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COUNTING ZEROS OF DIRICHLET L-FUNCTIONS
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AND ANDREW RECHNITZER

Abstract. We give explicit upper and lower bounds for N(T, χ), the number
of zeros of a Dirichlet L-function with character χ and height at most T .

Suppose that χ has conductor q > 1, and that T ≥ 5/7. If � = log
q(T+2)

2π
>

1.567, then∣∣∣∣N(T, χ)−
(
T

π
log

qT

2πe
− χ(−1)

4

)∣∣∣∣ ≤ 0.22737�+ 2 log(1 + �)− 0.5.

We give slightly stronger results for small q and T . Along the way, we prove a
new bound on |L(s, χ)| for σ < −1/2.

1. Statement of results

For any Dirichlet character χ, the Dirichlet L-function is defined by

(1.1) L(s, χ) :=

∞∑
n=1

χ(n)

ns

when �s > 1, and by analytic continuation for other complex numbers s. We adopt
the usual convention of letting ρ = β + iγ denote a zero of L(s, χ), so that β = �ρ
and γ = �ρ by definition. We let

(1.2) Z(χ) := {ρ ∈ C : 0 < β < 1, L(ρ, χ) = 0}

be the set of zeros of L(s, χ) inside the critical strip (technically a multiset, since
multiple zeros, if any, are included according to their multiplicity). Notice in partic-
ular that the set Z(χ) does not include any zeros on the imaginary axis, even when
χ is an imprimitive character; consequently, if χ is induced by another character
χ∗, then Z(χ) = Z(χ∗). If χ̄ is the conjugate character to χ, then Z(χ) = Z(χ̄).

We write N(T, χ) for the standard counting function for zeros of L(s, χ) with
0 < β < 1 and |γ| ≤ T . In other words,

N(T, χ) := #{ρ ∈ Z(χ) : |γ| ≤ T},

counted with multiplicity if there are any multiple zeros. The primary aim of this
work is to provide explicit upper and lower bounds onN(T, χ), when χ is a primitive
character, in terms of χ(−1), the conductor q and the height T .
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Theorem 1.1. Let χ be a primitive character with conductor q > 1 and let T ≥ 5/7.

Set � := log q(T+2)
2π . If � ≤ 1.567, then N(T, χ) = 0. If � > 1.567, then∣∣∣∣N(T, χ)−

(
T

π
log

qT

2πe
− χ(−1)

4

)∣∣∣∣ ≤ 0.22737�+ 2 log(1 + �)− 0.5.

There have been two earlier papers dedicated to finding explicit bounds for the
quantity N(T, χ), by McCurley [6] in 1984 and by Trudgian [13] in 2015. Both
authors gave bounds of the shape

(1.3)

∣∣∣∣N(T, χ)− T

π
log

qT

2πe

∣∣∣∣ ≤ C1 log qT + C2

for positive constants C1 and C2. In McCurley [6], which assumes T ≥ 1, these
constants C1 = C1(η) and C2 = C2(η) are functions of a parameter η ∈ (0, 1/2]; for
all such values of η, one finds that necessarily C1(η) > 1/π log 2 > 0.45. Trudgian
pushed McCurley’s techniques further, giving [13, Theorem 1] a table of ten pairs
of values (C1, C2) under the assumption T ≥ 1 and ten further pairs under the
assumption T ≥ 10. All of his pairs have C1 ≥ 0.247, and in his proof it is asserted
that C1 could be made as small as (π log 4)−1 .

= 0.229612.
Regrettably, Trudgian’s paper contains an error that renders his proof incom-

plete. In short, the various parameters introduced in his proofs need to satisfy
certain inequalities, and he incorrectly argued that one of the inequalities was re-
dundant. The same difficulty unfortunately recurs in [12] (where bounds are derived
for zeros of the Riemann zeta-function) and in [13, Theorem 2] (devoted to analo-
gous results for Dedekind zeta-functions). On a certain level, the main purpose of
the paper at hand is to repair these problems for Dirichlet L-functions, motivated
by the fact that the authors appealed to [13, Theorem 1] in the course of proving
the main results of [2].

Our bound in Theorem 1.1 has a slightly more complicated shape (and uses
the offset of χ(−1)) to make the bound as small as possible; however, for any
C1 > 0.22737, it is a simple calculus exercise to calculate a constant C2 such
that Theorem 1.1 implies the bound (1.3). We can therefore deduce the following
corollary of Theorem 1.1 in a straightforward way:

Corollary 1.2. Let χ be a character with conductor q > 1. If T ≥ 5/7, then∣∣∣∣N(T, χ)− T

π
log

qT

2πe

∣∣∣∣ ≤ min{0.247 log qT + 6.894, 0.298 log qT + 4.358}.

Corollary 1.2 improves upon all twenty of Trudgian’s claimed pairs as well as
upon McCurley’s parametric bound. Figure 1 shows the (C1, C2) pairs implied by
McCurley, and the twenty pairs claimed by Trudgian, as well as the (C1, C2) pairs
implied for T ≥ 1 by Theorem 1.1; the two marked points are the two (C1, C2)
pairs from Corollary 1.2.

As noted earlier, the current work is focused on fixing the aforementioned error
in [13], while at the same time introducing a number of further improvements. Most
notably, in Theorem 5.7 we extend a bound of Rademacher [9] on |L(s, χ)| from
− 1

2 ≤ σ ≤ 3
2 to all real σ, allowing us to set our parameters more liberally. Also,

we make a choice for η in terms of q and T that is nearly optimal, allowing us to
deduce a rather simpler bound. Thirdly, we computed all 806,544 zeros of primitive
L-functions, corresponding to 80,818 characters, with � ≤ 6 and 1 < q < 935, to
sufficient precision to verify the bounds in Theorem 1.1 in this range, allowing us
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Figure 1. The valid (C1, C2) pairs proved by McCurley (upper
curve), claimed by Trudgian (twenty points), and implied by The-
orem 1.1 (lower curve); the two points on the lower curve represent
Corollary 1.2.

to assume greater lower bounds on T in our proofs. Finally, we are also interested
in lower bounds on N(T, χ) when T is small, as in Conjecture 1.3 below, and so we
state the inequality in Theorem 1.1 in a form that is more useful towards that end.

For any fixed q, we should note that Theorem 1.1 is not particularly of practical
interest. The conductor q will either be so large that “explicit” is not helpful, or
small enough that one can compute the low height zeros to great precision. For large
T , the main term T

π log qT
2πe so greatly exceeds the error term (even in McCurley’s

form), that any improvement is truly minor. Also, the requirement that T ≥ 5/7
makes our bound unhelpful for those studying zeros of extremely low height.

Using T ≥ 1 (or T ≥ 10) would markedly simplify the computational work, and
the lower order terms would be improved, but the applicability of the lower bound
on N(T, χ) would no longer be optimized. Namely, Theorem 1.1 implies that

lim
q→∞

max
cond(χ)=q

N(T, χ) = ∞

for T ≥ 5/7 + 10−5, but not for T = 5/7. This is, ultimately, why we chose to
work with 5/7 and not 1. The restriction that T ≥ 5/7 may appear peculiar, but
it is not entirely arbitrary. It would be somewhat challenging to replace 5/7 with a
smaller number, as the functions defined in Definition 3.3 oscillate badly for small
T , and that oscillation drives both the size of the lower-order terms in the bound in
Theorem 1.1 and the computational effort needed to verify those bounds rigorously.
It is also worth noting that we could work with T ≥ T0 ≥ 5/7, introducing a a term
like C/T0 or (C1T+C2)/(T

2+C3T+C4) in the bound. However, the added difficulty
(an extra variable makes the interval analysis algorithms we use significantly slower)
does not seem justified by the slight improvement in the bound that could result.

Where this result is useful is when T is small, but a large range of values of q
are to be worked with, and the need for an explicit bound arises not from the large
number of zeros that come with large T for one character but from the large number
of characters under consideration. For example, in [2], the authors needed to treat
all moduli up to q ≤ 105, a total of 1,847,865,075 primitive characters. McCurley’s
bound implies that there are at most 32,456,205,589 corresponding zeros of height
at most 1 and conductor at most 105, while Trudgian’s claims (one of which we used
in [2]) would cut this down to 21,880,443,454. Theorem 1.1 reduces this number
to just 16,461,465,486. Some computations for low height zeros and the proof of
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Theorem 1.1, tailored specifically for T = 1 and shown in Table 1, lower the number
still further to just 14,431,705,483.

It is disappointing that, for fixed T , the main term and the error term in The-
orem 1.1 are of comparable size. We are thus motivated to conjecture, as we are
unable to prove, that the error term should be an actual error term, that is, gen-
uinely smaller than the main term. We state this conjecture in a more qualitative
form:

Conjecture 1.3. For every real T > 0 and every integer M ≥ 1, there is an
integer q0 such that every character χ with conductor at least q0 satisfies N(T, χ) ≥
M.

Assuming the generalized Riemann hypothesis for Dirichlet L-functions, Sel-
berg [10] proved that the error term in the counting function for N(T, χ) is

O
( log q(T+1)
log log q(T+3)

)
uniformly in q and T ; in particular, Conjecture 1.3 follows from

GRH. McCurley’s bound implies that this conjecture holds for T > 1
log 2

.
= 1.443,

and Theorem 1.1 implies this conjecture for T ≥ 5/7+10−5. By way of example, we
know of characters with conductor 840 for which N(1, χ) = 0; Theorem 1.1 implies
that N(1, χ) ≥ 1 when q ≥ 1.3 × 1047. The largest conductor of a character χ in
our dataset with N(2, χ) = 0 is 241; Theorem 1.1 implies that N(2, χ) ≥ 1 when
q ≥ 1.2× 107.

Motivated by Selberg’s bound, as well as our somewhat substantial computation
of zeros, we make a rather speculative conjecture.

Conjecture 1.4. Let χ be a character with conductor q > 1. Recall that � =

log q(T+2)
2π . If T ≥ 5/7, then∣∣∣∣N(T, χ)−

(
T

π
log

qT

2πe
− χ(−1)

4

)∣∣∣∣ ≤ �

log(2 + �)
.

The outline of this paper is as follows. In Section 2, following the approach of
McCurley, we derive our first estimates for N(T, χ), from which our main results
will follow. Section 3 is devoted to sharp inequalities for the Gamma function. In
Section 4, we begin the task of bounding the argument of L(s, χ), by constructing a
function whose zeros measure changes in the argument. In Section 5, we complete
this process through application of Backlund’s trick and Jensen’s formula. Finally,
in Section 6, we complete the proof of Theorem 1.1.

The technical details of our computations can be found in data files at:

http://www.nt.math.ubc.ca/BeMaObRe2/

2. The main term

Assuming that χ is a primitive character with conductor q > 1, the completed
L-function, an entire function, is defined as

Λ(s, χ) :=
( q

π

)s/2

Γ

(
s+ aχ

2

)
L(s, χ);

we note that the zeros of Λ(s, χ) are precisely those of L(s, χ). The functional
equation is

(2.1) Λ(s, χ) = ε(χ)Λ(1− s, χ̄),

where ε(χ) is independent of s and has absolute value 1.

http://www.nt.math.ubc.ca/BeMaObRe2/
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Fix σ1 > 1. By integrating Λ′

Λ (s, χ) around the rectangle with corners at σ1± iT
and 1− σ1 ± iT (where T is not the height of a zero of L(s, χ)), and appealing to
equation (2.1) on the left half of the contour, we arrive at the identity

(2.2) N(T, χ) =
T

π
log

q

π
+

2

π
� ln Γ( 14 +

aχ

2 + i T
2 ) +

1

π
argL(s, χ)

∣∣∣1/2+iT

s=1/2−iT
,

where

aχ :=

{
0, if χ(−1) = 1,

1, if χ(−1) = −1,

is the sign of the character. Define

(2.3) g(a, T ) :=
2

π
� ln Γ( 14 + a

2 + iT2 )−
T

π
log

T

2e
− 2a− 1

4
,

so that

(2.4)
T

π
log

q

π
+

2

π
� ln Γ( 14 +

aχ

2 + i T
2 ) =

T

π
log

qT

2πe
− χ(−1)

4
+ g(aχ, T ).

We have that

argL(s, χ)
∣∣∣1/2+iT

s=1/2−iT

= argL(s, χ)
∣∣∣σ1−iT

s=1/2−iT
+ argL(s, χ)

∣∣∣σ1+iT

s=σ1−iT
+ argL(s, χ)

∣∣∣1/2+iT

s=σ1+iT

= argL(σ − iT, χ)
∣∣∣σ1

σ=1/2
+ argL(σ1 + it, χ)

∣∣∣T
t=−T

+ argL(σ + iT, χ)
∣∣∣1/2
σ=σ1

.

In particular,∣∣∣∣argL(s, χ)∣∣∣1/2+iT

s=1/2−iT

∣∣∣∣ ≤
∣∣∣∣argL(σ − iT, χ)

∣∣∣σ1

σ=1/2

∣∣∣∣+
∣∣∣∣argL(σ1 + it, χ)

∣∣∣T
t=−T

∣∣∣∣(2.5)

+

∣∣∣∣argL(σ + iT, χ)
∣∣∣1/2
σ=σ1

∣∣∣∣ .
These three terms sometimes all have the same sign in practice, suggesting that
there is no possibility of finding cancellation in general. Since

L(σ − iT, χ) = L(σ + iT, χ̄),

we have ∣∣∣∣argL(σ − iT, χ)
∣∣∣σ1

σ=1/2

∣∣∣∣ ≤ max
τ∈{χ,χ̄}

∣∣∣∣argL(σ + iT, τ )
∣∣∣1/2
σ=σ1

∣∣∣∣ .
If χ is a real character then we have equality in this statement, so again there is no
recoverable loss in general.

Trivial bounds on |L(s, τ )| come from comparing the Euler products of L(s, τ )
and ζ(s), leading immediately to the following.

Lemma 2.1. If s = σ + it and σ > 1, then ζ(2σ)
ζ(σ) ≤ |L(s, τ )| ≤ ζ(σ).

Proposition 2.2. For σ1 > 1,

∣∣∣∣argL(σ1 + it, τ )
∣∣∣T
t=−T

∣∣∣∣ ≤ 2 log ζ(σ1).
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Proof. For t between −T and T , Lemma 2.1 implies that

| argL(σ1 + it, τ )| ≤ | logL(σ1 + it, τ )| ≤ log ζ(σ1).

The proposition thus follows from the fact that argL is trapped between − log ζ(σ1)
and log ζ(σ1), whereby its net change is at most 2 log ζ(σ1). �

We have thus arrived at the inequality∣∣∣∣N(T, χ)−
(
T

π
log

qT

2πe
− χ(−1)

4
+ g(aχ, T )

)∣∣∣∣(2.6)

≤ 2

π
log ζ(σ1) +

2

π
max

τ∈{χ,χ̄}

∣∣∣∣argL(σ + iT, τ )
∣∣∣1/2
σ=σ1

∣∣∣∣ .
We will use Stirling’s approximation to estimate g(aχ, T ) in the next section, and
the remainder of the work is spent on bounding the change of argL(σ + iT, τ ) on
the segment σ ∈ [1/2, σ1]. Up to this point, we have followed McCurley’s approach
to the problem verbatim.

3. The gamma function

We require bounds for the Gamma function in two contexts. The first of these is
in equation (2.2) where the real part of the argument is either 1/4 or 3/4, while the
second is in the situation where we have a fixed imaginary part T/2 and varying
real part. Both usages are nicely handled by a suitable shifted version of Stirling’s
approximation.

Lemma 3.1 (Stirling’s approximation). Let x and y be positive real numbers. Then
� ln Γ(x+ iy) is within

(4 + 3π)/1440

((x+ 2)2 + y2)3/2

of the expression

y log
y

e
+

π

2

(
x− 1

2

)
−
(
x+

3

2

)
arctan

x+ 2

y
− y/12

(x+ 2)2 + y2

+
y

2
log

(
1 +

(x+ 2)2

y2

)
+ arctan

x

y
+ arctan

x+ 1

y
.

Proof. By [5, Proposition 2.1], we have the identity

ln Γ(z) = ln Γ(z + 1)− log z = lnΓ(z + 2)− log z − log(z + 1).

Thus,

(3.1) � ln Γ(z) = � ln Γ(z + 2)− Arg(z)−Arg(z + 1).

We will use the version of Stirling’s series and corresponding error bounds given
in [3]: for �(z) > 0, there is a complex function R2 with |R2(z)| ≤ 4+3π

1440|z|3 and

ln Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log 2π +

1

12z
+R2(z).

(The upper bound for |R2(z)| is a factor of 3π
4 + 1 larger than the asymptotically

true size, but the overapproximation is unimportant for our purposes.) For x and
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y positive real numbers, we have Arg(x + iy) = π
2 − arctan(x/y). Equation (3.1)

now becomes

� ln Γ(x+ iy) = y log
y

e
+

π

2

(
x− 1

2

)
−
(
x+

3

2

)
arctan

x+ 2

y

− y/12

(x+ 2)2 + y2
+

y

2
log

(
1 +

(x+ 2)2

y2

)

+ arctan
x

y
+ arctan

x+ 1

y
+ �R2(x+ 2 + iy),

and the lemma follows from |�R2(z + 2)| ≤ |R2(z + 2)|. �

Proposition 3.2. For a ∈ {0, 1}, T ≥ 5/7 and g(a, T ) defined as in (2.3), we have

|g(a, T )| ≤ 2− a

50T
.

Proof. We need only apply Lemma 3.1 with x = a
2 + 1

4 and y = T/2, finding that

g(a, T ) is within (8+6π)/45
(81+40a+4T 2)3/2

of

(3.2)
16 + 12π − 60T

√
40a+ 4T 2 + 81

45π (81 + 40a+ 4T 2)
3/2

+
T

2π
log

(
1 +

40a+ 81

4T 2

)

+
2

π

(
arctan

2a+ 1

2T
+ arctan

2a+ 5

2T
−
(
a

2
+

7

4

)
arctan

2a+ 9

2T

)
.

Proving the four inequalities (upper and lower, a = 0 and a = 1) is a typical
problem for interval analysis. �

A number of times in this work we will assert that some inequality is true “by
interval analysis”. Full details are available in Mathematica notebooks on the
website

http://www.nt.math.ubc.ca/BeMaObRe2/

but we wish to indicate the idea behind this under-utilized technique here. One
extends the domain of some primitive real functions (like addition, multiplication,
arctangents, logarithms, etc.) to include intervals, and so that

f(X1, . . . , Xn) = {f(x1, . . . , xn) : xi ∈ Xi}.
The fundamental theorem of interval analysis says that if h is defined by a compo-
sition of primitive functions and xi ∈ Xi, then

h(x1, . . . , xn) ∈ h(X1, . . . , Xn).

For instance, (3.2), multiplied by T and with a = 0 and T = [1, 129
128 ] becomes

[
12π + 16− 5805

√
38713

2048

3825
√
85π

+
log

(
38713
1849

)
2π

+
2arctan 25026

8321 − 7
2 arctan

9
2

π
,

129

128

(
262144

(
12π + 16− 60

√
85
)

47036295
√
38713π

+
129 log 85

4

256π
+ 2−

2 arctan 12 + 7
2 arctan

192
43

π

)]
,

a subset of [0.022, 0.035]. Also, T · (8+6π)/45
(81+40a+4T 2)3/2

becomes[
262144(8 + 6π)

47036295
√
38713

,
43(8 + 6π)

163200
√
85

]
⊆ [0.0007, 0.0008].

http://www.nt.math.ubc.ca/BeMaObRe2/
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This computation then constitutes a proof that 0.0213 ≤ Tg(0, T ) ≤ 0.0358 for
1 ≤ T ≤ 129

128 . It should be noted that this proof works without floating point
arithmetic, except at moments when one needs to decide which of two expressions
represents a smaller number.

One can then proceed to a proof for all T ≥ 5/7 by breaking the interval [5/7,∞)
into sufficiently small intervals. By the definition of uniform continuity, if the
domain is broken into sufficiently small pieces, then interval arithmetic will yield
a sufficiently tight bound on the range of the function. There is a theoretical
and a practical difficulty with this paradigm for generating proofs of inequalities.
The theoretical problem is that we need not only the function to be uniformly
continuous, but for every sub-computation involved to be uniformly continuous.
This may require cleverly rewriting the expression or by introducing more primitive
functions, each such introduction requiring some (usually easy) calculus proof.

The practical difficulty that arises is that “sufficiently small pieces” can quickly
become too numerous to be useful. This can be partially addressed by rewriting the
expression, but also by introducing a simple expression between the target function
and the planned bound. For example,

T

2π
log

(
1 +

81

4T 2

)
≤ T

2π
× 81

4T 2
=

81

8πT
,

and for T = [100, 200] this improves the naive interval arithmetic upper bound of
100
π log

(
40081
40000

)
≈ 0.064 to 81

800π ≈ 0.032. That is, a theoretically tighter bound
in real arithmetic may be theoretically worse in interval arithmetic. The best
expression to use may even depend on the specific interval under consideration.

In the course of our interval analysis bounds in this paper, we use Alirezaei’s
uncommonly sharp bounds for arctanx [1] and Topsøe’s Padé-inspired bounds for
log(1 + x) [11].

Definition 3.3. For a ∈ {0, 1}, d ≥ 0 and T ≥ 5/7, we define

E(a, d, T ) :=
∣∣∣∣� ln Γ(σ+a+iT

2 )
∣∣∣1/2+d

σ=1/2
+ � ln Γ(σ+a+iT

2 )
∣∣∣1/2−d

σ=1/2

∣∣∣∣ .
We set E(a, d, T ) to be the expression given in Figure 2, so that Lemma 3.1 applied
to the definition of E(a, d, T ) gives

E(a, d, T ) ≤ E(a, d, T )

for 0 ≤ d < 9
2 and T > 0. While E contains many terms, they are each easy to

work with computationally. Figure 3 shows E for typical arguments.

Lemma 3.4. Suppose that 0 ≤ δ1 ≤ d < 9
2 , with a ∈ {0, 1} and T ≥ 5

7 . Then

0 < E(a, δ1, T ) ≤ E(a, d, T ).

For a ∈ {0, 1}, 1
4 ≤ d ≤ 5

8 and T ≥ 5
7 ,

E(a, d, T )

π
≤ (640 + 216a)d− 112− 39a

1536(3T + 3a− 1)
+

1

210
.

Proof. This is proved using interval analysis. For fixed a and T , a degree 3 Taylor
model with center 0 is used to show that the derivative of T ·E(a, d, T ) with respect
to d is positive for small d (using some algebra and the Moore–Skelboe algorithm to
bound the 4th derivative of E with respect to d), and, simply, the Moore–Skelboe
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E(a, d, T ) :=
2T/3

(2a+ 2d+ 17)2 + 4T 2
+

2T/3

(2a− 2d+ 17)2 + 4T 2

− 4T/3

(2a+ 17)2 + 4T 2
+

T

2
log

(
1 +

(2a+ 17)2

4T 2

)

− T

4
log

(
1 +

(2a+ 2d+ 17)2

4T 2

)
− T

4
log

(
1 +

(2a− 2d+ 17)2

4T 2

)

+
(8 + 6π)/45

((2a+ 2d+ 17)2 + 4T 2)
3/2

+
(8 + 6π)/45

((2a− 2d+ 17)2 + 4T 2)
3/2

+
2(8 + 6π)/45

((2a+ 17)2 + 4T 2)
3/2

+ 2arctan
2a+ 1

2T
− arctan

2a+ 2d+ 1

2T
− arctan

2a− 2d+ 1

2T

+ 2arctan
2a+ 5

2T
− arctan

2a+ 2d+ 5

2T
− arctan

2a− 2d+ 5

2T

+ 2arctan
2a+ 9

2T
− arctan

2a+ 2d+ 9

2T
− arctan

2a− 2d+ 9

2T

+ 2arctan
2a+ 13

2T
− arctan

2a+ 2d+ 13

2T
− arctan

2a− 2d+ 13

2T

+
2a+ 2d+ 15

4
arctan

2a+ 2d+ 17

2T

+
2a− 2d+ 15

4
arctan

2a− 2d+ 17

2T
− 2a+ 15

2
arctan

2a+ 17

2T

Figure 2. Definition of E(a, d, T ), for a ∈ {0, 1}, 0 ≤ d < 9/2,
T ≥ 5/7.

Figure 3. Graphs of E(a, d, T ) for T = 5/7 and T = 2.

algorithm for larger d. As E(a, 0, T ) > 0, this shows that E is positive. Consult
the website for details. �

4. Bounds on L(s, τ ), and bounds on fm(s)

4.1. Introduction of the auxiliary function fm. We will construct a function
that has many zeros if argL changes substantially on the interval on [ 12+iT, σ1+iT ].
To wit, let m be a large integer, and define, for s a complex number,

fm(s) :=
1

2

(
L(s+ iT, τ )m + L(s− iT, τ̄)m

)
.
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Notice the use of s± iT , rather than σ± iT ; this is done so that fm is holomorphic.
Note further that, for real arguments, fm simplifies nicely:

fm(σ) =
1

2

(
L(σ + iT, τ )m + L(σ − iT, τ̄)m

)
=

1

2

(
L(σ + iT, τ )m + L(σ + iT, τ )m

)
= �L(σ + iT, τ )m.

The tactic we will employ follows McCurley [6]. If argL changes, then argLm

changes m times more, and this causes L(σ+ iT, τ )m to be purely imaginary many
times, whereby fm will have many real zeros. We use Jensen’s formula to bound
the number of zeros in terms of an integral of log |fm|, and then bound the integral
using a variety of estimates, trivial and non-trivial. As m → ∞, this tactic captures
the total variation of argL, which is sometimes as small as the net change.

Definition 4.1. We define nm to be that integer (depending on m) for which

(4.1) nm ≤ 1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2
σ=σ1

∣∣∣∣ < nm + 1.

Since we will take m → ∞, the reader will be well-served to think of nm as being
very large. We will find upper and lower bounds for nm/m.

Lemma 4.2. The function fm has as at least nm zeros on the real segment [ 12 , σ1],
and

nm

m
≤ 1

π

∣∣∣∣argL(σ + iT, τ )
∣∣∣1/2
σ=σ1

∣∣∣∣ < nm + 1

m
.

Proof. By Definition 4.1, we know that the expression 1
2 +

1
π argL(σ+ iT, τ )m is an

integer for at least nm different values of σ in the interval [1/2, σ1]. In other words,

fm(σ) = �L(σ + iT, τ )m = 0

for at least nm different values of σ.
As m is an integer, we have that argL(s, τ )m = m argL(s, τ ). Thus, dividing

the inequalities in line (4.1) by m leads to the desired conclusion. �

If we had defined fm with subtraction instead of addition, thereby picking out
the imaginary part instead of the real part of L(s, τ ), the analogue of the proof of
Lemma 4.3 would not be valid.

Lemma 4.3. For any real c > 1, there is an infinite sequence of integers m with
fm(c) �= 0, and moreover, along that sequence

lim
m

(
− 1

m
log |fm(c)|

)
≤ log

ζ(c)

ζ(2c)
.

Proof. Define K and ψ by L(c + iT, τ ) = Keψi. Since L(s, τ ) �= 0 for σ > 1 and

c > 1, we know that K > 0, and also L(c − iT, τ̄) = L(c+ iT, τ ) = Ke−ψi. We
have

fm(c)

L(c+ iT, τ )m
=

1

2

(
1 +

L(c− iT, τ̄ )m

L(c+ iT, τ )m

)
=

1

2

(
1 + e−2mψi

)
.

Whatever the value of ψ, there is a sequence of values of m with the property that

−2mψ → 0 (mod 2π), whence fm(c)
L(c+iT,τ)m → 1.
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For σ > 1, we have the Euler product bound from Lemma 2.1

ζ(2σ)

ζ(σ)
≤ |L(σ + iT, τ )|.

This translates, for m a sequence of integers with the above property, into the
bound

1 = lim
m

fm(c)

L(c+ iT, τ )m
≤ lim

m

∣∣∣∣∣ fm(c)(
ζ(2c)/ζ(c)

)m
∣∣∣∣∣ ,

which becomes

0 ≤ lim
m

log |fm(c)| −m log
ζ(2c)

ζ(c)
,

completing the proof. �

5. Jensen’s formula

We apply Jensen’s formula to the sequence of functions fm(s) and the open disk
D(c, r) with center c and radius r. Here, m ranges through the sequence of positive
integers defined in Lemma 4.3. As τ and τ̄ are nonprincipal, each fm is entire, and
in particular holomorphic on D(c, r). Let Zm(X) be the multiset of zeros of fm in
the set X ⊆ C. Let

(5.1) Sm(c, r) :=
1

m

∑
z∈Zm(D(c,r))

log
r

|z − c| .

In our setting and notation, Jensen’s formula is as follows.

Theorem 5.1 (Jensen’s formula). Let c ∈ C, and let r > 0 be real. If fm(c) �= 0,
then

Sm(c, r) = − 1

m
log |fm(c)|+ 1

2π

∫ π

−π

1

m
log |fm(c+ reiθ)| dθ.

We apply this to derive an upper bound upon Sm(c, r).

Proposition 5.2. Let c, r and σ1 be real numbers with

c− r <
1

2
< 1 < c < σ1 < c+ r,

and Fc,r : [−π, π] → R an even function with Fc,r(θ) ≥ 1
m log |fm(c+ reiθ)|. Then

lim
m→∞

Sm(c, r) ≤ log
ζ(c)

ζ(2c)
+

1

π

∫ π

0

Fc,r(θ) dθ.

We will give a lower bound on the sum that involves nm

m in Section 5.1, and an
upper bound on the integral, via an explicit Fc,r, using classical and new bounds
on L-functions in Section 5.2. What will then remain is the work of choosing good
values for c, r and σ1, which we do in Section 6.

5.1. Backlund’s trick and the Jensen sum.

Lemma 5.3. Let d and T be positive real numbers, and E(a, d, T ) be as in Defini-
tion 3.3. Then∣∣∣∣argL(σ + iT, τ )m

∣∣∣1/2+d

σ=1/2

∣∣∣∣ ≤
∣∣∣∣argL(σ + iT, τ )m

∣∣∣1/2−d

σ=1/2

∣∣∣∣+mE(aτ , d, T ).
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Proof. By the functional equation (2.1),

arg Λ(σ + iT, τ )
∣∣∣1/2+d

σ=1/2
+ arg Λ(σ + iT, τ )

∣∣∣1/2−d

σ=1/2
= 0.

Since

arg Λ(σ + iT, τ ) = arg
( q

π

)(s+aτ )/2

+ arg Γ( s+aτ

2 ) + argL(s, τ )

=
T

2
log

q

π
+ � ln Γ( s+aτ

2 ) + argL(s, τ ),

we see that the terms

argL(σ + iT, τ )
∣∣∣1/2+d

σ=1/2
+ argL(σ + iT, τ )

∣∣∣1/2−d

σ=1/2

and

� ln Γ(σ+aτ+iT
2 )

∣∣∣1/2+d

σ=1/2
+ � ln Γ(σ+aτ+iT

2 )
∣∣∣1/2−d

σ=1/2

add to 0, and so have the same absolute value. This last displayed equation has
the same absolute value as E(aτ , d, T ). As argL(σ + iT, τ )m = m argL(σ + iT, τ ),
we have established this lemma. �

We will appeal to the following proposition with rather weak constraints on c
and r; if r is much larger than c, then we can in fact do slightly better. The source
of the error in [13] is in not tracking the constraints on c and r and how they impact
the applicability of “Backlund’s trick”.

Proposition 5.4 (Backlund’s trick). Let c and r be real numbers , and set

σ1 := c+
(c− 1/2)2

r
and δ := 2c− σ1 −

1

2
.

Further, let Eδ := E(aτ , δ, T ). If 1 < c < r and 0 ≤ δ < 9
2 , then∣∣∣∣argL(σ + iT, τ )

∣∣∣1/2
σ=σ1

∣∣∣∣ ≤ π Sm(c, r)

2 log r/(c− 1/2)
+

Eδ

2
+

π

m
.

Proof. The conditions on c and r imply the inequalities

c− r <
1

2
− δ ≤ 1

2
≤ 1

2
+ δ = 2c− σ1 ≤ c ≤ σ1 < c+ r.

For z ∈ D(c, r), we see that log r
|z−c| > 0, so that

Sm(c, r) :=
1

m

∑
z∈Zm(D(c,r))

log
r

|z − c| ≥
1

m

∑
z∈Zm((c−r,σ1])

log
r

|z − c| .

We will further only consider particular zeros in the real interval (c − r, σ1], not-
ing that omitting zeros from the computation weakens rather than invalidates the
claimed bound.

For real σ, such as those in the interval (c− r, c+ r), we have that

fm(σ) = �L(σ + iT, τ )m,

and so for σ ∈ Zm((c− r, c+ r)), we have

0 = fm(σ) = �L(σ + iT, τ )m,

whence arg fm(σ) = π
2 + jπ for some integer j. By the definition of nm, we are

then guaranteed at least nm values of σ in the interval [1/2, σ1] with fm(σ) = 0.
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For 1 ≤ k ≤ nm, let δk be the smallest nonnegative real number with

fm(1/2 + δk) = 0 and k − 1 ≤ 1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2+δk

σ=1/2

∣∣∣∣ .
We set zk := 1

2 + δk. Define x1 to be the number of zk’s that lie in the interval
[1/2, 1/2 + δ) = [1/2, 2c − σ1), and let x2 = nm − x1 be the number of zk’s in
[2c− σ1, σ1]. We have

0 ≤ δ1 < δ2 < · · · < δx1
< δ ≤ δx1+1 < · · · < δnm

≤ σ1 − 1/2.

Using Lemma 5.3,

k − 1 ≤ 1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2+δk

σ=1/2

∣∣∣∣
<

1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2−δk

σ=1/2

∣∣∣∣+ m

π
E(aτ , δk, T )

≤ 1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2−δk

σ=1/2

∣∣∣∣+ m

π
E(aτ , δk, T ).

For each j ≥ 1, if k is minimal with

1

π

∣∣∣∣argL(σ + iT, τ )m
∣∣∣1/2−δk

σ=1/2

∣∣∣∣ > k − 1− m

π
E(aτ , δk, T ) ≥ j,

then fm has at least j zeros in [ 12 − δk,
1
2 ). We define δ−k so that 1

2 − δ−k is
the smallest (furthest from 1/2) of the “at least j” zeros. We say that the zero
zk = 1

2 + δk has a pair, namely z−k = 1
2 − δ−k. By construction, δ−k ≤ δk.

If zk ∈ [ 12 ,
1
2 + δ] is unpaired, then it contributes (using 1

2 + δ ≤ c)

1

m
log

r

|c− zk|
=

1

m
log

r

c− ( 12 + δk)
≥ 1

m
log

r

c− 1/2

to Sm(c, r). If zk ∈ [ 12 ,
1
2 + δ] is paired, then it (together with its paired zero, which

is at least 1
2 − δ and so in (c− r, c+ r)) contributes

1

m
log

r

|c− zk|
+

1

m
log

r

|c− z−k|
=

1

m
log

r2

|c− (1/2 + δk)| · |c− (1/2− δ−k)|

≥ 1

m
log

r2

|(c− 1/2)2 − δ2k|
≥ 1

m
log

r2

(c− 1/2)2

to Sm(c, r). If zk ∈ [ 12 + δ, σ1], then it contributes

1

m
log

r

|c− zk|
≥ min

{
1

m
log

r

c− ( 12 + δ)
,
1

m
log

r

σ1 − c

}

=
1

m
log

r

max{c− 1
2 − δ, σ1 − c}

=
1

m
log

r

σ1 − c
=

1

m
log

r2

(c− 1/2)2

to Sm(c, r), revealing the wisdom in setting δ = 2c− σ1 − 1
2 and σ1 = c+ (c−1/2)2

r .
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Suppose there are x zeros in [ 12 ,
1
2 + δ], and x′ of them are unpaired, and there

are nm − x zeros in ( 12 + δ, σ1]. We then have

Sm(c, r) ≥ x′

m
log

(
r

c− 1/2

)
+

x− x′

m
log

(
r2

(c− 1/2)2

)

+
nm − x

m
log

(
r2

(c− 1/2)2

)

=
x′ + 2(x− x′) + 2(nm − x)

m
log

(
r

c− 1/2

)

=
2nm − x′

m
log

(
r

c− 1/2

)
.

If all of the zeros were unpaired, then 2nm − x′ = nm, and this argument would
reduce to McCurley’s. Fortunately, by construction x′ ≤ mEδ/π, and so

Sm(c, r) ≥ 2nm −mEδ/π

m
log

(
r

c− 1/2

)
,

whence
nm

m
≤ Sm(c, r)

2 log (r/(c− 1/2))
+

Eδ

2π
.

Lemma 4.2 completes this proof. �

No effort was made to use the pairs of zeros in ( 12 + δ, σ1]. This is because the
pairs of such zeros may lie outside (c − r, c + r) and so may not contribute to S.
With a stronger assumption about r, we can guarantee that the pair should get
counted and obtain a slightly stronger but more involved bound. In practice, the
paired zero is very close to the edge of D(c, r), and so the improvement is very
slight except for tiny q and T , which we may handle by direct computation anyway.

Proposition 5.5 (Backlund’s trick, inelegant version). Let c and r be real numbers,

and set σ1 := 1
2 +

√
2(c− 1

2 ) and δ := 2c− σ1 − 1
2 . Further, let

Sm(c, r) :=
1

m

∑
z∈Zm(D(c,r))

log
r

|z − c| ,

Eδ := E(aτ , δ, T ), and Eσ1
:= E(aτ , σ1 − 1

2 , T ). If r > (1 +
√
2)(c− 1

2 ), c > 1 and
1
4 ≤ δ < σ1 < 9

2 , then∣∣∣∣argL(σ+iT, τ )
∣∣∣1/2
σ=σ1

∣∣∣∣≤ π Sm(c, r)

2 log r/(c− 1/2)
+
Eδ

2
+

π

m
+
Eσ1

− Eδ

2

(
1− log(1 +

√
2)

log r/(c− 1/2)

)
.

Proof. The proof is essentially identical to that of the preceding proposition. We
arrive at the inequality

Sm(c, r) ≥ x′
1

m
log

(
r

c− 1/2

)
+

x1 − x′
1

m
log

(
r2

(c− 1/2)2

)
+

x′
2

m
log

(
r

σ1 − c

)

=
2nm

m
log

(
r

c− 1/2

)
− x′

1

m
log

(
r

c− 1/2

)
,

from which this proposition follows, again upon invoking Lemma 4.2. �
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5.2. The Jensen integral. To use Proposition 5.2, we require an explicit function
Fc,r(θ) that will bound the quantity 1

m log |fm(c + reiθ)| and that is even as a
function of θ.

We begin by quoting some useful bounds on L(s, τ ). The first bound (5.2) is
straightforward from the Euler products for L(s, τ ) and ζ(s). The second bound (5.3)
is Rademacher’s convexity bound [9]. The third bound (5.4) follows from the sec-
ond with η = −σ, although it is actually a primary ingredient in Rademacher’s
proof of equation (5.3).

Lemma 5.6. Let τ be a primitive character with modulus q > 1. Fix a parameter
η ∈ (0, 12 ] and let s = σ + it. If σ ≥ 1 + η, then

(5.2) |L(s, τ )| ≤ ζ(σ).

If −η ≤ σ ≤ 1 + η, then

(5.3) |L(s, τ )| ≤ ζ(1 + η)
( q

2π
· |s+ 1|

)(1+η−σ)/2

.

If − 1
2 ≤ σ ≤ −η, then

(5.4) |L(s, τ )| ≤ ζ(1− σ)
( q

2π
· |s+ 1|

) 1
2−σ

.

We can leverage Rademacher’s argument to also provide bounds to the left of
σ = −1/2. For a real number x, let [x] be the integer closest to x, choosing the one
closer to 0 if there are two integers equally close to x. We note that [−x] = −[x].

For − 1
2 ≤ σ < 0, the following result reduces to equation (5.4).

Theorem 5.7. Let τ be a primitive character with modulus q > 1. Suppose s =
σ + it, with σ < 0. Then

(5.5) |L(s, τ )| ≤ ζ(1− σ)
( q

2π

) 1
2−σ

·
∣∣s− [σ] + 1

∣∣ 1
2−σ+[σ] ·

−[σ]∏
j=1

|s+ j − 1| .

Proof. Let a = aτ be the sign and q the modulus (and conductor) of τ . From the
functional equation (2.1), it follows that

|L(s, τ )| =
( q

π

)−σ+1/2

· |L(1− s, τ̄)| ·
∣∣∣∣Γ(a2 + 1−s

2 )

Γ(a2 + s
2 )

∣∣∣∣ .
As σ < 0, we may apply Lemma 2.1 to conclude that

|L(1− s, τ̄)| ≤ ζ(1− σ).

We are therefore left with a ratio of Gamma functions to bound. To do this, we
appeal to Euler’s reflection formula

Γ(1− z)Γ(z) =
π

sin(πz)

and Legendre’s duplication formula

Γ(z)Γ(z + 1
2 ) = 21−2z

√
π · Γ(2z).
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It follows, as a ∈ {0, 1}, that

Γ(a2 + 1−s
2 )

Γ(a2 + s
2 )

=
Γ(1− s+1−a

2 )

Γ(a2 + s
2 )

=
π

Γ(a2 + s
2 )Γ(

s+1−a
2 ) sin(π2 (s+ 1− a))

=

√
π

21−sΓ(s) sin(π2 (s+ 1− a))
.

Replacing s by s+ k and a by b ∈ {0, 1}, we obtain

Γ( b2 + 1−(s+k)
2 )

Γ( b2 + s+k
2 )

=

√
π

21−(s+k)Γ(s+ k) sin(π2 (s+ k + 1− b))
.

Comparing the last two equations reveals that

Γ(a2 + 1−s
2 )

Γ(a2 + s
2 )

=
Γ( b2 + 1−(s+k)

2 )

Γ( b2 + s+k
2 )

21−(s+k)

21−s

Γ(s+ k)

Γ(s)

sin(π2 (s+ k + 1− b))

sin(π2 (s+ 1− a))

=
Γ( b2 + 1−(s+k)

2 )

Γ( b2 + s+k
2 )

2−k

( k∏
j=1

(s+ j − 1)

)
sin(π2 (s+ k + 1− b))

sin(π2 (s+ 1− a))
.

If we now choose b ≡ a + k (mod 2), then the last factor becomes simply ±1 and
hence the desired inequality follows upon choosing k = −[σ], bounding

Γ( b2 + 1−(s+k)
2 )/Γ( b2 + s+k

2 ) trivially and taking absolute values. �

Lemma 5.8. Fix a parameter η ∈ (0, 12 ] and T > 0. Write s = σ+ it. If σ ≥ 1+η,
then

(5.6)
1

m
log |fm(s)| ≤ log ζ(σ).

If −η ≤ σ ≤ 1 + η, then
(5.7)
1

m
log |fm(s)| ≤ log ζ(1+η)+

1 + η − σ

2
log

q

2π
+
1 + η − σ

4
log

(
(σ+1)2+(|t|+T )2

)
.

If σ ≤ −η, then

1

m
log |fm(s)| ≤ log ζ(1− σ)

(5.8)

+
1− 2σ

2
log

q

2π
+

1− 2σ + 2[σ]

4
log

(
(1 + σ − [σ])2 + (|t|+ T )2

)

+
1

2

−[σ]∑
k=1

log
(
(σ + k − 1)2 + (|t|+ T )2

)
.
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Proof. For σ ≥ 1+η > 1, the real parts of s+ iT and s− iT are both at least 1+η,
and so Lemma 2.1 gives

|fm(s)| :=
∣∣∣∣12 (L(s+ iT, τ )m + L(s− iT, τ̄)m)

∣∣∣∣
≤ 1

2
(|L(s+ iT, τ )|m + |L(s− iT, τ̄)|m)

≤ 1

2
(ζ(σ)m + ζ(σ)m) = ζ(σ)m.

Taking real logarithms yields the inequality (5.6).
For the second claim, with −η ≤ σ ≤ 1 + η, we have

|fm(s)| :=
∣∣∣∣12 (L(s+ iT, τ )m + L(s− iT, τ̄ )m)

∣∣∣∣
≤ 1

2
(|L(s+ iT, τ )|m + |L(s− iT, τ̄ )|m)

≤ 1

2

((
ζ(1 + η)

( q

2π
|s+ iT + 1|

)(1+η−σ)/2
)m

+

(
ζ(1 + η)

( q

2π
|s− iT + 1|

)(1+η−σ)/2
)m)

.

Writing s = σ + it, with T > 0, we have1

|s± iT + 1|2 = (σ + 1)2 + (t± T )2 ≤ (σ + 1)2 + (|t|+ T )2.

Thus,

|fm(s)| ≤
(
ζ(1 + η)

( q

2π

√
(σ + 1)2 + (|t|+ T )2

)(1+η−σ)/2
)m

,

and routine manipulation of logarithms yields the inequality (5.7).
Finally, for − 1

2 ≤ σ < −η, we have −[σ] = 0, and so line (5.8) follows from (5.7)
upon setting η = −σ and noting that the summation over k is empty. Assume now
that σ < − 1

2 , so that [σ] ≤ −1. As the exponent [σ] − σ + 1/2 is nonnegative, we
see that the bound from Theorem 5.7 is monotone increasing for �(s) > 0 (with
�(s) fixed). We apply Theorem 5.7 to s with imaginary parts t+ T and t−T , and
|t± T | ≤ |t|+ T . Thus,

|fm(s)| =
∣∣∣∣12 (L(s+ iT, τ )m + L(s− iT, τ̄)m)

∣∣∣∣
≤ ζ(1− σ)m

( q

2π

)m( 1
2−σ) (

(σ − [σ] + 1)2 + (|t|+ T )2
)m· 12 ·(

1
2−σ)

·

⎛
⎝−[σ]∏

k=1

(
(σ + k − 1)2 + (|t|+ T )2

)⎞⎠
1/2

.

Taking real logarithms completes the proof. �

1As we are ultimately concerned with m → ∞, we could care only about whichever one of
|s ± iT + 1| is larger, saving a factor of 2. But also, as m → ∞ and we ultimately care about
1
m

log |fm(s)|, a factor of 2 is irrelevant.
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Figure 4. The function F1.2,1.9(θ) for T = 1, q = 106, and η =
0.141. With these parameters,

∫ π

0
F1.2,1.9(θ) dθ

.
= 16.37.

Definition 5.9. We set

Lj(θ) := log
(j + c+ r cos θ)2 + (|r sin θ|+ T )2

(T + 2)2
.

We note that Lj(θ) depends on c, r and T . If we suppose that 0 ≤ θ ≤ π and
T ≥ 5/7, then, from the inequality log x ≤ x−1, we find that Lj(θ) ≤ L�

j (θ)/(T+2),
where

L�
j (θ) := 2r sin θ − 4 + 7

19

(
(j + c+ r cos θ)2 + (r sin θ − 2)2

)
.

Definition 5.10. Let σ = c+ r cos θ and t = r sin θ, where −π ≤ θ ≤ π. Define

Fc,r(θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log ζ(σ), if σ ≥ 1 + η,

log ζ(1 + η) + 1+η−σ
2 �+ 1+η−σ

4 L1(θ), if − η ≤ σ ≤ 1 + η,

log ζ(1− σ) +
1− 2σ

2
�+

1− 2σ + 2[σ]

4
L1−[σ](θ)

+
1

2

−[σ]∑
k=1

Lk−1(θ),

if σ < −η.

We note that Fc,r(θ) depends on q, T and η implicitly. Usefully, Fc,r is a continuous,
even function of θ. Figure 4 shows the function F1.2,1.9(θ) for T = 1 and q = 106

and η = 0.141.

Definition 5.11. If c and r are real numbers, with r positive, define θσ as

θσ :=

⎧⎪⎨
⎪⎩
0, if c+ r ≤ σ,

arccos σ−c
r , if c− r ≤ σ ≤ c+ r,

π, if σ ≤ c− r.

We remark that for c− r ≤ σ ≤ c+ r, we have c+ r cos θσ = σ.

Definition 5.12. We also define

κ1 := (θ−η − θ1+η)
1 + η − c

2
− (π − θ−η)

(
c− 1

2

)
+

r (sin θ−η + sin θ1+η)

2
.

For a positive integer J1 (we will actually take J1 = 64), set

κ2(J1) :=
π

4J1

(
log ζ(c+ r) + 2

J1−1∑
j=1

log ζ(c+ r cos πj
2J1

)

)
.
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For a positive integer J2 (we will actually take J2 = 24), set

κ3(J2) :=
π − θ1−c

2J2

(
log ζ(1−c+r)+2

J2−1∑
j=1

log ζ
(
1−c−r cos(πjJ2

+(1− j
J2
)θ1−c)

))
.

Finally, define

κ4 :=
1

4

∫ θ−η

θ1+η

(1 + η − σ)L�
1(θ) dθ,

κ5 :=
1

4

∫ θ−1/2

θ−η

(1− 2σ)L�
1(θ) dθ, and

κ6,j :=
1

4

∫ θ−j−1/2

θ−j+1/2

(
(1− 2σ − 2j)L�

j+1 + 2

j∑
k=1

L�
k−1(θ)

)
dθ.

Note that the integrands involved here are polynomials in sin θ and cos θ, and so we
can evaluate the integrals exactly. These evaluations are not enlightening to exam-
ine, but they are computationally important. For details, the reader may consult
the files ZerosOfLFunctions-Largeell.nb and ZerosOfLFunctions-Middleell.nb at

http://www.nt.math.ubc.ca/BeMaObRe2/

From the fact that Fc,r is an even function, the Jensen integral is then bounded
as

1

2π

∫ π

−π

1

m
log |fm(c+ reiθ)| dθ ≤ 1

π

∫ π

0

Fc,r(θ) dθ.

We evaluate the main term of this integral (as q or T go to∞) with the fundamental
theorem of calculus, while the minor terms require labourious bounding.

Proposition 5.13. Let c, r and η be positive real numbers satisfying

(5.9) 1 + η ≤ c < r − η,

and suppose that q ≥ 3 and T ≥ 5/7. Then
∫ π

0
Fc,r(θ) dθ is at most

κ1�+ (θ−η − θ1+η) log ζ(1 + η) +

∫ θ1+η

0

log ζ(c+ r cos θ) dθ

+

∫ π

θ−η

log ζ(1− c− r cos θ) dθ +
κ4 + κ5

T + 2
+

1

T + 2

∞∑
j=1

κ6,j .

The infinite sum is cosmetic: if j ≥ r − c+ 1
2 , then θ−j−1/2 = θ−j+1/2 = π and

so κ6,j = 0.

http://www.nt.math.ubc.ca/BeMaObRe2/
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Proof. By the hypothesized inequalities, we have θ−η < θ−1/2. Rearranging terms,∫ π

0

Fc,r(θ) dθ =

∫ θ1+η

0

log ζ(σ) dθ +

∫ π

θ−η

log ζ(1− σ) dθ

+

∫ θ−η

θ1+η

log ζ(1 + η) dθ(5.10)

+ �

(∫ θ−η

θ1+η

1 + η − σ

2
dθ +

∫ π

θ−η

1− 2σ

2
dθ

)
(5.11)

+

∫ θ−η

θ1+η

1 + η − σ

4
L1(θ) dθ +

∫ θ−1/2

θ−η

1− 2σ

4
L1(θ) dθ(5.12)

+

∞∑
j=1

∫ θ−j−1/2

θ−j+1/2

(
1− 2σ − 2j

4
Lj+1(θ) +

1

2

j∑
k=1

Lk−1(θ)

)
dθ.(5.13)

The integrand on line (5.10) is constant; the integral is (θ−η − θ1+η) log ζ(1 + η).
The sum of the two integrals on line (5.11) is exactly κ1.

For θ1+η < θ < θ−η, we have −η < σ < 1 + η and so 1 + η − σ > 0. For
θ−η < θ < θ−1/2, we have − 1

2 < σ < −η < 0, whence 1− 2σ > 0. Thus, line (5.12)
is bounded (using T ≥ 5/7) by∫ θ−η

θ1+η

1 + η − σ

4
L�
1(θ) dθ +

∫ θ−1/2

θ−η

1− 2σ

4
L�
1(θ) dθ =

κ4 + κ5

T + 2
.

Likewise, if θ−j+1/2 < θ < θ−j−1/2, then −j − 1
2 < σ < −j + 1

2 , and so

1− 2σ − 2j > 0

and we can appeal to the inequality Lj(θ) ≤ L�
j (θ)/(T +2). This bounds line (5.13)

by

1

T + 2

∞∑
j=1

κ6,j ,

as claimed. �

Our goal in the remainder of this section is to provide upper bounds for the
two integrals appearing in the statement of Proposition 5.13. In both cases, these
bounds will take the form of a small finite sum of reasonably manageable (that is,
easily optimized) functions.

Lemma 5.14. Let c, r and η be positive real numbers satisfying (5.9), σ = c+r cos θ
and J1 be a positive integer. If θ1+η ≤ 2.1, then∫ θ1+η

0

log ζ(σ) dθ ≤ log ζ(1 + η) + log ζ(c)

2
(θ1+η −

π

2
) +

π

4J1
log ζ(c) + κ2(J1).

Proof. As the map θ �→ log ζ(c + r cos θ) is increasing for 0 ≤ θ ≤ θ1+η, we could

use right endpoints to overestimate the integral
∫ θ1+η

0
log ζ(σ) dθ. We can get the

needed accuracy using many fewer terms, however, by showing that the map is
convex, whereby the trapezoid rule provides an overestimate.
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To see that the map is convex, observe that

d2

dθ2
log ζ(c+ r cos θ) =

d2

dθ2

∑
p

− log(1− p−c−r cos θ)

=
∑
p

r log p

(1− pc+r cos θ)2
(
pc+r cos θ(cos θ+r log(p) sin2 θ)−cos θ

)

≥
∑
p

r log p

(1− pc+r cos θ)2
(
pc+r cos θ(cos θ + log(2) sin2 θ)− cos θ

)
.(5.14)

Here, the sums are over primes p. Since 0 ≤ θ ≤ θ1+η ≤ 2.1, Definition 5.11 and
(5.9) together imply that

1 < 1 + η = c+ r cos θ1+η ≤ c+ r cos θ

(which in particular justifies the use of the Dirichlet series for log ζ), while 0 ≤ θ ≤
2.1 yields the inequality cos θ + log(2) sin2 θ > 0. It thus follows that

pc+r cos θ(cos θ + log(2) sin2 θ) > (cos θ + log(2) sin2 θ),

whence

pc+r cos θ(cos θ + log(2) sin2 θ)− cos θ > log(2) sin2 θ,

and so each term in (5.14) is positive.
Singling out the part between θc = π/2 and θ1+η ≥ θc, we obtain the claimed

bound. �

In a nearly identical fashion, we prove the next lemma. The hypotheses on c, r
and η guarantee that c− r < 1− c ≤ −η, whence π > θ1−c ≥ θ−η.

Lemma 5.15. Let J2 be a positive integer. If r > 2c− 1 and 1 + η ≤ c, then∫ π

θ−η

log ζ(1−σ) dθ ≤ log ζ(1 + η) + log ζ(c)

2
(θ1−c−θ−η)+

π − θ1−c

2J2
log ζ(c)+κ3(J2).

6. Assembling the bound

We begin this section by describing how to assemble the results in the proceeding
sections to produce an explicit bound for � ≥ 27.02. In Section 6.2, we adjust this
argument to treat values for � with 5.98 ≤ � ≤ 28. Finally, in Section 6.3 we outline
the rigorous explicit computations of zeros that allows us to handle small � with
� ≤ 6.

6.1. Large values of �. Let us assume that � ≥ 27.02 and set

� := log
q(T + 2)

2π
⊆ [27.02,∞), η :=

18

10 + 9�
⊆ (0, 0.08),

c := 1 +
391

74�+ 683
⊆ (1, 1.15), r :=

149

140
+

769

30�+ 512
⊆ (1.06, 1.65),

σ1 := c+
(c− 1/2)2

r
⊆ (1.23, 1.40), δ := 2c− σ1 −

1

2
⊆ (0.26, 0.40).

These definitions guarantee the chain of inequalities

−1

2
< c− r < 1− c < −η < 0 < 1 < 1 + η < c < σ1 < c+ r,
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which is simply (5.9) along with the extra condition that c − r < 1 − c < −η. We
set Eδ := E(aχ, δ, T ). The values for c and r were chosen after extensive numer-
ical work, with 149

140 = 1.06429 · · · being a good approximation to our numerically
determined “ideal” value of r. Numerical work suggests that we should choose
c = 1 +O( log �

� ), but the improvement in the final values is slight, while the added
complexity in producing a bound would be considerable.

The value of η can be motivated, however, and some words on why we define
η in this way are appropriate. To apply Lemma 5.8, we require η ≤ 1/2. In an
ideal world, we could choose η optimally for each σ, so as to make the right side
of (5.7) as small as possible. Experiments indicate that the numerical advantage in
doing so is slight, albeit noticeable, and not justifying the added complexity. The
derivative with respect to η of (5.7) at σ = 1/2 is

1

2
log

q

2π
+

1

4
log

(
(σ + 1)2 + (t+ T )2

)
+

ζ ′(1 + η)

ζ(1 + η)
.

For η between 0 and 1/2, we know that ζ′

ζ (1 + η) + 1
η is nearly linear, decreasing

from γ
.
= 0.577216 to just below 1/2; we choose 5/9 as a convenient rational in the

desired range. We handle small � (for which η is near 1/2) by direct computation

of zeros, so we find it reasonable to replace ζ′

ζ (1 + η) with 5
9 − 1

η . The value of t

will cover a range, but t = 2 seems roughly typical. The critical value of η is then
estimated as the solution to

1

2
log

q

2π
+

1

4
log

(
(2 + T )2

)
+

5

9
− 1

η
= 0,

which is η = 18
10+9� . Setting η in this way allows us to give the single bound in

Theorem 1.1 instead of a table of bounds for various settings of η (as in [13]) or a
bound that depends continuously on η (as in [6]).

With these choices of parameters, we now return to inequality (2.6). Appealing
to Propositions 5.2 and 5.4, and letting m → ∞, we find that

(6.1)

∣∣∣∣N(T, χ)−
(
T

π
log

qT

2πe
− χ(−1)

4

) ∣∣∣∣ ≤ |g(a, T )|+ 2

π
log ζ(σ1) +

Eδ

π

+
log ζ(c)− log ζ(2c)

log r/(c− 1/2)
+

1/π

log r/(c− 1/2)

∫ π

0

Fc,r(θ) dθ.

Lemma 3.2 bounds g(a, T ) and Lemma 3.4 bounds Eδ. Combining those bounds,
whose sum is monotone in d and rational in T , we can prove that

|g(a, T )|+ Eδ

π
≤ 1

14(T − 1/5)
+

1

210
.

Using interval analysis,

2

π
log ζ(σ1)−

log ζ(2c)

log r/(c− 1/2)
≤ 178�2 + 17909�+ 80807

4 (128�2 + 9637�+ 164296)
.

We now consider the integral term in equation (6.1). We apply Proposition 5.13
to break the integral

∫
Fc,r into pieces. With our settings for c, r, η and bound on

�, the hypotheses are satisfied and θj−1/2 = π for all j ≥ 0, whence the “infinite”
sum is 0. We use Lemmata 5.14 and 5.15 to bound the pieces. The main term is
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bounded as

κ1�/π

log r/(c− 1/2)
≤ 238413

220
�+

798�2 + 135589�+ 80396

16 (32�2 + 3105�+ 38735)
.

Collecting the various log ζ(c) terms, we have a total of(
θ1−c − θ−η + θ1+η

π
− θ1−c

πJ2
+

1

2J1
+

1

J2
+

3

2

)
log ζ(c)

2 log
(

r
c−1/2

) ,
where θσ is defined in Definition 5.11. With J1 = 64, J2 = 24, these terms con-
tribute at most

−1135�2 − 214796�+ 149201

512�2 + 75117�+ 496726
+

�

220
+

1365 log(�+ 1)

210
.

Collecting the various log ζ(1 + η) terms, we have a total of(
θ1−c + θ−η − θ1+η

π
− 1

2

)
log ζ(1 + η)

2 log r
c−1/2

≤ −182�2 − 118430�+ 79045

512�2 + 91562�+ 599789
+

�

222
+

529 log(�+ 1)

210
.

For the absolutely bounded terms, we obtain the inequalities

κ2/π

log r/(c− 1/2)
≤ 635

1024
− 9(113745�+ 25384532)

64 (512�2 + 150141�+ 7149852)
,

κ3/π

log r/(c− 1/2)
≤ 491

1024
− 3346893�+ 33179656

512 (512�2 + 21113�+ 208616)
.

Since the O(1/T ) terms contribute

1/π

log
(

r
c−1/2

) κ4

T + 2
≤ 1

T + 2

(
−50�2 − 1411�+ 18281

512�2 + 63962�+ 800695

)

1/π

log
(

r
c−1/2

) κ5

T + 2
≤ 1

T + 2

(
−42�2 − 15293�− 961048

512�2 + 113665�+ 3255348

)
,

we are led to conclude that

|g(a, T )|+ Eδ

π
+

1/π

log r
c−1/2

κ4

T + 2
+

1/π

log r
c−1/2

κ5

T + 2
≤ 75

210
.

The remaining terms involve only �, and we find (rigorously, as with all the inequal-
ities in this article) that they are at most

0.22737�+ 2 log(1 + �)− 0.5.

This establishes Theorem 1.1 for � ≥ 27.02.

6.2. Middle values of �. For 5.98 ≤ � ≤ 28, we set

c := 1 +
505

111�+ 430
and r :=

149

140
+

747

36�+ 283
,

and find that

−3

2
≤ c− r ≤ −1

2
, c ≥ 1 + η, θ1+η ≤ 1.62 and r ≥ 2c− 1.
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A similar fully rigorous analysis yields∣∣∣∣N(T, χ)−
(
T

π
log

qT

2πe
− χ(−1)

4

) ∣∣∣∣ ≤ 0.22737�+ 2 log(1 + �)− 0.5.

6.3. Small values of T and �. We first attempted to use Rubinstein’s LCALC, and
then gp/PARI, to compute all zeros of all L-functions up to conductor 10000 and

� := log q(T+2)
2π ≤ 8. However, both programs were found to miss pairs of zeros

occasionally. Using Arb for interval arithmetic, for each primitive character (we
actually only concern ourselves with one from each conjugate pair) with conductor
1 < q < 935 and � ≤ 6, we rigorously bounded the expression in equation (2.2). To
do so we used the identity

argL

(
1

2
+ iT, χ

)
= argL(3 + iT, χ) + �

∫ 1/2+iT

3+iT

L′(s, χ)

L(s, χ)
ds

to rigorously bound argL( 12 + iT, χ); the term argL(3+ iT, χ) is the principal value
of the argument (it is easy to show from the Euler product that | argL(3+ iT, χ)| ≤∑

p arcsin p
−3 < 0.176). We thereby computed N(T, χ) for some T greater than

or equal to 2πe6/q− 2 (for some characters, the integrand is highly oscillatory and
it can be advantageous to let T be slightly larger). Then, again using Arb for the
rigorous computation, we found the L-function zeros by locating sign changes in
the appropriate Hardy Z-function (see e.g. Edwards [4] for details on the latter
object). From this approach, we rigorously located (and stored) every zero of every
nontrivial primitive Dirichlet L-function with conductor at most 934 and � ≤ 6,
accurate to within 10−12. By only considering one from each pair of complex
characters and only the positive imaginary parts for real characters, we examined
80818 characters and found a total of 403272 zeros.

With this dataset, we have proved the following lemma. The code to generate the
dataset (in C), to process the dataset into Mathematica format, and Mathematica
code to pull the following lemma out of the data, are all available on the website.
Additional commentary on each item is provided below.

Lemma 6.1. Let 1 < q < 935, suppose that χ is a primitive character with con-

ductor q , and set � := log q(T+2)
2π . Then

(a) All of the zeros of L(s, χ) with real part between 0 and 1 and imaginary part
between −2(e6π − q)/q and 2(e6π − q)/q have real part equal to 1/2.

(b) If T ≥ 0 and � ≤ 1.567, then N(T, χ) = 0.
(c) If T ≥ 0 and 1.567 ≤ � ≤ 6, then∣∣∣∣N(T, χ)−

(
T

π
log

qT

2πe
− χ(−1)

4

)∣∣∣∣ ≤ �

log(2 + �)
.

(d) Let a := (1− χ(−1))/2 and T ∈ { 5
7 , 1, 2}. Let 0 ≤ k ≤ 4, or (T, k) = (2, 5),

or (a, T, k) = (1, 2, 6). Let qa(T, k) be the integer corresponding to a, T and
k in Table 1. Then:

If q ≤ qa(T, k) and aχ = a, then N(T, χ) ≤ k.

Moreover, if qa(T, k) is one of the boldface entries of Table 1, then there is
a character τ with conductor qa(T, k) + 1, aχ = aτ , and N(T, τ ) > k.
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Proof. Lemma 6.1(a) is a partial verification of the generalized Riemann hypothesis.
Although Platt [8] has made similar computations to much greater height with
many more conductors, we independently confirm GRH to this level and make our
rigorous zeros openly available at

http://www.nt.math.ubc.ca/BeMaObRe2/

The conditions in Lemma 6.1(b) imply that q ≤ 15. The 40 primitive characters
with q ≤ 15 are covered in our dataset, and for each, the lowest-height zero is

excluded by log q(T+2)
2π ≤ 1.567.

Lemma 6.1(c) requires many cases. For each of the 80818 relevant characters,
the zeros are known to within 10−12. Between each pair of consecutive zeros u, v
(or before the first zero), we know the value of N(T, χ). This gives a range of
T over which the inequalities can be proved by our Moore–Skelboe-style interval
arithmetic algorithm.

Lemma 6.1(d), concerning the boldface and asterisked entries in Table 1, is also
straightforward to pull from our dataset. �

The other entries in Table 1 can be verified as follows. For a given a, T, k, we
find the values of c and r from Table 2. We then use equation (2.2), evaluating the
first two terms to many digits. The last term of equation (2.2) is bounded using
Proposition 2.2 and Proposition 5.5. To use Proposition 5.5, we need to confirm
that the restrictive inequalities hypothesized there are satisfied. Both Eδ and Eσ1

can be explicitly computed, leaving only S. In Proposition 5.2, the quantity S is
bounded in terms of the Jensen integral. The integrand in the Jensen integral is
bounded in Lemma 5.8, and the bound is restated in Definition 5.10. The resulting
integral is then rigorously bounded above using interval arithmetic, subdividing
the region of integration until trivial bounds give the needed precision. Finally, as
N(T, χ) must be an integer, we take a floor.

Example 6.2. For example, to verify the statement

if the conductor of χ is at most 25252 and aχ = 0, then N(1, χ) ≤ 7,

we take T = 1, q = 25252, a = 0 and c = 2694
2048 ≈ 1.315, r = 4651

2048 ≈ 2.271, with
values of c and r being pulled from Table 2. Looking ahead to Proposition 5.5, we
set

σ1 =
1

2
+

835

512
√
2
≈ 1.653

and

δ =
835

512
− 835

512
√
2
≈ 0.478.

We find that

T

π
log

q

π
+

2

π
� ln Γ( 14 + a

2 + i T
2 ) ≤ 2.1013434,

1

π
· 2 log ζ(σ1) ≤ 0.4883702

and

Eδ ≤ 0.1616976, Eσ1
− Eδ ≤ 0.5119502, log

(
r

c− 1/2

)
= log

(
4651

1670

)
.

http://www.nt.math.ubc.ca/BeMaObRe2/
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Table 1. If χ has sign a and conductor q ≤ qa(T, k), then
N(T, χ) ≤ k. For example, if χ has sign a = 1 and conductor
less than 9007, then N(5/7, χ) ≤ 6. The numbers in boldface are
best possible.

T = 5/7 T = 1 T = 2
k a = 0 a = 1 a = 0 a = 1 a = 0 a = 1
0 42 16 36 12 16 10
1 172 66 148 42 28 18
2 934� 934� 844� 408 120 64
3 934� 934� 844� 844� 330 210
4 934� 934� 844� 844� 634� 630
5 3289 1909 1616 905 634� 634�

6 15991 9007 6256 3425 660 634�

7 82233 45137 25252 13554 1669 1050
8 443412 238003 105597 55727 4289 2677
9 2489523 1310445 455195 236710 11185 6932

At this point, as r > (1+
√
2)(c− 1

2 ), we can appeal to Proposition 5.5 to find that

N(T, χ) ≤2.1013434 + 0.4883702

+
2

π

(
π S

2 log 4651
1670

+
0.1616976

2
+

0.5119502

2

(
1− log(1 +

√
2)

log 4651
1670

))
,

whereby we may conclude that

N(T, χ) ≤ 2.6639165 + 0.9763160 · S.

From Proposition 5.2,

S ≤ log
ζ(c)

ζ(2c)
+

1

π

∫ π

0

Fc,r(θ) dθ,

with Fc,r(θ) made explicit in Definition 5.10. Easily computing log ζ(c)
ζ(2c) ≤1.0682664,

and using interval arithmetic branch-and-bound, we find that∫ π

0

Fc,r(θ) dθ ≤ 13.8132592.

Thus,

N(T, χ) ≤ 2.663915 + 0.9763160

(
1.0682664 +

13.8132592

π

)
≤ 7.9997.

As N(T, χ) must be an integer, necessarily N(T, χ) ≤ 7.

For the entries in Table 1 with asterisks, the method just described yields
bounds that are inferior to the results of our brute-force computations recorded
in Lemma 6.1, and so the entries that appear are taken from those computations
instead of the theoretical bound.
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Table 2. Values of pairs (c�, r�) where c = c�/211 and r = r�/211

that can be used to justify the entries in Table 1.

T = 5/7 T = 1 T = 2
k a = 0 a = 1 a = 0 a = 1 a = 0 a = 1
5 (2822, 5006) (2896, 5176) (2886, 5212) (2961, 5388)
6 (2719, 4694) (2770, 4836) (2778, 4902) (2831, 5046) (2956, 5481)
7 (2640, 4447) (2677, 4566) (2694, 4651) (2734, 4771) (2861, 5221) (2906, 5346)
8 (2577, 4246) (2606, 4348) (2628, 4444) (2660, 4546) (2785, 5001) (2822, 5107)
9 (2527, 4081) (2550, 4168) (2575, 4272) (2600, 4358) (2723, 4812) (2753, 4904)
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