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COUNTING ZEROS OF DIRICHLET L-FUNCTIONS

MICHAEL A. BENNETT, GREG MARTIN, KEVIN O'BRYANT,
AND ANDREW RECHNITZER

ABSTRACT. We give explicit upper and lower bounds for N (T, x), the number
of zeros of a Dirichlet L-function with character x and height at most T
Suppose that x has conductor ¢ > 1, and that T" > 5/7. If £ = log % >
1.567, then

T 4T -1
’N(T, X) — (; log % - %)‘ < 0.227370 + 2log(1 + £) — 0.5.

We give slightly stronger results for small ¢ and T'. Along the way, we prove a
new bound on |L(s, x)| for o < —1/2.

1. STATEMENT OF RESULTS

For any Dirichlet character x, the Dirichlet L-function is defined by

— x(n)

(1.1) Lis, ) =
n=1

when Rs > 1, and by analytic continuation for other complex numbers s. We adopt

the usual convention of letting p = 8 + iy denote a zero of L(s, x), so that = Rp

and v = Sp by definition. We let

(1.2) Zlx)={peC:0< <1, Lip,x) =0}

be the set of zeros of L(s, x) inside the critical strip (technically a multiset, since
multiple zeros, if any, are included according to their multiplicity). Notice in partic-
ular that the set Z(x) does not include any zeros on the imaginary axis, even when
X is an imprimitive character; consequently, if x is induced by another character
x*, then Z(x) = Z(x*). If x is the conjugate character to y, then Z(x) = Z(¥).

We write N(T,x) for the standard counting function for zeros of L(s,x) with
0< B <1and |y| <T. In other words,

N(T,x) =#{p € Z2(x): | < T},

counted with multiplicity if there are any multiple zeros. The primary aim of this
work is to provide explicit upper and lower bounds on N (T, x), when x is a primitive
character, in terms of x(—1), the conductor ¢ and the height 7'
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Theorem 1.1. Let x be a primitive character with conductor ¢ > 1 and letT > 5/7.
Set £ :=log "I [f ¢ < 1.567, then N(T,x) = 0. If £ > 1.567, then

T x(-1)

T
’N(T, X) — (? log 5 — 1 ) ’ < 0.22737¢ + 2log(1 + £) — 0.5.

There have been two earlier papers dedicated to finding explicit bounds for the
quantity N (T, x), by McCurley [6] in 1984 and by Trudgian [I3] in 2015. Both
authors gave bounds of the shape

(1.3)

T 4T
N(T,y) — ;logg—ﬂ_e' < CylogqT + Cy

for positive constants C; and Cs. In McCurley [6], which assumes T > 1, these
constants C; = C1(n) and Cy = C3(n) are functions of a parameter n € (0,1/2]; for
all such values of 7, one finds that necessarily Cy(n) > 1/7log2 > 0.45. Trudgian
pushed McCurley’s techniques further, giving [I3, Theorem 1] a table of ten pairs
of values (C1,Cs) under the assumption T' > 1 and ten further pairs under the
assumption 7" > 10. All of his pairs have C7 > 0.247, and in his proof it is asserted
that Cy could be made as small as (7log4)~! = 0.229612.

Regrettably, Trudgian’s paper contains an error that renders his proof incom-
plete. In short, the various parameters introduced in his proofs need to satisfy
certain inequalities, and he incorrectly argued that one of the inequalities was re-
dundant. The same difficulty unfortunately recurs in [12] (where bounds are derived
for zeros of the Riemann zeta-function) and in [I3] Theorem 2] (devoted to analo-
gous results for Dedekind zeta-functions). On a certain level, the main purpose of
the paper at hand is to repair these problems for Dirichlet L-functions, motivated
by the fact that the authors appealed to [I3, Theorem 1] in the course of proving
the main results of [2].

Our bound in Theorem [[I1] has a slightly more complicated shape (and uses
the offset of x(—1)) to make the bound as small as possible; however, for any
C1 > 0.22737, it is a simple calculus exercise to calculate a constant Cy such
that Theorem [[T] implies the bound (3]). We can therefore deduce the following
corollary of Theorem [[T]in a straightforward way:

Corollary 1.2. Let x be a character with conductor ¢ > 1. If T > 5/7, then

T
97 | < min{0.247 log qT + 6.894,0.208 log T + 4.358}.

T
N(Tv X) - ; IOg omel| =

Corollary improves upon all twenty of Trudgian’s claimed pairs as well as
upon McCurley’s parametric bound. Figure [1l shows the (Cy, Cs) pairs implied by
McCurley, and the twenty pairs claimed by Trudgian, as well as the (Cq, Cs) pairs
implied for T > 1 by Theorem [Tk the two marked points are the two (C,Co)
pairs from Corollary

As noted earlier, the current work is focused on fixing the aforementioned error
in [13], while at the same time introducing a number of further improvements. Most
notably, in Theorem [57] we extend a bound of Rademacher [9] on |L(s, x)| from
—% <o< % to all real o, allowing us to set our parameters more liberally. Also,
we make a choice for 7 in terms of ¢ and T that is nearly optimal, allowing us to
deduce a rather simpler bound. Thirdly, we computed all 806,544 zeros of primitive
L-functions, corresponding to 80,818 characters, with £ < 6 and 1 < g < 935, to
sufficient precision to verify the bounds in Theorem [[.T] in this range, allowing us
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FIGURE 1. The valid (Ci, C3) pairs proved by McCurley (upper
curve), claimed by Trudgian (twenty points), and implied by The-
orem [[T] (lower curve); the two points on the lower curve represent
Corollary

to assume greater lower bounds on 7' in our proofs. Finally, we are also interested
in lower bounds on N(T', x) when T is small, as in Conjecture [[3] below, and so we
state the inequality in Theorem [[.Tlin a form that is more useful towards that end.

For any fixed ¢, we should note that Theorem [I.1]is not particularly of practical
interest. The conductor g will either be so large that “explicit” is not helpful, or
small enough that one can compute the low height zeros to great precision. For large
T, the main term % log 2‘177; so greatly exceeds the error term (even in McCurley’s
form), that any improvement is truly minor. Also, the requirement that 7" > 5/7
makes our bound unhelpful for those studying zeros of extremely low height.

Using T > 1 (or T > 10) would markedly simplify the computational work, and
the lower order terms would be improved, but the applicability of the lower bound
on N(T, x) would no longer be optimized. Namely, Theorem [[T] implies that

qli}HOlo corgl(a)?)(:q N(T7 X) -

for T > 5/7 + 107>, but not for T = 5/7. This is, ultimately, why we chose to
work with 5/7 and not 1. The restriction that 7' > 5/7 may appear peculiar, but
it is not entirely arbitrary. It would be somewhat challenging to replace 5/7 with a
smaller number, as the functions defined in Definition B.3] oscillate badly for small
T, and that oscillation drives both the size of the lower-order terms in the bound in
Theorem [[T]and the computational effort needed to verify those bounds rigorously.
It is also worth noting that we could work with 7" > T > 5/7, introducing a a term
like C'/Ty or (C1T+C5)/(T?+C3T+Cy) in the bound. However, the added difficulty
(an extra variable makes the interval analysis algorithms we use significantly slower)
does not seem justified by the slight improvement in the bound that could result.

Where this result is useful is when 7" is small, but a large range of values of ¢
are to be worked with, and the need for an explicit bound arises not from the large
number of zeros that come with large T for one character but from the large number
of characters under consideration. For example, in [2], the authors needed to treat
all moduli up to ¢ < 10°, a total of 1,847,865,075 primitive characters. McCurley’s
bound implies that there are at most 32,456,205,589 corresponding zeros of height
at most 1 and conductor at most 10°, while Trudgian’s claims (one of which we used
in [2]) would cut this down to 21,880,443,454. Theorem [[1] reduces this number
to just 16,461,465,486. Some computations for low height zeros and the proof of
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Theorem [I.] tailored specifically for T' = 1 and shown in Table[] lower the number
still further to just 14,431,705,483.

It is disappointing that, for fized T, the main term and the error term in The-
orem [[T] are of comparable size. We are thus motivated to conjecture, as we are
unable to prove, that the error term should be an actual error term, that is, gen-
uinely smaller than the main term. We state this conjecture in a more qualitative
form:

Conjecture 1.3. For every real T > 0 and every integer M > 1, there is an
integer qo such that every character x with conductor at least qo satisfies N(T, x) >
M.

Assuming the generalized Riemann hypothesis for Dirichlet L-functions, Sel-
berg [I0] proved that the error term in the counting function for N(T,x) is

(%) uniformly in ¢ and T'; in particular, Conjecture [L3] follows from

GRH. McCurley’s bound implies that this conjecture holds for 7' > @ = 1.443,
and Theorem [[T]implies this conjecture for T > 5/7+10~°. By way of example, we
know of characters with conductor 840 for which N(1,x) = 0; Theorem [Tl implies
that N(1,x) > 1 when ¢ > 1.3 x 10*7. The largest conductor of a character x in
our dataset with N(2,x) = 0 is 241; Theorem [[T] implies that N(2,x) > 1 when
g>1.2x 107

Motivated by Selberg’s bound, as well as our somewhat substantial computation
of zeros, we make a rather speculative conjecture.

Conjecture 1.4. Let x be a character with conductor ¢ > 1. Recall that { =
log %. If T >5/7, then
4

’N(Tv)()_( < @D

The outline of this paper is as follows. In Section 2 following the approach of
McCurley, we derive our first estimates for N (T, x), from which our main results
will follow. Section [3lis devoted to sharp inequalities for the Gamma function. In
Section ] we begin the task of bounding the argument of L(s, x), by constructing a
function whose zeros measure changes in the argument. In Section [B] we complete
this process through application of Backlund’s trick and Jensen’s formula. Finally,
in Section [6] we complete the proof of Theorem [l

The technical details of our computations can be found in data files at:

http://www.nt.math.ubc.ca/BeMalbRe2/

T, T x(-1)
—1
T g 2me 4

2. THE MAIN TERM

Assuming that y is a primitive character with conductor ¢ > 1, the completed
L-function, an entire function, is defined as

A(s,x) = (2)5/21“ (Szax> L(s, x);

™

we note that the zeros of A(s,x) are precisely those of L(s,x). The functional
equation is

(2]‘) A(S’X) = €(X)A(1 -5, X)v

where () is independent of s and has absolute value 1.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Fix 01 > 1. By integrating Axl(s, x) around the rectangle with corners at o1 £iT°
and 1 — o1 +¢T (where T is not the height of a zero of L(s, X)), and appealing to
equation (27) on the left half of the contour, we arrive at the identity

T q 2 1 1/2+4T
2.2 N(T,x)=—log =+ =S+ + 2 +iT) 4+ —argL
(2.2) (T, x) ﬂ_Ogﬂ_"'ﬂ\Sn (4+2+Z2)+7Targ (S’X)s=1/2—1T7
where

0, if x(—-1)=1,
ay = )
1, if x(-1) = -1,
is the sign of the character. Define
2 1w T T T 2a-1
so that
T q 2 L ay oy T g x(—1)
(24) ;log;+;i‘slnF(Z+7+Z§):;logﬁ—Tng(ax,T).
We have that
1/24iT
L(s, ‘
arg L(s, ) s=1/2—iT
o1 —iT o1 +iT 1/2+4T
= arg L(s, x) + arg L(s, x) + arg L(s, x)
s=1/2—iT s=o1—1iT s=o1+iT
o1 T 1/2

=argL(o —iT,x) P + arg L(oy + it, X)‘ . +arg L(o + 4T, x)

o=1 t=— g=01

In particular,

1/2+44T o1 T
2.5 L(s, < larg L(o — iT, L it ‘
@) farerts] 7 N <laetio -0 [+ o vitn|
1/2
+ |arg L(o + 4T, x)
=01

These three terms sometimes all have the same sign in practice, suggesting that
there is no possibility of finding cancellation in general. Since

L(U_’LTaX) = L(O-—’—ZTa)Z)a

we have
o1 1/2
< max

arg L(o — 4T, x) | S 00X

arg L(o + 4T, 1)

O=01

If x is a real character then we have equality in this statement, so again there is no
recoverable loss in general.

Trivial bounds on |L(s,7)| come from comparing the Euler products of L(s, )
and ((s), leading immediately to the following.

Lemma 2.1. If s=o0+ it and o > 1, then <C((2:)) < |L(s,7)| < ¢(0).
T

Proposition 2.2. For oy > 1, |arg L(o1 + it,’]’)’
¢

T} < 2log((ay).
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Proof. For t between —T and T, Lemma 2.1l implies that
|arg L(o1 +it,7)| < [log L(o1 +it, 7)| < log ((01).

The proposition thus follows from the fact that arg L is trapped between — log {(o1)
and log ¢(o1), whereby its net change is at most 2log ((o7). O

We have thus arrived at the inequality

T, 4 x(=1)
(2.6) ‘N(T7 X) (w log 5re T g(ay,T)
2 2 ‘ 1/2
< —log((o1) + — max |argL(c +iT,7)
™ T re{x,x} o=01

We will use Stirling’s approximation to estimate g(a,,T) in the next section, and
the remainder of the work is spent on bounding the change of arg L(c + iT,7) on
the segment o € [1/2,01]. Up to this point, we have followed McCurley’s approach
to the problem verbatim.

3. THE GAMMA FUNCTION

We require bounds for the Gamma function in two contexts. The first of these is
in equation (22)) where the real part of the argument is either 1/4 or 3/4, while the
second is in the situation where we have a fixed imaginary part T/2 and varying
real part. Both usages are nicely handled by a suitable shifted version of Stirling’s
approximation.

Lemma 3.1 (Stirling’s approximation). Let x andy be positive real numbers. Then
SInl(z + dy) is within
(4 + 3m)/1440
(o + D2+ 27

of the expression

1 2 12
ylogg—i—z(x——)—(x+§>arctanx+ — v/
e 2 Yy (

2 2 x+2)% 4 y?
2)2 1
+ Y log <1 + @) + arctan ad + arctan T
2 Yy Y Y

Proof. By [5l, Proposition 2.1], we have the identity

InT(z) =InT(z+1) —logz =InT(z + 2) —log z — log(z + 1).
Thus,
(3.1) SInT(z) = SInT(z + 2) — Arg(z) — Arg(z + 1).

We will use the version of Stirling’s series and corresponding error bounds given

in [3]: for R(z) > 0, there is a complex function Ry with |R(z)| < % and

1 1 1
InT(z) = (z— 5) logz —z + 510g27r+ 12 + Ry(2).

(The upper bound for |Ra(z)] is a factor of ?ﬂf + 1 larger than the asymptotically
true size, but the overapproximation is unimportant for our purposes.) For = and
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y positive real numbers, we have Arg(z +iy) = § — arctan(z/y). Equation (B.1])
now becomes

SInl(z +dy) = ylog + = <x — —> < > arctan =

y/12 Y (x+2)
T @iy T2 (”T)

+2

1 .
+ SRy (x +2 + iy),

x x +
+ arctan — + arctan
Yy

and the lemma follows from |SRy(z + 2)| < |Ra(z + 2)|. O
Proposition 3.2. Fora € {0,1}, T > 5/7 and g(a,T) defined as in (23], we have
2—-a
T)| < .

Proof. We need only apply Lemma 1] with z = ¢ + 1 and y = T/2, finding that

. e 8+67)/45
9(a T) is within Ty of

16 + 127 — 607T'v/40a + 472 + 81 40a + 81
(3.2) 372 +-log {1+ ———
457 (81 + 40a + 472) 2 4T
2 2 1 2 5 7 2 9
+ p (arctan (12; -+ arctan C;; — (g + 1) arctan C;; ) .
Proving the four inequalities (upper and lower, ¢ = 0 and a = 1) is a typical
problem for interval analysis. O

A number of times in this work we will assert that some inequality is true “by
interval analysis”. Full details are available in Mathematica notebooks on the
website

http://www.nt.math.ubc.ca/BeMalbRe2/

but we wish to indicate the idea behind this under-utilized technique here. One
extends the domain of some primitive real functions (like addition, multiplication,
arctangents, logarithms, etc.) to include intervals, and so that

f(Xla"'vX'fL) = {f(‘rlv" '7xn): T; € X’L}
The fundamental theorem of interval analysis says that if h is defined by a compo-
sition of primitive functions and x; € X;, then

h(.Tl, L. ,l‘n) S h(Xl, e ,Xn).
For instance, (3:2)), multiplied by 7" and with a = 0 and T' = [1, 22| becomes

) 128
{1277 + 16 — 5805207 V4388713 log (%) 2 arctan 25302216 — % arctan %
3825+/85m 2m ™ ’
129 (262144 (127 + 16 — 60v/85)  1291log % 4o 2arctan 12 + I arctan 122 }
128 4703629538713 256 T ’

a subset of [0.022,0.035]. Also, T - % becomes

{ 262144(8 4+ 6m)  43(8 + 6m)
470362951/38713 " 163200+/85

C [0.0007,0.0008).
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This computation then constitutes a proof that 0.0213 < T'¢(0,T) < 0.0358 for
1<T < %. It should be noted that this proof works without floating point
arithmetic, except at moments when one needs to decide which of two expressions
represents a smaller number.

One can then proceed to a proof for all T > 5/7 by breaking the interval [5/7, o)
into sufficiently small intervals. By the definition of uniform continuity, if the
domain is broken into sufficiently small pieces, then interval arithmetic will yield
a sufficiently tight bound on the range of the function. There is a theoretical
and a practical difficulty with this paradigm for generating proofs of inequalities.
The theoretical problem is that we need not only the function to be uniformly
continuous, but for every sub-computation involved to be uniformly continuous.
This may require cleverly rewriting the expression or by introducing more primitive
functions, each such introduction requiring some (usually easy) calculus proof.

The practical difficulty that arises is that “sufficiently small pieces” can quickly
become too numerous to be useful. This can be partially addressed by rewriting the
expression, but also by introducing a simple expression between the target function
and the planned bound. For example,

A RO
o 08 AT2 ) = ox T aT? T 87T

and for T' = [100, 200] this improves the naive interval arithmetic upper bound of
&WO log (jgggé) ~ 0.064 to Ségﬁ ~ 0.032. That is, a theoretically tighter bound
in real arithmetic may be theoretically worse in interval arithmetic. The best
expression to use may even depend on the specific interval under consideration.

In the course of our interval analysis bounds in this paper, we use Alirezaei’s
uncommonly sharp bounds for arctanz [I] and Topsge’s Padé-inspired bounds for

log(1 4 ) [11].
Definition 3.3. For a € {0,1},d >0 and T > 5/7, we define
1/2+d

SIn (gL ) + S In [(2hgHT)
o=1/2

1/2—d

E(a,d,T) =

o=1/2

We set E(a,d,T) to be the expression given in Figure[2 so that Lemma Bl applied
to the definition of £(a,d, T') gives

&(a,d, T) < E(a,d,T)

for 0 < d < % and T > 0. While E contains many terms, they are each easy to
work with computationally. Figure Blshows E for typical arguments.

Lemma 3.4. Suppose that 0 < 61 <d < %, with a € {0,1} and T > % Then

0< E(a,01,T) < E(a,d,T).

Forae€{0,1}, §<d<35 and T >3,
E(a,d,T) _ (640 +216a)d — 112390 1
T - 1536(3T + 3a — 1) 210°

Proof. This is proved using interval analysis. For fixed a and T, a degree 3 Taylor
model with center 0 is used to show that the derivative of T'- E(a,d, T) with respect
to d is positive for small d (using some algebra and the Moore—Skelboe algorithm to
bound the 4th derivative of E with respect to d), and, simply, the Moore-Skelboe
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2T/3 2T/3
FE(a,d, T) =
(@4 1) = s 17 v 412 T 2a =24+ 17)? £ 417
AT/3 T (2a+ 17)2
— 1 T Sl
Qa+ 172 +472 28 ( T

T (2a + 2d + 17)? T (2a —2d 4+ 17)?
~Cog (14 22T T ID) S g (14 AT TR
1 °g< * AT? ) 4 °g< * AT?

(8 4 67)/45
((2a + 2d + 17)2 + 472)*/?

(8 4 67)/45 2(8 + 67) /45
(20— 2d+ 17)2 +4T2)*?  ((2a + 17)2 + 4T2)%/
2a+2d—|—1_ n2a—2d+1

1
— arctan

2
+ 2 arctan at

2
+ 2 arctan at

2a+2d—|—9_ n2a—2d+9

2T are 2T
+ 2arct 2a + 2a + 2d + 13 ¢ 2a — 2d + 13
arctan — — arctan ——
2T 2T
2a + 2d + 15 2a +2d + 17

arctan
4 2T
2a —2d+15 2a —2d+17 2a+15 2a + 17
— arct — arctan

1 arctan —op 2 2T

9
— arctan

2a
+ 2 arctan

FIGURE 2. Definition of E(a,d,T), for a € {0,1}, 0 < d < 9/2,

T >5/7.
T=5/7 T=2

30 30

2.5 2.5

20 2.

g —a=0

15 a=115 _~~ —a=0

a=1

1.0 1.0

0.5 0.5

—r " " " n "
0.0 0.5 1.0 15 20 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0

FIGURE 3. Graphs of £(a,d,T) for T =5/7 and T = 2.

algorithm for larger d. As F(a,0,T) > 0, this shows that E is positive. Consult
the website for details. O
4. BOUNDS ON L(s,T), AND BOUNDS ON f,($)

4.1. Introduction of the auxiliary function f,,. We will construct a function
that has many zeros if arg L changes substantially on the interval on [% +iT, o1 +iT).
To wit, let m be a large integer, and define, for s a complex number,

fm(s) = %(L(s +iT, 7)™ + L(s — iT,7)™).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Notice the use of s£4T, rather than o +4T"; this is done so that f,, is holomorphic.
Note further that, for real arguments, f,, simplifies nicely:

fm(o) = %(L(O’ +iT, 7)™ + L(o —iT,7)™)

= %(L(O’ +iT, 7)™ + L(o +iT,7)™)
=RL(c + T, 1)™.

The tactic we will employ follows McCurley [6]. If arg L changes, then arg L™
changes m times more, and this causes L(c + T, 7)™ to be purely imaginary many
times, whereby f,, will have many real zeros. We use Jensen’s formula to bound
the number of zeros in terms of an integral of log| f,,|, and then bound the integral
using a variety of estimates, trivial and non-trivial. As m — oo, this tactic captures
the total variation of arg L, which is sometimes as small as the net change.

Definition 4.1. We define n,, to be that integer (depending on m) for which

1/2

1
(4.1) Ny < — larg L(o +4T, 7)™ < Ny + 1.
™

=01

Since we will take m — oo, the reader will be well-served to think of n,, as being
very large. We will find upper and lower bounds for n,, /m.

Lemma 4.2. The function f,, has as at least n,, zeros on the real segment [%, o1,

and
n_m<l 12
m ~ T

<nm+1
m

arg L(o 4+ 4T, 1)

=01

Proof. By Definition 4.1l we know that the expression % + % arg L(o+4T, 7)™ is an
integer for at least n,, different values of ¢ in the interval [1/2, 01]. In other words,

fm(o) =RL(c +iT, 7)™ =0
for at least n,, different values of o.

As m is an integer, we have that arg L(s,7)™ = marg L(s, 7). Thus, dividing
the inequalities in line [@I]) by m leads to the desired conclusion. O

If we had defined f,, with subtraction instead of addition, thereby picking out
the imaginary part instead of the real part of L(s, ), the analogue of the proof of
Lemma [£3] would not be valid.

Lemma 4.3. For any real ¢ > 1, there is an infinite sequence of integers m with
fm(c) # 0, and moreover, along that sequence
¢e)

lim (—% log fm(C)) < log 220

Proof. Define K and ¢ by L(c+ iT,7) = Ke¥®. Since L(s,7) # 0 for o > 1 and
¢ > 1, we know that K > 0, and also L(c —iT,7) = L(c+iT,7) = Ke %". We

have

m 1 L(c—=qT,7)™ 1 _ .

f (C) =-(1+ (C Z 7—) I (1 +e 2m1/)z) .
L(c+iT, 7)™ 2 L(c+ T, 7)™ 2

Whatever the value of v, there is a sequence of values of m with the property that

—2m1p — 0 (mod 27), whence % — 1L
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For o > 1, we have the Euler product bound from Lemma 2]

¢(20)

(o)
This translates, for m a sequence of integers with the above property, into the
bound

< |L(o +iT,1)|.

T 71O N N IO N
m L(c+iT, 7)™ m (C(ZC) (C))
which becomes 20
. ((2¢
0 <limlog|fm(c)| —mlo ,
< limlog|fm(c)] e
completing the proof. |

5. JENSEN’S FORMULA

We apply Jensen’s formula to the sequence of functions f,,,(s) and the open disk
D(c,r) with center ¢ and radius r. Here, m ranges through the sequence of positive
integers defined in Lemma 3l As 7 and 7 are nonprincipal, each f,, is entire, and
in particular holomorphic on D(c,r). Let Z,,(X) be the multiset of zeros of f,, in
the set X C C. Let

(5.1) Sm(e,r) = e Z log ——

g .
m |z — |
2€Zm(D(c,r))
In our setting and notation, Jensen’s formula is as follows.

Theorem 5.1 (Jensen’s formula). Let ¢ € C, and let r > 0 be real. If fi,(c) # 0,
then

1 1 1 .
Sm(c,r):—ﬁlog\fm(cﬂ—k%/ Elog\fm(c-yrew”dg.

We apply this to derive an upper bound upon Sy, (c,r).

Proposition 5.2. Let ¢,r and o1 be real numbers with
1
c—r<§<1<c<01<c+r,

and F,, : [-m,7] = R an even function with F.,(0) > L log|fm(c+re)|. Then

lim_Sy(c,7) < log CC((QCC)) n % /0 " F... () do.

We will give a lower bound on the sum that involves = in Section 5.1} and an
upper bound on the integral, via an explicit F, ,, using classical and new bounds
on L-functions in Section What will then remain is the work of choosing good
values for ¢, r and o1, which we do in Section

5.1. Backlund’s trick and the Jensen sum.

Lemma 5.3. Let d and T be positive real numbers, and E(a,d,T) be as in Defini-
tion B3l Then

1/2+d 1/2—d

argL(a—f-iT,T)m’ < |arg L(o +iT, 7)™ +mé&(ar,d,T).

o=1/2 o=1/2
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Proof. By the functional equation (2.1]),
1/2+d 1/2—d

arg A(o + 4T, 7) ‘011/2 +argA(o+iT,7) 2 =0
Since
(s++ar)/2
arg A(oc +iT,7) = arg (2) + arg ['(#42=) + arg L(s, 7)
T

T
=3 log 1,4 SInT(#422) + arg L(s, 7),
7T

we see that the terms

1/2+d

1/2—d
, +arg L(o 4+ T, 1)
2

arg L(o +iT, T)‘

o=1

o=1/2
and

1/2+d
o=1/2 o=1/2

add to 0, and so have the same absolute value. This last displayed equation has
the same absolute value as (a,,d,T). As arg L(o + T, 7)™ = marg L(o + T, 1),
we have established this lemma. |

1/2—d

SlnF(—"*a;”T)’ +QInT(Ztag il

We will appeal to the following proposition with rather weak constraints on c
and r; if r is much larger than ¢, then we can in fact do slightly better. The source
of the error in [13] is in not tracking the constraints on ¢ and r and how they impact
the applicability of “Backlund’s trick”.

Proposition 5.4 (Backlund’s trick). Let ¢ and r be real numbers , and set

—1/2)? 1
01::c+u and § :=2c—o01 — =.
r 2
Further, let Es .= E(a:,6,T). If1<c<r and0<4 < %, then
1/2 T Sm(c,r) Es

arg L(o +iT,T)

< from&l) 26 T
- 210g1‘/(c—1/2)+ 2 +m

Proof. The conditions on ¢ and r imply the inequalities

=01

1 1 1
c—r<5—5§§§§+5:2c—01§c§01<c+r.
For z € D(c,r), we see that loglzrfc‘ > 0, so that

1 T 1 r
Smler)=r0 D, lgp—g=l > legp—

m
2€Zm (D(csr)) 2€Zm((c—,01])

We will further only consider particular zeros in the real interval (¢ — 7, o1], not-
ing that omitting zeros from the computation weakens rather than invalidates the
claimed bound.

For real o, such as those in the interval (¢ — r, ¢+ 7), we have that

fm(o) =RL(c +iT, 7)™,
and so for o € Z,,((c —r,c+r)), we have
0= fm(o) =RL(c +4iT, 7)™,

whence arg f,,(0) = § + jm for some integer j. By the definition of n,,, we are
then guaranteed at least n,, values of o in the interval [1/2, 01] with f,, (o) = 0.
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For 1 < k < nyy,, let d; be the smallest nonnegative real number with

1 1/2465
fm(1/2+0;) =0 and k—1< —|arg L(oc +iT, 7)™ o
T o=
We set z, = % + 0. Define z; to be the number of z.’s that lie in the interval

[1/2,1/2 +§) = [1/2,2¢ — 01), and let 9 = n,, — z1 be the number of z;’s in
[2¢ — 01,01]. We have

0<0; <2<+ <py <O<0py41 <<y, <o1—1/2.

Using Lemma [5.3]

1/2+06
k—1<

L T, 7)™
arg L(o 4+ 4T, 1) i
1/2—55,
arg L(o + T, 7)™ +
o=1/2
1/2—55,
arg L(o 4+ 4T, 7)™ +
o=1/2

< 5(CLT,(5/C,T)

< E(aT,(Sk,T).

A= A= 3=
3|3 23

For each j > 1, if k£ is minimal with

1 1/27(51€
— |larg L(o 4+ T, 7)™
™

>k—1-" E(ar,8.T) > j,
o=1/2 ™
then f,, has at least j zeros in [% — Ok, %) We define 6_j, so that % —0_p is
the smallest (furthest from 1/2) of the “at least j” zeros. We say that the zero
ZE = % + dx has a pair, namely z_j = % — 0_g. By construction, §_j < k.

If z;, € [1, 1 + &] is unpaired, then it contributes (using 3 + ¢ < c)

r 1 r

—log ——— = —log ————
m o=zl T m o= (L)

r

> -
- c—1/2

1
— log
m

to Sy (c,r). If z), € [3, 3 4 6] is paired, then it (together with its paired zero, which
is at least 3 —  and so in (¢ — 7, ¢+ r)) contributes

2

llogL—i—llog#:llog !

m lc =z  m lc—z_k] m e — (1/246k)| - le — (1/2 = 6_4)|
1
m

2 ,,,2

(c—1/2)?

r

[ —
8 12— ©

1
— log
m

to Sm(c,7). If 2 € [§ 4 0,01], then it contributes

11 T > mi 11 r 11 r

—1lo min ¢ —log ————, —1lo

m g|c—zk|_ m gc—(%—kd) m 2o —c
T

=—1lo
m gmax{c—%—é,al—c}

B 110 ro 110 r?

- m gol—c_m g(c—1/2)2

2
to Sm(c, ), revealing the wisdom in setting 6 = 2¢ — o1 — % and o1 = c+ %
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Suppose there are x zeros in [5, 5 + 6], and 2’ of them are unpaired, and there
are n,, — x zeros in (3 + 6,01]. We then have

z r rz—a 2
>_
Sm(c,r)mlog<c_1/2>+ - 10g<(c_1/2)2>

o o (i)
42— a') + 2nm — ) log( . >

m c—1/2

2y, — ' o r
m & c—1/2)"°

If all of the zeros were unpaired, then 2n,, — 2’ = n,,, and this argument would
reduce to McCurley’s. Fortunately, by construction 2’ < mFEs /7, and so

2n,, — mEs/m r
>
Sm(c,r) > - log (c—l/?)’

whence
Nm < Sm( ) + &
m — 2log(r/(c—1/2))
Lemma completes this proof. |

No effort was made to use the pairs of zeros in (3 + 6,01]. This is because the
pairs of such zeros may lie outside (¢ — r,c + r) and so may not contribute to S.
With a stronger assumption about r, we can guarantee that the pair should get
counted and obtain a slightly stronger but more involved bound. In practice, the
paired zero is very close to the edge of D(¢,r), and so the improvement is very
slight except for tiny ¢ and 7', which we may handle by direct computation anyway.

Proposition 5.5 (Backlund’s trick, inelegant version). Let ¢ and r be real numbers,
and set o1 == % + \/5(6 - %) and 6 = 2c— o1 — % Further, let

1 r
Sm(c, 7") = E Z log m,
2€Z,,(D(c,r))

Es = E(a.,8,T), and E,, == E(a;,01 — 3, T). Ifr > (14+v2)(c—3), ¢>1 and
i§(5<01<%, then

1/2
arg L(o+iT, )

T Sm(c,r) Es m E; —Es 1 log(1 4 /2)
T logr/(c—1/2) |

~2logr/(c—1/2) 2 m
Proof. The proof is essentially identical to that of the preceding proposition. We
arrive at the inequality

Ty T T — T r? T r
St > e (7 ) + 5w () + e ()

72nm10 r I/llo r
T 8 c—1/2 m o8 c—1/2)"

from which this proposition follows, again upon invoking Lemma (Il

O=01
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5.2. The Jensen integral. To use Proposition[5.2] we require an explicit function
F,,(0) that will bound the quantity - log|fy(c 4+ re”)| and that is even as a
function of 6.

We begin by quoting some useful bounds on L(s,7). The first bound (B2 is
straightforward from the Euler products for L(s, 7) and {(s). The second bound (53)
is Rademacher’s convexity bound [9]. The third bound (5.4) follows from the sec-
ond with n = —o, although it is actually a primary ingredient in Rademacher’s
proof of equation (&3)).

Lemma 5.6. Let 7 be a primitive character with modulus ¢ > 1. Fiz a parameter
n€ (0,%] and let s =0 +it. If o > 1+, then

(5.2) [L(s, )| < ¢(0).
If —n <o <1+4mn, then

4.

(53) L) < ¢4 ) (5

If—% <o < —n, then

(5.4) L <¢1=0) (5h-Js+1])"

We can leverage Rademacher’s argument to also provide bounds to the left of
o = —1/2. For a real number z, let [x] be the integer closest to z, choosing the one
closer to 0 if there are two integers equally close to . We note that [—z] = —[z].
For —1 < o < 0, the following result reduces to equation (5.4).

Theorem 5.7. Let 7 be a primitive character with modulus ¢ > 1. Suppose s =
o +it, with o < 0. Then

3-0 1 o540 el
(5.5)  |L(s,7)| < C(1—0) (%) s = o]+ 12 s+ - 1.
Jj=1

Proof. Let a = a, be the sign and ¢ the modulus (and conductor) of 7. From the
functional equation ([2I)), it follows that

—o+1/2
) sl

s, = (2

T
As 0 < 0, we may apply Lemma 2.1 to conclude that
[L(1—s,7)] <¢(1—0).

We are therefore left with a ratio of Gamma functions to bound. To do this, we
appeal to Euler’s reflection formula

™

I(1—2)(z) =

sin(mz)
and Legendre’s duplication formula

L(z)[(z 4 3) =2""%Vr-T(22).
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It follows, as a € {0,1}, that

[(4+ $)T(2=2)sin(3 (s + 1 —a))

- 21-sT(s)sin(5(s +1—a))

Replacing s by s + k and a by b € {0, 1}, we obtain

F(%—f— 1—(;+k)) ﬁ

D&+ =tE)  ~ 2-GHOD(s + k)sin(5(s + k + 1 b))’

~—

Comparing the last two equations reveals that

(5 +15°) DG+ =5 240 T (s 4 k) sin(§ (s + k +1 - b))
T5+3)  TG+=5 2 I()  sm(3(+1-a)
1—(s

If we now choose b = a + k (mod 2), then the last factor becomes simply +1 and
hence the desired inequality follows upon choosing k& = —[o], bounding

s+ #) JT( 4 =£%) trivially and taking absolute values. O

Lemma 5.8. Fiz a parametern € (0, 3] and T > 0. Write s = o+it. If o > 1+,
then

(56) - 10g fn(s)] < log (o).

If —n <o <14mn, then
(5.7)

1 l1+n—-0o q 147
ElOgLfm(s)l <logC(14+n)+——F—

-0
log—+——1 1)2 T)2).
5 og 27r+ 1 og ((o+1)*+(|t|+T)?)

If o < —n, then

(5.8)

~ log] fn(s)] <log (1~ o)

1-20 log -L + 1= 20+ 2] log (1+0—[0])® + (|| + T)?)

+ 2w 4

=[]

+ 3 Z log (o +k—1)>+ (|t| + T)?).
k=1
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Proof. For o > 141 > 1, the real parts of s+4T and s —iT are both at least 1+,
and so Lemma 2.1] gives

o (5)] = % (L(s +iT, 7)™ + L(s — iT, 7)™
< % (IL(s +iT, 7)™ + |L(s — T, 7)|"™)
< 5 Co)™ +¢o)™) = (o)™

Taking real logarithms yields the inequality (5.6)).
For the second claim, with —ny <o <147, we have

|[fm(s)] = |5 (L(s + 4T, 7)™ + L(s — iT, f)m)}

IA

(|L(s +iT,7)|™ + |L(s —iT, 7)|™)

((g‘(l + ) (%p +iT + 1|)(1+na)/2>

+ (g(1 o) (s —ir+ 1|)(1+"_”)/2) ) .

Writing s = o + it, with T' > 0, we havd}
ls+iT+12 = (0 + 12+ (t+T)> < (o +1)* + (|t| + T)2

IN

Thus,

1+n—0)/2\ ™
nl < (¢t (v qere) )
and routine manipulation of logarithms yields the inequality (&.7).

Finally, for —3 < o < —, we have —[o] = 0, and so line (5.8) follows from (5.7)
upon setting n = —o and noting that the summation over k is empty. Assume now
that o < —1, so that [0] < —1. As the exponent [¢] — o + 1/2 is nonnegative, we
see that the bound from Theorem [5.7] is monotone increasing for 3(s) > 0 (with
R(s) fixed). We apply Theorem [5.7 to s with imaginary parts t + 7 and ¢ — T, and
[t £T) <|t|+T. Thus,

o (s)] = ‘% (L(s +iT, 7)™ + L(s — iT, f)m)‘

m (4 ™27 2 2\m3(3-0)
< — — _
<=0 (55) (@ —lo)+ 1+ (1 + 1))
—lo] 1/2
II (0 +k=1)%+(t| + 1))
k=1
Taking real logarithms completes the proof. O

LAs we are ultimately concerned with m — oo, we could care only about whichever one of
|s £ 4T + 1| is larger, saving a factor of 2. But also, as m — oo and we ultimately care about
% log | fm (s)], a factor of 2 is irrelevant.
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0 14 09 64p 7 o

FIGURE 4. The function Fi919(f) for T =1, g = 105, and n =
0.141. With these parameters, foﬂ Fi21.9(0)df =16.37.

Definition 5.9. We set
(j+c+rcosh)? + (|rsinf| +T)?

(T +2)? '
We note that L;(#) depends on ¢, r and T. If we suppose that 0 < § < 7 and
T > 5/7, then, from the inequality log z < z—1, we find that L;(0) < L3(0)/(T+2),
where

Lj (9) = 10g

L5(0) ==2rsinf — 4+ 5 ((j + ¢+ rcosf)® + (rsinf — 2)%) .

Definition 5.10. Let 0 = ¢+ rcosf and t = rsinf, where —m < 6§ < 7. Define

log ¢(0), if 0 > 141,
log C(1+n) + H1=2¢ + =21, (9), if —p<o<1l+n,
1—-20 1—-20+ 2|0
Fop(6) = g1 — o)+ 200 L2222, )
= if o0 < —n.
+§;Lk71(9)7

We note that F. () depends on ¢, T and n implicitly. Usefully, F. , is a continuous,
even function of §. Figure @] shows the function Fj219(f) for T =1 and ¢ = 106
and n = 0.141.

Definition 5.11. If ¢ and r are real numbers, with r positive, define 6, as

0, ifc+r <o,
0, = < arccos ";C, ifc—r<o<c+r,
m, ifo<ec—r.

We remark that for c—r < o < ¢+ r, we have c+ rcosf, = o.

Definition 5.12. We also define
1+ ;} —c (r—0_,) (c 3 %) r(sinf_, ;— sin01+n)'

For a positive integer J; (we will actually take J; = 64), set

K1 = (0—p = O14n)

™

Iig(Jl) = 4]1

Ji—1
<1og§(c+r) +2 Z log ¢(c+ rcos %))

j=1
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For a positive integer Jo (we will actually take Jo = 24), set

Ja—1
k3(Jo) = 7_2—11*5 (logg(l—c+r)+2 Z log§(1—c—rcos(7}—§+(1—%)91c))).

Jj=1

Finally, define

1 [0
Kq = Z/ (14+n—0)L7(0)do,

0147
1 [9-1/2
Ky = Z/ (1-20)L5(0)do, and
9_"7
L o j
K6, = —/ (1—20—2j)L3, +2) Ly ,(0) | db.
4o s k=1

Note that the integrands involved here are polynomials in sin § and cos 8, and so we
can evaluate the integrals exactly. These evaluations are not enlightening to exam-
ine, but they are computationally important. For details, the reader may consult
the files ZerosOfLFunctions-Largeell.nb and ZerosOfLFunctions-Middleell.nb at

http://www.nt.math.ubc.ca/BeMalbRe2/

From the fact that F, , is an even function, the Jensen integral is then bounded
as

1 /™1 . 1 (7
— —log | fm(c+re'?)|df < —/ F..(0)db.
m T Jo

2 J_,

We evaluate the main term of this integral (as g or T' go to co) with the fundamental
theorem of calculus, while the minor terms require labourious bounding.

Proposition 5.13. Let ¢, and n be positive real numbers satisfying
(5.9) 1+np<c<r-—ng,

and suppose that ¢ > 3 and T > 5/7. Then fow F.,(0)d is at most

014n
kil + (60—, —01+n)log<(1—|—n)—|—/ log ¢(c + rcos ) d
0

-n

i Ii4+l€5 1 e
+A IOgC(l—C—TCOSQ)dH—F T+2 +T——i-2;%6’j'

The infinite sum is cosmetic: if j > r —c+ %, then 6_; 1,5 =0_;,1/2 = 7 and

so kg j = 0.
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Proof. By the hypothesized inequalities, we have _,, < f_; /5. Rearranging terms,

i 0147 T
/0 F..(6) d0—/0 log ((o) d9—|—/ log¢(1—0)dbf

9_71
9_77
(5.10) +/ log C(1 + n) df
014n
0_ ™
"l — 1-2
(5.11) +e / der/ 7 a0
O14n 2 0y 2
9‘"1—1—77—0 O0-1/21 _ 94
(5.12) + / 1¥n=0o 0)do+ / L1(0) do
0147 4 0 4
= (-2 (120 — 24 1<
(5.13) v Z/ (% Lin(®)+5> Lk_1(9)> do.
j=170-j+1/2 k=1

The integrand on line (5I0) is constant; the integral is (6_, — 014,)log (1 + 7).
The sum of the two integrals on line (BI1]) is exactly &;.

For 014, < 6 < 0_,, we have —n < 0 < 1+nandsol+n—oc > 0. For
0_, <8 <0_1/2, we have —% <0 < —n <0, whence 1 — 20 > 0. Thus, line (B.12)
is bounded (using T > 5/7) by

0, o
"l14n—0 / /21 — 20 K4 + K5
—— L7(0)df + Li(0)do = .
/91+n A 1(0) ) 1 1(0) T 19

Likewise, if 0_j 10 <0 <0_;_ 1,3, then —j — % <o<—j+ %, and so
1-20-2j>0
and we can appeal to the inequality L;(#) < L%(0)/(T+2). This bounds line (5.13)
by
1 o0

as claimed. O

Our goal in the remainder of this section is to provide upper bounds for the
two integrals appearing in the statement of Proposition 513l In both cases, these
bounds will take the form of a small finite sum of reasonably manageable (that is,
easily optimized) functions.

Lemma 5.14. Let ¢,r and n be positive real numbers satisfying (B9)), o = c+rcosf
and Jy be a positive integer. If 614, < 2.1, then

014n
| osctoyas < BB (g, T) + T lomC(e) + malh).
0 1

Proof. As the map 6 — log ((c+ rcosf) is increasing for 0 < 6 < 6, we could

use right endpoints to overestimate the integral foe”" log {(o) df. We can get the
needed accuracy using many fewer terms, however, by showing that the map is
convex, whereby the trapezoid rule provides an overestimate.
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To see that the map is convex, observe that

2
log ¢(c+ rcosf) = d92 Z log(1 — p=c—T <030

do?
1
= Z = ! C(ﬁfos 72 (pt7 %% (cos 0+ log(p) sin® §) —cos 6)
(5.14) > Z a _rl(ﬁfose) (pt7 %% (cos 0 + log(2) sin® @) — cos 6) .

Here, the sums are over primes p. Since 0 < 6 < 614, < 2.1, Definition [5.11] and
(E9) together imply that

l1<1l+n=c+rcosthqy <c+rcosb

(which in particular justifies the use of the Dirichlet series for log ¢), while 0 < 6 <
2.1 yields the inequality cos 6 + log(2) sin® @ > 0. It thus follows that
P80 (cos O + log(2) sin B) > (cos 6 + log(2) sin” 0),
whence
P8 (cos @ + log(2) sin® f) — cos @ > log(2) sin? 6,

and so each term in (5.I4)) is positive.
Singling out the part between 6. = 7/2 and 614, > 0., we obtain the claimed
bound. O

In a nearly identical fashion, we prove the next lemma. The hypotheses on ¢, r
and n guarantee that c —r <1 —c¢ < —n, whence 7 > 6,_. > 0_,,.

Lemma 5.15. Let Jy be a positive integer. If r > 2c—1 and 1 +n < ¢, then

T 1 1 1 —01_¢
| rosc1-gyap < EULEDEOECD g )4 Tt g (o) g ()
0 2

-n

6. ASSEMBLING THE BOUND

We begin this section by describing how to assemble the results in the proceeding
sections to produce an explicit bound for ¢ > 27.02. In Section [6.2] we adjust this
argument to treat values for £ with 5.98 < ¢ < 28. Finally, in Section [6.3] we outline
the rigorous explicit computations of zeros that allows us to handle small ¢ with
¢ <6.

6.1. Large values of /. Let us assume that £ > 27.02 and set

(T +2) 18
0 =1log B2 197,02 - 0,0.08
og = — C[27.02,00), "= T30 © ),
391 149 769
14— (111 - _ Y (1.06,1.
=1+ o ees & (LL1S), "= 100 T 3005 512 = (106, 1:65);
—1/2 1
o1 i=c+ w C (1.23,1.40), 0:=2c—o01— 5 C (0.26,0.40).

These definitions guarantee the chain of inequalities

1
—5<c—r<1—c<—17<0<1<1+77<c<01<c+r,
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which is simply (£.9) along with the extra condition that ¢ —r <1 —¢ < —5. We
set E5 = E(ay,0,T). The values for ¢ and r were chosen after extensive numer-
ical work, with % = 1.06429 - - - being a good approximation to our numerically
determined “ideal” value of r. Numerical work suggests that we should choose
c=1+ O(%), but the improvement in the final values is slight, while the added
complexity in producing a bound would be considerable.

The value of 1 can be motivated, however, and some words on why we define
7 in this way are appropriate. To apply Lemma B8, we require n < 1/2. In an
ideal world, we could choose 7 optimally for each o, so as to make the right side
of (B7) as small as possible. Experiments indicate that the numerical advantage in
doing so is slight, albeit noticeable, and not justifying the added complexity. The
derivative with respect to n of (B1) at 0 = 1/2 is

q

¢'(1+mn)
o T c1+n)

C(L4n)

For n between 0 and 1/2, we know that C?/(1 +n)+ % is nearly linear, decreasing

1 1
ilog Zlog (c+ 1>+ (t+T)%) +

from v = 0.577216 to just below 1/2; we choose 5/9 as a convenient rational in the

desired range. We handle small ¢ (for which 5 is near 1/2) by direct computation
of zeros, so we find it reasonable to replace C?(1 +n) with 2 — % The value of ¢
will cover a range, but ¢t = 2 seems roughly typical. The critical value of 7 is then

estimated as the solution to

1 g 1 9 5 1
—log— 4+ -1 24T ———=0
ploggr + qlog(@+T)) +5 - =0,
which is n = 101:_39[ Setting 7 in this way allows us to give the single bound in

Theorem [[LT] instead of a table of bounds for various settings of n (as in [I3]) or a
bound that depends continuously on 7 (as in [6]).

With these choices of parameters, we now return to inequality ([2.6]). Appealing
to Propositions and [5.4] and letting m — oo, we find that

qT'  x(-1)

1) [V - (Frog gL - XD <yt )+ Z1ouclon + 2

log ¢(c) — log ¢(2¢) 1/m / Fo(0) db.
logr/(c—1/2) logr/(c—1/2) Jo 7
Lemma [B2] bounds g(a,T) and Lemma [34] bounds Es. Combining those bounds,

whose sum is monotone in d and rational in T', we can prove that

Es 1 1
M+~ 4
l9(a. D)+ == < qm—175) T o1

Using interval analysis,

_log((2e) 1787 + 17909 + 80807
logr/(c—1/2) = 4 (12862 + 9637¢ + 164296)

%IOgC(Ul)

We now consider the integral term in equation (6I]). We apply Proposition (.13
to break the integral f F., into pieces. With our settings for ¢, 7,7 and bound on
¢, the hypotheses are satisfied and 6;_;/, = 7 for all j > 0, whence the “infinite”
sum is 0. We use Lemmata [5.14] and to bound the pieces. The main term is
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bounded as
Kil/m 238413 798¢% + 135589¢ + 80396
< {4+ .
logr/(c—1/2) 220 16 (322 + 3105¢ + 38735)
Collecting the various log {(c¢) terms, we have a total of

(91c =0y +byy b + 1 + 1 n §> log ((c)
2log (—0_2/2)

™ 71'.]2 2.]1 JQ 2
where 0, is defined in Definition .11l With J; = 64, J, = 24, these terms con-
tribute at most
—1135¢% — 214796¢ + 149201 14 13651log(¢ + 1)

51202 4+ 75117¢ 4 496726 220 210
Collecting the various log ¢(1 + n) terms, we have a total of

<91_c FO0-y =011y 1) log (1 + 1)

)

7 2/ 2log ﬁ
—182/2 — 118430¢ + 79045 L 5291log(£+ 1)
= 51202 + 91562¢ + 599789 = 222 210
For the absolutely bounded terms, we obtain the inequalities
Ko/ < 635 9(113745¢ + 25384532)
logr/(c—1/2) — 1024 64 (51202 + 1501414 + 7149852)’
K3/m 491 3346893¢ 4 33179656

< - .
logr/(c—1/2) — 1024 512 (512¢2 + 21113¢ 4 208616)
Since the O(1/T) terms contribute

1/m Ka 1 —500% — 14114 + 18281
log ( r ) T+2 = T+2 \ 51202 + 63962¢ + 800695

c—1/2
1/7 K5 1 —420% — 15293¢ — 961048
log ( r ) T+2 =~ T+2 \ 51202 + 113665¢ + 3255348 )

c—1/2

we are led to conclude that

Es 1/m o 1/7 K5 75
9(a, )|+ —+ - + G < 510
| ( )| i 1Ogc_1/2 T+2 long‘F? 210

The remaining terms involve only ¢, and we find (rigorously, as with all the inequal-
ities in this article) that they are at most

0.22737¢ + 2log(1 + £) — 0.5.
This establishes Theorem [I.1] for ¢ > 27.02.

6.2. Middle values of ¢. For 5.98 < ¢ < 28, we set
505 149 747

= dr=—+——
¢ and =100 T 360+ 283

= a0
and find that

3 1
—igc—rg—i, c>1+m, 014, <162 and r > 2c—1.
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A similar fully rigorous analysis yields

T, o x(=1)
N(T,X)—<;1Og2—m— 4

) ‘ < 0.227370 + 21og(1 4 £) —

6.3. Small values of T" and ¢. We first attempted to use Rubinstein’s LCALC, and
then gp/PARI, to compute all zeros of all L-functions up to conductor 10000 and
{ = log Q(T+2) < 8. However, both programs were found to miss pairs of zeros
occasmnally Using Arb for interval arithmetic, for each primitive character (we
actually only concern ourselves with one from each conjugate pair) with conductor
1 < ¢ <935 and ¢ < 6, we rigorously bounded the expression in equation ([Z2). To

do so we used the identity

1/244T L'(

argL( +14T, X):argL(i’)—i-iT,x)—i—S/ 5 X)

s L(s,x)
to rigorously bound arg L(% +1iT, x); the term arg L(3+1T, x) is the principal value
of the argument (it is easy to show from the Euler product that |arg L(3+iT, x)| <
o arcsinp™3 < 0.176). We thereby computed N (T, ) for some T greater than
or equal to 2meS/q — 2 (for some characters, the integrand is highly oscillatory and
it can be advantageous to let T be slightly larger). Then, again using Arb for the
rigorous computation, we found the L-function zeros by locating sign changes in
the appropriate Hardy Z-function (see e.g. Edwards [4] for details on the latter
object). From this approach, we rigorously located (and stored) every zero of every
nontrivial primitive Dirichlet L-function with conductor at most 934 and ¢ < 6,
accurate to within 107'2. By only considering one from each pair of complex
characters and only the positive imaginary parts for real characters, we examined
80818 characters and found a total of 403272 zeros.

With this dataset, we have proved the following lemma. The code to generate the
dataset (in C), to process the dataset into Mathematica format, and Mathematica
code to pull the following lemma out of the data, are all available on the website.
Additional commentary on each item is provided below.

Lemma 6.1. Let 1 < q < 935, suppose that x is a primitive character with con-
ductor q , and set £ = log q(T+ ). Then

(a) All of the zeros of L(s7 X) with real part between 0 and 1 and imaginary part
between —2(e®m — q)/q and 2(e®w — q)/q have real part equal to 1/2.

(b) If T > 0 and £ < 1.567, then N(T,x) = 0.

(¢) If T > 0 and 1.567 < ¢ < 6, then

T, ¢ x(=1 ¢
N(T,x) = (Z1og L X"\ o &
’ (T:%) (’N %€ ore 4 ~ log(2 +¢)

(d) Leta:=(1—x(-1))/2 and T € {3,1,2}. Let 0 < k <4, or (T, k) = (2,5),
or (a,T,k) = (1,2,6). Let q,(T, k) be the integer corresponding to a,T and
k in Table I Then:

If ¢ < qu(T,k) and a, = a, then N(T,x) < k.

Moreover, if q,(T, k) is one of the boldface entries of Table[Il, then there is
a character T with conductor qo(T, k) + 1, ay = a,, and N(T,7) > k.
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Proof. Lemmal6.Jia) is a partial verification of the generalized Riemann hypothesis.
Although Platt [8] has made similar computations to much greater height with
many more conductors, we independently confirm GRH to this level and make our
rigorous zeros openly available at

http://www.nt.math.ubc.ca/BeMalbRe2/

The conditions in Lemma [6.TI(b) imply that ¢ < 15. The 40 primitive characters
with ¢ < 15 are covered in our dataset, and for each, the lowest-height zero is
excluded by log W < 1.567.

Lemma [61(c) requires many cases. For each of the 80818 relevant characters,
the zeros are known to within 10712, Between each pair of consecutive zeros u, v
(or before the first zero), we know the value of N(T,x). This gives a range of
T over which the inequalities can be proved by our Moore—Skelboe-style interval
arithmetic algorithm.

Lemma [67)(d), concerning the boldface and asterisked entries in Table[I] is also
straightforward to pull from our dataset. O

The other entries in Table [I] can be verified as follows. For a given a, T, k, we
find the values of ¢ and r from Table 2l We then use equation ([2.2)), evaluating the
first two terms to many digits. The last term of equation (Z2) is bounded using
Proposition and Proposition To use Proposition 5.5, we need to confirm
that the restrictive inequalities hypothesized there are satisfied. Both Es and E,,
can be explicitly computed, leaving only S. In Proposition B.2], the quantity S is
bounded in terms of the Jensen integral. The integrand in the Jensen integral is
bounded in Lemma 5.8 and the bound is restated in Definition [.I0l The resulting
integral is then rigorously bounded above using interval arithmetic, subdividing
the region of integration until trivial bounds give the needed precision. Finally, as
N(T, x) must be an integer, we take a floor.

Example 6.2. For example, to verify the statement
if the conductor of y is at most 25252 and a,, = 0, then N(1,x) <7,

we take T = 1,q = 25252,a = 0 and ¢ = 3090 ~ 1.315, r = 335 ~ 2.271, with

values of ¢ and r being pulled from Table 2l Looking ahead to Proposition 5.5 we
set

1 835
01 =—-+ ——~1.653
T2 519,2
and
835 835
= — — ~ 0.478.
512 512V/2
We find that
T q 2 1 T 1
—log = + —%lnF(Z +35+i 5) < 2.1013434, — -2log((o1) < 0.4883702
T T T T
and

r 4651
E; <0.161 E,, — E5 < 0.5119502, 1 =log | — ) .
5 < 0.1616976, E,, — Es < 0.511950 og(c_1/2> og(1670>
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TABLE 1. If x has sign a and conductor ¢ < ¢.(T,k), then
N(T,x) < k. For example, if x has sign ¢ = 1 and conductor
less than 9007, then N(5/7,%) < 6. The numbers in boldface are
best possible.

T=5/7 T=1 T=2
a=20 a=1 a=0 a=1|a=0 a=1
42 16 36 12 16 10
172 66 148 42 28 18

934* 934* 844* 408 120 64
934* 934* 844* 844* 330 210
934* 934* 844* 844* 634* 630
3289 1909 1616 905 634* 634"
15991 9007 6256 3425 660  634*
82233 45137 | 25252 13554 | 1669 1050
443412 238003 | 105597 55727 | 4289 2677
2489523 1310445 | 455195 236710 | 11185 6932

© 00O Uk W+~ Ol

At this point, as r > (14+v/2)(c— %), we can appeal to Proposition to find that
N(T, x) <2.1013434 + 0.4883702
2 ( 7S 0.1616976  0.5119502 (1 log(1+ ﬁ)))

4651 2 2 4651

2 IOg 1670 log 1670

T
whereby we may conclude that
N(T, x) < 2.6639165 + 0.9763160 - S.

From Proposition [(.2]

o) L[
S <log S+ /0 Fo.n(6) do),

with F, ,(f) made explicit in Definition[5.10. Easily computing log fé% <1.0682664,
and using interval arithmetic branch-and-bound, we find that

/ F, (0)df < 13.8132592.
0
Thus,

< 7.9997.

13.8132592
N(T, x) < 2.663915 4 0.9763160 <1.0682664 + f)

As N(T, x) must be an integer, necessarily N (T, x) < 7.

For the entries in Table [l with asterisks, the method just described yields
bounds that are inferior to the results of our brute-force computations recorded
in Lemma [6.J] and so the entries that appear are taken from those computations
instead of the theoretical bound.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



BOUNDING N(T, x) 1481
TABLE 2. Values of pairs (¢*,r*) where ¢ = ¢* /2! and r = r* /21!
that can be used to justify the entries in Table [I1
T=5/7 T=1 T=2
k a=0 a=1 a=0 a=1 a=0 a=1
5 | (2822,5006) (2896,5176) | (2886,5212) (2961, 5388)
6 | (2719,4694) (2770,4836) | (2778,4902) (2831,5046) | (2956, 5481)
7| (2640,4447) (2677,4566) | (2694,4651) (2734,4771) | (2861,5221) (2906, 5346)
8| (2577,4246) (2606,4348) | (2628,4444) (2660, 4546) | (2785,5001) (2822, 5107)
9 | (2527,4081) (2550,4168) | (2575,4272) (2600,4358) | (2723,4812) (2753,4904)
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