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Abstract. We classify primes p for which there exist elliptic curves E/Q
with conductor NE ∈ {18p, 36p, 72p} and nontrivial rational 2-torsion, and, in
consequence, show that, for “almost all” primes p, the Diophantine equation

x3 + y3 = pαzn

has at most finitely many solutions in coprime nonzero integers x, y and z and

positive integers α and n ≥ 4. To prove this result, we appeal to such disparate

techniques as lower bounds for linear forms in p-adic logarithms, Schmidt’s
Subspace Theorem, and methods based upon Frey curves and modularity of

associated Galois representations.

for Paulo Ribenboim on the occasion of his 80th birthday

1. Introduction

There are many aspects to what we might deem the “typical” arithmetic be-
haviour of elliptic curves E/Q which are understood less well than we would like.
The study of, for example, the average Mordell-Weil rank of such curves is inti-
mately connected, via the conjecture of Birch and Swinnerton-Dyer, to the vanish-
ing of associated L-functions. In this regard, it is still unknown whether a positive
proportion of elliptic curves E/Q (by some measure) have positive rank; an excel-
lent survey in this area is [1]. There are a number of senses in which one might claim
that a typical elliptic curve E/Q has only trivial rational torsion. It is possible to
make such a statement precise for elliptic curves with prescribed bad reduction at
only a few primes. In particular, one may prove

Theorem 1.1. ([2]) For a set of primes p of density one, every elliptic curve E/Q
with good reduction outside the set {2, 3, p} and multiplicative reduction at p has
trivial rational torsion.

By this, we mean that the set P of primes for which there exists an E/Q with
conductor NE = 2α3βp and #E(Q)tors > 1 has the property that

# {p ≤ X : p ∈ P} = o (π(X)) as X →∞.
It is worth noting (see e.g [15]) that Theorem 1.1 cannot be extended to the case
of additive reduction at p, as there exist elliptic curves E/Q of conductor kp2 with
a rational 2-torsion point, for every prime p > 3, and each

k ∈ {32, 64, 256, 288, 576, 2304}.
A result such as Theorem 1.1 has immediate consequences for Diophantine equa-

tions. Indeed, a common obstruction to applying techniques based upon Frey curves
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and modular Galois representations to Diophantine problems is the presence of el-
liptic curves over Q at appropriate levels with rational isogenies corresponding to
those possessed by the Frey curves. For instance, if one wishes (as in, say, Kraus
[10]) to show that the equation

(1) x3 + y3 = zn

has no solutions in coprime nonzero integers x, y and z, for n ≥ 3, then the presence
of an elliptic curve E/Q at level 72 with full rational 2-torsion represents a serious
barrier to progress (but see the remarkable recent paper of Chen and Siksek [5],
who prove that (1) has no such solutions for infinitely many n, including those
n ≡ 2 or 3 (mod 5) with n ≥ 5).

Though equation (1) is currently still somewhat intractable, in this paper we will
study “twisted” versions of this equation with the property that the corresponding
Diophantine equation may be shown to have at most finitely many solutions. In
particular, if S is the set of primes p ≥ 5 for which there exists an elliptic curve E/Q
with conductor NE ∈ {18p, 36p, 72p} and at least one nontrivial rational 2-torsion
point, then we will prove

Theorem 1.2. Suppose that p ≥ 5 is prime and that p 6∈ S. Let α ≥ 1 be an
integer. Then the equation

x3 + y3 = pαzn(2)

has no solutions in coprime nonzero integers x, y and z, and prime n satisfying
n ≥ p2p.

To complement this, we will deduce a less general version of Theorem 1.1, with
more precise upper bounds for the counting function of S. Specifically, we will
prove

Theorem 1.3. Let πS(x) = #{p ≤ x : p ∈ S}. Then

(3) πS(x)�
√
x log2(x).

Here and henceforth, the implied constant in the Vinogradov symbol is absolute.
In truth, it is not even known that S is an infinite set (though we expect that
log πS(x) ∼ 1

2 log x). The fact that “most” primes p have the property that E/Q
with conductors 18p, 36p and 72p have no nontrivial rational 2-torsion, however,
is not obvious from a cursory examination of available data. Indeed, the set S
contains every prime p with 5 ≤ p ≤ 193. One can check from Cremona’s tables,
however, that, in the interval [1, 1000], the primes

197, 317, 439, 557, 653, 677, 701, 773, 797 and 821

lie outside S. In fact, it is rather easy to show that a positive proportion of all
primes are in the complement of S, most readily by noting (as we will show later)
that S contains no primes p satisfying p ≡ 317 or 1757 (mod 2040).

As an almost immediate consequence of Theorems 1.2 and 1.3, together with a
result of Darmon and Granville [6], we have

Corollary 1.4. For primes p 6∈ S, a set of density one in the primes, the equation
(2) has at most finitely many solutions in coprime nonzero integers x, y and z, and
integers α ≥ 1, n ≥ 4.
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It is interesting (and nontrivial) to note that there is a bijection between isogeny
classes of elliptic curves E/Q with rational 2-torsion and conductor 144p, and those
with rational 2-torsion and conductor in the set {9p, 18p, 36p, 72p}, via twists. With
this in mind, we could replace Theorem 1.2 with a marginally weaker if cleaner
statement, substituting for S the set S′, of primes p for which there exists an
elliptic curve E/Q with conductor 144p and a rational 2-torsion point.

2. Frey curves and Galois representations

Here and henceforth, we let p ≥ 5 be prime, p 6∈ S (so that p = 197 or p ≥ 317),
and α a positive integer. Further, suppose that n is prime with n ≥ p2p; for
most of our arguments, we will in fact only require n ≥ 7, but even a slightly
stronger assumption simplifies matters a bit. We will assume that we have a proper,
nontrivial solution (a, b, c) of the equation

a3 + b3 = pαcn,

i.e. a solution with a, b and c nonzero, coprime integers. We suppose further,
without loss of generality, that the following conditions are satisfied :

ac is even, and b ≡

{
−1 (mod 4) if c is even,
1 (mod 4) if c is odd.

(4)

Darmon and Granville [6] associate to the triple (a, b, c) the elliptic curve

(5) Ea,b : y2 = x3 + 3abx+ b3 − a3,

which has a point of order two given by (x, y) = (a− b, 0). The standard invariants
c4(a, b), c6(a, b) and ∆(a, b) attached to Ea,b are

(6)


c4(a, b) = −2432ab,

c6(a, b) = 2533(a3 − b3),
∆(a, b) = −2433p2αc2n.

It is not too difficult, via Tate’s algorithm, to determine the conductor NEa,b

of Ea,b (for more details, the reader is directed to [15]). We designate by R the
product of the prime numbers distinct from 2, 3, and p that divide c, i.e. the largest
squarefree integer prime to 6p dividing c. Given an integer k and a prime number
l, we denote by vl(k) the exponent of l in the decomposition of k into prime factors.

Lemma 2.1. We have (under conditions (4) on a, b, and c)

NEa,b
=


18 pR if c even, b ≡ −1 (mod 4),
36 pR if c odd, v2(a) ≥ 2 and b ≡ 1 (mod 4),
72 pR if c odd, v2(a) = 1 and b ≡ 1 (mod 4).

In particular, since a and b are coprime, we have that Ea,b has multiplicative
reduction at p.

Let us denote by
ρa,bn : Gal(Q/Q)→ GL2(Fn),

the canonical mod n Galois representation on Ea,b[n], the subgroup of n-torsion
points of Ea,b(Q). It is easy to see that ρa,bn has weight 2 (in the sense of [19]). Let
N(ρa,bn ) denote the conductor of ρa,bn , as defined in Serre [19]. Before we proceed
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further, we will deduce Theorem 1.2 in case n | α. Following the arguments of
Kraus [10], we find that

n | p+ 1± ap,
where ap is the pth Fourier coefficient of an elliptic curve over Q of conductor 72.
It follows that n ≤ p+ 1 + 2

√
p, contradicting n ≥ p2p. We will thus suppose, from

now on, that n does not divide α.

Lemma 2.2. The following hold :
(1) N(ρa,bn ) = NEa,b

/R.
(2) The representation ρa,bn is irreducible.

Proof. 1) Let q be a prime distinct from 2, 3, p and n. The curve Ea,b is readily
shown to have multiplicative reduction at q (Lemma 2.1) and the exponent of q in
the minimal discriminant of Ea,b is a multiple of n. This assertion then follows as
a direct consequence of Lemma 2.1 and, essentially, a result of Serre ([19], p.120).

2) If ρa,bn were reducible, since Ea,b has a point of order 2, there would exist a
subgroup of Ea,b(Q) of order 2n stable under Gal(Q/Q). This contradicts the fact
that, for n ≥ 11, the modular curve Y0(2n) has no Q-rational points (see [8] and
[14]). �

Given a positive integer N , we let S2(Γ0(N)) denote the C-vector space of cus-
pidal modular forms of weight 2 for the congruence subgroup Γ0(N). Denote by
S+

2 (N) the subspace of newforms of S2(Γ0(N)), and g+
0 (N) its dimension as a

C-vector space. See [13] for an explicit determination of g+
0 (N).

Since the representation ρa,bn is irreducible of weight 2 and Ea,b is modular (via
e.g. [3]), there exists a newform f ∈ S+

2 (N(ρa,bn )) whose Taylor expansion is

f = q +
∑
m≥2

am(f)qm where q = e2πit,

and a place N of Q lying above n, such that for all prime numbers l not dividing
nNEa,b

one has
al(f) ≡ al(Ea,b) (mod N ).

It follows that

n | NormKf/Q(al(f)− al(Ea,b)),(7)

where Kf denotes the field of definition of the coefficients. Similarly, we have

(8) n | NormKf/Q(al(f)± (l + 1)),

for each prime l 6= n dividing R.

3. Proof of Theorem 1.2

We now proceed with the proof of Theorem 1.2. Let us suppose that f is a
weight 2, level N cuspidal newform (with trivial character), where

N ∈ {18p, 36p, 72p},
corresponding to a nontrivial solution to equation (2). If [Kf : Q] > 1 then, via
Lemme 1 of [9], there exists a prime l satisfying, in all cases, l ≤ 24(p + 1), for
which al(f) 6∈ Z. Since we have normalized f , the Fourier coefficients a2(f), a3(f)
and ap(f) are all in {0,±1}, whereby l 6∈ {2, 3, p}. From the fact that al(Ea,b) is a
rational integer satisfying |al(Ea,b)| ≤ 2

√
l while, for any embedding σ : Kf → R
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we have |σ(al(f)| ≤ 2
√
l, in each of the cases (7) or (8), the right hand side is

necessarily nonzero and hence

n ≤
(
l + 1 + 2

√
l
)[Kf :Q]

≤
(√

l + 1
)2g+0 (N)

.

Applying Theorem 1 of [13], we obtain

g+
0 (N) ≤

{
p if N = 18p, 36p,
5p/4 if N = 72p,

whereby

n ≤
(√

24(p+ 1) + 1
)5p/2

.

For p ≥ 211 a simple exercise in calculus immediately implies that n < p2p. Since
we may assume that p = 197 or p ≥ 317, it remains to handle the former case.
Here, the (very) slightly sharper inequality g+

0 (N) ≤ 5(p − 1)/4 suffices to imply
n < p2p and hence, as desired, a contradiction.

We may thus suppose that the form f has rational integer Fourier coefficients
am(f) for all m ≥ 1, whereby f corresponds to an isogeny class of elliptic curves over
Q with conductor N = 18p, 36p or 72p. Applying Proposition 2 of of Appendice II
of Kraus [9], we find that one of the following necessarily occurs:

(i) There exists a prime l ≤ 24(p+ 1), coprime to 6p, with al(f) ≡ 1 (mod 2).

(ii) al(f) ≡ 0 (mod 2) for all primes l coprime to 6p.
In the former case, since n divides the (nonzero) integer al(f)−al(Ea,b), we have

that
n ≤ l + 1 + 2

√
l ≤ 24(p+ 1) + 1 + 4

√
6(p+ 1) < p2p,

where the last inequality is valid for p ≥ 3. In case (ii), there exists an elliptic
curve F , in the given isogeny class, with a rational 2-torsion point. That is, F is an
elliptic curve over Q with 2-torsion and conductor 18p, 36p or 72p. It follows that
p ∈ S, contrary to our earlier assumptions. This completes the proof of Theorem
1.2.

Before we turn our attention to Theorem 1.3, let us note that Corollary 1.4 is
an easy consequence of Theorems 1.2 and 1.3, after applying a result of Darmon
and Granville [6] (which implies, for fixed values of n ≥ 4 and p, that the equation
x3 + y3 = pαzn has at most finitely many solutions in coprime, nonzero integers
x, y and z).

4. Classifying elliptic curves

If an elliptic curve possesses a rational torsion point or isogeny, then its discrim-
inant splits into at least two factors, as a polynomial in its coefficients. Together
with the assumption that the curve has bad reduction at only a few primes, this
leads us to a number of Diophantine equations which, if lucky, we may be able to
solve. This is the approach Hadano [7] takes to classify elliptic curves with cer-
tain specified reduction and nontrivial rational torsion. In the example we have in
mind, we will however, consider a case rather more general than that treated in
[7], though we restrict our attention to rational 2-torsion. For such E/Q, we may
suppose that

E : y2 = x3 +Ax2 +Bx,



6 MICHAEL A. BENNETT, FLORIAN LUCA, AND JAMIE MULHOLLAND

so that the assumption that NE is divisible by no primes outside {2, 3, p} leads us
to the conclusion that

∆E = 24B2(A2 − 4B) = ±2α3βpγ ,

and hence to equations of the shape

A2 =
∣∣2α03β0pγ0 ± 2α13β1pγ1

∣∣ .
To proceed, one combines case-by-case analysis with assorted tricks of the Diophan-
tine trade; the reader is directed to the relevant sections of [15] for details. The
results we quote here follow from combining Theorems 3.13, 3.14 and 3.15 with
Lemmata 4.7 – 4.11 of [15], and appealing to the main results of Luca [12]. In what
follows, we let l(n) denote the least prime divisor of an integer n > 1.

Proposition 4.1. Let p > 3 be prime. Then there exists an elliptic curve E/Q of
conductor 18p and having at least one rational point of order 2 precisely when at
least one of the following occurs :

• there exist integers a ≥ 5 and b ≥ 0 such that

(9) p = 2a3b ± 1;

• there exist integers a ≥ 5 and b ≥ 0 such that

(10) p =
∣∣3b ± 2a

∣∣ ;
• there exist integers a ≥ 7, b ≥ 0 and t such that

(11) p =
∣∣t2 ± 2a3b

∣∣ ;
• there exist integers a ≥ 7, b ≥ 0 and t such that

(12) 3b p = t2 + 2a;

• there exist integers a ≥ 7 and t such that

(13) p =
∣∣3t2 ± 2a

∣∣ .
Proposition 4.2. Let p > 3 be prime. Then there exists an elliptic curve E/Q of
conductor 36p and having at least one rational point of order 2 precisely when at
least one of the following occurs :

• there exist integers t and b where b ≥ 0 is even and

(14) p = t2 + 4 · 3b;
• there exist integers n, t and b where b ≥ 1 is odd, n = 1 or l(n) ≥ 7, and

(15) pn =
∣∣t2 − 4 · 3b

∣∣ ;
• there exist integers t and b where b ≥ 1 is odd and

(16) 4p = t2 + 3b,

where p ≡ −1 (mod 4);
• there exist integers t and n ∈ {1, 2} such that

(17) 4pn = 3t2 + 1

where p ≡ 1 (mod 4);
• there exists an integer t such that

(18) p = 3t2 − 4.
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Proposition 4.3. Let p > 3 be prime. Then there exists an elliptic curve E/Q
of conductor 72p and having at least one rational point of order 2 precisely when
p = 29 or at least one of the following occurs :

• there exists an odd integer b such that

(19) 4p = 3b + 1;

• there exist integers t and b where b ≥ 1 is odd and

(20) p = t2 + 4 · 3b;
• there exist integers a ∈ {2, 3} and b ≥ 0 such that

(21) p = 2a3b ± 1;

• there exist integers a ∈ {4, 5}, b ≥ 0, t and n = 1 or l(n) ≥ 7, such that

(22) pn =
∣∣t2 ± 2a3b

∣∣ ;
• there exist integers t and b where b ≥ 1 is odd and

(23) 4p = t2 + 3b,

where p ≡ 1 (mod 4);
• there exist integers a ∈ {2, 3} and b ≥ 0 such that,

(24) p = 3b ± 2a;

• there exist integers t and n ∈ {1, 2} such that

(25) 4pn = 3t2 + 1;

• there exist integers n, t and b where b ≥ 1 is odd, n = 1 or l(n) ≥ 7, and

(26) 3bpn = t2 + 32;

• there exist integers a ∈ {4, 5} and t such that

(27) p = 3t2 − 2a;

• there exist integers a ∈ {2, 4, 5} and t such that

(28) p = 3t2 + 2a.

At this juncture, it is appropriate to note that, in Propositions 4.2 and 4.3, the
condition l(n) ≥ 7 can likely be omitted (though we cannot currently prove this);
there are no known solutions to the corresponding Diophantine equations.

With these results in hand, it is a relatively straightforward matter to deduce
the following.

Corollary 4.4. If p is prime with p ≡ 317 or 1757 (mod 2040), then p 6∈ S, i.e.
there does not exist an elliptic curve E/Q of conductor 18p, 36p or 72p, with a
nontrivial rational 2-torsion point.

Proof. To prove this, we note that Propositions 4.1, 4.2 and 4.3 together with some
elementary calculations imply that primes p for which there exists an elliptic curve
E/Q of conductor 18p, 36p or 72p, with at least one nontrivial rational 2-torsion
point, necessarily have p 6≡ 77 (mod 120), unless we have one of

(29) p = 2a − 3t2 with a ≥ 7, a ≡ 1 (mod 4) and 5 | t, or

(30) pn = t2 + 4 with n ≡ 3 (mod 4), or
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(31) 4p2 = 3t2 + 1,

where t is an integer. In this last case, since positive integer solutions (T,U) to the
Diophantine equation T 2 − 3U2 = 1 have T ≡ 1, 2 (mod 5), p satisfying (31) must
have p ≡ 1, 3 (mod 5). For equation (30), an old result of Nagell [16] implies that
the only positive integral solutions to t2 + 4 = yn with n ≥ 3 are with t = 2 and
t = 11, whereby p = 5.

It remains to treat (29). Here, it is easy to check that, since a ≡ 1 (mod 4), we
have

p = 2a − 3t2 6≡ ±6 (mod 17).
It follows, as claimed, that p 6≡ 317 or 1757 (mod 2040). �

5. Bounding S

We will now proceed with the proof of Theorem 1.3. Let Sk denote the set of
primes p satisfying equation (k) for k ∈ {9, . . . , 28}, so that

S =
28⋃
k=9

Sk.

Define πSk
(x) = # {p ≤ x : p prime, p ∈ Sk} . We will deduce upper bounds for

each πSk
(x); it is perhaps interesting to note that, in each case, we will in fact

bound the integers p satisfying equation (k) for k ∈ {9, . . . , 28}, without appealing
to the primality of p.

Before we start, let us take care of the cases where n > 1 in (15), (17), (22),
(25) and (26). Indeed, if p, n, a, b, t satisfy one of these equations then Shorey
and Tijdeman ([20], page 180) implies that n is bounded by an absolute constant,
and Darmon and Granville ([6], Theorem 2) implies there are only finitely many
solutions for p, n, a, b, t. If n = 2 in (25), then p is a term in a (fixed) binary
recurrence sequence (and hence there are � log x such primes p ≤ x). We will
suppose, henceforth, that n = 1. Under this assumption, it is almost immediate
that

πSk
(x)�

√
x log2 x for k ∈ {9, 14, 16, 17, 18, 19, 20, 21, 23, 25, 27, 28}

and that like inequalities obtain for primes p in (10), (11), (13), (22) and (24)
with corresponding + rather than − signs. To see this in case, by way of example,
k = 14, note that t2 + 4 · 3b ≤ x implies that t ≤

√
x and b ≤ log x, so that the

number of integers of the form t2 + 4 · 3b up to x (never mind primes) is at most√
x log x. Our weakest upper bound here corresponds to the + case of (11).
It remains to count primes of the shape

(32) p =
∣∣3b − 2a

∣∣ ,
(33) p =

∣∣t2 − 2a3b
∣∣ ,

(34) p =
∣∣3t2 − 2a

∣∣ ,
and

(35) p =
t2 + 2a

3b
.

Let us begin with (32) and suppose that we have∣∣3b − 2a
∣∣ ≤ x.
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We appeal to a result of Tijdeman (Theorem 1 of [21]) :

Theorem 5.1. (Tijdeman) Let A and B be positive integers with 3 < A < B and
let r and p denote the number of distinct prime factors and the greatest prime factor
of AB, respectively. Then

B −A >
A

(logA)C1
,

where logC1 = r4 c1 + 14r2 log log p, with c1 an effectively computable absolute
constant.

This result, with (A,B) = (2a, 3b) or (3b, 2a), implies the existence of an effec-
tively computable positive constant κ such that∣∣3b − 2a

∣∣ > 3b b−κ,

at least provided that b > 2 (if b ≤ 2, an upper bound of order log x upon a is
immediate). It follows that 3b b−κ < x and so b� log x. Since |3b−2a| ≤ x, we thus
have 2a < xτ for some absolute positive constant τ , whereby max{a, b} � log x.
We may thus conclude that

πSk
(x)� log2(x) for k ∈ {10, 24}.

To treat primes of the shape (33), we write a = 2α+ δ0 and b = 2β + δ1, where
δi ∈ {0, 1}. If both a and b are even, i.e. if δ0 = δ1 = 0, then

p = |t− 2α3β ||t+ 2α3β |,

whence
p = 2α+13β ± 1.

The number of such primes up to x is � log2 x. If, however, we have (δ0, δ1) =
(1, 0), (0, 1) or (1, 1), then p ≤ x implies that∣∣∣∣√2δ03δ1 − t

2α03β0

∣∣∣∣ < x

2α03β0 (|t|+ 2α03β0)
<

x

(2α03β0)2
.

On the other hand, a classic result of Ridout [17] (a p-adic version of Roth’s the-
orem) implies, given a nonsquare positive integer d and ε > 0, the existence of a
positive constant c(ε) such that if α0, β0 and t are nonnegative integers then

(36)
∣∣∣∣√d− t

2α03β0

∣∣∣∣ > c(ε)
(2α03β0)1+ε

.

Applying this with d ∈ {2, 3, 6} and, say, ε = 1/2 yields the inequality

max{α0, β0} � log x

and so the number of primes of the shape (33) up to x is O(
√
x log2 x), as desired.

A similar argument (applying (36) with d ∈ {3, 6}) implies that the corresponding
number of primes of the form (34) is O(

√
x log x).

It remains to treat primes of the shape (35); we will show that the number of
such primes is O(

√
x log x). Here, we must argue somewhat more carefully. We

begin by noting that if (t2 + 2a)/3b ≤ x is an integer (where a, b and t are positive
integers), then

2a < t2 + 2a ≤ 3bx,
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whereby

(37) a ≤ log(3bx)
log 2

� b+ log x.

Fix a and b. Then the congruence

t2 + 2a ≡ 0 (mod 3b)

has exactly 2 solutions modulo 3b. Call these least positive solutions t1 and t2, so
that t = tj + 3bλ for some j ∈ {1, 2} and λ ≥ 0. Then

t2 + 2a

3b
=
t2j + 2a

3b
+ 2tjλ+ 3bλ2 ≤ x

and so 3bλ2 < x, whereby λ ≤ x1/2/3b/2. Thus, for a and b fixed, the number of
such positive integers t is at most

(38)
2x1/2

3b/2
+ 2.

Our goal will be to show that

(39) b� log x.

If this inequality is satisfied, then (37) implies that also a� log x. Thus, summing
(38) over all the values of a once b is fixed, then over b, we find that the number of
integers of the shape t2+2a

3b which are ≤ x and satisfy (39) is

O

(
x1/2 log x

( ∞∑
b=1

1
3b/2

)
+ log2 x

)
and hence � x1/2 log x, as desired.

We will suppose, then, that κ > 4 × 107 is a (large) positive constant to be
specified later, and that there exists an integer of the form t2+2a

3b which is ≤ x and
satisfies

(40) b > κ log x.

We wish to deduce a contradiction. Begin by writing

t2 + 2a = 3bm

for positive integers m and b. Since 3 | t2 + 2a, it follows that a is odd, say
a = 2a1 + 1. Factoring the above equation in Z[i

√
2] (which has class number one),

we readily conclude that

(41) t+ i
√

2 · 2a1 = αbm1,

where m1 = u+ i
√

2v is such that u and v are integers with u2 + 2v2 = m, and α
is one of 1± i

√
2. Conjugating (41) and eliminating t we find that

(42) i
√

2 · 2a1 = αbm1 − βbn1,

where β = α and n1 = m1. We will exploit relation (42) in two different ways.
Firstly, we compute the 2-adic valuation of both sides of relation (42). From the

left hand side, it is clearly ≥ a/2. On the other hand, from the right hand side, it
equals

ν2(αbm1 − βbn1) = ν2((α/β)b(m1/n1)− 1),
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where we use the fact that β and n1 have odd norms in Q[i
√

2]. Putting γ = α/β
and δ = m1/n1, we apply a lower bound for linear forms in 2-adic logarithms due
to Bugeaud and Laurent, Théoréme 4 of [4] with, in the notation of that paper,
(µ, ν) = (10, 5). We deduce the inequality

ν2((α/β)b(m1/n1)− 1) < 3656 log2

(
b

log x

)
log x.

Here, we have used the fact that the absolute logarithmic height of γ is log 3, while
that of δ is log(m1n1)/2 = logm ≤ log x. Thus we may conclude that

a < 7312 log2

(
b

log x

)
(log x).

If a > (log κ)−1b, it follows that
b

log x

log2
(

b
log x

) < 7312 log κ,

whereby, from (40),
κ < 7312 log3 κ,

contradicting κ > 4× 107.
We may thus assume that

(43) a ≤ (log κ)−1b.

Next, we will apply Schmidt’s Subspace Theorem [18] to equation (42). Let K =
Q[i
√

2]. We take S = {α, β,∞} as normalized valuations over K. Put x = (x1, x2).
For j = 1, 2 and ν ∈ S, we take Lj,ν(x) = xj for all (j, µ) ∈ {1, 2} × S except for
(j, µ) = (2,∞) for which we take L2,∞(x) = x1 − x2. Next we compute

(44)
∏

(j,µ)∈{1,2}×S

|Lj,µ(x)|µ,

where x = (x1, x2) = (αbm1, β
bm2). Obviously∏

µ∈S
|L1,µ(x)|µ =

∏
µ∈S
|x1|µ = |m1|.

Furthermore, ∏
µ∈S\{∞}

|L2,µ(x)|µ = |x2|α|x2|β = 3−b/2.

Finally, |L2,∞(x)| = |x1 − x2| = 2a/2. Thus, the double product appearing in (44)
is bounded by

|m1|2a/2

3b/2
≤ x1/22a/2

3b/2
.

From (43), it follows that 2a/2 ≤ 3b/4, and hence∏
(j,µ)∈{1,2}×S

|Lj,µ(x)|µ ≤
x1/2

3b/4
< 3−b/8,

where the last inequality is a consequence of (40). Noting that

|x1| = |x2| ≤ 3b/2x ≤ 3b
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(via (40)), we conclude that∏
(j,µ)∈{1,2}×S

|Lj,µ(x)|µ �
1

(max{|x1|, |x2|})1/8
.

The Subspace Theorem [18] asserts that in this case there exist finitely many pairs
(ci, di) ∈ K2\{(0, 0)} for i = 1, . . . , s such that all solutions x of (42) satisfy
cix1 = dix2 for some i = 1, . . . , s. We may assume that ci and di are coprime. For
a fixed i, this relation implies that αb | diβbn1, and since α and β are coprime, that
αb | din1. Since |n1| ≤

√
x, choosing κ suitably large (relative to max |di|), this

contradicts (40). This completes the proof of Theorem 1.3.

6. Extending Theorem 1.2

We can, in fact, strengthen Theorem 1.2 substantially, so that its conclusion
applies to many primes p ∈ S. To see how to achieve this, we begin by noting that
the Frey curve constructed in (5) provides us with somewhat more information than
just the existence of a nontrivial rational 2-torsion point. Indeed, the curve is of
the form y2 = f(x), where

f(x) = (x− b+ a)(x2 + (a− b)x+ (a2 + ab+ b2)).

This last quadratic has discriminant −3(a + b)2 and hence f splits completely
modulo l for l ≥ 5 prime, precisely when

(−3
l

)
= 1; i.e. for l ≡ 1 (mod 6). For each

such l, we thus have

(45) al(Ea,b) ≡ l + 1 (mod 4).

For each p ∈ S, there exists (by definition) at least one E/Q with conductor in
{18p, 36p, 72p} and 2 | #E(Q)tors. On the other hand, it might be that there are
no such curves with 4 | #E(Q)tors. In such a case, then, there is a chance that (45),
in conjunction with (7) and (8), might imply that equation (2) has no nontrivial
solutions for suitably large prime n.

A short computation reveals that the following p ∈ S, p < 197, have the property
that every E/Q with conductor in {18p, 36p, 72p} has at most a single rational
torsion point of exact order 2 :

79, 83, 103, 149, 151, 157, 163, 167, 173, 181

(indeed, one may show that this is true of “most” elements of S). From this list,
the primes p = 83, 149, 167 and 173 have the property that every E/Q of conductor
18p, 36p and 72p has at least one corresponding prime l ≡ 1 (mod 6) for which
al(E) 6≡ l + 1 (mod 4). Arguing carefully (and computing Fourier coefficients of
modular forms via, say, Magma), we can prove, for instance, a result of the following
flavour :

Proposition 6.1. The equation

x3 + y3 = 83αzn

has no solutions in nonzero, coprime integers x, y and z, integer α ≥ 1 and prime
n ≥ 17.

It is not too difficult to classify the elements of S for which we may apply these
arguments, but we will not undertake this here.
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(1987), 179–230.

[20] T.N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge, 1986.
[21] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319–

330.

E-mail address: bennett@math.ubc.ca

Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T

1Z2 Canada

URL: http://www.math.ubc.ca/∼bennett

E-mail address: fluca@matmor.unam.mx

Mathematical Institute, UNAM Ap. Postal 61-3 (Xangari), CP 58089 Morelia, Mi-
choacan, Mexico

URL: http://www.matmor.unam.mx/

E-mail address: jmulholl@math.ubc.ca

Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada


