
SUPERELLIPTIC EQUATIONS ARISING FROM SUMS OF

CONSECUTIVE POWERS

MICHAEL A. BENNETT, VANDITA PATEL, AND SAMIR SIKSEK

Abstract. Using only elementary arguments, Cassels solved the Diophantine

equation (x − 1)3 + x3 + (x + 1)3 = z2 (with x, z ∈ Z). The generalization
(x− 1)k + xk + (x + 1)k = zn (with x, z, n ∈ Z and n ≥ 2) was considered by

Zhongfeng Zhang who solved it for k ∈ {2, 3, 4} using Frey-Hellegouarch curves

and their corresponding Galois representations. In this paper, by employing
some sophisticated refinements of this approach, we show that the only solution

for k = 5 is x = z = 0, and that there are no solutions for k = 6. The chief

innovation we employ is a computational one, which enables us to avoid the
full computation of data about cuspidal newforms of high level.

1. Introduction

In 1964, Leveque [21] applied a theorem of Siegel [28] to show that, if f(x) ∈ Z[x]
is a polynomial of degree k ≥ 2 with at least two simple roots, and n ≥ max{2, 5−k}
is an integer, then the superelliptic equation

(1) f(x) = zn

has at most finitely many solutions in integers x and z. This result was extended
by Schinzel and Tijdeman [27], through application of lower bounds for linear forms
in logarithms, to show that equation (1) has in fact at most finitely many solutions
in integers x, z and variable n ≥ max{2, 5− k} (where we count the solutions with
zn = ±1, 0 once).

While this latter result is effective (in the sense that the finite set of triples
(x, z, n) is effectively computable), in practice such a determination has infrequently
been achieved, due to the extraordinary size of the bounds for x, z and n arising
from the proof. The few cases that have been treated in the literature have been
restricted to polynomials with very few monomials, or with multiple linear factors
over Q.

One class of polynomials that has proved, in certain cases at least, amenable
to such an approach, is that arising from sum of consecutive k-th powers. Let us
define

Sk(x) = 1k + 2k + · · ·+ xk,
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where x and k are nonnegative integers. Equations of the shape

(2) Sk(x)− Sk(y) = zn

have been considered by a number of authors, under the hypotheses that y = 0
(see e.g. [10], [18], [19], [23], [24], [26], [34], [35]), that y = [x/2] ([38]) and that
y = x− 3 ([13], [38]). In the first two of these situations, the resulting polynomials
on the left hand side of equation (2) have at least two distinct linear factors over
Q, which allows the problem to be reduced to one of binomial Thue equations.

Regarding the last of these cases, Cassels [13] solved the Diophantine equation
(x− 1)3 + x3 + (x + 1)3 = z2 in integers x and z, showing that the only solutions
satisfy x = 0, 1, 2 and 24; the same equation in a slightly disguised form is treated
by Uchiyama [33]. Zhongfeng Zhang [38] subsequently considered the more general
equation

(3) (x− 1)k + xk + (x+ 1)k = zn, x, z, k, n ∈ Z, k, n ≥ 2.

Associating solutions to a Frey-Hellegouarch curve and applying standard level low-
ering arguments he proved that the only solutions with k ∈ {2, 3, 4} are (x, z, k, n) =
(1,±3, 3, 2), (2,±6, 3, 2), (24,±204, 3, 2), (±4,±6, 3, 3) and (0, 0, 3, n).

In this paper, we extend Zhang’s result, completely solving equation (3) in the
cases k = 5 and k = 6. It should be emphasized that these results cannot apparently
be obtained from the arguments of [38], using Frey-Hellegouarch curves over Q.
Indeed, the purpose of this paper is two-fold. On the one hand, we will use the
case k = 5 to advertise the utility of the more powerful multi-Frey-Hellegouarch
approach, first pioneered in [12] (see also, e.g. [2], [3], [4] and [11]). Our result here
is as follows :

Theorem 1. The only solutions to the equation

(x− 1)5 + x5 + (x+ 1)5 = zn, x, z, n ∈ Z, n ≥ 1

satisfy x = z = 0.

The other main purpose of this paper is to introduce a new computational ap-
proach to handle Diophantine problems where the problem of extracting infor-
mation about associated forms arising from modularity is at the limit of current
computational power. The method of Frey-Hellegouarch curves and Galois rep-
resentations generally requires the explicit computation of weight 2 newforms of
certain levels and also the computation of some of their Hecke eigenvalues. This
computation can be completely impractical if the level is large. This turns out to be
the case for equation (3) with k = 6, where required newforms have level 33 · 3391
and the newform space has dimension 4520. We develop a version of the standard
‘method for bounding exponents’ [29, Section 9] that does not require the compu-
tations of the newforms, but merely a few (computationally much less expensive)
Hecke polynomials. This allows us to prove the following theorem.

Theorem 2. The equation

(x− 1)6 + x6 + (x+ 1)6 = zn, x, z, n ∈ Z, n ≥ 1

has no solution.

In a forthcoming paper we treat the equation (x− 1)k + xk = zn.
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We are grateful to Steve Donnelly and John Voight for much help and advice on
the computation of newforms in Magma. We thank the referee for careful reading of
the paper and for several helpful comments.

2. The case k = 5 and two Fermat equations of signature (p, p, 2)

The equation (x− 1)5 + x5 + (x+ 1)5 = zn can be rewritten as

(4) x(3x4 + 20x2 + 10) = zn .

It suffices to deal with the case n = p where p is a prime. We write α = gcd(x, 10),
whereby

(5) x = αp−1zp1 and 3x4 + 20x2 + 10 = αzp2 .

We shall use this factorization to construct two associated Fermat equations with
signatures (p, p, 2). We make use of the identity

7x4 + (3x4 + 20x2 + 10) = 10(x2 + 1)2.

Substituting from (5) and dividing by α we obtain

(6) 7α4p−5z4p1 + zp2 = (10/α)(x2 + 1)2.

The reader will observe that this is a generalized Fermat equation with signature
(p, p, 2) where the three terms are coprime.

We also make use of the identity

3(3x4 + 20x2 + 10) + 70 = (3x2 + 10)2.

Again substituting from (5) and dividing by α we obtain

(7) 3zp2 +
70

α
= α

(
3x2 + 10

α

)2

.

Once again, the three terms in this equation are integral and coprime. We interpret
this as a generalized Fermat equation with signature (p, p, 2) by treating the term
70/α as (70/α) · 1p.

We will associate a Frey-Hellegouarch curve to each of the Fermat equations (6)
and (7), and use the information derived simultaneously from both Frey-Hellegouarch
curves to prove Theorem 1 for n = p ≥ 7. We need to treat exponents p = 2, 3 and
5 separately; we do this in the next section.

3. The case k = 5: small values of p

Lemma 3.1. The only solutions to (4) with n = p = 2 are x = z = 0.

Proof. Write X = 3αx2 and Y = 3αxz2. From (5), it follows that (X,Y ) is an
integral point on the elliptic curve

Eα : Y 2 = X(X2 + 20αX + 30α2).

Using the computer algebra package Magma [8], we determine the integral points
on Eα. For this computation, Magma applies the standard linear forms in elliptic
logarithms method [32, Chapter XIII]. The integral points on these curves are

(−6,±18), (−5,±15), (0, 0) and (1080,±35820),

for α = 1; the points (−54,±306) and (0, 0) for α = 5; and just the point (0, 0) for
α = 2 or 10. The lemma follows immediately. �
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Lemma 3.2. The only solutions to (4) with n = p = 3 are x = z = 0.

Proof. Let X = 3αz2 and Y = 3α(3x2 + 10). From (7), we see that (X,Y ) is an
integral point on the elliptic curve

Eα : Y 2 = X3 + 630α2 .

Again using Magma, we determined the integral points on these four elliptic curves.
The curve E1 has no integral points. The integral points on E5 are (−5,±125) and
(99,±993), while those on E2 are (−6,±48), (9,±57) and (46,±316). Finally, the
integral points on E10 are given by

(1,±251), (30,±300), (81,±771) and (330,±6000).

The lemma follows. �

Lemma 3.3. The only solutions to (4) with n = p = 5 are x = z = 0.

Proof. From (5) we have

x = α4z51 , (3x2 + 10 +
√

70)(3x2 + 10−
√

70) = 3αz52 .

Let K = Q(
√

70). This field has ring of integers OK = Z[
√

70] and fundamental

unit ε = 251 + 31
√

70. We consider the following prime ideals

p2 = (2,
√

70), p3 = (3, 1 +
√

70), p′3 = (3, 1−
√

70),

p5 = (25 + 3
√

70)OK and p7 = (7,
√

70).

These satisfy

p22 = 2OK , p25 = 5OK , p27 = 7OK and p3p
′
3 = 3OK .

The field K has class number 2, with p2, p3, p′3 and p7 all representing the non-
trivial ideal class. Observe that

ordp3
(10 +

√
70) = 1 and ordp3(10−

√
70) = 0.

Moreover,

ordp2
(10 +

√
70) = ordp5

(10 +
√

70) = 1.

Let a = ord2(α) and b = ord5(α), so that a, b ∈ {0, 1}. We deduce that

(3x2 + 10 +
√

70)OK = a · b5, where a = pa2 · pb5 · p3
and b is an ideal of OK . Observe that b is principal if and only if a is principal.
Let

q =

{
1 · OK if a is principal

p7 if a is non-principal.

Then we can write

(3x2 + 10 +
√

70)OK = (aq−5) · (bq)5

where both aq−5 and bq are principal; the former is a fractional ideal, while the
latter is an integral ideal. Write

aq−5 =
r + s

√
70

d
OK

where r, s, d ∈ Z, with d ≥ 1 as small as possible. Now

3x2 + 10 +
√

70 =
1

d
(r + s

√
70) · εc · (u+ v

√
70)5, −2 ≤ c ≤ 2
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with u, v in Z. Comparing coefficients of 1,
√

70, and recalling that x = α4z51 we
have

(8) f(u, v) = d(3α8z101 + 10) and g(u, v) = d,

where f , g ∈ Z[u, v] are homogenous of degree 5. Observe that d is determined
by α, while f and g are determined by α and c. For each possibility for α and
c we checked the system (8) for solubility modulo 26, 33, 53, 73 and all primes
11 ≤ q < 100. This allowed us to eliminate all possibilities except for (α, c) = (2, 2)
and (α, c) = (10, 0). For both these possibilies d = 1. The second equation in (8)
is in fact a Thue equation. We used Magma to solve both Thue equations; for the
theory behind Magma’s Thue equation solver see [32, Chapter VII].

For (α, c) = (2, 2) this Thue equation is

5521u5+230960u4v+3864700u3v2+32334400u2v3+135264500uv4+226340800v5 = 1,

and we found that it has no solutions. For (α, c) = (10, 0), the corresponding Thue
equation is

u5 + 50u4v + 700u3v2 + 7000u2v3 + 24500uv4 + 49000v5 = 1.

The only solution is (u, v) = (1, 0). Since the first equation in (8) is, in this case,

10u5 + 350u4v+ 7000u3v2 + 49000u2v3 + 245000uv4 + 343000v5 = 3 · 108 · z101 + 10,

it follows that z1 = 0 and hence x = 0 as required. �

4. The case k = 5: first Frey-Hellegouarch curve

Henceforth we suppose that p ≥ 7 and that x 6= 0. We apply the recipes of
the first author and Skinner [7, Section 2] to equation (6) (see also [29]; this latter
reference is a comprehensive tutorial on the modular approach). The recipes lead
us to attach to (6) a Frey-Hellegouarch curve Ex,α which depends on α as well as x.
The possible values for α are 1, 5, 2 and 10. The corresponding Frey-Hellegouarch
elliptic curves are

Ex,1 : Y 2 = X3 + 20(x2 + 1)X2 + 10(3x4 + 20x2 + 10)X(9)

Ex,5 : Y 2 = X3 + 4(x2 + 1)X2 +
2(3x4 + 20x2 + 10)

5
X(10)

Ex,2 : Y 2 +XY = X3 +
(5x2 + 4)

4
X2 +

35x4

128
X(11)

Ex,10 : Y 2 +XY = X3 +
x2

4
X2 +

7x4

640
X .(12)

For a non-zero integer u and a set of primes S, we define RadS(u) to be the product
of the distinct prime divisors of u that do not belong to S. For an elliptic curve
E/Q, we denote its minimal discriminant and conductor by ∆(E) and N(E).

Lemma 4.1. The elliptic curves Ex,α have non-trivial 2-torsion over Q. Their
discriminant and conductors are

∆(Ex,1) = 29 · 53 · 7 · z4p1 · z
2p
2 , N(Ex,1) = 28 · 52 · 7 · Rad{2,5,7}(z1z2)

∆(Ex,5) = 29 · 54p−5 · 7 · z4p1 · z
2p
2 , N(Ex,5) = 28 · 5 · 7 · Rad{2,5,7}(z1z2)

∆(Ex,2) = 28p−22 · 53 · 72 · z8p1 · z
p
2 , N(Ex,2) = 2 · 52 · 7 · Rad{2,5,7}(z1z2)

∆(Ex,10) = 28p−22 · 58p−10 · 72z8p1 · z
p
2 , N(Ex,10) = 2 · 5 · 7 · Rad{2,5,7}(z1z2) .

Proof. This follows from [7, Lemma 2.1]. �
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α dimSnew
2 (Lα) number of conjugacy (d,number of newforms of degree d)

classes of forms

1 912 196 (1, 52), (2, 32), (3, 12), (4, 22),
(5, 8), (6, 28), (8, 12), (9, 8),

(12, 16), (16, 2), (18, 4)
5 192 64 (1, 20), (2, 12), (3, 12), (4, 4),

(6, 16)
2 10 8 (1, 6), (2, 2)
10 1 1 (1, 1)

Table 1. Information for weight 2 newforms of level Lα, where
Lα is given by Lemma 4.2.

We note in passing that we have already used the assumption x 6= 0. If x = 0,
then z1 = 0 and the curves Ex,α are not elliptic curves but merely singular Weier-
strass equations (i.e. the discriminant ∆(Ex,α) = 0). We maintain the assumption
x 6= 0 throughout.

For an elliptic curve E/Q, we write ρE,p for the mod p representation giving the

action of GQ = Gal(Q/Q) on the p-torsion E[p]:

ρE,p : GQ → Aut(E[p]) ∼= GL2(Fp).

If ρE,p arises from a newform f then we write E ∼p f .

Lemma 4.2. Let Ex,α be the Frey-Hellegouarch curve in (9)–(12). Then Ex,α ∼p f
where f is a newform of weight 2 and level Lα:

L1 = 28 · 52 · 7, L5 = 28 · 5 · 7, L2 = 2 · 52 · 7 and L10 = 2 · 5 · 7.

Proof. This is immediate from [7, Lemma 3.2] which in turn relies on modularity of
elliptic curves over Q due to Wiles, Breuil, Conrad, Diamond and Taylor [36], [9],
on Ribet’s level lowering theorem [25] and also on irreducibility theorems for mod p
representations of elliptic curves due to Mazur [22]. It is here that the assumption
p ≥ 7 is used to ensure the irreducibility of the representation ρEx,α,p. �

Using Magma, we computed the weight 2 newforms of levels Lα. The results
of this computation are summarized in Table 1. For this computation we used
Magma’s highly optimized Hilbert modular forms package (the classical newforms
we are computing can be regarded as Hilbert newforms over Q). The theory and
algorithms behind this package are described in [15].

5. The case k = 5: second Frey-Hellegouarch curve

Applying the recipes of Bennett and Skinner [7, Section 2] to equation (7) leads
us to associate to this the Frey-Hellegouarch elliptic curve

(13) Fx,α : Y 2 = X3 + 2(3x2 + 10)X2 + 70X .

Although the equation for this Frey-Hellegouarch curve is independent of α, the
discriminant and conductor do depend on α.
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α dimSnew
2 (Mα) number of conjugacy (d,number of newforms of degree d)

classes of forms

1 192 112 (1, 64), (2, 28), (3, 12), (4, 4),
(5, 4)

5 912 356 (1, 176), (2, 64), (3, 12), (4, 36),
(5, 28), (6, 8), (7, 24), (9, 8)

2 384 128 (1, 48), (2, 16), (3, 16), (4, 28),
(6, 8), (8, 12)

10 1824 396 (1, 124), (2, 60), (3, 20), (4, 52),
(5, 8), (6, 40), (8, 28)

Table 2. Information for weight 2 newforms of level Mα, where
Mα is given by Lemma 5.2.

Lemma 5.1. The elliptic curve Fx,α has non-trivial 2-torsion over Q. Its discrim-
inant and conductor are given by

∆(Fx,1) = 28 · 3 · 52 · 72 · zp2 , N(Fx,1) = 27 · 3 · 5 · 7 · Rad{2,3,5,7}(z2)

∆(Fx,5) = 28 · 3 · 53 · 72 · zp2 , N(Fx,5) = 27 · 3 · 52 · 7 · Rad{2,3,5,7}(z2)

∆(Fx,2) = 29 · 3 · 52 · 72 · zp2 , N(Fx,2) = 28 · 3 · 5 · 7 · Rad{2,3,5,7}(z2)

∆(Fx,10) = 29 · 3 · 53 · 72zp2 , N(Fx,10) = 28 · 3 · 52 · 7 · Rad{2,3,5,7}(z2) .

Proof. Again this follows from [7, Lemma 2.1]. �

Lemma 5.2. Let Fx,α be the Frey-Hellegouarch curve in (13). Then Fx,α ∼p g
where g is a newform of weight 2 and level Mα, where

M1 = 27 · 3 · 5 · 7, M5 = 27 · 3 · 52 · 7, M2 = 28 · 3 · 5 · 7 and M10 = 28 · 3 · 52 · 7.

Proof. Again this is immediate from [7, Lemma 3.2]. �

Table 2 gives information about the spaces of newforms of weight 2 and level
Mα.

6. Proof of Theorem 1

The following standard lemma [29, Proposition 5.1] will be helpful in exploiting
Lemmata 4.2 and 5.2.

Lemma 6.1. Let E/Q be an elliptic curve of conductor N and f = q +
∑
i≥2 ciq

i

be a newform of weight 2 and level N ′ | N . Write K = Q(c1, c2, . . . ) for the totally
real number field generated by the Fourier coefficients of f . Suppose E ∼p f for
some prime p. Then there is some prime ideal p | p of K such that for all primes
`,

• if ` - pNN ′ then a`(E) ≡ c` (mod p),
• if ` - pN ′ and ` || N then ±(`+ 1) ≡ c` (mod p).

Fix a possible value for α ∈ {1, 2, 5, 10}. For convenience, we write Ex and Fx
for the curves Ex,α and Fx,α. Note that the levels Lα and Mα in Lemmata 4.2
and 5.2 depend only on α. Now fix a weight 2 newform f = q +

∑
ciq

i of level Lα
and another g = q +

∑
diq

i of level Mα. Suppose Ex ∼p f and Fx ∼p g. Write
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K1 = Q(c1, c2, . . . ) and K2 = Q(d1, d2, . . . ), and let ` > 7 be a prime. We would
like to apply Lemma 6.1 to obtain information about p. Suppose for now that ` 6= p.
The Frey-Hellegouarch curves Ex and Fx depend on the unknown x. However, their
traces modulo ` depend only on x modulo `. Let 0 ≤ a ≤ `− 1 and suppose x ≡ a
(mod `). We shall write ∆1(x) for the discriminant of the Weierstrass model Ex
and ∆2(x) for the discriminant of the Weierstrass model Fx (these are polynomials
in x). Let

(14) R`(f, a) =

{
NormK1/Q((`+ 1)2 − c2`) if ` | ∆1(a)

NormK1/Q(a`(Ea)− c`) if ` - ∆1(a).

It follows from Lemma 6.1 and Lemma 4.2 that p | R`(f, a). Let

S`(g, a) =

{
NormK2/Q((`+ 1)2 − d2`) if ` | ∆2(a)

NormK2/Q(a`(Fa)− d`) if ` - ∆2(a).

It further follows from Lemma 6.1 and Lemma 5.2 that p | S`(g, a). Now let

T`(f, g, a) = gcd(R`(f, a), S`(g, a)).

Then p | T`(f, g, a). Observe that while a is unknown, as it is the residue of x
modulo `, we may suppose that 0 ≤ a ≤ `− 1. Let

T`(f, g) = `
∏

0≤a≤`−1

T`(f, g, a).

Then p | T`(f, g). We had assumed above that ` 6= p. However as ` is a factor in the
product defining T`(f, g), the conclusion p | T`(f, g) is true even if ` = p. Finally
we let

U(f, g) = gcd
11≤`<100

T`(f, g)

where the gcd is taken over all primes ` in the range 11 ≤ ` < 100. It follows
that p | U(f, g). To complete the proof of Theorem 1, we employ a simple Magma

script that computes for each pair (f, g) the quantity U(f, g) and verifies that it is
not divisible by primes ≥ 7. The computation took roughly 4 days on a 2500MHz
AMD Opteron, dominated by the computation of the newforms.

Remark. It is appropriate to comment at this stage as to whether the single Frey-
Hellegouarch approach (using either of the Frey-Hellegouarch curves Ex,α or Fx,α
on its own) would have allowed us to establish Theorem 1. The above argument is
a multi-Frey-Hellegouarch version of the standard single Frey-Hellegouarch method
for bounding exponents (see [29, Section 9]). With notation as above, let

B`(f) = `
∏

0≤a≤`−1

R`(f, a),

for ` 6= 2, 5, 7 (note that 3 does not divide the possible levels of f). Under the
assumption Ex ∼ f , the single Frey-Hellegouarch method for bounding exponents
asserts that p | B`(f) and succeeds in bounding p if we can find a prime ` 6= 2, 5,
7 such that B`(f) 6= 0. Likewise, let

C`(g) = `
∏

0≤a≤`−1

S`(g, a),

for ` 6= 2, 3, 5, 7. Under the assumption Fx ∼ g, we have p | C`(g). We first note
that the solution (x, z, n) = (0, 0, p) of equation (4) leads to an elliptic curve F0,10
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(i.e. a non-singular Weierstrass equation) with Cremona reference 134400BG1. Let
g be the eigenform (of level M10 = 134400) corresponding to the elliptic curve
F0,10. Then a`(F0,10) = d` where g = q +

∑
diq

i. Hence S`(g, 0) = 0 and so
C`(g) = 0 for all possible `. Thus the single Frey-Hellegouarch method with the
second Frey-Hellegouarch curve Fx,α fails to bound the exponent p.

The single Frey-Hellegouarch approach succeeds with the first Frey-Hellegouarch
curve Ex,α in the sense that for all possible eigenforms f , we are able to find some
prime ` 6= 2, 5, 7 such that B`(f) 6= 0. For any `, the bound B`(f) can be very large
(especially if the field of coefficients of f has large degree). However, we consider
instead

B(f) = gcd
`∈{3,11,13,...,97}

B`(f).

If Ex ∼ f then p | B(f). We computed the B(f) for the possible newforms f and
found many of them to be divisible by 7 and 13 though not by larger primes. It is
possible to reduce the cases p = 7 and p = 13 to Thue equations as in the proofs of
Lemma 3.3. However the coefficients of these Thue equations will be so unpleasant
that we do not expect to be able to solve them (uncondionally).

7. Dealing with small exponents for the case k = 6

We now consider the equation

(x− 1)6 + x6 + (x+ 1)6 = zn, x, z, n ∈ Z, n ≥ 2,

which corresponds to the case k = 6 of (3). This can be rewritten as

3x6 + 30x4 + 30x2 + 2 = zn,

whereby necessarily zn ≡ 2 (mod 3) and hence n is odd. Moreover the polynomial
3t6 + 30t4 + 30t2 + 2 only takes values 2 and 3 as t ranges over F7. As these values
are not cubes in F7, we see that 3 - n. Thus to prove Theorem 2 for k = 6 it is
sufficient to show that the equation

(15) 3x6 + 30x4 + 30x2 + 2 = zp

has no solutions with prime exponent p ≥ 5.

Lemma 7.1. Equation (15) has no solutions with p = 5, 7, 11, 13.

Proof. Write f = 3t6 + 30t4 + 30t2 + 2. The polynomial f is irreducible over Q.
Let θ be a root of the equation f(t) = 0, write K = Q(θ) and let OK be the ring
integers of K. The field K has unit rank 2 with −1 as a generator for the roots of
unity, and class group ∼= (Z/2Z)3 × (Z/36Z).

Let g(t) = f(t)/(x − θ) ∈ K[t]. There are prime ideals p, q, r1, r2, r3, r4 such
that

2 · OK = p6, 3 · OK = q6, 3391 · OK = r21r
2
2r3r4,

θ · OK = pq−1 and g(θ) · OK = p11q3r1r2.

From (15), we know that

(x− θ)g(x) = zp.

Now ordq(θ) = −1. As x ∈ Z, we have ordq(x − θ) = −1. Let P 6= q be a prime
ideal and suppose that ordP(x− θ) 6≡ 0 (mod p), whence ordP(g(x)) 6≡ 0 (mod p).
From the factorisation of θ ·OK we know that ordP(x−θ) > 0. It is easy to see that
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p Tp
5 {11, 191, 251, 691}
7 {11, 337, 421, 491, 547}
11 {397, 727, 859}
13 {859, 1249}

Table 3. The sets Tp appearing in the proof of Lemma 7.1

P | g(θ). But ord2(z) = 0 so P = r1 or r2. Let S = {q, r1, r2}. Hence (x − θ)K∗p
belongs to the ‘p-Selmer group’

K(S, p) = {α ∈ K∗/K∗p : ordP(α) ≡ 0 (mod p) for all P /∈ S}.
This is an Fp-vector space of finite dimension and, for a given p, easy to compute
from the class group and unit group information (see [30, Proof of Proposition
VIII.1.6]). Let

Sp = {α ∈ K(S, p) : Norm(α) = (1/3)Q∗p}.
Observe that Norm(x − θ) = zp/3 so that x − θ ∈ Sp. Using Magma, we compute
K(S, p) and Sp for p = 5, 7, 11, 13. In all cases, K(S, p) has Fp-dimension equal
to 5, and the set Sp has p3 elements.

It follows that x − θ = αξp for some α ∈ Sp and ξ ∈ K∗. We are now in a
position to finally obtain a contradiction. Fix an α ∈ Sp such that x − θ = αξp.
Let ` 6= 3 be a rational prime and l1, . . . , lr be the prime ideals of K dividing it.
Suppose that none of the li belong to the support of α. Let x ≡ a (mod `) where
a ∈ {0, 1, . . . , `− 1}. Then (a− θ)/α ≡ ξp (mod li) for i = 1, . . . , r. Thus we may
eliminate α if for each a ∈ {0, 1, . . . , ` − 1} there is some i such (a − θ)/α is not
a p-th power modulo li. For this to succeed, #F`i = Norm(li) needs to be ≡ 1
(mod `). For p = 5, 7, 11 and 13, we have, in each case, been able to find a set of
primes ` that we denote by Tp which allows us to eliminate all α ∈ Sp. The sets
Tp are recorded in Table 3.

�

8. Frey-Hellegouarch Curve for case k = 6

In this section, we construct a Frey-Hellegouarch curve attached to the equa-
tion (15). In view of the previous section, we may suppose that the exponent p in
(15) is a prime ≥ 17. The first author and Dahmen [5] attach a Frey-Hellegouarch
curve to any equation of the form F (u, v) = zp where F is a homogenous cubic
form. We now reproduce their recipe. Let

H(u, v) = −1

4

∣∣∣∣Fuu Fuv
Fuv Fvv

∣∣∣∣ and G(u, v) =

∣∣∣∣Fu Fv
Hu Hv

∣∣∣∣ .
Associate to the solution (u, v, z) of the equation F (u, v) = zp the Frey-Hellegouarch
elliptic curve

(16) E′u,v : Y 2 = X3 − 3H(u, v)X +G(u, v) .

This model has discriminant 24 · 36 ·∆F · z2p, where ∆F is the discriminant of the
binary form F . Now consider the homogenous cubic form

F (u, v) = 3u3 + 30u2v + 30uv2 + 2v3.



SUPERELLIPTIC EQUATIONS 11

We note that F (x2, 1) = 3x6 + 30x4 + 30x2 + 2. Thus we may obtain a Frey-
Hellegouarch curve for (15) by letting (u, v) = (x2, 1) in (16). In turns out that the
model E′x2,1 has bad reduction at 2, but its quadratic twist by 2 has good reduction

at 2, and we choose this to be the Frey-Hellegouarch curve associated to (15). A
model which is minimal at 2 for this Frey-Hellegouarch curve is

(17) Ex : Y 2 + Y

= X3+
(−945x4 − 1269x2 − 1080)

2
X+

(−15093x6 − 18630x4 + 26730x2 + 19061)

4
.

Lemma 8.1. The model Ex is integral, minimal and has discriminant and con-
ductor

∆x = 39 · 3391 · z2p and N = 33 · 3391 · Rad{3,3391}(z) .

Proof. It is clear from (15) that x is odd, whence one deduces that the model Ex
is integral. The discriminant for this model is

∆x = 39 · 3391 · (3x6 + 30x4 + 30x2 + 2)2 = 39 · 3391 · z2p,

and the usual c4-invariant is

c4 = 23 · 34 · (35x4 + 47x2 + 40).

We find that

Res(c4,∆x) = 240 · 384 · 339112 .

Thus Ex is minimal and semistable except possibly at p ∈ {2, 3, 3391}. Since ∆x is
odd, Ex in fact has good reduction at 2. We now show that Ex has multiplicative
reduction at 3391. The solutions to c4 ≡ 0 (mod 3391) are

x ≡ 983, 2408 (mod 3391).

Both of these are roots to 3x6 + 30x4 + 30x2 + 2 modulo 3391. However for a
solution (x, z) to (15), we know that

3x6 + 30x4 + 30x2 + 2 ≡ 0 (mod 33912).

We checked that 983, 2408 do not lift to roots for this congruence. Hence 3391 - c4.
It follows that Ex has multiplicative reduction at 3391. Applying Tate’s algorithm
[31, Chapter IV], we found that the Ex has reduction type IV∗ at 3 with the
valuation of the conductor equal to 3. The lemma follows. �

Lemma 8.2. Let (x, z, p) be a solution to (15) with p ≥ 17 prime. Let E = Ex as
in (17). Then ρE,p is irreducible.

Proof. Suppose ρE,p is reducible. As p ≥ 17, it follows from the proof of Mazur’s
famous theorem on isogenies of elliptic curves that the j-invariant of E belongs to
Z[1/2] (see [22, Corollary 4.4]). However, E has multiplicative reduction at 3391
and so 3391 appears in the denominator of its j-invariant. This contradiction shows
that ρE,p is irreducible. �
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9. Proof of Theorem 2

Lemma 9.1. Let (x, z, p) be a solution to (15) with prime exponent p ≥ 17. Then
Ex ∼p f for some newform f of weight 2 and level 33 · 3391.

Proof. This follows from Lemmata 8.1 and 8.2 together with Ribet’s level lowering
theorem [25] (the special case [29, Section 5] is enough for our purpose). �

From Cremona’s Database [14], there are precisely four elliptic curves having
conductor 33 · 3391:

F1 : y2 + y = x3 + 405x+ 22673
F2 : y2 + y = x3 + 45x− 840
F3 : y2 + y = x3 − 42x− 104
F4 : y2 + y = x3 − 378x+ 2801.

Lemma 9.2. Ex 6∼p Fi for i = 1, 2, 3, 4.

Proof. Suppose Ex ∼p Fi. As 2 is a prime of good reduction for both elliptic curves,
Then a2(Ex) ≡ a2(Fi) (mod p). From (17) and the fact that x is odd, we find that

E/F2 : Y 2 + Y = X3 +X + 1 .

It follows that a2(Ex) = 2. Since

a2(F1) = 2, a2(F2) = −2, and a2(F3) = a2(F4) = 0,

we thus have i = 1.
Next we apply the method of bounding the exponents. For a prime ` 6= 3, 3391,

let

(18) R`(a) =

{
(`+ 1)2 − a`(F1)2 if ` | ∆a

a`(Ea)− a`(F1) if ` - ∆a,

and

B` = `
∏

0≤a≤`−1

R`(a).

It follows from Lemma 6.1 that p | B`. We find that B11 = 54×73×11. As p ≥ 17,
we obtain a contradiction. �

The space Snew
2 (33 · 3391) has dimension 4520. Using Magma, we compute the

conjugacy classes of eigenforms belonging to this space and find that these have
degrees 1, 1, 1, 1, 554, 556, 564, 564, 565, 565, 574 and 574. The four rational
eigenforms, of course, correspond to the four elliptic curves Fi. Unfortunately we
have found it impossible to compute the coefficients of the irrational eigenforms
due to the enormous size of their fields of coefficients. For a prime ` 6= 3, 3391,
write T` for the Hecke operator acting on Snew

2 (33 · 3391), and let C` ∈ Z[t] be the
characteristic polynomial of T` (i.e. the `-th Hecke polynomial); this is a polynomial
of degree 4520. Using Magma, we found it straightforward (though somewhat time-
consuming) to compute the polynomials C`(t) for ` < 100. The polynomial C`
satisfies

C`(t) =
∏

(t− a`(f))
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where f runs through the eigenforms of weight 2 and level 33 · 3391. Note that
t− a`(Fi) divides C`(t) for i = 1, 2, 3 and 4. We let

C ′`(t) =
C`(t)∏

1≤i≤4(t− a`(Fi))
.

We now let

R`(a) =

{
C ′`(`+ 1) · C ′`(`− 1) if ` | ∆a,

C ′`(a`(Ea)) if ` - ∆a.

If ` 6= 2, we let

B` = ` ·
∏

0≤a≤`

R`(a)

and set B2 = C ′2(2).

Lemma 9.3. Let (x, z, p) be a solution to (15) with p ≥ 17 prime. Let ` 6= 3, 3391
be prime. Then p | B`.
Proof. By Lemmata 9.1 and 9.2, we know that Ex ∼p f where f is an irrational
eigenform of weight 2 and level 33 · 3391. It follows from the above that t− a`(f) is
a factor of C ′`. The lemma now follows from Lemma 6.1 (for ` = 2 we are making
use of the fact that Ex has good reduction at 2 and that a2(Ex) = 2). �

Proof of Theorem 2. Let (x, z, p) be a solution to (15) with p ≥ 11. Let

P = {2} ∪ {5, 7, 11, . . . , 97}
be the set of primes less than 100, excluding 3. Using Magma, we find that

gcd({B` : ` ∈ P}) = 227 · 328 · 53 · 7.
This computation took roughly 21 hours on a 2500MHz AMD Opteron. The com-
putation time was dominated by the computation of the polynomials C ′`. The
desired result then follows from Lemma 9.3. �

We remark in passing that the integers B` are extremely large which is why we
do not reproduce any of them here. By way of example, |B2| ≈ 1.1× 10569.

10. The equation (x− 1)k + xk + (x+ 1)k = yp with k ≥ 7

It is natural to wonder if it is possible to attach a Frey-Hellegouarch curve a
solution of the equation (x − 1)k + xk + (x + 1)k = zp for exponents k ≥ 7. It is
easy to see that

(x− 1)k + xk + (x+ 1)k =

{
fk(x2) if k is even

xfk(x2) if k is odd,

where fk ∈ Z[x]. For 7 ≤ k ≤ 50, say, we find that the polynomials fk are
irreducible and all their roots are real. We are unable to prove that this is true
in general for higher values of k (and, indeed, this property is not shared by the
polynomials arising from the analogous equation (x − 1)k + xk = yn). Suppose
now that fk is indeed a totally real irreducible polynomial, let θ be a root, and let
K = Q(θ). By a standard descent argument, x2 − θ = αξp where α belongs to a
finite set and ξ is an integer in K. This can be viewed as a (p, p, 2) Fermat equation
to which one can apply modularity and level-lowering results over the totally real
field K, in a similar manner to that of several recent papers, e.g. [6], [16], [17]. We
hope to pursue this approach in a forthcoming paper.



14 MICHAEL BENNETT, VANDITA PATEL, AND SAMIR SIKSEK

References

[1] K. Belabas, F. Beukers, P. Gaudry, H. Lenstra, W. McCallum, B. Poonen, S. Siksek, M. Stoll,
M. Watkins, Explicit Methods in Number Theory: Rational Points and Diophantine Equations,
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