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Abstract
Let wg,...,wnr be complex numbers. If Hy,..., Hy, are polynomials of degree at
most po, - .., pum, and G(z) = Z%:o H,,(2)(1—2z)“ has a zero at z = 0 of maximal
order (for the given wy,, pm), we say that Hy, ..., Hy are a multidimensional Padé

approximation of binomial functions, and call G the Padé remainder. We collect
here with proof all of the known expressions for G and H,,, including a new one:
the Taylor series of G. We also give a new criterion for systems of Padé approxi-
mations of binomial functions to be perfect (a specific sort of independence used in
applications).

1. Introduction

Fix complex functions fy, f1,..., far (all analytic in a neighborhood of 0) and non-
negative integers po, ..., par. The set of functions

X = {Z Hp,(2)fm(2) : Hy, € Clz], deg(Hy,) < pm}
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forms a finite dimensional vector space, and the subsets of functions
Xs ={G € X : ord,—o(G) > s}

with a zero at z = 0 of order at least s are subspaces. Trivially Xo 2 X; D X5 D ---.
Let o be the least integer with X, having dimension 0, if such o exists. Then X,_1
has positive dimension, and the functions in X,_; are of particular interest, and

are called the Padé remainders of fo,..., fumr-
The M = 1 case is the standard tool in numerical analysis known as Padé
approximation [2], which generalizes Taylor Series. In particular, if fo(z) = —1

identically, and p; = 0, then
X ={—Ho(2) + H1 - fi(2) : Ho € C[z], deg(Ho) < po, H1 € C}.

Taking Ho(z)/H; to be the pp-th Taylor polynomial of fi(z), we find that the Padé
remainders are the constant multiples of the Taylor polynomial remainder. Letting
p1 > 0 leads to rational functions Ho(z)/H;(z) that approximate fi1(z) at least as
well as Taylor polynomials. If f; has poles near 0, then this rational approximation
is typically much sharper than the Taylor’s polynomial approximation.

When M > 1, we include the adjective “multidimensional”. This setting has not
been exploited as systematically as the M = 1 case. For a few particular choices
of fo,..., fu, there is enough structure that we can work out explicit formulae
for the Padé remainders and for the system of Padé approximants, i.e., generating
polynomials Hy, ..., Hy. In this paper, we take the binomials f,,(z) = (1 — z)“™
for complex numbers wy, ...,wys, no pair of which has an integer difference. The
resulting system of equations was studied by Riemann [10], Thue [13], Siegel [11],
Mahler [7], Baker [1], Chudnovsky [4], Bennett [3], and many others, and the use
of these Padé approximations for Diophantine analysis is known as the method of
Thue-Siegel.

We present in this article our exposition of these classic results on multidimen-
sional Padé approximation of binomial functions. We combine, and in some cases
simplify, the work of Mahler and Jager [6,7]. While there are some original results
here, e.g., Theorem 4((iv)) and some cases of Theorem 6, we see the main value of
this work as collating the work of many people over many years with common nota-
tion, complete proofs, and specialization to the choice f,,(z). The results presented
in this work are equalities, and so as a check against off-by-one errors, one can
implement the various forms given and directly check the equations for randomly
chosen parameters. We have done so in Mathematica; a notebook containing these
calculations is on the arXiv.

The current work focuses on various expressions for the Padé remainders and
approximants. In subsequent works, we will provide new bounds, both archimedian
and non-archimedian, on the size of the approximant polynomials Hy, ..., Hy; and
on the Padé remainder, and will exploit those bounds to give new irrationality
measures for some numbers of the form (a/b)*/™.
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2. Statement of Results

Let M be a nonnegative integer. Consider & = (wp, w1, ...,wn), a vector of M + 1
distinct complex numbers, no pair of which has a difference that is an integer, and
g = {po,-..,pm), a vector of M + 1 nonnegative integers (typically not distinct).
We index the vectors & € CM*! 5 e NM+1 with 0,1,..., M; for example, the 0-th
coordinate of g'is pg and the M-th coordinate is pas. We will only consider M, @,
0 satisfying these constraints. Two fundamental parameters are

M M
oc=o0(p) = Z(pm+1), and pl= H Pm!.
m=0 m=0

Some notation used in Theorem 1 is both standard and uncommon; we give
definitions in the next section. When we add a scalar to a vector, we mean that
the scalar is added to each coordinate, such as g+ 1= (pg+ 1,p2 +1,...,par + 1).
When we delete the m-th coordinate, reducing the length of the vector by 1, we use
a “xm” exponent, such as

=%
w :<W03'"awm—lywm+1a"'awM>~
The standard basis vectors are denoted €p, €1,..., €.

Theorem 1. Let g and & be fixed vectors as above.

(i) (Ezistence) There are polynomials Hy, in z of degree at most p,,, with at least
one H,, not identically 0, and with

G(z) = Z H,(2)(1 — z)«m

having a zero of order at least 0 — 1 at z = 0.

(i) (Uniqueness) For such G(z), the function G(z) necessarily has a zero of order
exactly o — 1 at z = 0, and furthermore the polynomials Hy,(z) are uniquely
determined given the additional constraint that

G(z) 1

i, 21 (e—1)

Each H,,(z) has degree exactly p,,. There is no a € C with

Ho(a) = ZHM(Oé) =0.

(#ii) (Domain) G(z) is analytic on C\ [1,00).
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Theorem 1 allows us to make the following definition of Padé approximants and
remainders.

Definition 2. Let p'and & be fixed vectors as above. The M +1 Padé approzimants
PoLY,, (= | %) (with 0 < m < M) are the polynomials with degrees p,,, and with
Padé remainder

M
REM(z |%) =) PoLv,(z]|9) (1 - 2)“"

m=0
both having a zero of order 0 — 1 at z = 0, and satisfying

O Rem(z[F) 1
50 201 (o—D)

In Proposition 3, we draw attention to some obvious symmetries, immediate from
Theorem 1, whose proofs we do not spell out.

Proposition 3 (Permutation and Shift Symmetry). If = is any permutation of
0,1,..., M, then

n] ) geeey s ™ hEhadiiy >
Ren (2| 9) = Rimi (= | {20 2)) = Riwi(z | (77 om0 enon))

and

PoLYm (2] 5) = Powm (| {510 500) = Porvaaam (=] G100 50000

For any o, we have
(1-2)*ReM(z|%) =ReM(z|*L¥)  and PoLy,(z|%9) = PoLy,, (z|*17).

The purpose of the current work is to collect together various explicit formulae
for the Padé remainder REM (z ’ ‘;;’) and the Padé approximants PoLy,, (z | “;i), in a
common notation, and with complete proofs. Formulae for the Padé remainder are
given in Theorem 4, and formulae for the Padé approximants are given in Theorem 5.

Theorem 4 (Forms for the Padé Remainder). The following five expressions give
REM(z|9).

(i) The Padé remainder REM (z ‘ ‘;i) is given by the iterated integral

1_ tar—1
Z / / / / Z t1,t2,...,tM)dt]\/[~"dt3dt2dt1,

where

M th_1—tn Ph—1 M
g(15071517.,,7 _tPM H ( - ) H(l_th)wh_whil_l )
h=1 h h=1
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(i) The Padé remainder REM (z ‘ ‘;i) is given by the M -dimensional integral

Lo (1 _ Z)wo / 11\_/[[ 1+ph 1—uy, Ph—1 Jit
p_" [0,1]M ].—ZUh I—wptwn—1 \ 1 — 20U, '

where Uy, =[]y un.

(iii) The Padé remainder REM(z ‘ ‘;i) is the contour integral

1
( 27)'(' /1725]:[ Pk"!‘ldg’

where v is any simple positively oriented contour enclosing all o of the complex
numbers wy, +1r (0<m < M,0 <7r < py).

(iv) The Maclaurin series for REM(z | ‘g») is

; K Z : pz (Pm) _0(1)7'(0% + ) ﬁj
= k#

Wi — Wiy — r)PkJr n!

which converges for |z| < 1.

(v) Finally, REM(Z | ii) 1s the special value of Meijer’s G-function given by

M+1,0
GM+1 M+1(1 z

w+ﬁ+1)

In addition to the formulae for REm (z ’ ‘j;i) given in Theorem 4, we note that

M
REM(z|%) = Z PoLY,, (2| %) (1 — z)*m

m=0

and so any formula for POLY,, (2| %) generates a formula for REM(z | 4). Theorem 5
gives a number of useful representations of PoLy,, (z | ‘;i)

Theorem 5 (Forms for the Padé Approximants). The following five expressions
give POLY, (z | %)

(i) Let v, be a simple positively oriented contour enclosing all py, + 1 of the
complex numbers wy, +1 (0 < r < pn) and none of wy +1r (0 < k < M,k #
m,0 <r < pg). Then PoLy,, (z | %) s given by

M

(_1)0_1 E—wm 1
zm-/%(l‘z) I eomm

k=0 W)
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ii) The Padé approzimant POLY,,(z|%) is equal to
P

LS (M e

(iii) For M > 1, the Padé approximant POLY,, (z ’ ‘g) is the M -fold iterated integral
Qm W —1 ml—2z pm
7 o T H A4t ) (1= (=1) T dt,
k;ém

where f(G) ... dt integrates each of to,. .., ty (except t,,) counterclockwise on
the unit circle from —n radians to 7 radians (i.e., the principal value),

M
1
m = . s d T t
@ kl:lo 2i sin(m(wg — wim)) an H ke
k;Zm k;ém

(iv) The Padé approximant is a scaled generalized hypergeometric function:
M -

1 1 Wy — &G —p
—_— _ F 11—z
pm! ( H (wk — wm)/’k+1> M+15M |:(1 + wm — ) z:|

k=0
k#m

('U) Set W = W(m, k) = Wp — W, and deﬁne Cm,k:,r by

Cm,k:,r = (pk>a
r

ifm=k, by

. Pk ' Fr+1) Tlr—p—W)
Con e = (1)1 <Pk> Fr+1-W) I'(r—px+1)

if m#k and pr, < r, and by

o wfer) T +1) Lo —r+1) ™
Cm k= (—1) < ) Lir+1-W)T(pg — 7+ 14+ W)sin(zW)

if m# k and p > r. Then, we have

POLYm ~

iz_l HCnLkT
r=0

bl‘
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Theorem 6 precisely states that notion that the approximants for nearby g are
independent. This property is referred to as “perfect approximation”, and relies
mostly on deg(POLY,, (z ‘ f,i)) = p;,, and ordZ:O(REM(z ‘ L;i)) = 0 — 1. Recall that
our M + 1 dimensional vectors have coordinates indexed from 0 through M.

Theorem 6 (Approximants are Perfect). Fir 5 € NM*1 and &, €, ..., e € ZMHL

with each P+ €, having nonnegative coordinates, and denote the j-th coordinate of
€ as €. Let S be marimum of Zﬁ\io €:,8(i) taken over all permutations B of

0,1,..., M, and let T be the minimum of Zj]\/io €;,; taken over 0 <1i < M. Suppose
the following two conditions are satisfied:

(i) There is a unique permutation o of 0,1,..., M with S = Zij\io €i,a(i);
(ii) T+ M=S.

Then the (M + 1) x (M + 1) matriz whose (k,m) coordinate is the polynomial
POLYm(z | ﬁfgk) has determinant

CZU(ﬁ)—i—T—l’

where C' does not depend on z.

The most startling aspect of Theorem 6 is that & plays no role in the hypotheses
nor in the conclusion.

We note that (in Theorem 6) with €, = €} one has T = 1,5 = M + 1, and the
conditions in Theorem 6 are satisfied. This recovers a result stated and used by
Mabhler, Chudnovsky and Bennett [3,4,7]. If one takes I, C {0,1,...,k — 1} and
€k = €k + Y_;cq, €i, One recovers a result of Jager [6]. Our result covers many more
examples than we found in the literature, but it is not exhaustive.

3. More Notation

We denote the rising and falling factorials as

T

x (z+1)" =z (z+1)-(x+2)---(x+7—1),

(z—1)L=z-(z-1)-(z—-2)---(x —7+1),

Yl

=x-
f =
for positive integers r, and define 29 = 22 = 1. We use the following trivial identities
without comment (provided x —r +1 ¢ {0,-1,-2,...}):
F(z+1) - -
r_ T _ 1N = (=1)(—=x)"
R e T RS TC WSO
and typically choose to eliminate ratios of I" functions in preference for the more
computationally friendly rising and falling factorials. All of our functions will be
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analytic in a complex neighborhood of z = 0. We use deg(f(z)) to be the degree
of f, which is oo if f is not a polynomial. We use ord,—o(f(z)) to denote the order
of the zero of f at z = 0, and we use O(z*) to denote a function that has a zero at
z = 0 of order at least k.

We shall briefly encounter the generalized hypergeometric function (defined for
|z| <1, ¢ < p, and appropriate integers a;, b;)

o0 o n o _n
ai, ag, ..., a atay---al z

qu[bl 2, Z} o P L et i

1, 02, ..., Og 0 12---qn.
and also the Meijer G-function [8]

ai, a2, ..., Qp
Gm n
( b1, ba, ..., bq>
(defined for natural numbers m,n,p, g, provided m < ¢ and n < p, although we

only encounter it in this work with n =0,m =p = ¢ = M + 1), defined by

[T 1 (s+be) [, T(1—ag—s)
27” Hk n+1 S + ak) Hz:erl F(l - bk - S)

z"%ds,

where C' is an infinite contour that separates the poles of T'(1 — a; — s) from those
of I'(bg, + s); the particular contour required for convergence varies depending on

m’n7p7Q7Z

4. Claims and Proofs

It is at least plausible that there are polynomials Hy, . .., Hy; with degrees pg, ..., pup

and
o—1

z
Z Hp(2)(1 — 2)%m = oot 0(z°), (1)
where O(z7) refers to z — 0. After all, the polynomials have a total of o coefficients,
and we may choose them so that G(z) has a zero at z = 0 of order o — 1, and the
first nonzero coefficient in the power series expansion of G(z) is according to our
choosing. Establishing this rigorously is the point to our first claims.

In all the Claims in this section, we assume that M is a nonnegative integer, and
that 0 < m < M. We assume that g'= {po, ..., pu) is vector of M + 1 nonnegative
integers, and that @ = (wo, ...,war) is a vector of M + 1 distinct complex numbers,
no two of which have a difference that is an integer. Both g and & (and vectors
derived from them) are indexed 0 through M.
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4.1. Existence and Uniqueness

The following claim is used implicitly frequently throughout this work.

Claim 7. For any polynomials Hy,(z) (not all zero), the sum

M
G(2) =Y Hp(2)(1—2)“"
m=0

is mot identically 0.

Proof. Since no two w; have difference that is an integer, there is a unique k with

wi + deg(Hy) = max{w; + deg(H;) : H; # 0}.

Then u
H, 1— z)¥m
im — BN gy Hm(@A =2
e () (1 — ) D LN A B
mek
Consequently, G cannot be identically 0. O

Claim 8. There are polynomials Hy(z),...,Hpy(2) of degrees at most po, ..., pu,
respectively, not all identically 0, such that

M
ord,—o <Z Hp(2)(1— z)“m> >o—1
m=0

Proof. Consider polynomials Hy(z2), ..., Hp(2) of degrees po, . . ., pps with unknown
coefficients, a total of o unknowns. Recall Newton’s Binomial Theorem: for |z| < 1
and any complex w, we have

o0

(1-2)% = Z(_w“”1 2

: n
=0
Considering the coefficient of 27, for 0 < j < o — 2, on both sides of the desired
equality
W™ -1
S Ha(e) Y1) s = 0
m=0 i>0
yields a homogeneous linear equation in the unknowns, a total of ¢ — 1 equations.
By linear algebra, there is a choice of the ¢ unknowns, not all zero, which satisfies
all of the equations. In other words, there are polynomials Hy(2),..., Hy(2) (not
all zero) with degrees at most po, . .., par, such that

M
> Hp(2)(1 = 2)m
m=0

has a zero of order at least 0 — 1 at z = 0. O



INTEGERS: 21A (2021) 10

Claim 8 establishes Theorem 1(i).

The next claim is slightly stronger than the M = 0 case of Theorem 1, in that
explicit formulae are given, and is used as a base case for subsequent induction
arguments.

Claim 9. The M = 0 Padé approzimant and remainder are given by the formulae
PO

PoLy(z | <‘”°>) = and REM(z | <w°>) = Z—(l — 7)o

0 (o)) — po' ’ (po)) — pol ’
Proof. We need to show that the only nonzero polynomials Hy with ord,—q(Hg(2)(1—
z)¥0) > o—1 and degree at most pg are Ho(z) = CzP°. First, observe that o = po+1.
As ord,—o((1—2)*°) = 0, we know that ord,—o(Ho(2)(1—2)“°) = ord,—¢(Hp). That
is, Hp must be a nonzero polynomial with ord,—q(Hy) > po and deg(Hy) < po. The
only candidates are PoLYg(z | <<‘Z3>>) = Cz** and REM(z | <<U;<?)>) = C2zPo(1 — z)~o.

Now, observe that
CzPo(1 — z)w0 1 1

C:ll_r)}’(}) Zpo :(0-_1)':m.

Thus, Theorem 1(ii) is proved in the M = 0 case, and the values of POLY,, (z | ii)
and REM (z | ‘g) are as claimed here.

Claim 10. If deg(H,,(z)) < pm, and some H,, # 0, then

M
ord,—o <Z H,(2)(1— z)“m> <o-1
m=0

Proof. Suppose M = 0. With Hy a nonzero polynomial with degree at most pg, we
have

ord,—o (Ho(2)(1 — 2)*°) = ord,—o (Ho(z)) < deg(Hy) < pp =0 — 1.

So, the claim holds for M = 0.

Assume the claim is false, and let M be the smallest positive integer for which
this claim does not hold, and let pg correspond to the first counterexample: that is,
for any &, ¢’ that has a smaller M, or the same M but smaller pg, the claim holds.
Let

M
G(2) =Y Hpu(2)(1 - 2)“"
m=0

be a counterexample, i.e., ord,—o(G) > o. As multiplying by (1 — z)~“° does not
change ord,—o(G(z)), we may assume that wy = 0.



INTEGERS: 21A (2021) 11

If po = 0, so that Hy(z) is a constant, we have

d
600 = £e)+ 3. EHneI1 -2

:Z (H! (2)(1 = 2) — Hp(2)wp) (1 — 2)@m L,

|
~—
&
||

Note that deg(H! (2)(1 — 2) — Hp(2)wp) < deg(Hp,) < pm, for 1 <m < M. Thus
d%G(z) has a smaller M and the same p,,. By assumption on G(z),

ordzzo(d%G(z)) >o0—1,
but by our assumption of the minimality of G(z), we know that
ord,—o (£G(2)) <o —2.

This contradiction shows that pg # 0. But even in the case that pg > 0,
—G( )+ Z A, (2)(1 — 2)%m

)+ Z (H! (2)(1 = 2) — Hp(2)wm) (1 — 2)“m 1.

As above, our assumption on the minimality of pg, as deg(H() = deg(Hp) — 1,
implies a contradiction. O

The proof of the next claim establishes the rest of Theorem 1(ii), and justifies
Definition 2.

Claim 11. Suppose that H,, (with 0 < m < M) are polynomials with degree at
most p,, and that G(z) := an\fzo H,,(2)(1—2)“ has a zero of order at least o —1
at z=10. Then G(z) has an order of exactly o — 1 at z = 0. Suppose further that

G(z) 1

Then G and H,, are uniquely determined by these constraints. The polynomial
H,,(z) has degree exactly p.,, and there is no o € C with Hyo(a) = -+ - = Hp (o) = 0.

Proof. By Claims 8 and 10, we can take ord,—o(G(z)) to be at least 0 — 1, and can
never have it be larger than ¢ — 1, so there are polynomials H,, with

M

G(z) = Z Hp(2)(1—2)% = 0271 + 0(29).

m=0
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By multiplying through by a constant, we can take

B 1
~(o—1)l

If both G1(z) and G2(z) have this form, then their difference would have a zero
of order greater than o —1, and by Claim 10 this is not possible unless G (z) —G2(z)
is identically 0. By Claim 7, however, this is only possible if all of the polynomials
are identically 0. That is, only if G1(z) = G2(2). Thus, G is uniquely defined and
the definition of REM (z | ‘;i) is justified.

If
REM(z ZH 1fzwm*ZBm (1 —2)*

for polynomials H,,, B, of degree at most p,, then

M
0= (Hn(2) = Bu(2))(1 = 2)*"
m=0
But by Claim 7, this implies that H,,(z) = B,,(z). Thus, H,, is uniquely defined
and the definition of PoLy,, (z | ‘g) is justified.

Suppose that PoLy,, (z ’ ‘;i) has degree strictly less than p,,, which in particular
means that p,, > 1. Let é,, be the M + 1-dimensional unit vector in the m-th
coordinate direction. Then REM(z| ;% ) is a constant multiple of REM(z|%),
which has a zero of order o(p) — 1 > (g — €,,) — 1, contradicting Claim 10.

Finally, if Hy,,(«) =0 for 0 < m < M, then H,,(z)/(z — a) are polynomials with
degree p,, —1, and G(z)/(z — @) has a zero of order o(p) —1 at z = 0, contradicting
the uniqueness of G. O

2. Respectful Differential Operators

Claim 12 (Differentiation To Reduce p). Define the operators

d
dy=(1—-2)""{—)(1-2)""
-a (1) a2
If pi > 0, then d,,, reduces p; by 1 and increases w; by 1, i.e., if p; > 0, then
d,, REM(z |%) = REM(z | 975).

If p; =0, then d, eliminates the i-th coordinates of @ and p, i.e., if p; =0, then

du, REM(2 | %) = REM(2 “})

Consequently, for any po,

d

(1 _ Z)wo+Po+1 <

po+1 )
dZ) (1 — Z)_wo REM(Z | ‘;}-{) = REM(Z <w1,...,wM)).

(P15e-spM1)
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Proof. As d,, is linear and

M
REM(z | p) PoLy; (| ~)(1 —2)¥i 4 Z PoLY,, (2 | “})(1 — 2)¥m,
s
we can assess the impact of d,,, on the two pieces separately. First,

dy, PoLy; (z | ‘;;i)(l —2)¥i = (1= z)it! <jz) (1—2)"“ - PoLy,(z| “;i)(l — z)¥i

— <jz PoLy;(z | ﬁ)) (1— z)=tl,

This is 0 if p; = 0, and if p; > 0 it has the form P;(z)(1—2)“*! with P; a polynomial
of degree p; — 1. The other piece is more involved (for the sake of the margins, we
let H(z) = PoLy,, (z ‘ ‘g) in the following displayed equations):

d, Z PoLY,, (z (1 — z)¥m
m#z

M
=(1—z)wit! (i) (1—2)"% Z H(z)(1—2z)*m

m=0
m#i

_ _ w1+1 Z dz 1 _ Z)wm w;

m;ﬁz
M
=(1- z)“"”‘1 Z (1- z)“’m_“’i%H(z) — H(z)(wm —w;i)(1 — z)wm—wi=l

m#i

= (1—z)wit! Z (1—2)LH(2) = (wm —wi)H(z)) (1 — 2)“m it

i 1—2z)&L Pory,, (2 | ‘g) — (Wi — w;) POLY (2 | “;i)) (1 —z)*m.
e
This has the form
Z Po(2)(1 - 2)
iz

with P,, a polynomial of degree at most p,,. To wit, d,, REM( ‘ “;i) has the correct
form to be REM( | Gre ) if p; > 0, and the correct form to be REM( ) if p, =0.
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By our earlier uniqueness result, it remains only to check that d,,, REM (z ’ ‘;:i) has a
zero (at z = 0) of order one less than REM (z | ‘;i) and the correct scaling. These are
both clear, as (1 —z)**! and (1 — 2)~** have no zero at z = 0, and the -£ reduces
the order of the zero by one and the scaling coefficient is multiplied by o — 1.

The last sentence of Claim 12 is now immediate, as the product of operators
telescopes

d po+1
dwO+p0 e dwo+1dwo — (1 _ Z)wo+ﬁo+1 (d2> (1 _ Z)*wo'

O

The previous claim establishes REM (z | ii) as the solution of a differential equa-
tion (henceforth DE), which we make explicit next. Then, we solve the DE to
express REM (z | "g) as an M-fold iterated integral.

Claim 13. Let Dy, ..., Dy be the operators

d pi+1
D; = (1 — z)witritt <dz) (1—z)7«.

With this notation, G(z) = REM (z ’ ‘;i) is the unique analytic solution to the differ-

ential equation
Zplvl

DM,1 s DlDoG(Z) =

P! (1 =z

with initial conditions
G Yo =1, GM™O0)=0, (O0<m<o-2).

Proof. That REM (z | ﬁ») satisfies the DE is a consequence of Claim 12, and the initial
conditions are part of the definition of REM (z ‘ ‘gi)
As for uniqueness, suppose that G(z) = Y ;o ¢giz". Observe that the initial
conditions force
! 0, (0<i< 2)
o—1 = 7 1\’ i = Uy 10— 4).
Jo-1 (o —1)! g
The DE then forces the value of g; for i > o. O

It would be interesting to use the proof of the above claim to work out the full
power series of REM (z ‘ f,i)

4.3. Iterated Integrals

Claim 14 is Theorem 4(i), and Claim 15 is Theorem 4(ii).
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Claim 14 (Mahler). We can represent REM (z ’ ‘;i) as an M -fold integral as

pl-Rem(z|F) =

1—2’ / / / / Ztl,tg,...,tM)dtM"'dtgdthth

I <thl_1—thth>p> (ﬁ(l - th)wwh-m) |

h=1 h=1

where
G(to,trs- .. tam) = t3) (
Mabhler’s Proof [7]. “This [Claim 13] can easily be brought to the following form.”

O

This result allows one to produce to an efficient bound for REM (z | ‘g), and is
thereby a lynchpin in applications. Other authors cite Mahler, or cite authors who
cite Mahler. We did not find it easy, and hence indicate in some detail how to arrive
at Mahler’s conclusion.

Proof. We begin with the differential equation given in Claim 12:

po+1
(=it ()7 (2 Rew(e] ) = Rew (e )
Hence,
d po+1 .
(£) @=a Reu(s|9) = (1= o)) Row| o1--)

= Rena(z] “o g 20,

where the second equality follows from Proposition 3.
We observe that

d [*(z—t)* 1), k=0;
@/0 ! f(t)dt_{fo GO rydt, k> 0.

(=]

It then follows by repetition that

(i)pw /0 (Z;(j)pof(t) dt = f(z).

Thus (1 — 2)~“* REM(z |%) and [; (z p;)po REM(t | (i ’;Jf‘?:;]s;po_l) dt have the

same (pg + 1)-th derivative. Therefore, they differ by a polynomial with degree at
most pg.
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From the definition of REM (z ’ “g), we have

ord,—o (REM(2[9)) = po + 1+ ord,—o (Remi(t| 0 woreot) )

<PM)

which dictates that the degree-at-most-py polynomial is 1dent1(3a11y 0. We can thus
undo the differential operators as

(1 — z)—wo REM(Z ‘ up_i) — /0 (Z;Ot')po REM(t ’ (w1,...<,wM>7wofp071) dt,

PLyeesPM)

whence

R o\ (1_Z)w0 : PR, (w1, wnr) —wo—po—1 d 9
EM(Z ’ ﬁ) = T ; (Z — t) EM(t <P1 ..... P]\x[) ) t. ( )

We wish to apply equation (2) inductively to express REM (z ’ f;’) as an iterated
integral. So that the notation will fit on the page, we define for 1 <i < M
So =0,
S =wim1 +pic1 +1,
Go(z) = REM(z %),

Go(2) = Reni(z | 1=,

Note that Gps(z) = 22 (1 — 2)“™~5M by Claim 9, while equation (2) gives

— y)wi—Si z

pi!
for 0 <i < M. Now, iterating equation (2) gives

REM (to ’ %) = Go (to)

1—to)o [*o
= (pof)/ (to — t1)*°G1 (1) dty
. 0
(T —tp)*

to t1
/ (to — 1) - (1 — £)1—S" / (t1 — t2) Gal(ta) dts dts

polp1! 0 0

1_t0 wo to  rt1 tm—1
/ / / to,tl,...,tM)dtM-~-dt2dt1,

M—1 M-—1
Glto,t1, ... ta) = ( (tn —th+1)Ph) ( (1 —th)w’l—5h> M (1 — tpp) oM —5m

M t t Ph—1 M
h—1—th W w1 —
=t H( 11_15 ) H(I*th)h S E
h=1 h h=1
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as claimed. O

Claim 15. The Padé remainder REM (z | ‘;i) is given by the M -dimensional integral

o1 (1 —=2)%0 / -1 1+pn —up \ wh—wn_1—1\ -
RS2 U} 1-2U di,
: p! [0,1]M H 1—2Up (1= 2Un) "

where Uy, = [, un-

Proof. This follows from the previous claim upon the substitutions

h M-
th =2 Hul =z Uy, dtpdtpr—q - - - dtadty = M H U di,
i=1
and the obvious algebraic manipulations. O

4.4. Contour Integrals and Derived Expressions

Claim 16 is Theorem 4(iii). Claim 17 is Theorem 5(i). Claim 18 is Theorem 5(ii).
Claim 19 is Theorem 5(v). Claim 20 is Theorem 5(iii).

Claim 16. Let v be a simple positively oriented contour enclosing all o of the
complex numbers wy, +r (0<m < M,0<r < p,). Then

; 1)7-!
Rem(z|9) = 0 /1—%[1 o

Proof. Set
5 . (D7 T 1
119 = S5 fa ] e

and, as in Claim 13,

d pi+1
pim - senes (4Y 0

We will show that
4*0
Dol(z]5) =1I(z|3%)-

Substituting yields

d

po+1
DuI(:]3) = (-t ()7 (- (e

dz

_ wo+po+1 d Pt (_1)071 E—wo T 1
= (1 - z)otrot (dz> %ri/v(lz) HW‘%

k=0
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As

d po+1
(dz) (1- z)f—m) — (_1)Po+1(€ _ wo)M(l _ Z)g—wo—p0_17

differentiating under the integral eliminates the k& = 0 factor in the product, giving

- 10p02 %0
Dol(z\“pi)z( ) /1—,25]_[ pk+1d§—l( yw ).

211
We iterate, using D1, ..., Dys_1 successively to remove all but the final coordi-
nates of &, p, arriving at
—1)Pm (1— z)f
Dyr_1 -+ D1 Dol (x| ) = ¢ / de.
1o ( ’ ) ( ‘ (pM)) 27T . (5 _ wM)P]WJFl ¢

By partial fractions [5, equation (5.41) in Section 5.3]

(=1)P™ - )" (pm
(ﬁ—wM)pMH_ 'Zﬁ WMT(T>7

r=0

and with Cauchy’s Integral Formula we conclude
—1)Pm 1 — 2)¢ 1 1—2)8 H )
( ). / (1-2) de:—_/( z) Z (/’M)dg
271 v (& —wpr )22 2mi /), o f wpy —r\r
PM oM 1 —
- 'Z( ) 271'1/57(.0]\477"6
M r wr T
— —1)7(1 = 2)¥™
- Z( M)eara-s)
1 — »)wm PM
- &Z (pM>(Z 1)

! r
PM: —0

— (1 — Z)wM 2,0]\4.

Y
Thus, I(z ‘ "3) satisfies the DE in Claim 13. We now show that it also satisfies the
initial conditions given there, and so by Claim 13 we will have I ( ‘ f,i) = REM (z | %)
As for the initial conditions, it remains to show that ddz, I ( |°;i)|z=0 = 0 for

0<r<o—2 and for r =0 — 1 we get 1. We start with

M

<\ (71)071 Ter T 1
L) = QM-/V(U e1-2"]] Wdf

k=0

and evaluating this at z = 0 gives
(71)0'77”71

€£
2mi / T, (€~ ?
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We may take 7 to be a circle with large radius IV, where N > wp+r for0 < k < M
and 0 < r < pr + 1. We now appeal to an argument that has little to do with
our particular integrand, and so we generalize. Let P(§) = [[({£ — p;) be a monic
polynomial of degree r, and let Q(§) = [[(£ —¢;) be a monic polynomial of degree &
with all of its roots inside || = N. Then, using the substitution ¢ — N?2/u, which
reverses the orientation of the contour,

1 PO L[ PO,
lul

2mi =~ Q(§) " 2mi
_ N [I(V2/u — p;) du
~2mi /u|—N [TV /u —q;) w?
_ N T1(
= 351 o TV
As all the roots of the denominator [[(N? — ug;) are outside the contour, this

integral is 0 provided that o —r — 2 > 0, that is, provided r <o —2. If r=0 -1,
then

1 P(é)d N2 M o—r— 2d7.L
2mi lej=n Q(§) 2mi juj=~n [T(V —uq])
o V2 =0-pj) o (N2 _
RS 3 (P ER T AT E i
O

Claim 17. Let v, be a simple positively oriented contour enclosing all p,, + 1 of
the complex numbers wy, +1 (0 < r < pp,) and none of wy, +1 (0 < k < M,k #
m,0 <71 < pm). Then

(~1)7"

POLYm(Z|"p§):27m/ 17,25me pk+1d§

m

Proof. As no pair of the w; has a difference that is an integer, the o numbers w,, +7,
where 0 < m < M,0 <r < p,,, are distinct. Set

M

O () = (€ —wm —1) [ [

k=0

1
(€ — wy)LrtL’

where we understand the removable singularity to be removed. Observe that each
®, ,, has o — 1 simple poles. We will evaluate REM (z | ‘;i) using Cauchy’s Integral
Formula. Let 7, ,, be a simple closed contour enclosing w,, + r, but none of the
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roots of @, ,,,. From Claim 16, we find that

o—1 M
REM(Z|L§)(217)W[/ l—zEH

Pk+1 dg
k*O
M pm
1 / (1-2) m (&)
o’ 1
= —dg
mz:orzo 2mi ), & —wm —
M pm
= (177 D0 D (=2 R (wn )
m=0r=0

M Pm
Z( ”12172
m=0

We now notice that

r,m wm + T)) (1 - Z)wm'

Pm
POLYp (2|2) = (=1)77" Y (1 = 2)" @y (@i + 1), (4)
r=0
as this is a polynomial of the required degree
Also,
(71)071 5 Wi,
omi /. H (=
(1 —2)5“md, . (&)
0‘ 1 T,m
= 2 d
Z 271 / " E—wp — 71 ¢
= 0121—2 mem+r)
= PoLy,, (z | ﬁ).
p’ﬂl
Claim 18. POLYm

O
M 1
k#m
Proof. We continue with the notation of the proof of Claim 17. In particular, we

simplify the expression (4). Observe that

M

1 o 1
(I)rm - o N1 : - 7
m(§) 151;;[% (€ — wy)2etL T:/lilog_wm_r/

20
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so that
M 1 Pm 1
D, (W + 1) =
pmem kI;[o (Wi — wy, + )22t 71_:[0 r—r
k#m ' #r
Now,

r'=0
r'#r
so that
L (i)
ff”zo(r—r’) P! r
r #r
Also,
M M
H (wm —wg + T)LCJFI = H (_l)pk+1(wk — Wm — r)pk+1
k=0 k=0
k#m k#m
M R
= (=17 [T o — o — )
k=0
k#m
We now have PoLy,, (z ’ ‘;i) as claimed. O

Claim 19. Set W =W (m, k) = wg — wm,, and define Cy, g by

Cm,k:,r = (pk>a
r

r)l T(r+1) T(r—pr—W)
Pk Fr+1-W) I'(r—pr+1)

ifm==k, by

Cch,r — (_1)Pk+1(
ifm#£k and pr, < r, and by

(e T +1) L(p —r+1) 77
Crper = (—1) (r ) Tir+1—W)T(py —r+1+W)sin(zW)

if m#k and pp > r. Then, we have

I .
PoLy,, (z]%) = a1 S =" [] Cror
r=0 k=0
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Proof. We begin from Claim 18, writing W in place of wy — wp,:

1 & P\ T 1
PoLy,, (z|%) = QZO(Z* 1)T( - > H (W — r)ontt
- 2

1 Pm p M pk'
== P DL e _— .
7= () 1
k#m

If k £ m and pg < r, then

el F(T—W—&—l).
Tir—W — pg)

and
(W = )T = (1) (7 = W)l = (1)
Combining these,
(e ( ) Lrt1) Tr—W—p)
(W — r)prtl Pk Pr—pe+1) T(r =W +1)

et [T -1 L(r+1) T(r—px—W)
=0 <pk> Fr+1-W) I'(r—pr+1)

= Um,k,r-

If k # m and pg > r, then

pil = (’;’“)r!(pk )= (’:‘f)r(r L1 (p, — 7+ 1)

(W _ T.)Pk+1 _ (W _ 7‘)? . WPk‘i’l*T
= (=D)"(r = W)L (W + pp — r)le=rtl
(1) Pr—W+1) D(py —r+W+1)
Pr—W-r+1) T(pp—r+W—(p—r+1)+1)

_ )rr(r+1—W)F(pk—r+1+W)

B (1 —-W)D(W) '
By Euler’s reflection formula for the Gamma fucntion, I'(1-W)I'(W) = 7/ sin(7W).
Combining these,

pr! _(c1y T L(r+1) D(py —r+1) <Pk)
(W —r)pstt sin(mrW)T(r+1-W)T(pp —r+ 1+ W)\ r

r

m,k,r-

This concludes the proof. O
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Claim 20. For M > 1, we can represent POLY,, (z";:i) as an M -fold iterated
(principal value) contour integral as

PoLy,, (z|%) = %—m /( T‘“m_1< H t (1 + ty,)? > (1 — ()M 1T_mz>pm dr,

k;ﬁm
where

g 2 sin(m(wg — Wi ))

M 1
Qm = H .
i)
M

k;ém

/G) /t0| 1 /tm 1= 1/tm+1 =1 Afm 1

dt = dtps - dtyme1 dtm_1 -
Proof. By induction and integration-by-parts, we notice that
T , , 2i si !
P.V./ =11 4 )P dt :/ (1] 4 ity jeitgy = 25T L
[t]=1 -7 zrtl

provided that p is a nonnegative integer and = € C\ {0,—1,—2,...}. In this claim
and its proof, all integrals are understood to be principal values.
Beginning with Claim 18, we may write POLY,, (z | ‘;:i) as

PoLy (2 | %)

- L 2( (") ﬁ) —

Wi — Wy, — 1)PRTL

k:;Zm
1 b M 1 0 si |
_ L _1yr(Pm isin(m(wy — wm — 1)) pr!
- 2 Z(Z ) H % si — .
pl = r) i isin(m(we — Wi — 7)) (W — Wy — 7)PF
k#m

We now use equation (5) to continue

PoLy,,(z | %)

1 & m sl Wi —Wm, —T—
=5 E (z—=1)" (pr ) I | (_1)TQm/ e mOm T 4 1) P dty,
" =0 k=0

= [tk |=1
k#m

Qm =, Pm pn =7
i Z(fl) Mz - H [tr]=1 . Y14 t)P* dt,
r=0
k;ém
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Compressing the product of integrals using the [ @) notation, we continue with

POLY",(Z 19)
M

/G) Mz -1y (P;n) H toRmom T (1 4ty )P dE
r=0

k=0

k#m
Q M
o / Mz —1)" (pm> T, T, “m! H tF (1 + ty)P+ dt
) ' =0

Qm (L N (o o1
=% [ (aasar) 32 (07) (cor o) o

k=0 r=0
k;ém
Qm/ — 1( )( Ml—z pm —
k;ém
as asserted in the Claim. O

4.5. Hypergeometric Functions

Claim 21 below is Theorem 4(v), and Claim 23 is Theorem 5(iv).
The Meijer G-function [8] is defined for natural numbers m, n, p, g, provided m <
q and n < p, although we only encounter it here withn =0,m=p=q= M + 1.

It is denoted
ai, az, ..., Gp
Gz
p,q( bl, bg,...,bq)

| FLEEA) URTE
27 o Mhepir Dls+ar) [Tho T —br — s) ’
where C'is a particular infinite contour that separates the poles of I'(1 —ay, — s) from

those of T'(by + s); the particular contour required for convergence varies depending
on m,n,p,q,z.

and defined as

Claim 21. REM(z|%), when |z| <1 and [1 — z| < 1, is a special value of Meijer’s
G-function

5 M+1, 0 d+p+1
REM(z‘ﬁ)ZGM+LM+1(1—Z - :
Sketch of Proof. With m =p=q= M + 1,n =0, we see that

q

[[ra—ar—s)= J] TA—bx—s) =1
k=1

k=m+1
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Further, with axy1 = wi + pr + 1,bp11 = wy,

[T T(s+bx) ﬁ (s + wg) B M 1
hens1 L(s+ar) i D(s+wg+pr +1) o (8 +wp)Prtt
We now have
&G+ g+ 1 1 M 1
M+1,0 . _ L  \—s
Grr1l M1 (1 z ) o C(l 2) 1:[ (5 aon)P it ds
M
1 Pk+1
_ 5 _
T 2mi kli[() g )2atL (=d)
M
(_1)0’—1 / ¢ 1
= 1—=z —
2mi C( ) kHO(g wy, )2t :

= REM(Z ‘ ‘;:i)

Admittedly, we have played fast-and-loose with the contour, and therefore the con-
ditions |z| < 1 and |1 — z| < 1 are not explained. O

Theorem 22 (Slater’s Theorem [12]). Provided that aj—by, is not a positive integer
(with j < n,h < m), and b; — by is not an integer (with 1 < j < k < q), and
0< |z <1,

m, n ai, ag, ..., ap _
G < b17 b2a"'7bq>_
m - TTEop DOk = o) TTey T4 b — ax)
»F
Z Hk m+1 (1 + by, — ) HZ:n+1 [(ay — bh) ot {

(—1)m+”_pz} 20

@l I

where @, = (1 4+ by — a1,...,1 + by —ap) and by = (1 + by — by, ..., 1+ by —b,)
(with the 1+ by, — by, term omitted).

Claim 23. The Padé approximant POLY,, (z";i) 18 associated with a generalized
hypergeometric function by

M

o _L 1 Wy —W0—p 1
o (:19) = (11 (wr —wm)PkH) | (12

k=0
k#m

Proof. Using Claim 21 and Theorem 22, we may write REM (z | ‘;:i) as

M

M Hé@;ﬁ]r(wk*WWl) 1+wm7(:}‘7ﬁ*1 "

E M+1Ewr vem L=z (L=2)m
roT(wr + pr+1—wpm) (1 +wm — @
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which we manipulate into the form

Mo M 1 Wy — @ —

E - - F m - z} 1—z)*m

= om! ( e —wmwl) e i 1=5] 0=
k#m

One coordinate of w,, — & — g is —p,,, a nonpositive integer. Consequently,

1 /¥ 1 Wy — @& —
— _— F m . ; l—z:|
P! ( 1 s wmw“) e [(1 + = D)

k#m

is a polynomial with degree at most p,,. Therefore, it must be PorLy,, (z ’ ‘;:i) O

4.6. Power Series
Claim 24 is Theorem 4(iv).
Claim 24. Let g, be the coeﬁﬁcients in the power series expansion of REM(z | ‘;i)

at z =0, i.e. REMz‘p Zgn . Then for n > 0 we have

gn = (-1 % ol pZ (pm) (=1 (Wi + 7)™

— k;ﬁo(wk_wm_r)karl

In particular, g, =0 for0 <n <o —2 and g,—1 = 1.

Proof. We begin with the contour integral representation of REM (z | ";i) given in
Claim 16, replace (1 — z)¢ with its power series, and then integrate term by term,
obtaining

. -1 o—1 M
R () = 35 [ 0= 9 T g 46

274 k:O
7 (71)0'71 o0 . ﬂZn M 1
ml(zm ¢ m)gwds

o0

a 1£n N
S (o [ ) 5
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Continuing as in the proof of Claims 17 and 18, we see that

U len
_ £
M pm
-1" Z Z(_l)a_l(wm + 1) P (W + 1)
m=0 r=0
M pm M
(=1 pm< )
Ywm + r)fi
mZ:OTz;) pm écUO wm“"*wk) Prtl
M pm )= M 1
_ (=1)r—pm /’k"l‘
= (-1)" (=1)7 " (wm + r)ﬂi

o (Wi — Wy — 7)PRFL
1o (o —om — 1)

That g, =0for 0 < n < o—2and g,—1 = 1 follow from the definition of REM (z ’ “g)
Alternatively, the expression on line (6) is shown directly to have these values in
the proof of Claim 16, beginning with equation (3). O

4.7. Perfection

We remind our reader that our vectors are indexed from 0, so that the j-th coordi-
nate of (po,...,pn) is pj. The coordinates of the (M + 1) x (M + 1) matrix H in
the next claim is indexed in the same manner.

Claim 25 is Theorem 6.

Claim 25. Fiz j € NM*! and &,¢é1,...,én € ZMHL with each §+ €, having
nonnegative coordinates, and denote the j-th coordinate of € as € ;. Let S be
mazimum of Zf\io €.,8(:) taken over all permutations 8 of 0,1,...,M, and let T

be the minimum of Z;Vio €, taken over 0 < i < M. Suppose the following two
conditions are satisfied:

1. There is a unique permutation o of 0,1,..., M with S = Zij\io €i,a(i);
2.T+M=S5.

Then the (M + 1) x (M + 1) matriz H, whose (k,m) coordinate is the polynomial
PoLy,, (z | ﬁfgk), has determinant

CZU(ﬁ)—i—T—l’

where C' is nonzero and does not depend on z.
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Proof. The determinant of H, by the familiar permutation expansion, is

M
der() = Y (<170 ] Powyge (<] ).
BES0, M) k=0

which is clearly a polynomial. Notice that

M M
a [T P 5 ) 5 deg (Porx (| 124)

k=0 k=0
M

with equality achieved for (and only for) 8 = a. Consequently,
deg(det(H)) =0(p) — M -1+ S=0(p)+T -1,

and in particular det(H) is not identically 0.

Let ¥ be the column vector ((1 — 2)«0, (1 —2)“1,... (1 — 2)“™)T. By definition
H? is a column of M + 1 functions of z: in row k it is REM(z ‘ 5fgk), which has a
zero of order o(p+¢€;) —1=o0(p) + (Z] —0 €k j> —1>0(p)+T —1. Now multiply
H¢v by the adjoint of H, which is also a matrix of polynomials. We have

det(H)v = adj(H)Hv

ReM (2 | 54%,,)
= adj(H) (z”(m+T_1 Z ﬁnz">
o (p)+T—1 Z adj(H)7,)z

for some column vectors ¥y # 0,7, ... That ¥ #* 0 follows from the definition of T'.
Each coordinate of det(H)# has the form det(H)(1 —2)“, and so has a zero at z =0
of order at most deg(det(H)) = o(p) — M —1+S. By the above displayed equations,
each coordinate of det(H)¥ has a zero at z = 0 of order at least o(p) + T — 1 with
equality for some coordinate. But 7'+ M = S, by hypothesis, so that det(H) is a
polynomial whose degree coincides with the order of its zero at z = 0. Therefore

det(H) = C27PHT=1 = Coo@H5=M=1,

as claimed. The constant C' is nonzero as det(H) is not identically 0. O
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5. Opportunities for Further Work

. Is there a nice iterated integral representation of POLY, (2 |%) without con-
tours, similar to the representation in Theorem 4(i) for REM (z ‘ ‘;i)’?

. For fixed &, which degree vectors p{%, 51 ..., ™) lead to a perfect system?
There seems to be some geometry involved. That is, a modest amount of
computation suggests that for each M there is B such that if any coordinate
of any €, — €; is not between —B and B, then the resulting system is not
perfect for any p (the determinant of H doesn’t have the form C2™).

. What is the value of C' in Theorem 67

What is the nice power series expression for PoLy,, (z ‘ ‘;:i)? For M =1, this
is an important part of the best explicit irrationality measure for 21/3.
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