, 81, kp and a positive integer Ny, divisible only
by primes dividing Ng. More explicitly, we have
_ _ 3 in case (i), (ii) or (iii), or
a0 =vo(K)+2 and fo =vs(K)+ { —1 in case (iv),

and
0 in case (i), (ii) or (iii), or

o1 =vp(a) and i =wvs(a) + { —1 in case (iv).

It remains for us to prove that these integers satisfy the conditions listed in the
statement of the theorem. It is straightforward to check this, considering in turn
each possible triple (X,Y, M) from ([I8)), (I9), (20), and Tables @l and Bl and using
the fact that K = M/a?.

In particular, if p > 3, we have v,(Ag) = 6v,(D) + v,(Dr) + 2k,. From Table
Bland (@), we have v,(D) < 1, whereby (I0) follows. Further,

(29) W[ ] X
28 vpla) = y )
LQO] - ipt X,

and so, if pt X,
vp(M) = 2v,(a) < 1.
Since a?K = M, if p? | D, then v,(N) = 2 and it follows that we are in case (20),
with p | X. We may thus conclude that v,(M) € {2,3,4} and hence, from 28],
that v,(a) < 1. This proves ().
For ([I2), note that, in cases (i), (ii), and (iii), we clearly have that 3 | wy and
3| we. In case (iv), from (27)),

Bo = v3(Dp) = v3(K) — 1 = vy (M) — 2 {%} ~1e{0,1}.

Finally, to see (I3), note that if v,(N) = 1, for p > 3, then we have (I8) and hence
vp(Dr) + 2vp(F (u,v)) = vp(M) = 1,

whereby p | Dg or p | F(u,v). We may also readily check that the same conclusion
obtains for p = 3 (since, equivalently, Sy + 1 > 1). This completes the proof of
Theorem [1 |

To illustrate this argument, suppose we consider the elliptic curve (denoted 109al
in Cremona’s database) defined via

E : +ay=a>—2>—-8z—7,
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with Ag = —109. We have
cy(E) =393 and cg(F) = 7803,
so that ged(ca(FE), cs(E)) = 3. Tt follows that
D=1, X =393, Y =7803, § =1, M =25.3%.109,
and hence we have
M, =33 My, =2%-109, a1 =3, as =23, a=2%-3, and K =3-109.

We solve the congruence 8B = —2601 (mod 393?) to find that we may choose
B = 7586982, so that

bo = 463347, co = 8945435084 and d = 172701687278841.
We are in case (iv) and thus set
F(z,y) = 82° + 46334722y + 8945435084212 + 57567229092947>,
with discriminant Dp = —4 - 109,
Gr(1,0) = —15606 = —2¢6(E) and Hp(1,0) = 393 = c4(E).
The curve E is thus isomorphic to the model
(29) Ep : y? =23 —2TD*Hp(1,0)x +27D3Gp(1,0) = 2° — 10611z — 421362.

We observe that the form F' is GLg(Z)-equivalent to a “reduced” form (see
Section [l for details), given by

F(z,y) = 2° + 3%y + 4ay® + 6°.

In fact, this is the only form (up to GLa(Z)-equivalence) of discriminant +4 - 109.
We can check that the solutions to the Thue equation F(u,v) = 8 are given by
(u,v) = (2,0) and (u,v) = (=7,3). The minimal quadratic twist of

y? =23 — 2THz(2,0)x + 27G 5(2,0)

has conductor 2° - 109 and hence cannot correspond to E. For the solution (u,v) =
(—7,3), we find that the curve given by the model

y? =2 — 2TH(—=7,3)x 4+ 27G 5(~7,3) = 2° — 10611z + 421362,

is the quadratic twist by —1 of the curve [29). This situation arises from the fact
that G is an SLg(Z)-covariant, but not a GLg(Z)-covariant of F' (we will discuss
this more in the next section).

5. FINDING REPRESENTATIVE FORMS

As Theorem [I] illustrates, we are able to tabulate elliptic curves over Q with
good reduction outside a given set of primes, by finding a set of representatives for
GL2(Z)-equivalence classes of binary cubic forms with certain discriminants, and
then solving a number of Thue-Mahler equations. In this section, we will provide
a brief description of techniques to find distinguished reduced representatives for
equivalence classes of cubic forms over a given range of discriminants. For both
positive and negative discriminants, the notion of reduction arises from associating
a particular definite quadratic form to a given cubic form.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1356 M. A. BENNETT, A. GHERGA, AND A. RECHNITZER

5.1. Irreducible forms. For forms of positive discriminant, there is a well devel-
oped classical theory of reduction dating back to work of Hermite [33], [34] and,
later, Davenport (see, e.g., [20], [2I], and [23]). We can actually apply this method
to both reducible and irreducible forms. Initially, though, we will assume the forms
are irreducible, since we will treat the elliptic curves corresponding to reducible
forms by a somewhat different approach (see Section [£.2]). Note that when one
speaks of “irreducible, reduced forms”, as Davenport observes, “the terminology is
unfortunate, but can hardly be avoided” ([22], p. 184).

In each of Belabas [3], Belabas and Cohen [4], and Cremona [I7], we find very
efficient algorithms for computing cubic forms of both positive and negative dis-
criminant, refining classical work of Hermite, Berwick and Mathews [42], and Julia
[35]. These are readily translated into computer code to loop over valid (a, b, ¢, d)-
values (with corresponding forms ax®+bx?y+cry?+dy?®). The running time in each
case is linear in the upper bound X. Realistically, this step (finding representatives
for our cubic forms) is highly unlikely to be the bottleneck in our computations.

5.2. Reducible forms. One can make similar definitions of reduction for reducible
forms (see [5] for example). However, for our purposes, it is sufficient to note that
a reducible form is equivalent to
F(x,y) = bxy + cxy® + dy® with 0<d<ec,
which has discriminant
Ap = b*(c? — 4bd).

To find all elliptic curves with good reduction outside S = {p1,pa,...,pr}, cor-
responding to reducible cubics in Theorem/[] (i.e., those F with at least one rational
2-torsion point), it is enough to find all such triples (b, ¢, d) for which there exist
integers x and y so that both

b2(c? —4bd) and b’y + cxy® + dy?

are S*-units (with S* = S U {2}). For this to be true, it is necessary that each of
the integers

b, ¢ —4bd, y, and p=bx?+ cxy + dy*
is an S*-unit. Taking the discriminant of y as a function of x, we thus require that

(30) (¢ — 4bd)y? + 4by = 72,
for some integer Z. This is an equation of the shape
(31) X+Y =22

in S*-units X and Y.

An algorithm for solving such equations is described in detail in Chapter 7 of
de Weger [71] (see also [72]); it relies on bounds for linear forms in p-adic and com-
plex logarithms and various reduction techniques from Diophantine approximation.
An implementation of this is available at

http://wuw.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode.

While a priori equation (BI]) arises as only a necessary condition for the existence
of an elliptic curve of the desired form, given any solution to (3I)) in S*-units X
and Y and integer Z, the curves

Ey(X,)Y) : =23+ Z2® + %x
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and
2 3 2, Y
E)X)Y) : y* =2+ Zz*+ 77
have nontrivial rational 2-torsion (i.e., the point corresponding to (z,y) = (0,0))
and discriminant X2Y and XY?2, respectively (and hence good reduction at all
primes outside S*).

Though a detailed analysis of running times for solving equations of the shape
@), or for solving more general cubic Thue-Mahler equations, has not to our
knowledge been carried out, our experience from carrying out such computations
for several thousand sets S is that, typically, the former can be done significantly
faster than the latter. By way of example, solving BI]) for S = {2,3,5,7,11} takes
only a few hours on a laptop, while treating the analogous problem of determining
all elliptic curves over Q with trivial rational 2-torsion and good reduction outside
S (see Section [6.4]) requires many thousand machine-hours.

5.3. Computing forms of fixed discriminant. For our purposes, we will typi-
cally compute and tabulate a large list of irreducible forms of absolute discriminant
bounded by a given positive number X (of size up to 10'? or so, beyond which
storage becomes problematical). In certain situations, however, we will want to
compute all forms of a given fixed, larger discriminant (perhaps up to size 101°).
To carry this out and find desired forms of the shape az® + bz2y + cxy? + dy>, we
can argue as in, for example, Cremona [I7], to restrict our attention to O(X?>/%)
triples (a, b, c¢). From (@), the definition of Dp, we have that

g 9abe — 2b% + \/4(b? — 3ac)® — 27a2Dp
B 27a>
and hence it remains to check that the quantity 4(b? —3ac)® —27a%Dr is an integer
square, that the relevant conditions modulo 27a? are satisfied, and that a variety
of further inequalities from [I7] are satisfied. The running time for finding forms
with discriminants of absolute value of size X via this approach is of order X3/4.

5.4. GL3(Z) vs SL2(Z). One last observation which is very important to make
before we proceed, is that while G% is GLg(Z)-covariant, the same is not actually
true for G (it is, however, an SLo(Z)-covariant). This may seem like a subtle point,
but what it means for us in practice is that, having found our GL2(Z)-representative
forms F' and corresponding curves of the shape Ep from Theorem [Il we need, in
every case, to also check to see if

Ep + 3Bo/3ly2 — 23 _ 2TD*Hp(u,v)x — 27D3Gr(u,v),

the quadratic twist of Ep by —1, yields a curve of the desired conductor.

6. EXAMPLES

In this section, we will describe a few applications of Theorem [l to computing
all elliptic curves of a fixed conductor N, or all curves with good reduction outside
a given set of primes S. We restrict our attention to examples with composite
conductors, since the case of conductors p and p?, for p prime, will be treated at
length in Section [7] (and subsequently). For the examples in Sections [6.1] 62T
6221 and since the conductors under discussion are not “square-full”, there
are necessarily no curves F encountered with jp = 0.
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In our computations in this section, we executed all jobs in parallel via the shell
tool [65]. We note that our Magma code lends itself easily to parallelization, and
we made full use of this fact throughout.

We carried out a one-time computation of all irreducible cubic forms that can
arise in Theorem [ of an absolute discriminant bounded by 10!°. This computa-
tion took slightly more than 3 hours on a cluster of 40 cores; roughly half this time
was taken up with sorting and organizing output files. There are 996198693 classes
of irreducible cubic forms of positive discriminant and 3079102475 of negative dis-
criminant in the range in question; storing them requires roughly 120 gigabytes.
We could also have tabulated and stored representatives for each class of reducible
form of absolute discriminant up to 10'°, but chose not to since our approach to
solving equation (BII) does not require them.

6.1. Cases without irreducible forms. We begin by noting an obvious corollary
to Theorem [[lthat, in many cases, makes it a relatively routine matter to determine
all elliptic curves of a given conductor, provided we can show the nonexistence of
certain corresponding cubic forms.

Corollary 2. Let N be a squarefree positive integer with ged(N,6) = 1 and sup-
pose that there do not exist irreducible binary cubic forms in Zlz,y] of discriminant
+4Ny, for each positive integer N1 | N. Then every elliptic curve over Q of con-
ductor Ny, for each N1 | N, has nontrivial rational 2-torsion.

We will apply this result to a pair of examples (chosen somewhat arbitrarily).
Currently, such an approach is feasible for forms of absolute discriminant (and hence
potentially conductors) up to roughly 10'°. We observe that, among the positive
integers N < 10® satisfying

ve(N) <8, v3(N)<5 and v,(N)<2 for p>3,

i.e., those for which there might actually exist elliptic curves FE/Q of conductor N,
we find that 708639 satisfies the hypotheses of Corollary

It is somewhat harder to modify the statement of Corollary 2 to include reducible
forms (with corresponding elliptic curves having nontrivial rational 2-torsion). One
of the difficulties one encounters is that there actually do exist reducible forms of,
by way of example, discriminant 4p for every p = 1 (mod 8); writing p = 8k + 1,
for instance, the form

F(z,y) = 2a%y + ay® — ky®

has this property.

6.1.1. Conductor 2655632887 = 31 - 9007 - 9511. In the notation of Theorem [I we
have o = f = 0 and hence oy = 2 and Sy = 0, so that, in order for there to be
an elliptic curve with trivial rational 2-torsion and this conductor, we require the
existence of an irreducible cubic form of discriminant 4N; where N7 | 31-9007-9511,
i.e., discriminant +4 - 31° - 9007% - 9511% for 6; € {0,1}. We check that there
are no such forms, directly from our table of forms, except for the possibility of
Dp = +4-31-9007 - 9511, which exceeds 10'° in absolute value. For these latter
possibilities, we argue as in Section to show that no such forms exist. We may
thus appeal to Corollary

For the possible cases with rational 2-torsion, we solve X +Y = Z? with X and
Y S-units for S = {2,31,9007,9511}. The solutions to this equation with X > Y,
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Z >0, and ged(X,Y) squarefree are precisely those with
(X,Y) = (2,-1),(2,2), (8,1), (32, —31), (62, 2), (256, —31), (961, 128),
(992, —31), (3968, 1), (76088, —9007), (204841, 8) and (492032, —9007).

A short calculation confirms that each elliptic curve arising from these solutions via
quadratic twist has bad reduction at the prime 2 (and, in particular, cannot have
conductor 2655632887). There are thus no elliptic curves over Q with conductor
2655632887. Observe that these calculations in fact ensure that there do not exist
elliptic curves over Q with conductor dividing 2655632887.
Full computational details are available at
http://www.nt.math.ubc.ca/BeGhRe/Examples/2655632887-data.

We should observe that it is much more challenging computationally to try to
extend this argument to tabulate curves E with good reduction outside S =
{31,9007,9511}. To do this, we would have to first determine whether or not there
exist irreducible cubic forms of discriminant, say, Dp = £4 - 312 - 90072 - 95112 >
2.8 x 10'. This appears to be at or beyond current computational limits.

6.1.2. Conductor 3305354359 = 41-409-439-449. For there to exist an elliptic curve
with trivial rational 2-torsion and conductor 3305354359, we require the existence
of an irreducible cubic form of discriminant 44 - 41°1 . 409% . 439% . 449%  with
0; € {0,1}. We check that, again, there are no such forms (once more employing
a short auxiliary computation in the case Dp = +4 - 41 - 409 - 439 - 449). If we
solve X +Y = Z? with X and Y S-units for S = {2,41,409, 439,449}, we find that
the solutions to this equation with X > Y, Z > 0 and ged(X,Y) squarefree are
precisely:
(X,Y) = (2,-1),(2,2), (8,1), (41, —16), (41, —32), (41, 8), (82, —1), (128, 41),
409, —328), (409, 32), (439, 2), (449, —328), (449, —8), (512, 449),
818, 82), (898, 2), (3272, 449), (3362, 2), (7184, 41), (16769, —128),
16769, —14368), (18409, —16384), (33538, —18409), (36818, 818),
41984, 41), (68921, —57472), (183641, —1312), (183641, —56192),
183641,41984), (359102, 898), (403202, —33538), (403202, —359102),
403202, 17999), (737959, 183641), (754769, —6544), (6858521, —919552),
8265641, —16), and (7095601778, —5610270178).

e N e T e e T

Once again, a short calculation confirms that each elliptic curve arising from these
solutions via twists has even conductor. There are thus no elliptic curves over Q
with conductor 3305354359.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/3305354359-data.
6.2. Cases with fixed conductor (and corresponding irreducible forms).

6.2.1. Conductor 399993 = 3-11-17 - 23 - 31. We next choose an example where
full data is already available for comparison in the LMFDB [3§]. In particular,
there are precisely 10 isogeny classes of curves of this conductor (labelled 399993a
to 399993; in the LMFDB), containing a total of 21 isomorphism classes. Of these,
7 isogeny classes (and 18 isomorphism classes) have nontrivial rational 2-torsion.
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According to Theorem [ the curves arise from consideration of cubic forms
of discriminant discriminant +4K, where K | 3-11-17-23 - 31. The (reduced)
irreducible cubic forms F'(u, v) of these discriminants are as follows, where F(u,v) =
w0u3 + w1u2v + wguv2 + w3v3:

(wo, w1, w2, ws) Dr (wo, w1, w2, ws3) Dr
1,1,13) —41-3-17 (2.4, -6, -3) 1.3-17-23
(1,2,2,2) 411 (2,5,2,6) —4.3.17-23
(1,2,2,6) 41117 (3,3, -8,-2) 4.3.23-31

(1,4,-16,-2)  4-11-17-31 (3,3,44,66) —4-3-11-17-23-31

(1,8,-2,42) —4-3-17-23-31| (3,4,10,14) —4.11-23-31

(1,11,-12,-6) 4-3-11-17-31 (3,7,5,7) —4.3.23.31
(2,0,7,1) —4.923-31 (4,17,10,28)  —4-11-17-23-31

(2,1,14,-2) —4-11-17-31
In each case, we are thus led to solve the Thue-Mahler equation
(32) F(u,v) = 2303P111m117m17 32831 "a1

where ged(u,v) = 1, § € {0,1} and B4, K11, K17, kes and k31 are arbitrary non-
negative integers. Applying ([I3)), in order to find a curve of conductor 399993, we
require additionally that, for a corresponding solution to (B32)),

(33) F(u,v) Dp =0 (mod 3-11-17-23-31).

We readily check that the congruence F'(u,v) = 0 (mod p) has only the solution
u = v = 0 (mod p) for the following forms F and primes p (whereby (B3] cannot
be satisfied by coprime integers u and v for these forms):

(wo, w1, w2, ws) p (wo, w1, w2, ws) p
(1,1,1,3) 11,23 (2,0,7,1) 3,17
(1,2,2,2) 3,23,31 (2,5,2,6) 11,31

(1,4,-16,-2) 3,23 (3,3,-8,-2) 11

(1,8,—2,42) 11 (4,17,10,28) 3

(1,11, -12,-6) 23

For the remaining 6 forms under consideration, we appeal to UBC-TM. The only
solutions we find satisfying ([B3)) are as follows:

(wo, w1, wa, w3) (u,v)
1,2,2,6) (—1851,892), (14133, —3790)
(2,1,14, -2) (13, —5), (—29, —923)
(2,4, -6,-3) (10, —3), (64, 49), (—95, 199), (—3395, 1189),
(3677, —1069), (5158, 4045), (—23546, 57259), (—77755, 30999)
(3,3, 44, 66) (1,0), (1,2), (—3,4), (3, —2), (—11,9), (25, -3),
(231,2), (—317, 240), (489, 61), (1263, —878), (6853, —4119)
(3,7,5,7) (1,12), (~29, 26), (78, 1), (423, —160)
(3, 4,10, 14) (—41,84), (95, —69), (307, 90)

From these, we compute the conductors of Ep in (), where D € {1, 2}, together
with their twists by —1. The only curves with conductor 399993 arise from the
form F with (wg, w1, ws,ws3) = (2,4, —6,—3) and the solutions

(u,v) € {(10,—3), (5158,4045), (—23546, 57259)} .
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In each case, D = 2. The solution (u,v) = (10, —3) corresponds to, in the notation
of the LMFBD, curve 399993.j1, (u,v) = (5158,4045) to 399993.i1, and (u,v) =
(—23546,57259) to 399993.h1. Note that every form and solution we consider leads
to elliptic curves with good reduction outside {2, 3,11, 17,23, 31}, just not necessar-
ily of conductor 399993. By way of example, if (wp, w1, ws,ws) = (2,4, —6,—3) and
(u,v) = (=77755,30999), we find curves with minimal quadratic twists of conductor

25.3.11-17-23-31 = 2° - 399993.

To determine the curves of conductor 399993 with nontrivial rational 2-torsion,
we are led to solve the equation X +Y = Z? in S-units X and Y, and integers Z,
where S = {2,3,11,17,23,31}. We employ Magma code available at

http://nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode

to find precisely 2858 solutions with X > |Y| and ged(X,Y') squarefree (this com-
putation took slightly less than 2 hours). Of these, 1397 have Z > 0, with Z largest
for the solution corresponding to the identity

48539191572432 — 40649300451407 = 2* - 3% . 11 - 237 — 17° - 31° = 28088952.

As in subsection [£.2] we attach to each solution a pair of elliptic curves F;(X,Y)
and F5(X,Y). Of these, the only twists we find to have conductor 399993 are the
quadratic twists by t of E;(X,Y) given in the following table. Note that there is
some duplication—the curve labelled 399993.f2 in the LMFDB, for example, arises
from three distinct solutions to X +Y = Z2:

X Y E;i |t LMFDB X Y Ei |t LMFDB
16192 —4743 | By | =1 | 399993.92 || 534336 | —506447 | Ey | 2 | 399993.e1
16192 —4743 | Eo | 2 | 399993.91 || 1311552 —527 E; | 1 ]399993.a2
23529 18496 | By | —2 | 399993.f2 || 1311552 —527 Es | =21 399993.a1

23529 18496 | Eo | 1 |399993.f3 || 1414017 | —1045568 | Eq | 2 | 399993.62
116281 | —75072 | Ey | 2 | 399993.f4 || 1414017 | —1045568 | Eo | —1 | 399993.b1
116281 | —75072 | Ep | —1 | 399993.f2 || 6305121 | 3027904 | E; | 2 | 399993.c1
371008 4761 Ei | 1 |399993.f2 | 6305121 | 3027904 | E5 | —1 | 399993.c2
371008 4761 Ey | —2|399993.f1 || 6988113 18496 Ei| 2 | 399993.c2
519777 | —131648 | By | 2 | 399993.d2 || 6988113 18496 Ey | =1 399993.c3
519777 | —131648 | E5 | —1 | 399993.d1 || 7745089 | —2731968 | E1 | 2 | 399993.c4
534336 | —506447 | By | —1 | 399993.e2 || 7745089 | —2731968 | Ey | —1 | 399993.c2

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/399993-data.

6.2.2. Conductor 105 — 1. We next treat a slightly larger conductor, which is not
available in the LMFDB currently (but probably within computational range). We
have

10—-1=3%.7-11-13-37.

From Theorem [Il we thus need to consider binary cubic forms F(u,v) = wou® +
w1tV 4+ weuv? + w33 of discriminant Dy = +£108N;, where N; | 7-11-13-37 and
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w1 =wg =0 (mod 3). The irreducible forms of this shape are as follows:
(wo, w1, w2, w3) Dr D (wo, w1, wa,w3) Dr P
(1,0,-6,-2) 108 -7 37 (2,3,—-78,—26) 108-7-11-13-37  none
(1,0,21,16) —108 - 11 - 37 7,13 (2,3,6,3) —-108-7 11,37
(1,0,30,2)  —108-7-11-13  none (2,3,6,8) ~108- 37 7
(1,3,3,3) ~108 7,13,37 | (2,6,—-12,1) 108-11-13 7
(1,3,6,16) —108 - 37 7 (2,6,21,88) —108-11-13-37 none
(1,3,12,26) —108-7-13 none (2,12,0,13) —108-7-11-13 none
(1,3,33,117) —108-7-11-37  none (2,21,-6,80) —108-7-11-13-37 none
(1,6,-36,-34) 108-7-13-37 11 (3,3,18,20) ~108-7-11-13  none
(1,6,3,6) ~108 - 37 7 (4,6,15, 14) ~108-13-37 11
(1,6,9, 26) ~108-11-13  none | (5,6,27,14) ~108-7-11-37  none
(1,9,0,74)  —108-7-13-37  none (5,9,3,21) ~108-7-11-37  none
(1,12,12,14)  —108-13-37 11 (7,0, 12, 14) —~108-7-11-37  none
(2,0,-18,~5)  108-11-37 13 | (10,3,42,-16) —108-7-11-13-37 none
(2,0,3,3) ~108-11 7,37 | (10,6,12,3) ~108-13 - 37 none
(2,0,15,3) ~108-7-37 11,13 | (11,6,12,6) ~108-7-11-13  none
(2,0,18,7) ~108-13-37 11 (21,12,27,20) —108-7-11-13-37 none

Here, we list primes p for which a local obstruction exists modulo p to finding
coprime integers u and v satisfying ([I3]). It is worth noting at this point that the
restriction to forms with wy = ws = 0 (mod 3) that follows from the fact that we
are considering a conductor divisible by 3 is a helpful one. There certainly can and
do exist irreducible forms F' with 108 | D that fail to satisfy w; = ws = 0 (mod 3).

We are thus left to treat 17 Thue-Mahler equations which we solve using UBC-
TM; see

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999-data

for computational details. From (I3]), we require that
DpF(u,v) =0 (mod 7-11-13 - 37);

the only solutions we find satisfying this constraint are as follows:

(wo, w1, wa, w3) (u,v)
(1,0,30,2) (—1,21), (1, 16), (27, 25)
(1,3,33,117) (26, —7)
(1,9,0,74) (—19,2)
(2,3,-78,-26) | (—1,3),(=3,2),(=5,—1),(9, —1), (13,2), (—17, —58), (—39, —61),
(=57, —10), (—59,9), (65, —6), (79, —330), (159, —23)
(2,6,21,88) (3,1), (165, —43)
(2,12,0,13) (—1,9), (18,23)
(27217_6780) (1’_10) ( )7( ’ )7( 1)7(177 1)7
(19, -5), (21, -2), (138, —11), (1356, —127)
(3,3, 18, 20) (9,13), (97 —12)
(5,6,27,14) (14,1), (19,6), (—21, 44)
( ) 73721) ( )7(671)7( ) (76497284)3(10777 7464)

(7a07 12714) ( ) )7( ) (301 _62)7(_4597553)
(10,3,42,—16) | (1,1),(1,2),(2, 1), (3, 1) (4,—17), (20,19), (—22, —69), (127, 339)
(10,6,12,3) (2,—1), (5, —13), (—12,83), (—24,89), (81, 107), (125, —437)

(11,6,12,6) (—1,22), (47, —72), (223, —429)
(21,12, 27,20) (1,-3),(1,0), (1,5), (4, —9), (4,3), (9, —29),
(19, —15), (29, —40), (316, —455), (551, —805)
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The only ones of these for which we find an Ep in (8) of conductor 999999 are
as follows, where Ep is isomorphic over Q to a curve with model

y2 + a1y +asy = x> + aQ:EQ + agx + ag.

(wo, w1, wa, w3) (u,v) D la| ax | as a4 ag
(1,0,30,2) 27,25) | 6 | 0] 0 | 1] —4039% 5402579
(1,0,30,2) (27,25) 210 0 1 —363555 —145869640
(5,6,27,14) (14,1) 1|1 |=1]|o0]| 14700 55223
(5,6,27,14) (14,1) | -3|1|-1]1 1633 —92590
(5,9,3,21) (-1,2) | 60|01 30 9954
(5,9,3,21) (-1,2) | —2l0o0 |1 270 — 60865
(10,6,12,3) | (125,—437) | 2 | 0 | 0 | 1 | —17205345 | 27554570341
(10,6,12,3) | (125,—437) | =6 | 0 | 0 | 1 | —1911705 | 1020539642

(21,12, 27,20) (4,3) |—1|1|-1]0]| 12432 —164125

(21,12, 27, 20) (4,3) 301 ]-1]1 1381 5618

Each of these listed curves has trivial rational 2-torsion. To search for curves of
conductor 999999 with nontrivial rational 2-torsion, we solve the equation X +Y =
Z? in S-units X and Y, and integers Z, where S = {2,3,7,11,13,37}. We find that
there are precisely 4336 solutions with X > |Y| and ged(X,Y') squarefree. Of these,
2136 have Z > 0, with Z largest for the solution corresponding to the identity

103934571636753 — 68209863326528 = 3'° . 11-13- 373 — 26. 713 . 11 = 59770152,

Once again, we attach to each solution a pair of elliptic curves E;(X,Y) and
E5(X,Y). We find 505270 isomorphism classes of E/Q with good reduction outside
of {2,3,7,11,13,37} and nontrivial rational 2-torsion. None of them have conduc-
tor 999999, whereby we conclude that there are precisely 10 isomorphism classes
of elliptic curves over Q with conductor 10° — 1. Checking that these curves each
have distinct traces of Frobenius a47 shows that they are nonisogenous.

6.2.3. Conductor 10° — 1. This example is chosen to be somewhat beyond the cur-
rent scope of the LMFDB. We have

10° — 1 =3*.37-333667

and so, applying Theorem [I we are led to consider binary cubic forms of discrim-
inant 44 - 3* - 37% - 333667%2, where §; € {0,1}. These include imprimitive forms
with the property that each of its coefficients w; is divisible by 3. For such forms,
from Theorem [II we necessarily have §; € {0,1} and hence 8 = 1. Dividing
through by 3, we may thus restrict our attention to primitive forms of discriminant
+4-3%.3791.333667%2, where §; € {0,1} and & € {0,4}. For the irreducible forms, we
have, by slight abuse of notation (since, for the F' listed here with Dp # 0 (mod 3),
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the form whose existence is guaranteed by Theorem[Ilis actually 3F), the following.

(wo, w1, wa, w3) Dr P (wo, w1, wa, w3) Dr D
(1,1,-3,-1) 4.37 333667 | (5,14,19,54) —4-333667 37
(1,4,52,250) —4 - 333667 37 (6,18,168,323) —4-3%-333667 37
(1,9,37,279) —4 - 333667 none | (6,27,42,356) —4-3%.333667 37

(1,21,117,2135) —4-3%.333667 37 (6,54, —48,115) —4-3*-333667 37
(2,0,3,1) —4.3* 37 (10,18,96,229) —4-3%-333667 37
(2,17, -26, —31) 4 - 333667 37 (26,9,102,4) —4-3*.333667 none

(4,30,117,665) —4-3*-333667 37 (27,7,70,32)  —4-37-333667 none

(4,35,14,216)  —4-37-333667 mnone | (31,9,87,—25) —4-3%.333667 none
(5,6,9,6) —4.3%.37 none | (49,51,63,55) —4-3%*-333667 none
(5,7,19,51) —4 - 333667 37 (52,55,72,37) —4-37-333667 none

Once again, we list primes p for which a local obstruction exists modulo p to finding
coprime integers u and v satisfying ([3]). There are thus 8 Thue-Mahler equations
left to solve. In the (four) cases where D Z 0 (mod 3), these take the shape

F(u,v) = 2% . 377 . 33366772,

where 61 € {0,1}, 71 and 72 are nonnegative integers, and v and v are coprime
integers. For the remaining F', the analogous equation is

F(u,v) = 2% .3% . 377 . 33366772,

where 6; € {0,1}, 71,72 € ZT and u,v € Z with ged(u,v) = 1. We solve these
equations using the UBC-TM Thue-Mahler solver. The only cases where we find
that

DpF(u,v) =0 (mod 37 - 333667)

occur for (wo,wr,ws,ws) = (4,35,14,216) and (u,v) = (=8,1) or (u,v) = (=2,1),
for (wo, w1, w2, ws3) = (27,7,70,32) and (u,v) = (1,—2) or (2,—1), and for (wy,ws,
wo,ws) = (52,55,72,37) and (u,v) = (0,1) or (—3,5). In each case, all resulting
twists have bad reduction at 2 (and hence cannot have conductor 10° — 1).

To search for curves with nontrivial rational 2-torsion and conductor 10° — 1,
we solve the equation X +Y = Z? in S-units X and Y, and integers Z, where
S =1{2,3,37,333667}. There are precisely 98 solutions with X > |Y| and ged(X,Y)
squarefree. Of these, 41 have Z > 0, with Z largest for the solution coming from
the identity

27027027 — 101306 = 3* - 333667 — 2 - 37° = 5189,

These correspond via twists to elliptic curves of conductor as large as 2% - 32 -
372 . 3336672, but none of conductor 10° — 1. There thus exist no curves E/Q of
conductor 109 — 1.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999999-data.

6.3. Curves with good reduction outside {2,3,23}: An example of Kout-
sianis and of von Kanel and Matchke. This case was worked out by Koutsianis
[37] (and also by von Kanel and Matschke [36], who actually computed E/Q with
good reduction outside {2, 3,p} for all prime p < 163), by rather different methods
from those employed here. We include it here to provide an example where we de-
termine all F/Q with good reduction outside a specific set S, which is of somewhat
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manageable size in terms of the set of cubic forms encountered. Our data agrees
with that of [36] and [37].

To begin, we observe that the elliptic curves with good reduction outside {2, 3,23}
and j-invariant 0 are precisely those with models of the shape

E : Y?=Xx%4+23"23° where 0<a,b,c<5.
Appealing to ([I4]), we next look through our precomputed list to find all the irre-
ducible primitive cubic forms of discriminant +£2%3%237, where
a€{0,2,3,4}, 8€{0,1,3,4,5}, and ~e€{0,1,2}.
The imprimitive forms we need consider correspond to primitive forms F with either

v2(Dp) = 0 or v3(Dp) € {0,1}. We find precisely 95 irreducible, primitive cubic
forms of the desired discriminants.

(wo, w1, wa,ws) Dp (wo, w1, wa,ws) Dp (wo, w1, wa,ws) Dp
(1,0,—-18,—-6) 22.3°.23 (2,0,3,4) 2335 (4,9,24,29) —2%2.3%.232
(1,0,-3,-1) 34 (2,3,6,4) 22.35 (4,12,12,27) —24.3%.232
(1,0,3,2) —23.33 (2,3,12,8) 24.3%.23 | (4,12,12,73) —2*.3°.232
(1,0,6,2) —22.3° (2,3,36,29) —23.3%.232| (4,18,9,24) —2%2.35.232
(1,0,6,4) —24.34 (2,3,36,98) —23.35.23%2 | (4,18,27,48) —22.3°.232
(1,0,9,6) —21.3% (2,5,8,15) —23.3.232 (5,6,7,4) —23.232
(1,0,33,32) —22.3%.232| (2,6,-12,—-1) 22.3%.23 (5,6,15,8) —23.35.23
(1,1,2,1) —23 (2,6,6,5) —22.35 (5,9,12,10)  —2%.35.23
(1,1,8,6) —22.232 (2,6,6,25)  —2%2.3%.23%2| (5,12,18,20) —2%.3%.23
(1,3,-9,—4) 3°.23 (2,6,27,117) —23.3°.232 | (5,18,30,46) —22.3%.232
(1,3,-6,—4) 22.3%.23 | (2,9,-6,—4) 22.3°.23 | (5,24,-3,26) —2%.3°.232
(1,3,-3,-2) 3%.23 (2,9,0,—4) 24.3%.23 (6,3,12,-7) —23.33.232
(1,3,-6,—2) 23.3% (2,9,48,185) —2%.3°.232 | (6,3,12,16) —2*.33.232
(1,3,3,3) —22.33 (2,12,24,85) —22.3%.232| (6,6,9,13)  —23.33.232
(1,3,3,5) —24.33 (2,18,—15,31) —22.35.232| (6,9,12,23) —23.3%.232
(1,3,3,7) —22.3% (3,0,3,2) —24.34 (6,18,18,29) —22.3°.232
(1,3,3,13) —24.35 (3,4,12,12) —2%.3.232 (7,6,9,4) —23.34.23
(1,3,18,50)  —23.3°.23 (3,6,4,6) —22.3.23% | (7,15,3,17) —22.3°.232
(1,6,—24,—4) 2*.3%.23 (3,6,9,8) -23.3%.23 | (8,9,12,13) —22.3%.232
(1,6,3,32) —23.3%.23 (3,9,9,7) —24.35 (8,15,18,21) —23.3%.232
(1,6,6,16) —24.33.23 3,9,9,49)  —22.3°.232| (9,9,3,31) —2%.3%.232
(1,6,12,54)  —22.3%.232 | (3,18,36,116) —2%-3°.232| (10,6,15,1) —23.3%.232
(1,6,12,100) —2%.3%.232 | (3,27,9,29) —2%.3°.23%2| (11,6,12,2) —22.33.232
(1,9,—-12,-16) 2*.3%.23 | (4,0,—18,-3) 2%.3%.23 | (11,15,15,17) —22.35.232
(1,9,-9,-3) 22.35.23 (4,0,6,1) —24.35 (12,9,36,16) —2%.3°.232
(1,9,27,165) —22.3%.232 (4,2,8,3) —24.232 | (12,36,36,35) —2%.3%.232
(1,9,27,303) —2*.3%.232 (4,3,6,2) —22.3%.23 | (13,9,18,12) —22.3°.232
(1,12,9,18) —24.35.23 | (4,3,12,10) —23.3%.23 | (13,15,27,7) —2%2.3%.232
(1,12,12,44) —2*.3%.232 | (4,3,18,13) —23.3%.232| (21,9,27,11) —2%.35.232
(1,15,3,-7) 24.35.23 (4,3,18,36)  —22-3°.23% | (23,30,36,20) —2%.3°.232
(2,0,3,1) —22.34 (4,4,9,1) —24.232 (24,27,36,16) —2*.3%.232
(2,0,3,2) —23.34 (4,6,3,12) —22.33.232

In each case, we solve the corresponding Thue-Mahler equation specified by

Theorem [Tl For example, if Dp = £24 . 3" . 232, with ¢ > 3, then we actually need
only solve the (eight) Thue equations of the shape
F(u,v) = 2°13%223%  where §; € {0,1}.

For all other discriminants, we must treat “genuine” Thue-Mahler equations (where
at least one of the exponents on the right-hand side of equation () is, a priori,
unconstrained). Details of this computation are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-23-data.
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In total, we found precisely 730 solutions to these equations, leading, after twisting,
to 3856 isomorphism classes of E/Q with good reduction outside {2,3,23} and
trivial rational 2-torsion.

Once again, to find the curves with nontrivial rational 2-torsion, we solved X +
Y = Z? in S-units X and Y, and integers Z, where S = {2,3,23}. There are
precisely 118 solutions with X > |Y| and ged(X,Y) squarefree (this computation
took less than 1 hour). Of these, 55 have Z > 0, with Z largest for the solution
coming from the identity

89424 — 23 = 24 .35 .23 — 23 = 2992

These correspond via twists to elliptic curves of conductor as large as 28 - 32 . 232,
a total of 1664 isomorphism classes. Thus, there exist a total of 5520 isomorphism
classes (in 3968 isogeny classes) of elliptic curves E/Q with good reduction outside
{2,3,23}. Note that 432 = 2 x 62 of these have jr = 0.

6.4. Curves with good reduction outside {2,3,5,7,11}: An example of von
Kanel and Matschke. This is the largest computation carried out along these
lines by von Kanel and Matschke [36] (and also a very substantial computation via
our approach, taking many thousand machine hours on 80 cores).

As in the preceding example, note that the curves with models of the shape

E : Y?=X342357911¢, 0<a,b,c,de <5

are precisely the E/Q with good reduction outside {2,3,5,7,11} and j-invariant
0. We next proceed by searching our precomputed list for all irreducible primitive
cubic forms of discriminant 2*3% M, where

a€{0,2,3,4}, $€{0,1,3,4,5}, and M |5%-7%.11%

The imprimitive forms we need consider again correspond to primitive forms F
with either v5(Dp) = 0 or v5(Dp) € {0,1}. We encounter 1796 irreducible cubic
forms, which we tabulate at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-5-7-11-data,

where details on the resulting Thue-Mahler computation may also be found. Con-
firming the results of von Kanel and Matschke [36], we find that there exist a total
of 592192 isomorphism classes (in 453632 isogeny classes) of elliptic curves E/Q
with good reduction outside {2,3,5,7,11}, including 15552 = 2 x 6° with jg = 0.

7. GOOD REDUCTION OUTSIDE A SINGLE PRIME

For the remainder of this paper, we will focus our attention on the case of
elliptic curves with bad reduction at a single prime, i.e., curves of conductor p
or p?, for p prime. In this case, our approach simplifies considerably and rather
than being required to solve Thue-Mahler equations, the problem reduces to one
of solving Thue equations, i.e., equations of the shape F(x,y) = m, where F' is
a form and m is a fixed integer. While, once again, we do not have a detailed
computational complexity analysis of either algorithms for solving Thue equations
or more general algorithms for solving Thue-Mahler equations, computations to
date strongly support the contention that the former is, usually, much, much faster
than the latter, particularly if the set of primes S considered for the Thue-Mahler
equations is anything other than tiny. Since none of these conductors are divisible
by 9, we may always suppose that jz # 0. We note that the data we have produced
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in these cases totals several terabytes. As a result, we have not yet determined how
best to make it publicly available; interested readers should contact the authors for
further details.

7.1. Conductor N = p. Suppose that F is a curve with conductor N = p prime
with invariants ¢4 and cg. From Tables [l Bl and Bl we necessarily have one of

(va(ca),v2(cs)) = (0,0) or (> 4,3), and va(Ag) =0, or
(v3(ca),v3(cq)) = (0,0) or (1,> 3), and v3(Ag) =0, or
(vp(ca), vp(ce)) = (0,0) and v, (Ag) > 1.

From this we see that D = 1 or 2. Theorem [] then implies that there is a cubic
form of discriminant +4 or +4p, and integers u, v, with

1
F(u,v) = p* or 8p**, ¢y = D*Hp(u,v) and cg = —§D3Gp(u,v),

for D € {1,2} and &, a nonnegative integer. Note that, while the smallest absolute
discriminant for an irreducible cubic form in Z[z, y] is 23, there do exist reducible
cubic forms of discriminants 4 and —4 which we must consider.

Appealing to Théoreme 2 of Mestre and Oesterlé [43] (and using [I0]), we can
actually restrict the choices for n dramatically. In fact, we have 3 possibilities:
either p € {11,17,19,37}, or p = t? 4 64 for some integer ¢, or, in all other cases,
Ap = *p. There are precisely 14 isomorphism classes of F/Q with conductor in
{11,17,19,37}; one may consult Cremona [15] for details. If we can write p =
t? 4 64 for an integer ¢ (which we may, without loss of generality, assume to satisfy
t =1 (mod 4)), then the (2-isogenous) curves defined by

2

s t—1
y2+xy:x‘3+T~x -z

and
2 3, ¢ 1 2
Yy +ry=x"+—— - +4x +t

have rational points of order 2 given by (x,y) = (0,0) and (z,y) = (—t/4,t/8),
respectively, and discriminants t?+64 and — (2 +64)?, respectively. In the final case
(in which Ag = +p), we have (using the notation of Section Bl and, in particular,
appealing to (I0) which, in this case yields the equation 1 = v,(Ag) = v,(DF) +
2Kp)

ag =2, a1 €{0,3}, Bo=p01=0, k, =0, and N; € {1,p}.

Theorem [ thus tells us that to determine the elliptic curves of conductor p, we are
led to to find all binary cubic forms (reducible and irreducible) F' of discriminant
+4 and +4p and then solve the Thue equations

F(z,y)=1 and F(z,y) =S8.

Since for any solution (z,y) to the equation F(x,y) = 1, we have F(2z,2y) = 8,
we may thus restrict our attention to the equation F'(z,y) = 8 (where we assume
that ged(z,y) | 2).
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7.2. Conductor N = p?. In case E has conductor N = p?, we have that either E
is a either a quadratic twist of a curve of conductor p, or we have v,(Ag) € {2,3,4}.

To see this, note that, via Table[3 p | ¢4, p | ¢6, and D | 2p, and we may suppose
that (v,(ca(E)), vp(cs(E)), vp(Ag)) is one of

(=1,1,2),(1,22,3),(>2,2,4),(> 2,2 3,6),(2,3,>7),
(>3,4,8),(3,>5,9), (> 4,5, 10).

In each case with v,(cs(E)) > 3, denote by Ej the quadratic twist of E by
(=1)>=1/2p_ For curves E with

(vp(ca(E)), vp(cs(E)), vp(AR)) = (= 2,> 3,6),

one may verify that F; has good reduction at p and hence conductor 1, a contra-
diction. If we have

(VP(C4(E))7 VP(CG(E))a V;D(AE)) = (2a 3,> 7)’
then
(vp(ca(En)), vp(cs(EN)), vp(AR,)) = (0,0,1,(Ap) — 6)
and so F; has conductor p. In the remaining cases, where
(VP(C4(E))a V;D(Cﬁ(E))’ VP(AE)) € {(2 3’ 47 8)a (37 > 5’ 9)’ (2 4a 5a 10)}a
we check that
(V;D(C4(E1))v VP(CG(El))’ VP(AEH)) € {(2 1a 1, Q)a (1’ > 2a 3)7 (Z 27 2v 4)}

It follows that, in order to determine all isomorphism classes of E/Q of conductor
p?, it suffices to carry out the following program:

e Find all curves of conductor p.
e Find E/Q with minimal discriminant Ag € {4p?, £p3, +p?}, and then
e consider all appropriate quadratic twists of these curves.

The fact that we can essentially restrict attention to F/Q with minimal discriminant
(34) Ap € {+p?, +p°, £p'}

(once we have all curves of conductor p) was noted by Edixhoven, de Groot, and
Top in Lemma 1 of [24]. To find the FE satisfying (34]), Theorem [I (with specific
appeal to ([I{)) leads us to consider Thue equations of the shape

(35) F(z,y) =8 for F a form of discriminant =+ 4p?,
(36) F(x,y) =8p for F a form of discriminant =+ 4p,
and

(37) F(z,y) = 8p for F a form of discriminant =+ 4p?,

corresponding to A = 4p?, +p3 and +p?, respectively.
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TABLE 6. All curves of conductor p and p?, for p prime, cor-
responding to reducible forms (i.e., with nontrivial rational 2-
torsion). Note that ¢ is any integer so that t?+64 is prime. For the
sake of brevity, we have omitted curves that are quadratic twists
by +p of curves of conductor p.

4 Cs p Ag Ng
4353 287199 17 17 17
33 —81 17 17 17
2448 | —t(t2+72) || t2+64| t*+64 |12464
273 4455 17 172 17
t2 — 192 | —t(t? +576) || t2 4+ 64 | —(t*> +64)? | t* + 64
1785 75411 7 73 72
105 1323 7 73 72
33 12015 17 —177 17

7.3. Reducible forms. To find all elliptic curves E/Q with conductor p or p?
arising from reducible forms, via Theorem [I] we are led to solve equations

(38) F(z,y) =8p" with ne€Z and ged(z,y)]2,

where F is a reducible binary cubic form of discriminant +4, +4p and +4p?. This
is an essentially elementary, though rather painful, exercise. Alternatively, we may
observe that curves of conductor p or p? arising from reducible cubic forms are
exactly those with at least one rational 2-torsion point. We can then use Theorem I
of Hadano [29] to show that the only such p are p = 7,17 and p = 2 +64 for integer
t. In any case, after some rather tedious but straightforward work, we can show
that the elliptic curves of conductor p or p? corresponding to reducible forms, are
precisely those given in Table @l (up to quadratic twists by +p).

7.4. Irreducible forms: Conductor p. A quick search demonstrates that there
are no irreducible cubic forms of discriminant +4. Consequently, if we wish to find
elliptic curves of conductor p coming from irreducible cubics in Theorem [, we need
to solve equations of the shape F(x,y) = 8 for all cubic forms of discriminant +4p.
An almost immediate consequence of this is the following.

Proposition 3. Let p > 17 be prime. If there exists an elliptic curve E/Q of
conductor p, then either p = t2+64 for some integer t, or there exists an irreducible
binary cubic form of discriminant £4p.

On the other hand, if we denote by h(K) the class number of a number field K,
classical results of Hasse [32] imply the following.

Proposition 4. Let p = +£1 (mod 8) be prime and § € {0,1}. If there exists an
irreducible cubic form of discriminant (—1)%4p, then

n(@0/-19) = 0 (oa 5.

Combining Propositions Bl and @], we thus have the following.
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Corollary 5 (Theorem 1 of Setzer [57]). Let p = +1 (mod 8) be prime. If there
exists an elliptic curve E/Q of conductor p, then either p = t> 464 for some integer
t, or we have

h(Q(v/p)) - h (Q(v/=p)) = 0 (mod 3).

We remark that Proposition Blis actually a rather stronger criterion for guaran-
teeing the nonexistence of elliptic curves of conductor p than Corollary Bl Indeed,
by way of example, we may readily check that there are no irreducible cubic forms
of discriminant +4p for

p € {23,31,199, 239, 257, 367, 439},

(and hence no elliptic curves of conductor p for these primes) while, in each case,

we have that 3 | h (Q(/p)) - h (Q(v/=p)).

7.5. Irreducible forms: Conductor p?. As noted earlier, to determine all elliptic
curves of conductor p? for p prime, arising via Theorem [ from irreducible cubics, it
suffices to find those of conductor p and those of conductor p? with Ap = £p2, £p?,
and +p* (and subsequently twist them). We explore these cases below.

7.5.1. Elliptic curves of discriminant £p>. To find elliptic curves of discriminant
+p3, we need to solve Thue equations of the shape F(z,y) = 8p, where F runs
over all cubic forms of discriminant Agp = +4p. These forms are already required
to compute curves of conductor p. Now, we can either proceed directly to solve
F(x,y) = 8p or transform the problem into one of solving a pair of new Thue
equations of the shape G;(z,y) = 8. In practice, we used the former when solving
rigorously and the latter when solving heuristically (see Section B3]).

We now describe this transformation. Let F(z,y) = ax® + bz?y + cxy? + dy? be
a reduced form of discriminant +4p. Since p | A, we have

F(z,y) = a(z — roy)*(z — r1y) (mod p),

where we must have that p { a, since F is a reduced form (which implies that
1 < a < p). Comparing coefficients of x shows that

2rg +1r1 = —b/a (mod p), 73+ 2rer; = c/a (mod p)
and
r2ry = —d/a (mod p).
Multiply the first two of these by a and add them to get
3arg + 2brg + ¢ =0 (mod p).
We can solve this for rg and hence ry:
(ro,r1) = (3a)™' (=b£t,~bF 2t) (mod p),
where we require that t satisfies t> = b*>—3ac (mod p). Finding square roots modulo
p can be done efficiently via the Tonelli-Shanks algorithm, for example (see, e.g.,
Shanks [59]), and almost trivially if, say, p = 3 (mod 4). Once we have these

(r0,71), we can readily check which pair satisfies 73r; = —d/a (mod p).
Now if F(z,y) = 8p, then we must have either

x =roy (mod p) or z=ryy (mod p).
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In either case, write = r;y + pu, which maps the equation F'(z,y) = 8p to a pair
of equations of the shape

Gi(ua y) = 87

where
1

Gi(u,y) = ap®u® + (3apr; + bp)uy + (3ar? + 2br; + c)uy® + — (ar? +bri +cr; +d)y°.
p

Notice that Ag, = p?Ap. In practice, for our deterministic approach, we will ac-
tually solve the equation F'(z,y) = 8p directly. For our heuristic approach (where
a substantial increase in the size of the form’s discriminant is not especially prob-
lematic), we will reduce to consideration of the equations G;(x,y) = 8.

7.5.2. A (conjecturally infinite) family of forms and solutions. We note that there
are families of primes for which we can guarantee that the equation F(z,y) = 8p
has solutions. By way of example, define a quartic form p, ; via

Dr.s = rt 4+ 9r2s% 4+ 2754
Then for a given r, s and p = p, s the cubic form
F(x,y) = sa® + ray — 3szy® — ry°
has discriminant 4p. Additionally one can readily verify the polynomial identities
F(2r?/s+6s,—2r) =8p and F(6s,—18s%/r — 2r) = 8p.

If we set s € {1,2} in the first of these, or r € {1,2} in the second, then we arrive
at four one-parameter families of forms of discriminant 4p for which the equation
F(x,y) = 8p has a solution, namely:

(pyz,y) = (r* + 9r2 +27,2r% + 6, —2r), (r* + 36r% 4 432, 7% 4+ 12, —2r),
(27s* +95* + 1,65, —185% — 2), (275" + 365> + 16,65, =95 — 4).

Similarly, if we define
Prs = rt —9r2s? 4 2754
then the form
F(z,y) = sx® 4+ ray + 3szy® + ry°
has discriminant —4p, and the equation F'(z,y) = 8p has solutions
(z,y) = (—2r%/s + 65,2r) and (65, —18s/r + 2r)

and hence we again find (one-parameter) families of primes corresponding to either
re{l1,2} or s € {1,2}:

(p,z,y) =(r* — 9r? 4+ 27, =2r% 46, 27), (r* — 3602 + 432, —12 + 12,2r),
(27s* — 9s5® + 1,65, —185% + 2), (275" — 365 + 16,65, —9s2 + 4).

We expect that each of the quartic families described here attains infinitely many
prime values, but proving this is beyond current technology.
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7.5.3. Elliptic curves of discriminant p* and p*. To find elliptic curves of discrim-
inant p? and p* via Theorem [Il we need to solve Thue equations F(z,y) = 8 and
F(z,y) = 8p, respectively, for cubic forms F of discriminant 4p?. Such forms are
quite special and it turns out that they form a 2-parameter family.

Indeed, in order for there to exist a cubic form of discriminant 4p?, it is necessary
and sufficient that we are able to write p = r2 + 2752 for positive integers r and s,
whereby F' is equivalent to the form

Fro(x,y) = s2® + ra*y — 9szy® — ry°.

To see this, note that the existence of an irreducible cubic form of discriminant 4p?
for prime p necessarily implies that of a (cyclic) cubic field of discriminant p? and
field index 2. From Silvester, Spearman, and Williams [60], there is a unique such
field up to isomorphism, which exists precisely when the prime p can be represented
by the quadratic form r? 4 27s2. We conclude as desired upon observing that

Dp, . =4 (r* +275%)°.
It remains, then, to solve the Thue equations
Frs(z,y) =8 and F,s(z,y)=8p.

We can transform the problem of solving the second of these equations to one of
solving a related Thue equation of the form G, s(z,y) = 8. This transformation is
quite similar to the one described in the previous subsection.

First note that we may assume that p 1 y, since otherwise, we would require that
p | sz, contradicting the facts that s < /p and p? 1 F. Since p? | Ap, it follows
that the congruence

su® +ru® — 9su —r =0 (mod p)

has a unique solution modulo p; one may readily check that this satisfies u =
9s/r (mod p):

su +ru® —9su —r = —r 3. (r? — 275%)(r? + 275%) = 0 (mod p).
Consequently, we know that © = uy (mod p). Substituting © = uy + vp into F
gives

Fy s(uy +vp,y) = agv® + bov®y + covy® + doy®
so, with a quick renaming of variables, we obtain
Gr.s(2,y) = apr® + boz?y + cory® + doy® = 8,
where
ap = sp?, by = (Bus+7)p, co = 3u*s+2ru—9s and dy = (u*s+ru®—us—r)/p.

A little algebra confirms that

4

AG :4p.

r,s

As noted in the previous subsection, we have solved F, s(z,y) = 8p directly in our
deterministic approach, while we solved equation G, s(x,y) = 8 for our heuristic
method.
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7.5.4. Elliptic curves of discriminant —p? and —p*. Elliptic curves of discriminant
—p? and —p* can be found through Theorem [ by solving the Thue equations
F(z,y) = 8 and F(x,y) = 8p, respectively, this time for cubic forms F' of discrim-
inant —4p?. As in the cases treated in the preceding subsection, these forms can
be described as a 2-parameter family. Specifically, such forms arise precisely when
there exist integers 7 and s such that p = |r? — 27s?|, in which case the form F is
equivalent to

Fro(z,y) = s2® + ra*y + 9szy® + ry°.

The primes p for which we can write p = |r? —27s?| are those with p = +1 (mod 12).
To see this, note first that if p= 1 (mod 3) and p = |r? —27s2|, then necessarily p =
72 —27s% so that p = 1 (mod 4), while, if p = —1 (mod 3) and p = |r2 —27s?|, then
p = 27s%>—r? so that p = —1 (mod 4). It follows that necessarily p = £1 (mod 12).
To show that this is sufficient to have p = |r? —27s?| for integers r and s, we appeal
to the following.

Proposition 6. If p = 1 (mod 12) is prime, there exist positive integers r and s
such that

3 5
r? —27s% =p, with r<§\/6p and s<1—8\/6p.

If p = —1 (mod 12) is prime, there exist positive integers r and s such that

5 1
r? —27s% = —p, with r<5\/2p and s<§\/2p.
This result is, in fact, an almost direct consequence of the following.

Theorem 7 (Theorem 112 from Nagell [47]). If p = 1 (mod 12) is prime, there
exist positive integers u and v such that
p=u?—30% wu<+/3p/2 and v < \/p/6.

If p= —1 (mod 12) is prime, there exist positive integers u and v such that

—p=u®—=30%, u<+\/p/2 and v < \/p/2.

Proof of Propositional If p = £1 (mod 12), Theorem [7] guarantees the existence
of integers u and v such that p = |u? — 3v2|. If 3 | v, then we set r = u,s = v/3.
Clearly, 3 1 u, so if 3 1 v, then we have (replacing v by —v is necessary) that
u=v (mod 3). If we now set = 2u + 3v and s = (2v + u)/3, then it follows that

Ir? — 2702 = |(2u + 3v)? — 3(2v 4+ u)?| = |u® — 3v?| =p

and hence either

|T|§2«/3p/2+3\/m:g\/@ and |s| < (2\/1%4_\/@):%\/@,

Wl

< 2Vpf2+3Vp2= 5B and sl < 3VRTZ+ VRl = 5VE. D

Again, we are able to reduce the problem of solving F, s(z,y) = 8p to that of
treating a related equation G, s(z,y) =8. As before, note that if u = —9s/r (mod p),
then

sud +ru® + 9su+ 1 =r3(r? — 275%)(r? + 275%) = 0 (mod p).
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Again, write x = roy + vp so that, after renaming v, we have
Gy s(z,y) = aox® + box’y + coxy® + doy® = 8,
where
ap = sp?, by = (Bus+r)p, co = 3u’s+2rut+9s, and dy = (u*s+ru’+us+r)/p.

Note that, in contrast to the case where p = 12 + 2752, here p is represented by
an indefinite quadratic form and so the presence of infinitely many units in Q(+/3)
implies that a given representation is not unique. If, however, we have two solutions
to the equation |r? — 27s%| = p, say (r1,s1) and (rg, s2), then the corresponding
forms

51x3 + r1m2y + 9311‘y2 + r1y3 and 52903 + r2m2y + 952xy2 + r2y3

may be shown to be GLy(Z)-equivalent.

8. COMPUTATIONAL DETAILS

As noted earlier, the computations required to generate curves of prime conduc-
tor p (and subsequently conductor p?) fall into a small number of distinct parts.

8.1. Generating the required forms. To find the irreducible forms potentially
corresponding to elliptic curves of prime conductor p < X for some fixed positive
real X, arguing as in Section [ we tabulated all reduced forms F(x,y) = ax® +
ba?y + cay? + d with discriminants in (0,4X] and [-4X,0), separately. As each
form was generated, we checked to see if it actually satisfied the desired definition
of reduction. Of course, this does not only produce forms with discriminant +4p;
as each form was produced, we kept only those whose discriminant was in the
appropriate range, and equal to +4p for some prime p. Checking primality was
done using the Miller-Rabin primality test (see [44], [54]; to make this deterministic
for the range we require, we appeal to [61]). While it is straightforward to code the
above in computer algebra packages such as sage [56], maple [7] or Magma [9], we
instead implemented it in c++ for speed. To avoid possible numerical overflows, we
used the CLN library [30] for c++.

We computed forms of discriminant 44p in two separate runs—first to p < 102
and then a second run to p < 2 X 1013, 1In the first of these, we constructed
all the forms and explicitly saved them to files. Constructing all the required
positive discriminant forms took approximately 40 days of CPU time on a modern
server, and about 300 gigabytes of disc space. Thankfully, the computation is
easily parallelized and it only took about 1 day of real time. We split the jobs by
running a manager which distributed a-values to the other cores. The output from
each a-value was stored as a tab-delimited text file with one tuple of p,a,b,c,d
on each line. Generating all forms of negative discriminant took about 3 times
longer and required about 900 gigabytes of disc space. The distribution of forms
is heavily weighted to small values of a. To allow us to spread the load across
many CPUs we actually split the task into 2 parts. We first ran a > 3, with the
master node distributing a-values to the other cores. We then ran a = 1 and 2 with
the master node distributing b-values to the other cores. The total CPU time was
about three times longer than for the positive case (there being essentially three
times as many forms), but more real time was required due to these complications.
Thus generating all forms took less than 1 week of real time but required about 1.2
terabytes of disc space.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



COMPUTING ELLIPTIC CURVES OVER Q 1375

These forms were then sorted by discriminant while keeping positive and nega-
tive discriminant forms separated. Sorting a terabyte of data is a nontrivial task,
and in practice we did this by first sortin the forms for each a-value and then
splitting them into files of discriminants in the ranges [n x 10, (n + 1) x 10%) for
n € [0,999]. Finally, all the files of each discriminant range were sorted together.
This process for positive and negative discriminant forms took around two days of
real time. We found 9247369050 forms of positive discriminant 4p and 27938060315
of negative discriminant —4p, with p bounded by 10'2. Of these, 475831852 and
828238359, respectively, had F(x,y) = 8 solvable (by the heuristic method de-
scribed below), leading to 159552514 and 276339267 elliptic curves of positive and
negative discriminant, respectively, with prime conductor up to 10'2.

The second run to p < 2 x 10'3 required a different workflow due to space con-
straints. Saving all forms to disc was simply impractical—we estimated it to require
over 20 terabytes of space! Because of this we combined the form-generation code
with the heuristic solution method (see below) and kept only those forms F(z,y)
for which solutions to F'(x,y) = 8 existed. Since only a small fraction of forms
(asymptotically likely 0) have solutions, the disc space required was considerably
less. Indeed to store all the required forms took about 250 and 400 gigabytes
for positive and negative forms, respectively. This then translated into about 65
and 115 gigabytes of positive and negative discriminant curves, respectively, with
prime conductor up to 2 x 10'3. This second computation took roughly 20 times
longer than the first, requiring about 4 months of real time. This led to a final
count of 1738595275 and 3011354026 (isomorphism classes of) curves of positive
and negative discriminant, respectively, with prime conductor up to 2 x 10'3.

8.2. Complete solution of Thue equations: Conductor p. For each form
encountered, we needed to solve the Thue equation

ax® + bx’y + cxy® + dy® =8

in integers = and y with ged(z,y) € {1,2}. We approached this in two distinct
ways.

To solve the Thue equation rigorously, we appealed to by now well-known argu-
ments of Tzanakis and de Weger [67], based upon lower bounds for linear forms in
complex logarithms, together with lattice basis reduction; these are implemented
in several computer algebra packages, including Magma [9] and Pari/GP [50]. The
main computational bottleneck in this approach is typically that of computing the
fundamental units in the corresponding cubic fields; for computations p of size up
to 10? or so, we encountered no difficulties with any of the Thue equations arising
(in particular, the fundamental units occurring can be certified without reliance
upon the Generalized Riemann Hypothesis).

We ran this computation in Magma [9], using its built-in Thue equation solver.
Due to memory consumption issues, we fed the forms into Magma in small batches,
restarting Magma after each set. We saved the output as a tuple

b, a, ba c, d,TL, {(1717341), ceey (Invyn)}a

where p,a,b,c,d came from the form, n counts the number of solutions of the
Thue equation and (x;,y;) the solutions. These solutions can then be converted

1Using the standard unix sort command and taking advantage of multiple cores.
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into corresponding elliptic curves in minimal form using Theorem [I] and standard
techniques.

For positive discriminant, this approach works without issue for p < 10'°. For
forms of negative discriminant —4p, however, the fundamental unit €, in the associ-
ated cubic field can be extremely large (i.e., log |e,| can be roughly of size ,/p). For
this reason, finding all negative discriminant curves with prime conductor exceed-
ing 2- 10 or so proves to be extremely time-consuming. Consequently, for large p,
we turned to a nonexhaustive method, which, though it finds solutions to the Thue
equation, is not actually guaranteed to find them all.

8.3. Nonexhaustive, heuristic solution of Thue equations. If we wish to find
all “small” solutions to a Thue equation (which, subject to various well-accepted
conjectures, might actually prove to be all solutions), there is an obvious and very
computationally efficient approach we can take, based upon the idea that, given
any solution to the equation F(x,y) = m for fixed integer m, we necessarily either
have that  and y are (very) small, relative to m, or that x/y is a convergent in the
infinite simple continued fraction expansion to a root of the equation F(z,1) = 0.

Such techniques were developed in detail by Pethd [52], [53]; in particular, he
provides a precise and computationally efficient distinction between “large” and
“small” solutions. Following this, for each form F' under consideration, we expanded
the roots of F'(x,1) = 0 to high precision, again using the CLN library for c++. We
then computed the continued fraction expansion for each real root, along with its
associated convergents. Each convergent x/y was then substituted into F(z,y) and
checked to see if F(z,y) = £1,+8. Replacing (z,y) by one of (—z, —y), (2z,2y)
or (—2x,—2y), if necessary, then provided the required solutions of F(z,y) = 8.
The precision was chosen so that we could compute convergents x/y with |z|, |y| <
2128 ~~ 3.4 x 1038, We then looked for solutions of small height using a brute force
search over a relatively small range of values.

To “solve” F(x,y) = 8 by this method, for all forms with discriminant +4p
with p < 10'2, took about 1 week of real time using 80 cores. The resulting
solutions files (in which we stored also forms with no corresponding solutions)
required about 1.5 terabytes of disc space. Again, the files were split into files of
absolute discriminant (or more precisely absolute discriminant divided by 4) in the
ranges [n x 109, (n + 1) x 10%) for n € [0,999]. For the second computation run to
p < 2x10'3, we combined the form-generation and heuristic-solutions steps, storing
only forms which had solutions. This produced about 235 and 405 gigabytes of data
for positive and negative discriminants, respectively.

8.4. Conversion to curves. Once one has a tuple (a, b, ¢, d, z,y), one then com-
putes Gp(z,y) and Hp(z,y), appeals to Theorem [Tl and checks twists. This leaves
us with a list of pairs (¢4, ¢g) corresponding to elliptic curves. It is now straightfor-
ward to derive a1, as, asz, as and ag for a corresponding elliptic curve in minimal form
(see, e.g., Cremona [I6]). For each curve, we saved a tuple p, a1, as,as, a4, ag, =1
with the last entry being the sign of the discriminant of the form used to generate
the curve (which coincides with the sign of the discriminant of the curve). We then
merged the curves with positive and negative discriminants and added the curves
with prime conductor arising from reducible forms (i.e., of small conductor or for
primes of the form 2 4 64). After sorting by conductor, this formed a single file
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of about 17 gigabytes for all curves with prime conductor p < 102 and about 180
gigabytes for all curves with conductor p < 2 x 103,

8.5. Conductor p?. The conductor p? computation was quite similar, but was
split further into parts.

8.5.1. Twisting conductor p. The vast majority of curves of conductor p? that we
encountered arose as quadratic twists of curves of conductor p. To compute these,
we took all curves with conductor p < 10'° and calculated the invariants ¢, and c.
The twisted curve then has corresponding c-invariants

ci; = p2c4 and c’6 = (_1)(p_1)/2p3cﬁ.

The minimal a-invariants were then computed as for curves of conductor p.

We wrote a simple c++ program to read curves of conductor p and then twist
them, recompute the a-invariants and output them as a tuple p?, a1, ag, as, a4, ag, £1.
The resulting code only took a few minutes to process the approximately 1.1 x 107
curves.

8.5.2. Solving F(x,y) = 8p with F of discriminant +4p. There was no need to
retabulate forms for this computation; we reused the positive and negative forms
of discriminant #+4p with p < 10'° from the conductor-p computations. We subse-
quently rigorously solved the corresponding equations F(x,y) = 8p for p < 108. To
solve the Thue equation F(z,y) = 8p for 10% < p < 1019, using the nonexhaustive,
heuristic method, we first converted the equation to a pair of new Thue equations
of the form G;(u,y) = 8 as described in Section [[.5.1] and then applied Pethd’s so-
lution search method (where we searched for solutions to these new equations with
ly| bounded by 2!?8 and |u| = |(x — r;3)/p| bounded in such way as to guarantee
that our original |z| is also bounded by 2128).

The solutions were then processed into curves as for the conductor p case above,
and the resulting curves were twisted by #£p in order to obtain more curves of
conductor p2.

8.5.3. Solving F(z,y) € {8,8p} with F of discriminant +4p®. To find forms of
discriminant 4p? with p < 10'°© we need only check to see which primes are of
the form p = r? + 2752 in the desired range. To do so, we simply looped over r
and s values and then again checked primality using Miller-Rabin. As each prime
was found, the corresponding p,r,s tuple was converted to a form as in Section
[C53] and the Thue equations F(z,y) = 8 and F(z,y) = 8p were solved, using the
rigorous approach for p < 10% and the nonexhaustive method described previously
for 10° < p < 10'°. Again, in the latter situation, the equation F(x,y) = 8p
was converted to a new equation G(z,y) = 8 as described in Section [[.53 The
process for forms of discriminant —4p? was very similar, excepting that more care is
required with the range of r and s (appealing to Proposition[d). The nonexhaustive
method solving both F(x,y) = 8 and F(z,y) = 8p for positive and negative forms
took a total of approximately 5 days of real time on a smaller server of 20 cores.
The rigorous approach, even restricted to prime p < 109 was much, much slower.

The solutions were then converted to curves as with the previous cases and each
resulting curve was twisted by #p to find other curves of conductor p?.
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9. DATA

9.1. Previous work. The principal prior work on computing the table of elliptic
curves of a prime conductor was carried out in two lengthy computations, by Brumer
and McGuinness [I1] in the late 1980s and by Stein and Watkins [63] slightly more
than ten years later. For the first of these computations, the authors fixed the
a1, a2, and ag invariants (12 possibilities) and looped over a4 and ag chosen to
make the corresponding discriminant small. By this approach, they were able to
find 311243 curves of prime conductor p < 10® (representing approximately 99.6%
of such curves). In the latter case, the authors looped instead over ¢4 and cg,
subject to (necessary) local conditions. They obtained a large collection of elliptic
curves of general conductor to 108, and 11378912 of those with prime conductor to
10'° (which we estimate to be slightly in excess of 99.8% of such curves).

9.2. Counts: Conductor p. By way of comparison, we found the following num-
bers of isomorphism classes of elliptic curves over Q with prime conductor p < X:

X Ap >0 Ap <0 Ratio? Total Expected | Total / Expected
103 33 51 2.3884 84 68 1.2353
104 129 228 3.1239 357 321 1.1122
10° 624 1116 3.1986 1740 1669 1.0425
108 3388 5912 3.0450 9300 9223 1.0084
107 19605 34006 3.0087 53611 52916 1.0131
108 114452 198041 2.9941 312493 311587 1.0029
10° 685278 1187686 | 3.0038 | 1872964 1869757 1.0017
2 x 10° 1178204 2040736 | 3.0001 | 3218940 3216245 1.0008
107 4171055 7226982 | 3.0021 | 11398037 11383665 1.0013
10 25661634 44466339 | 3.0026 | 70127973 70107401 1.0003
102 159552514 | 276341397 | 2.9997 | 435893911 | 435810488 1.0002
1013 999385394 | 1731017588 | 3.0001 | 2730402982 | 2730189484 1.00008
2 x 101% | 1738595275 | 3011354026 | 3.0000 | 4749949301 | 4749609116 1.00007

The data above the line is rigorous; for positive discriminant, we actually have a
rigorous result to 1019, For the positive forms this took about one week of real time
using 80 cores. Unfortunately, the negative discriminant forms took significantly
longer, roughly 2 months of real time using 80 cores. Heuristics given by Brumer and
McGuinness [T1] suggest that the number of elliptic curves of negative discriminant
of absolute discriminant up to X should be asymptotically v/3 times as many as
those of positive discriminant in the same range; here we report the square of
this ratio in the given ranges. The aforementioned heuristic count of Brumer and
McGuinness suggests that the expected number of F with prime Np < X should

be
V3 (/00 1 <1 )
— 7du+/ ——du | Li(x®/ ,
12 1 Vud -1 1 Vud +1 ( )

which we list (after rounding) in the table above. It should not be surprising that
this “expected” number of curves appears to slightly undercount the actual number,
since it does not take into account the roughly v/X/log X curves of conductor
p = n?+ 64 and discriminant —p? (counting only curves of discriminant +p).

9.3. Counts: conductor p?. To compile the final list of curves of conductor p?, we
combined the five lists of curves: twists of curves of conductor p, curves from forms
of discriminant +4p and —4p, and curves from discriminant +4p? and —4p?. The
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list was then sorted and any duplicates removed. The resulting list is approximately
one gigabyte in size. The counts of curves are as follows; here we list numbers of
isomorphism classes of curves of conductor p? for p prime with p < X:

X |Ag>0| Ag <0 Total | Ratio®

103 53 93 146 3.0790
104 191 322 513 2.8421
10° 764 1304 2068 | 2.9132

108 3764 6356 10120 | 2.8515
107 | 20539 35096 55635 | 2.9198
108 | 116894 | 200799 | 317693 | 2.9508
10° | 691806 | 1195262 | 1887068 | 2.9851
1010 | 4189445 | 7247980 | 11437425 | 2.9931

Subsequently we decided that we should recompute the discriminants of these
curves as a sanity check, by reading the curves into sage and using its built-in
elliptic curve routines to compute and then factor the discriminant. This took
about one day on a single core.

The only curves of genuine interest are those that do not arise from twisting,
i.e., those of discriminant 4p?, +p> and +p*. In the last of these categories, we
found only 5 curves, of conductors 112, 432, 4312, 4332. and 330132. The first four
of these were noted by Edixhoven, de Groot, and Top [24] (and are of small enough
conductor to now appear in Cremona’s tables). The fifth, satisfying

(a1, a2, a3, a4,a6) = (1, —1,1, 1294206576, 17920963598714),

has discriminant 33013*. For discriminants 4+p? and +p?3, we found the following
numbers of curves, for conductors p? with p < X:

X [Ap=—p"|Apg=p"[Ap=—p"|Ap=p°
10° 12 4 7 4
104 36 24 9 5
10° 80 58 12 9
106 203 170 17 15
107 519 441 24 23
108 1345 1182 32 36
10° 3738 3203 48 58
1010 10437 9106 60 86

It is perhaps worth observing that the majority of these curves arise from, in the
case of discriminant +p?, forms with, in the notation of Sections [[.5.3] and [[.5.4]
either 7 or s in {1,8}. Similarly, for Ag = +p*, most of the curves we found come
from forms in the eight one-parameter families described in Section [[5.1l We are
unaware of a heuristic predicting the number of curves of conductor p? up to X
that do not arise from twisting curves of conductor p.

9.4. Thue equations. It is noteworthy that all solutions we encountered to the
Thue equations F'(z,y) = 8 and F(z,y) = 8p under consideration satisfied |z|, |y| <
230, The “largest” such solution corresponded to the equation

3552° + 29322y — 13102y — 292y° = 8,

where we have
(z,y) = (188455233, —82526573).
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This leads to the elliptic curve of conductor 948762329069,
E : P +ay+y=2>—22%+ az + ag,
with
aqg = —1197791024934480813341

and

ae = 15955840837175565243579564368641.

Note that this curve does not actually correspond to a particularly impressive abc
or Hall conjecture (see Section [[0] for the definition of this term) example.

In the following table, we collect data on the number of GLy(Z)-equivalence
classes of irreducible binary cubic forms of discriminant 4p or —4p for p in [0, X],
denoted P5(0,X) and Ps;(—X,0), respectively. We also provide counts for those
forms where the corresponding equation F(x,y) = 8 has at least one integer solu-
tion, denoted P5 (0, X) and P (—X, 0) for positive and negative discriminant forms,
respectively:

X PS(O’X) P;(O’X) PS(_XaO) P;(_X’O)
10° 23 22 78 61
10* 204 163 740 453
10° 1851 1159 6104 2641
108 16333 7668 53202 16079
107 147653 49866 466601 97074
108 1330934 314722 4126541 582792
10° 12050910 1966105 36979557 3530820
2 x 10° | 23418535 3408656 71676647 6080245
101 109730653 | 12229663 | 334260481 | 21576585
10 | 1004607003 | 76122366 | 3045402451 | 133115651
1012 | 9247369050 | 475831852 | 27938060315 | 828238359

Due to space limitations we did not compute these statistics in the second large
computational run.

Our expectation is that the number of forms for which the equation F(z,y) = 8
has solutions with absolute discriminant up to X is o(X) (i.e., this occurs for
essentially “zero” percent of forms; a first step in proving something is this direction
can be found in recent work of Akhtari and Bhargava [2]).

9.5. Elliptic curves with the same prime conductor. One might ask how
many isomorphism classes of curves of a given prime conductor can occur. If one
accepts recent heuristics that predict that the Mordell-Weil rank of E/Q is abso-
lutely bounded (see, e.g., [51] and [70]), then this number should also be so bounded.
As noted by Brumer and Silverman [12], there are 13 curves of conductor 61263451.
Up to p < 10'2, the largest number we encountered was for p = 530956036043, with
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20 isogeny classes, corresponding to (a1, as, as, aq,ag) as follows:

(0,—1,1,-1003, 37465) , (0, —1, 1, —1775,45957) , (0, —1, 1, —38939, 2970729) ,

(0,—1,1,—659, —35439) , (0, —1,1,2011,4311) , (0, =2, 1, —27597, — 1 746656) ,
(0,—2,1,57,35020) , (1, —1,0, —13337473, 18751485796) , (0,0, 1, —13921, 633170) ,
(0,0, 1, —30292, —2029574) , (0,0, 1, —6721, —214958) ,

(0,0, 1, —845710, —299350726) , (0, 0, 1, —86411851, 309177638530) ,
(0,0,1,—10717, 428466) , (1, —1,0, —5632177, 5146137924) , (1, —1,0, 878, 33379) ,
(1,—1,1,1080,32014) , (1,—2,1, —8117, —278943) ,

(1,—3,0,—2879,71732) , (1, —3,0, —30415, —2014316) .

All have discriminant —p. Elkies [25] found examples of rather larger conductor
with more curves, including 21 classes for p = 14425386253757 and discriminant p,
and 24 classes for p = 998820191314747 and discriminant —p. Our computations
confirm, with high likelihood, that, for p < 2 x 10'3, the number of isomorphism
classes of elliptic curves of conductor a fixed prime p is at most 21.

9.6. Rank and discriminant records. In the following table, we list the smallest
prime conductor with a given Mordell-Weil rank. These were computed by running
through our data, using Rubinstein’s upper bounds for analytic ranks (as imple-
mented in Sage) to search for candidate curves of “large” rank which were then
checked using mwrank [I8]. The last entry corresponds to a curve of rank 6 with
minimal positive prime discriminant; we have not yet ruled out the existence of a
rank 6 curve with smaller absolute (negative) discriminant.

N (a’lv az, ag, aq, a’ﬁ) Slgn(AE) Tk(E(Q)
37 0,0,1,-1,0) n 1
389 (0,1,1,-2,0) ¥ 2
5077 (0,0,1,-7,6) n 3
501029 (0,1,1,-72,210) n 4
19047851 | (00,1, -79,342) — 5
6756532597 | (0,0, 1, —547, —2934) n 6

It is perhaps noteworthy that the curve listed here of rank 6 has the smallest
known minimal discriminant for such a curve (see Table 4 of Elkies and Watkins
271).

If we are interested in similar records over all curves, including composite con-
ductors, we have

N (a1, az,as,aq,ap) sign(Ag) | rk(E(Q)
37 0,0,1,1,0) ¥ 1
389 (0,1,1,-2,0] + 2
5077 (0,0,1,~7,6) + 3
934446 (1,-1,0, 79, 289) + 4
10047851 (0,0,1, -79,342) - 5
5187563742 | (1,1,0, —2582, 48720) + 6
382623908456 | (0, 0,0, —10012, 346900) + 7

Here, the curves listed above the line are proven to be those of smallest conductor
with the given rank. Those listed below the line have the smallest known conductor
for the corresponding rank. It is our belief that the techniques of this paper should
enable one to determine whether the curve listed here of rank 5 has the smallest
conductor of any curve with this property.
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10. COMPLETENESS OF OUR DATA

As a final result, we will present something that might, optimistically, be viewed
as evidence that our “heuristic” approach, in practice, enables us to actually find
all elliptic curves of prime conductor p < 2 x 103,

A conjecture of Hall, admittedly one that without modification is widely disbe-
lieved at present, is that if = and y are integers for which 23 — y? is nonzero, then
the Hall ratio 1o
Hy = Ij’l i

2% — 3|
is absolutely bounded. The pair (z,y) corresponding to the largest known Hall
ratio comes from the identity

5853886516781223% — 4478849284284020423079182 = 1641843,

noted by Elkies [26], with H,, > 46.6. All other examples known currently have
Hzy < 7. We prove the following.

Proposition 8. If there is an elliptic curve E with conductor p < 2 x 103, corre-
sponding via Theorem [ to a cubic form F and u,v € Z, such that

F(u,v) =8 and max{|u|,|v|} > 2!
then
(39) Hey(B).es(p) > 1.5 x 10°.

In other words, if there is an elliptic curve E with conductor p < 2 x 10'3 that we
have missed in our heuristic search, then we necessarily have inequality (89) (and
hence a record-setting Hall ratio).

Proof. The main idea behind our proof is that the roots of the Hessian Hp(z, 1)
have no particularly good reason to be close to those of the polynomial F(z,1). It
follows that, if we have relatively large integers v and v satisfying the Thue equation
F(u,v) = 8 (so that u/v is close to a root of F(z,1) = 0), our expectation is that
not only does Hp(u,v) fail to be small, but, in fact, we should have inequalities of
the order of

Hp(u,v) > (max{[ul, [v]})* and Gp(u,v) > (max{|ul, |v[})”

(where the Vinogradov symbol hides a possible dependence on p). Since
c4(E) = D*Hp(u,v) and cs(F) = —%DSGF(U, v),
where D € {1, 2}, these would imply that
Hea(B).co(B) >p %maX{IUI, [vl}.
In fact, for forms (and curves) of positive discriminant, we can deduce inequalities
of the shape

HC4(E)705(E) >>p p73/4 m1n{|u|, |’U|} > p75/4 HlaX{|’UJ‘7 ‘U‘}a

where the implicit constants are absolute. For curves of negative discriminant, we
have a slightly weaker result:

—3/2

Hei(B)es(B) p p~tmin{|ul, |[v|]} > p max{|ul, |v|}.
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To make this argument precise, let us write, for concision, ¢4 = c4(F) and
c6 = cg(E). From the identity |3 — ¢Z| = 1728p, we have a Hall ratio
1/2 1/2 H 1/2
Cy Cy4 Flu,v
e, @' [Heuo)

1728p = 3.456 x 1016 — 3.456 x 1016~

Our goal will thus be to obtain a lower bound upon |Hg(u,v)|; we claim that, in
fact, |Hp(u,v)| > 3 x 10*®, whereby this Hall ratio exceeds 1.5 x 10, as stated.
Suppose that we have a cubic form F' and integers u and v with Dp = +4p for p
prime,

(40) max{|u|, [v|} > 2% and 2x10° < p<2x10'.

Notice that F(u,0) = wou® = 8 and hence (40 implies that v # 0.
Write
F(u,v) = wo(u — a1v)(u — agv)(u — agv)
and suppose that
lu — ayv| = min{|u — ayv|, i = 1,2,3}.

We may further assume, without loss of generality, that the form F' is reduced.
From (@), we have

(41) wg ‘HF(ahl) HF(Oé271) HF(CY3,1)| = 16p2
For future use, we note that the main result of Mahler [40] implies the inequality

3
(42) jwol [ [ max{1, ail} < lwo| + lwi| + |wa| + |ws-
=1

Let us assume first that Dp > 0, whereby Hp has negative discriminant (Dg, =
—3Dp). Since F is reduced, we have

|wiws — wows| < wi — Bwows < w3 — 3wiws,
and hence the identity
(43) (wiws — Ywows)? — 4(w? — Bwows ) (w3 — 3wiws) = —3Dp
yields the inequalities
(44) Dp > (w? — 3wows) (w3 — 3wiws) > (w? — 3wows)?.
Since @3) and Dg > 0 imply that w? — 3wows # 0, we may write

Hp(ap,1) <a1— Ywows — wiws + \/—SDF) <oz1— Ywows — wiws — \/—SDF)

w} — 3wows 2(w? — 3wowsa) 2(w? — 3wows)

Defining
— D
P Rk Lo ONY N U e AN
2(w? — 3wow2) 2(w? — 3wow2)
we have
Hp(aq,1) = (w% — Bwows) (I’% + F%)
and so
3D

(45) |Hp(a1,1)] > 5

4(w% - 3(4)00.12) '
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Since a; is “close” to u/v, it follows that the same is true for Hp(aq,1) and
Hp(u/v,1) = v"2Hp(u,v). To make this precise, note that, via the Mean Value
Theorem,

u
(46)  |Hp(oa,1) — Hp(u/v,1)| = |2(w] — Bwows )y + wiws — Jwows| ‘al -

)

for some y lying between «; and u/v. We thus have
(47)

|HF(051, 1) — HF(U/U, 1)| S (wf — 30}0(4)2) (2 (|061‘ + ’011 — %D + 1) ‘041 — %’

To derive an upper bound upon |a1 -5 |, we can argue as in the proof of Theorem
2 of Pethé [53] to obtain the inequality

(48) ‘al - E’ < 27/3D;1/6v72.
v
Since |v| > 1 and Dp = 4p > 8 x 10%, we thus have that
(49) ‘og - 3‘ <0.12.
v

We may suppose that F' is reduced, whereby, crudely, from Lemma 3.5 of
Belebas [3],

2D/ 3wo 27w2\ 1/ 1\ 1/
wol < E_ and |w <——|—< Dp — 0) <(1+—>D/.
ol < 226 and Jun| < 22 + (/Dr - 2 7 ) ¥

From Proposition 5.5 of Belabas and Cohen [4],
1/3
35+ 13v/13 1/3 4 19
‘(4.)2‘ S (T) DF/ and |CLJ3| S ﬁDF‘/ )

whence, after a little computation, we find that

lwo| + |wi| + |we| + |ws| < Dllr/2 = 2p!/2.
From (@2), it follows that

|| < Jwol + |wi] + w2 + |ws| < 2p'2,
whereby inequalities [@9) and {Q) thus yield

lu/v| < 2p'/% +0.12 < 27231
and so, again appealing to (@0), min{|u|, |v|} > 2194, Returning to inequality (@7,
we find that, after applying ({4),
\Hp(ar,1) — Hp(u/v,1)| < 2p/2 (4])1/2 T 1.24) 97/3(2p)~1/6y2,

From p < 2 x 103 and |v| > 2% it follows that
|Hp(a1,1) — Hp(u/v,1)] < 10750,

Combining this with (@]) and 3] yields the inequality

2p

H D>

Helu/o. 1)) >

whence
2 2”219 2
|Hp (u,v)] = v |Hp(u/v,1)| > v7\/D,

\w% — 30)0(4)2‘ -
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where the last inequality follows from (@4]). From (@) and the fact that |v] > 2104,
we conclude that
|Hp(u,v)| > 10°7.

Next, suppose that F' has negative discriminant, so that Hr has positive dis-

criminant Dy, = —3Dp. If w} — 3wows = 0, then, from [@3J)), we have that
3p = —(w? — Bwows) (w3 — 3wiws),
which implies that
max {|w} — 3wowsl, [w§ — Bwiws|} > p.

On the other hand, from Lemma 6.4 of Belabas and Cohen [4], we have

3/2, 1/4
|wo| < Z5B—, |wi| <

(50) &

23/2,1/4

114+5vV5
220 maxc{wowd], Jwiws [} < LHYER

1/2 1/2
lwiws| < %y and |wows| < %7,
whereby a short calculation, together with the fact that p > 2 x 109, yields a
contradiction. We may thus suppose that w? — 3wows # 0. We have

Hp(ai, 1) = (w] — 3wows) (a; — B1) (i — Ba) ,

where .
_ Ywows — wiwz + (—1)7/12p

P = f ] 1,2}.
i 2(w? — 3wows) or je{l2)

It follows that
18i] < |wi — Bwows| 144 - 3=1/2p1/2
and, again from (42,
|wocri| < Jwol + |wi| + wal + |wsl,
whereby
3
23/2p1/4 N 23/2pl/4 N 22/3 (11 + 5\/5)1/ pl/2 N 2p1/2
33/4 31/4 31/2|w0| 31/2‘(4)0‘7

whence we find that

lwoa| <

34ptt  21pt/2  6.4pt/2

;| <
= Tl T < TP
From (]), we thus have
2 2 _ 3 2
|Hr(a1,1)| > wy® (wf — 3wows) > min {%7 Ml%} :

If |w? — 3wowa| > 4w?, it follows that

2

w

H 1) > 0
He(on, Dl 2 55— 3o 2

and so
1

10.24 (233-1/2p1/2 4 22/331/2 (11 + 5/5) /* p1/2)?

|Hp(ax, 1)] =

which implies that
1

o1 H 1 _
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If, conversely, |w? — 3wows| < 4w?, then
1 1
> ;>
163.84wZ ~ 253,/p

and hence (&I holds in either case.
Now, if a; € R, then, via Mahler [41],

[Hp(ar,1)

1 92 wg
I > — > ,
Ien(en)] > 5 (ol feor | + o + s> > 28
so that
o - 4] > 58
o] — —
v 738 p
and hence

2 3
u u u W,
|w0||11| aq v (6%} v asg v |w0”ru‘ 738p

It follows that
[v] < 1476p < 2.952 x 10'°,

via @0). Since max{|u|, |v|} > 2128 we thus have
lu/v| > 1.15 x 10%2.

From
| < 6.4p'/% < 6.4(2 x 10"%)? < 3% 107,
P
we may thus conclude that
‘og - 9} > 1.14 x 102
v
and so

8> (1.14 x 10%)°

an immediate contradiction.
We may thus suppose that a; € R (so that as, a3 € R). It follows from Mahler

[41] that

2
U w )
ai_5’>73§p for ie€{2,3},
and so
u 8 738 2
52 ‘ ——‘<7 Do)
52 o= < e ()

Appealing to [@{) and the inequalities || < 3 x 107 and |v] > 1, we thus have that
lu/v] < 1.75 x 103 4+ 3 x 107 < 1.76 x 103,
and so, from max{|u|, |v|} > 2128, [v| > 1.9 x 10°. Inequality (5Z) thus now implies
lu/v| < 2.6 x 1017,
whence |v| > 1.3 x 10?1, Substituting this a third time into (52,

<1072,

u
o] — —
v

so that |u/v| < 3.1 x 107 and |v| > 103!, One final use of (52)) thus yields the
inequality
o = % < 1075,
v
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Appealing to [@0), ([@6), (B0), and the fact that |a;| < 3 x 107, we thus have, after
a little work,

|Hp(a1,1) — Hp(u/v,1)] < 3.4 x 10744,
With (&), this implies that

He(u/0,1)] > 55
and so
9 v? 1082 45
|Hp (u,v)| = v* |Hp(u/v,1)| > 1562p > 39 1018 = 3 x 10,
as claimed. ([l

11. CONCLUDING REMARKS

Many of the techniques of this paper can be generalized to potentially treat the
problem of determining elliptic curves of a given conductor over a number field K.
In case K is an imaginary quadratic field of class number 1, then, in fact, such
an approach works without any especially new ingredients. We will discuss this in
subsequent work.
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