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Abstract

We develop a general framework for finding all perfect powers in sequences derived
via shifting non-degenerate quadratic Lucas—-Lehmer binary recurrence sequences by a
fixed integer. By combining this setup with bounds for linear forms in logarithms and
results based upon the modularity of elliptic curves defined over totally real fields, we
are able to answer a question of Bugeaud, Luca, Mignotte and the third author by
explicitly finding all perfect powers of the shape fy £ 2 where Fy is the k-th term in the
Fibonacci sequence.
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1 Introduction

If {u,} is a non-degenerate integer binary linear recurrence sequence, then the sequence
{u,} contains at most finitely many integer perfect powers, which may be effectively
determined. This result was proved independently, using bounds for linear forms in
Archimedean and non-Archimedean logarithms, by Pethé [19] and Shorey and Stew-
art [20]. The explicit determination of all such powers in a given sequence, however,
has been achieved in only a few cases, principally in those where the problem may be
reduced to a question of solving ternary Diophantine equations with integer coefficients.
In such a situation, the possibility exists to combine the machinery of linear forms in
logarithms with information derived from considering certain Frey—Hellegouarch curves
corresponding to the ternary equations. A prototype for these problems may be found in
the paper of Bugeaud, Mignotte and the third author [5], where all perfect powers in the
Fibonacci sequence are determined; this amounts to finding the solutions to the equation

x? — 5y = 44,

in integers x, y and p > 2. Here, results from the theory of linear forms in logarithms pro-
vide a manageable upper bound upon the exponent p, but solving the remaining (hyperel-
liptic) equations is accomplished only through considering them as ternary equations of
signature (p, p, 2) and using arguments based upon the modularity of Galois representa-
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tions to deduce arithmetic information guaranteeing that x is necessarily extraordinarily
large (unless x € {£1, £3}).

If we shift a given recurrence, considering, say, u, + ¢ for a nonzero integer ¢, instead
of just u,, the situation becomes considerably more complicated. The resulting sequence
need not possess much of the basic structure of a binary linear recurrence sequence,
despite sharing a similar rate of growth. In particular, various divisibility statements may
no longer hold, and questions of the existence of primitive divisors are significantly harder
toaddress. Despite this, Shorey and Stewart [23] were able to show, under mild hypotheses,
that, given fixed integers a and ¢, the equation

uy +c = ay’

has at most finitely many, effectively computable solutions. Only in very special cases,
however, can such equations be made to correspond to Frey—Hellegouarch curves defined
over QQ (see e.g. the paper of Bugeaud, Luca, Mignotte and the third author [3] for anumber
of such examples).

In a previous paper [1], the first and third authors, with Dahmen and Mignotte, devel-
oped a method combining information derived from Frey—Hellegouarch curves defined
over real quadratic fields with lower bounds for linear forms in logarithms to explicitly
determine all shifted powers in certain binary recurrence sequences. The setup in [1] was
as follows. Let K be a real quadratic number field, Ok its ring of integers and ¢ € Ok a
fundamental unit in K, with conjugate €. Define the Lucas sequences Uy and V%, of the
first and second kinds, respectively, via

=\k
U, = Skg_—(;) and Vi = &k + ()%, for k € Z
Let a,c € Z with a # 0, and consider the problem of determining the shifted powers
ay’ — c in one of these sequences, i.e. determining all integers &, y and p with p > 2 prime
(say) such that we have

Ui+ ¢ =ay (1)

or
Vi + ¢ =ay’. (2)
In [1], techniques were introduced to potentially resolve such problems corresponding

to either

+ Eq. (1) with k odd and Norm(e) = —1, or
« Eq. (2) with either k even or Norm(g) = 1.
Let us now describe an approach to treat the remaining cases. For instance, a solution to
(1) leads to the equation
Sk _ (E)k
——— =ay —c¢
£—¢
and so we have
g2 + (¢ — 8)ceX — Norm(e)¥ = (¢ — E)aekyp.
It follows that

(28k + (e — E)C)z - <4 Norm(e)¥ + (s — 5)262) = 4(e — B)acky”. (3)
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Similarly, in the case of Eq. (2), we have
Fr@f=a —c
whereby
(28k + c>2 + 4 Norm(e)f — ¢? = 4a£kyp. (4)

In either case (3) or (4), we can attach to a solution a Frey—Hellegouarch curve of signature
(p, p, 2), defined over the totally real (quadratic) field K.

2 Shifted powers in the Fibonacci sequence
We will now describe an open question from the literature which our techniques enable
us answer. Let Fy be the Fibonacci sequence defined by

Fo=0 Fi=1 and Fyiy = Fiy + Fr.
Define further the Lucas sequence by
Lo=2 Li=1 and Liiy=Liy1+ Ly
For K = Q(+/5), writing
1++/5 1-+/5

= and ¢ = ,
2 2
it follows that ¢ is a fundamental unit of K and, by Binet’s formula,
k _ sk
F = ¥ 7% and Ly = ek + &,

V5

from which we obtain the well-known identity
L2 - 5F? = 4(-1)k. (5)

In general, one has, for any integers 4 and b,
FuLp = Fapp+ (-1)F,y (6)

This identity is used with |a — b| € {1, 2} in [3] to solve the equations Fy £ 1 = »” by
reducing them to equations of the shape F; = ay”, for fixed integers o (which may be
treated by considering Frey—Hellegouarch curves defined over Q). In this initial reduction,
it is of importance that F_; = F; = F» = 1 and F_5 = —1; more generally, analogous
arguments allow one to treat equations of the form F,, + ¢ = y?, for ¢ = F; where
k = n (mod 4). In particular, such a reduction does not appear to be possible in general
for the similar equation Fj + 2 = y” (which is posed an an open problem in [3]).
In this paper, we prove the following.

Theorem 1 Ifk yand p > 2 are integers, and
Fex2= pr: 7)
then |k| € {1,2,3,4,9}.

Let us suppose that k, ¥ and p > 2 are integers satisfying (7). In case k is odd, say
k =2n+4 1, choosinga=n+2andb=n—1in (6),

Fr 4+ (=1)""'2 = FyioL, 1,
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whilea = n —1and b = n + 2 gives
Fi+ (=1)""?2 = Fy1Lnta,
and hence
Fui5,Luys, =y where {81,8,} = {—1,2}. (8)
We claim that
4 if k = 3 (mod 6),

ged(Frees, Ly) = { 2 if k = 0 (mod 6), )
1 otherwise.

To see this, note the identities
3Fky3 = Ly +4Fkyo and 3F_3 =Lg —4F;_5

which imply, since gcd(Fj 1, Fj) = 1 for each integer j, that gcd(F+3, L) | 4. The fact that
Fry3 =L =2 (mod4) if k =0 (mod 6)

and
Fry3 =L =0 (mod4) if k = 3 (mod 6),

while Fj and Ly are odd unless 3 | k completes the proof.
From (8) and (9), it thus follows that L, s, = 2 y’la for integers « > 0 and y;. Appealing
to Theorem 2 of [4], and the identity L_,, = (—1)"'L,,, we thus have that

|n+ 82| € {0, 1, 3, 6}.

We check that Fy, 41 % 2 is a perfect power only for those # corresponding to
Fo+2=Fy4+2=6%F g—2=Fy—2=2° F 34+2=F+2=2
F,3—2=F3—2=0 and F,1—2=F1—2=—1.

We may thus suppose for the remainder of this paper that k = 2# is even, so that
F_j = —Fy, and hence, without loss of generality, that Fp, + 2 = +y”. The case p = 2
is easily dealt with by reducing the problem to the determination of integral points on
elliptic curves; we will do this in Lemma 3.1. Assuming this result for the remainder of
this section, we may therefore suppose, without loss of generality, that p > 3 is an odd
prime and so, if necessary, absorb the minus sign into the y”. We therefore consider the
equation

Fop +2 =" (10)

This is of the shape (1) with k = 2%, ¢ = 2 and a = 1. Writing x = &% + V5, equation (3)

implies that
x2 — 6 = /52, (11)

By thinking of the constant —6 as —6 - 17, we may view this equation as a generalized
Fermat equation of signature (p, p, 2) over Q(+/5). To the solution (x, y, #, p) of (11) (and
hence to the solution (#, y, p) to (10)) we associate the Frey—Hellegouarch curve

E,: Y2=X>42X>+6X, x=&"+/5 (12)
This will prove much easier to deal with than the corresponding (p, p, p) equation defined

over Q(+/5, +/6) that we obtain from the arguments of [1]. We shall apply modularity and
level-lowering to the mod p representation of E,, to deduce the following.
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Proposition 2.1 Let (n,y, p) be a solution to (10) with p > 5. Let pg, , be the mod p
representation of E,. Then pg, , is irreducible. Moreover, pg, , ~ P, where f is a Hilbert
eigenform over Q(v/5) of weight (2, 2) that is new of level

N =2)-3)- (5 (13)

here 7w | p is some prime of Oy, the ring of integers of the number field generated by the
Hecke eigenvalues of .

The Hilbert newspace for weight (2, 2) and level A has dimension 6144. It is not possible
using current software and hardware capabilities to compute the eigenforms belonging to
this space. One of the novelties of the current paper is a sieving argument that works with
mod p eigensystems to eliminate all of the space except for three elliptic curves.

The resolution of (10) will require certain non-trivial computations. These are carried
out in the computer algebra system Magma [2]. The reader can find our Magma scripts at
https://www.math.ubc.ca/~bennett/BePaSi.

3 Dealing with small p and small |y|

We shall apply the methods of Galois representations and modularity to equation (10).
Such techniques are somewhat harder to utilize with small exponent p, and so in this
section we deal with the cases p = 2 and p = 3 separately. Later on, we will appeal to
bounds for linear forms in logarithms to (10), and for this it is useful to know that y is not
too small. We show below that if # # —2, —1 then |y| > 19.

Lemma 3.1 The only solutions to the equation Fa, + 2 = +y* are (n,y) = (=1, +1) and
(=2, £1).

Proof LetY = 5yLy, and X = 5y2. It follows from identity (5) that (X, Y) is an integral
point on one of the two elliptic curves

Y2 = X(X? — 20X +120) or Y2 =X(X?+ 20X + 120).

To determine the integral points on these two elliptic curves we used the computer
package Magma [2] which utilizes a standard algorithm that employs lower bounds for
linear forms in elliptic logarithms [22] (implemented in Magma as IntegralPoints). We
find that the integral points on the first curve are given by

(X, Y) € {(0,0), (5 £15), (24, +72)},
and those on the second are
(X Y) € {(0,0), (5, £35), (24, +168)} .

The lemma follows. O

Lemma 3.2 If p = 3 then the only solutions to (10) are (n,y) = (—1,1) and (n,y) =
(-2, —1).
Proof Write 2n = o + 3m where « = 0, £1. Let
X = /5"ty Y = /5%
From (11), we deduce that (X, Y) is an Ok -integral point on the elliptic curve

Y2 = X3 + 3082,
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These three elliptic curves (corresponding to @ = 0, 1, —1) all have rank 2 over K, and we
are able to compute the O -integral points via an algorithm of Smart and Stephens [23]
implemented in Magma. These points are

(19,483), (=3 —+~/5)/2, (1 —2v5)), (=3 ++/5)/2, £(1 + 2v/5)),
for o = 0, and

(B3 =5+5)/2,£(8 —5v5)),  (v/5,+(5 + 2v5)),
((5+3v5)/2, £(10+3v5)),  ((55 + 15+/5)/2, £(165 + 58+/5)),

for @ = 1, with conjugate points for « = —1. The lemma easily follows. O

Lemma 3.3 Suppose (n, y, p) is a solution to (10). If q | y is prime, then
q = 1,519, 23 (mod 24).
In particular, 2 1y and 3 t y. Moreover,

n=24,7 8 10, 11 (mod 12).

Proof Suppose 2 | y. From Fy, + 2 = y” we have 2 || Fp,. However, 2 | F,, implies that
3 | n. Thus Fg | Fy,. As Fg = 8 we have a contradiction.
Now suppose ¢ | y is an odd prime. From (5) we obtain

L3, =5y — 209" + 24,

$0 24 = L%n (mod ¢?). Thus g # 3, and 6 is a quadratic residue modulo g. It follows that
q =1,5,19,23 (mod 24).
The final part of the lemma follows from considering Fs,, + 2 modulo 6. O

Lemma 3.4 The only solutions to the equation Fy, + 2 = 5" are F_4 + 2 = —1,
Fo+2=1F,+2=5.

Proof As above we deduce that

L}, =5-5""F20-5" 4 24.
If m is even then write

X =51 y=s5m2d2. p,.
Then (X, Y) satisfies

Y? = X3 £ 20X2 + 120X;

we are interested in computing the integral points on these two elliptic curves. For this
we again used the computer package Magma [2]. The integral points on the model Y? =
X3 — 20X2 + 120X are (0,0), (5, £15), (24, +72), and lead to the solution F_, + 2 = 1.
The integral points on the model Y2 = X3 +20X?2 + 120X are (0, 0), (5, £35), (24, +:168),
and lead to the solution F_4 + 2 = —1.

If m is odd then write

X = 5Wl+2, Y = 5(Wl+5)/2 A LG-
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Then (X, Y) satisfies
Y? = X3 3 100X? + 3000X.

The integral points on the model Y2 = X3 — 100X2 + 3000X are (0, 0), (24, +168),
(125, +875) and lead to the solution F4 + 2 = 5. The integral points on the model Y? =
X3 4 100X2 + 3000X are (0, 0), (2904, +159192) and do not lead to any solutions to the
original equation. ]

Lemma 3.5 Let (n, y, p) be a solution to (10) and suppose that n # —2, —1. Then |y| > 19.

Proof Asn # —2, —1 it follows that |y| > 1. Suppose |y| < 19. By Lemma 3.3, the only
prime divisor of y is 5. This now contradicts Lemma 3.4. ]

4 Irreducibility of the mod p representation

Henceforth (n, y, p) is a solution to (10) with prime exponent p > 5, and E,, is the Frey—
Hellegouarch curve E, given by (12). An easy application of Tate’s algorithm (together
with Lemma 3.3) yields the following.

Lemma 4.1 The model in (12) is minimal with discriminant and conductor
A=28.32 e 5y, M= -3)-+5) [] =
aly, a#(/5)

We would like to apply level-lowering to the mod p representation p, ,, and for this we
need to show that it is irreducible. We shall make use of the following result due to Freitas
and the third author [12], which is based on the work of David [8] and Momose [18].

Proposition 4.2 Let K be a totally real Galois number field of degree d, with ring of
integers Ok and Galois group G = Gal(K/Q). Let S = {0, 12)C, which we view as the set of
sequences of values 0, 12 indexed by T € G. Fors = (s;) € S and o € K, define the twisted
norm associated to s by

Ns(@) = [ e(@).

TeG

Let ey, ..., 41 be a basis for the unit group of K, and define
As := Norm (ged((Ns(e1) — 1)Ok, . . ., Ns(eg—1) — 1)Ok)). (14)

Let B be the least common multiple of the Ag taken over all s # (0)rci, (12);eG. Let p 1 B
be a rational prime, unramified in K, such that p > 17 or p = 11. Let E/K be an elliptic
curve, and q 1 p be a prime of good reduction for E. Define

Py(X) = X — aq(E)X + Norm(q)

to be the characteristic polynomial of Frobenius for E at q. Let r > 1 be an integer such that
q" is principal. If E is semistable at all p | p and pg,), is reducible then

p | Res(Py(X), X' —1) (15)
where Res denotes the resultant of the two polynomials.

We observe in passing that since Py (X) has two complex roots of absolute value / Norm(q),
the resultant in (15) cannot be zero. We now arrive at the main result of this section.
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Lemma 4.3 Let (1, y, p) be a solution to (10) with p > 5 prime. Let E, be the Frey curve
given in (12). Then pg, , is irreducible.

Proof Let

My=2520=2%.32.5.7, (16)
and

Q' ={qaprimeidealof Ox : qf2-3- V5 and Norm(g) < 300}.
Let

Q ={qe Q : the multiplicative order of ¢2in Fq divides Mo}. (17)

The set Q contains 25 prime ideals q. The Frey curve (12) modulo q depends only on n
modulo M. Let

M={0<m<My : m=2472510,11 (mod 12)}. (18)

By Lemma 3.3, if (1, %, p) is a solution to (10) then n = m (mod My) for some unique
m € M. In particular, £2" = ¢ (mod q). Suppose q { ((¢2"* + V/5)2 — 6) so that, from
(11), we have q 1 y. By Lemma 4.1 we see that E,, has good reduction modulo q. Moreover,
aq(Ey) = aq(Ep). In particular, if 2 — aq(Em)t + Norm(q) is irreducible modulo p, then
PE, p is irreducible.

We wrote a short Magma script which did the following. For each of the values p = 5, 7,
13, and for each m € M, it verified that there exists a q € Q such that q 1 ((£2” ++/5)% —6)
and that ¢2 — aq(E,,)t + Norm(q) is irreducible modulo p. This completes the proof for
p=5,713.

Thus we suppose thatp = 11 or p > 17. We apply the above proposition. A fundamental
unit for K = Q(v/5) is &, and it follows that B = 320, where B is as in the statement of the
proposition. Thus p 1 B. Moreover, from Lemma 4.1, E,, is semistable at p | p. We suppose
that pg, , is reducible. Let

S ={q € Q : qisabove arational prime g # 1,5, 19, 23}.

The set S has 15 elements. By Lemma 3.3, it follows that E,, has good reduction atall q € S.
Recall that # = m (mod My) for some unique m € M. Moreover, aq(E,) = aq(E) for
q € S. It follows from the above proposition that p divides

ged({Res(t* — aq(Em)t + Norm(q), t'2 — 1) : q € S}).

We computed this greatest common divisor for each m € M and verified that it is never
divisible by 11 or any prime > 17. The lemma follows. ]

5 Level-lowering and consequences
We are now in a position to prove Proposition 2.1

Proof of Proposition 2.1 The elliptic curve E, is modular by [10], and the mod p repre-
sentation pg, , is irreducible by Lemma 4.3. If p > 5, then the proposition immediately
follows from the statement of Theorem 7 of [11] (which, we should note, is based on the
work of Fujiwara, Jarvis and Rajaei). Now let p = 5. In this case the statement of theorem
in [11] is inapplicable to our situation. Specifically condition (v) of that theorem is not
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satisfied in our setting as 5 { ord /z(A). However that condition is only needed to remove
the primes above p from the level without increasing the weight. In our situation we con-
tent ourselves, when p = 5, with removing from the level the primes dividing y that do
not also divide 2 - 3 - /5. As in [11] this can be done whilst keeping the weight (2,2). O

Lemma 5.1 With notation as in Proposition 2.1, let q t p - N be a prime of Ok. Let m be
an integer satisfying " = ¥ (mod q). Write

aq(Ep) a1 (Fom+2)
N +1 Fom +2) and — (¥ + /5
() = orm(q) q | (Fam +2) and — (¥ +V/5) 19)
is a square modulo q

—Norm(q) — 1 otherwise.

Then by(m) = aq(f) (mod m).

Proof Suppose q { p - N. Since Fy,, + 2 = y”, we see from Lemma 4.1 that E, has good
reduction at q if q 1 (Fa, + 2) and multiplicative reduction at q if q | (Fa;, + 2). Suppose we
are in the latter case. We know [21, Theorem V.5.3] that the reduction at q is split if and
only if —cg/cq is a g-adic square, where c4 and ¢¢ are the usual c-invariants of E,,. In our
case

ey = 2°(2x% —9), ce = 27 x(—4x® + 27).

From (11) we have x> = 6 (mod q) and so —cg/csa = —4x (mod q). As x = 2" + /5, the
multiplicative reduction at q is split if and only if —(¢%* 4 +/5) is a square modulo g.

By comparing the traces of the images of the Frobenius element at q in pg, , ~ 0, we
obtain by (1) = a4(f) (mod ) in all cases. Finally, as 2" = g2 (mod q), it follows that
Fym = Fy, (mod q), and so bq(m) = bg(n) proving the lemma. O

Write § = S(“;‘Z“; (N). Using Magma we find that S has dimension 6144. We let F be the
set of eigenforms { belonging to S (thus #F = 6144). Whilst it is not feasible to compute
these newforms with current tools, it is, however, quite practical using Magma to compute
the action of the Hecke operators Ty on S for small primes q of Ok. For the theoretical
details behind these algorithms, we recommend [9].

We used aMagma program written by Stephen Donnelly to search for elliptic curves over
number fields with a given conductor. This program found 288 pairwise non-isogenous
elliptic curves F/K with conductor . We know by [10] that these corresponds to 288
distinct f € F with rational Hecke eigenvalues. We let £ be this set of these 288 elliptic
curves and we let ' be the subset of F coming from these 288 elliptic curves.

6 Reducing to elliptic curves
Proposition 6.1 Let (1, y, p) be a solution to (10) with prime exponentp > 5. Then pg, , ~
PEp where E € E.

We shall prove Proposition 6.1 by contradiction. Suppose pg, , = pg,, for any E € £.
Then pg,, ~ P for some g € 7 — F'. Let Q and M be as in the proof of Lemma 4.3.
Let m be the unique element of M such that m = n (mod Mj). In particular, we know
that £2” = &2 (mod q) for all ¢ € Q. From Lemma 5.1 we see that
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bq(m) = aq(g) (mod ) (20)

forall ¢ € Q with q 1 p.

Suppose for now that g € Q and q t p. Write T for the Hecke operator corresponding
to g acting on the space S = S(nze‘z"; (V). Let Cy(x) = det(x — Ty) € Z[x] beits characteristic
polynomial; this has roots a4(f) with § running through f € F. Now let

Cix) = [ [ &= — aq(E)) € Z[x].

Ee€&
Thus Cé‘ (x) divides Cy(x). Moreover, let
Cq(x)
Cilx) = CZ w < 25

The roots of Cg () are aq(f) with f running through § € F’. We see from (20) that
C"(bq(m)) = 0 (mod 7). However as C” € Z[x] and bq(m) € Z it follows that

C"(bq(m)) = 0 (mod p).

Now let
Gm,q = Norm(q) - C"(bq(m)) € Z.

We see that p | G, q for all ¢ € Q regardless of whether g divides p or not. Thus p divides
Hy = ged{Gpq : q € Q).

We computed the integers H,, for all m € M and factored them. It turns that all are
non-zero, which means we have bounded p under the assumption that pg, , = pg, for
all E € £. In particular, our computations reveal that p < 109. More precisely, we are left
to consider precisely 9391 pairs (p, m) where p > 5 is a prime dividing H,,.

To proceed further we remark that the Hilbert Modular Forms package in Magma
computes a matrix, which shall denote by Ry, giving the action of the operator T (with g
not dividing the level \/) with respect to a Z-basis of a lattice in S&ezw) (W) that is Hecke-
stable. Write R for the reduction of Ry modulo p and g for the mod p eigensystem
corresponding to g. It follows from the above that the intersection

(M Ker (Teq — by(m) - 1) 1)

qeQ
afp

contains an I, -line corresponding to g. We computed the intersection (21) for all the 9391
remaining pairs (p, m). This is merely IF,-linear algebra once the matrices R, representing
the Hecke operators were computed. We found that for all but 21 of the 9391 pairs (p, m)
the space (21) is 0-dimensional giving us a contradiction. For the proof of Proposition 6.1
we need now only consider the following 21 remaining pairs (p, m):

(5,2), (52518), (52519), (7,2), (7,2518), (7,2519),
(1L,2), (11,2518), (11,2519), (13,2), (13,2518), (13,2519),
(17,2), (17,2519), (19,2), (19,2519), (23,2518), (29,2518),
(29,2519), (41,2), (43,2518).
Observe that m = 2, —2, —1 (mod Mp) in every one of these 21 cases. The presence of

the possibilities —2, —1 is hardly surprising in view of the solutions (1, 3, p) = (-2, —1, p)
and (—1, 1, p) to (10); for an explanation of the value 2 see the next section. In all these
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21 cases we found that the intersection (21) is 1-dimensional. We let E be Ey if m =
2, E_5 if m = 2518 = —2 (mod Mp) and E_; if m = 2519 = —1 (mod My). These
all have conductors NV. Let f € F be the Hilbert eigenform corresponding to E. Then
bq(m) = aq(E) = aq(f) (mod p). It follows that the reduction of the line corresponding
to f belongs to the 1-dimensional intersection (21), which also contains the reduction of
the line corresponding to g. Thus the mod p eigensystems f and g are equal. It follows
that p;, ~ pg . Thus pg, , ~ Pg,. But Ez, E_3, E_1 € &; this completes the proof of
Proposition 6.1.

7 Reducing to only three elliptic curves

We know from Proposition 6.1 that pg, , ~ b, where E is one of the 288 elliptic curves
belonging to £. In this section we eliminate all but three of the elliptic curves belonging
to €.

Proposition 7.1 Let (1, y, p) be a solution to (10) with p > 5. Then n = m (mod My) and

PE,p ~ PEp Where

(i) m=2andE = Ey;
(ii) m=My—2and E = E_y;
(iii) m=My—1and E = E_;.

We shall need the following slight strengthening of Lemma 5.1.

Lemma 7.2 Let (n,y, p) be a solution to (10) with p > 5 and E € & satisfy pg, , ~ Pk
Further, let q t N be a prime of Ok and suppose that m is an integer satisfying e*" =

&2 (mod q). Then bq(m) = aq(E) (mod p), where by(n) is given by (19).

Proof 1f q 1 p then this is a special case of Lemma 5.1. If q | p then this follows from the
proof of Lemma 5.1 together with [13]. O

Now let Q be as in the proof of Lemma 4.3. The following is immediate.

Lemma 7.3 Let (n,y,p) be a solution to (10) with p > 5 prime. Let E € &£ such that
PE,p ~ PEp Letn=m (mod My) with m € M. Then p divides

Bu(E) = ged({bg(m) — aq(E) : q € Q).

We computed B, (E) for all of the 288 elliptic curves E € £ and m € M. We found that
By, (E) is not divisible by any primes p > 5 except in three cases where B,,(E) = 0:

(i) m=2andE = Ey;
(ii) m =My —2and E = E_»;
(iii) m =My — 1land E = E_;.

The possibilities (ii) and (iii) are natural, and they correspond to the solutions (, y, p) =
(—2, —1, p) and (—1, 1, p) respectively. The possibility (i) is a result of the identity F4+2 = 5
from which it is easy to deduce that E; has conductor N and so it is natural (though
annoying) that our sieve cannot eliminate this possibility. This proves Proposition 7.1.
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8 Enlarging Mg

We let
M =My x ]_[ A (22)
£ prime
11<¢<10*

where, as before, My = 2520. In this section we prove the following.

Lemma 8.1 Let (n,y, p) be a solution to (10) with p > 5 prime. Then pg, , ~ g, and

n = mo (mod M;) where

(i) either mg = 2 and E = Ey;
(ii) ormy = —2and E = E_y;
(iii) ormg = —1and E = E_;.

Proof Fix mg € {—2,—1,2}, let E = E, and suppose pg,, ~ Pg,- We would like to
show that n = mg (mod M;).
There are 164 primes in the interval [11, 10000]; we denote them by

01 =11, £, =13, ..., L164 = 9973.

Welet Ly = Mg, and L; = £; - Li_1 for 1 < i < 164. Then Liga = M;. We shall
show inductively that n = mg (mod L;) for 0 < i < 164 which gives the lemma. We
know by the previous section that n = mygp (mod Lo). For the inductive step, suppose
n = mo (mod L;_1). We want to show that n = mg (mod L;). Let Q; be a set of prime
ideals q t V satisfying the following

(i) Norm(q) = ¢q is a rational prime = 1 (mod 5);
(ii) & | (g—1and(g—1) L.

Let
Mi={0<m=<Li—1: m=mp(modL;1)}

Thus # = m (mod L;) for some unique m € M;. Moreover, it follows from (i) and (ii) that
g2" = &2 (mod q) for all q € Q;. Define

Bu(Qi) := ged{bg(m) — aq(E) : q € Qi}.

By Lemma 7.2, p | B;,(Q;). We wrote a simple Magma script which for each 1 < i < 164
and for each mg € {—2, —1, 2} found a set Q; satisfying (i), (ii), such that, for all m € M;
with m # mg (mod L;), the integer B,,,(Q;) is non-zero and divisible only by the primes 2
and 3. Our computation took a total of around 45 minutes. This proves the inductive step
and completes the proof. o

9 Linear forms in three logs
For any algebraic number « of degree d over Q, we define the absolute logarithmic height
of o via the formula

d
1 .
— (@)
h(e) = — | loglao| + El log max (l, " |> , (23)
i

where a is the leading coefficient of the minimal polynomial of & over Z and the a® are
the conjugates of « in C. The following is the main result (Theorem 2.1) of Matveev [16].
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Theorem 2 (Matveev) Let K be an algebraic number field of degree D over Q and put
x = 1ifKisreal, x = 2 otherwise. Suppose that ay, oy, ..., o, € K* with absolute
logarithmic heights h(w;) for 1 < i < no, and suppose that

A; > max{D h(a;),

log |}, 1 <i < np,
for some fixed choice of the logarithm. Define
A =bilogay + -+ by, log ay,
where the b; are integers and set
B = max{1, max{|b;|A;/An, : 1 <i=<mnp}}
Define, with e := exp(1), further,
Q=A1- Ay,
C(no) = Clno, x) = %6"0(2710 + 14 2x)(n0 + 2)(4no + 4" (eno/2)*,
Co = log ((34'4”“7;4(5)'5D2 log(eD)) and Wy = log (1.5eBD log(eD)).
Then, iflogay, ..., log oy, are linearly independent over Z and by, # 0, we have
log |A| > —C(ng) Co Wy D? Q.
From (10), we have that
V5P — 2 =25 ¥

and so

2V5 21

<
g2n P

0<A=plogy+ log(\/g) —2nloge < (24)

We apply Theorem 2 with
D:2) X:L l’l():3, b1:1, alz\/g; b2:—21’l, o) =6, bSZP; o3 =Y,

where, from Lemma 3.5, we have y > 19. We may thus take

nloge
1 ’p}
08y

Ay =log5, Ay =loge, A3 =2logy and B = max{
Since

Co(3) =218 .32.5. ¢* < 6.45 x 105, Co = log (620'2 355 -4log(4-e)> <285
and

Wo = log (3eplog(2e)) < 2.63 + log p
we may therefore conclude that

log A > —1.139 - 10" (2.63 + log p) log y.
From (24), we thus have that

plogy < 1.139 - 10! (2.63 + log p) log y + log(2.1),
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and hence
log(2.1
P _1139.10" + 0g(21)
2.63 +logp (2.63 +logp)logy

whereby p < 3.6 x 1012,
Our immediate goal is to sharpen this inequality by proving that p < 10'l. We will

< 114104,

assume for the remainder of this section that
101 < p < 3.6 x 1012, (25)

We begin by appealing to a sharper but less convenient lower bound for linear forms in
three complex logarithms, due to Mignotte (Proposition 5.1 of [17]).

Theorem 3 (Mignotte) Consider three non-zero algebraic numbers ay, oy and a3, which
are either all real and > 1, or all complex of modulus one and all # 1. Further, assume
that the three numbers o1, oy and o3 are either all multiplicatively independent, or that
two of the numbers are multiplicatively independent and the third is a root of unity. We
also consider three positive rational integers by, by, bz with gcd(by, by, b3) = 1, and the

linear form
A = bylogay — by log oy — bslog as,

where the logarithms of the o; are arbitrary determinations of the logarithm, but which are
all real or all purely imaginary. Suppose further that

by|logan| = by |logar| + b3 |logas| £ |A]
and put
di = ged(by, by) and ds = ged(bs, by).
Let p > e be a real number. Let ay, ay and as be real numbers such that
a; > plloga;| —log|a;| +2Dh(e;),  i€{1,23},
where D = [Q(aq, ag, a3) : Q] / [R(ay, 9, a3) : R], and assume further that
Q :=ajazas > 2.5 and a := min{ay, ay, as} > 0.62,

Let m and L be positive integers with m > 3, L > D + 4 and set K = [mQ2L). Let x be fixed
with 0 < x < 2 and define

c1 = max{(xmL)*3,\/2mL/a}, ¢ = max{2Y/3 (mL)*/3,L\/m/a)}, c5 = (6m*)/3L,

R; = [ciazas], S; = [cia1a3] and T; = [ciaia3],
fori e {1,2,3}, and set
R=R+Ry+R3+1, S=851+8S+S3+1and T=T1+Tr+ T35+ 1

Define

R S T
¢ = max B ) .
La2a3 La1a3 L&llaz

Finally, assume that the quantity

(E+4i-1- %) log(p) — (D + 1) log L — 3gL%c 2

—D(K — 1)log B —2log K + 2Dlog 1.36
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is positive, where

1 K2L I B 320212 (b N b\ [ b3 N by
=—-———= an =——|—+— —+—).
8= 4 T 12RST 4K%d ds

a) al an as
Then either
log A > —(KL + log(3KL)) log(p), (26)

or the following condition holds :
either there exist non-zero rational integers ro and sy such that

Vobz = Sob1 (27)
with
R 1)(T7; +1 S1+1)(T71 +1
|r0|§(1+)(1+)6md|50|5(1+)(1+)’ (28)
M—-T M—T;
where

M:max{R1+S1+L Si+Ti+LRi+Ti+1 x Tf/z}’
71 =R+ 1)(S1 + 1)(T1 + 1),

or there exist rational integers ry, s1, t and ty, with r1s1 # 0, such that
(tib1 + rib3)s1 = nibaty,  ged(r, t1) = ged(sy, ) = 1, (29)

which also satisfy

(R1 +1)($1 +1)
M — max{R;, Sl}’
(S1+1)(T1 +1)
M — max{Sl, Tl}

[ris1] < ged(ry, s1) -

[sit1] < ged(ry, s1) -

and
Ry +1)(T1 +1)

rty] < ged(ry, s1) - ————————.
Irita| < ged(ry, s1) M — max(Ry, T1)
Moreover, when t1 = 0 we can take r1 = 1, and when ty = 0 we can take s; = 1.

We apply this result with
by=p, as=y b =1, a1:\/§, b3 =2n and a3z = ¢,
so that we may take

+

3
5 log5, as = (p + 3)logy

D=2di=1dse(Lp) ar="

and as = (p + 1) log(¢), whence a = as.
Notice that, in our situation, (27) becomes the equation rop = so from which necessarily
Iso| > p > 10}, whereby (28) implies that
(S1+ (71 + 1)

> 10M. (30)
M—-T;
If instead we have (26), then inequality (24) implies that
plogy < (KL + log(3KL)) log(p) + log(2.1). (31)

We will choose L, m, p and x to contradict both (30) and (31), whereby we necessarily
have (29). Specifically, we set

L =485 m =20, p =57 and y =2,
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so that

K = [20-485 - 4.351l0g(5) - 6.7 log(¢) - 8.7log y],
whereby

1904870logy < K < 1904871 log y.
We have

c1 < 721.996, ¢y < 1207.96, c3 < 6493.5,

R; < 20252logy, Ry < 33883logy, R3 < 182142logy,

S§1 = 16297, Sy = 27266, S3 = 146572,

T1 < 43977logy, To < 73576logy, T3 < 395514 logy,
so that

R < 2362771logy+1, S =190136, T < 513067 logy + 1,
and

¢ <17.37, g <0.244 and B < 0.3p°

We check that

KL L
(7 + Z_L> log(p) + 41og(1.36) > 8.03 - 10%logy,

while, using that p < 3.6 - 10'2 and y > 19,
2K 5 8
1+ 37 log(p) + 3log L + 3gLc Q2 + 2(K — 1)log B+ 2log K < 8.021 - 10° log .

It follows that the hypotheses of Theorem 3 are satisfied. Since we may check that M >
7.6 - 10° log y, we have that

(S1+1)(T1 +1)
M—-T;

<95

contradicting (30). Also,
(KL + log(3KL)) log(p) + log(2.1) < 5 - 10°,

contradicting (31).
We may thus conclude that there exist rational integers 1, s1, £; and £, with r1s; # 0,
such that
(t1 + 2nr1)s1 = ritap, (32)

where, again using that M > 7.6 - 10° log y,

risi
ged(ry, s1)

s1t1

<43 and |———
- ged(r, s1)

< 9%4.

Since, in all cases, we assume that p > 101L, we thus have
max{|r1], Is1], [t1]} < p,

whence, from the fact that gcd(ry, t1) = ged(sy, £2) = 1, we have r; = +s; and so £ +
2rin = *typ. Without loss of generality, we may thus write
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u—+2rin| = tp,

where r = |r1| and ¢ = |£3] are positive integers, u = *t;, r < 43 and |u| < 94.

We can thus rewrite the linear form
A =plogy+ log(x/g) —2nloge
as a linear form in two logarithms
- Y 1/2gu/
A =plog <m> +log (5'/%¢"/"). (33)

We are in position to apply the following sharp lower bound for linear forms in two
complex logarithms of algebraic numbers, due to Laurent (Theorem 2 of [15]).

Theorem 4 (Laurent) Let oy and oy be multiplicatively independent algebraic numbers,
h, p and u be real numbers with p > 1and 1/3 < pu < 1. Set

142u —p? o1
0:—+M M,)»:alogp,H:—+—,
2 A O

1 1 1
=21+ J1+4—), 0= 14+ — +—.
@ <+ +4H2) tame ton

Counsider the linear form A = by log oy — by log oy, where by and by are positive integers.
Put

D = [Q(or1, 2) : Q] / [R(er, 2) : R]

and assume that

by b Dlog2
J > max {D (log (a_l 4 _2> +log + 1.75> +0.06, 1, gg }
2 al

a; > max {1, plloga;| — log |o;| + 2Dh(oz,»)} (i=12),

and

aray > )%
Then

log|A] > —C (h + §)2a1a2 — Vb (h + 3) — log (C/ (h + g)2a1a2> (34)
with

c_ " a)+1 w2+ 8rw®/4p1/4 +4 1+1 rw
T Mo \le 2V 9  3/aazHY? 3\ay ay) H

and

We apply this result with

t/r
bl =1 bZ =p 01 = SI/ZSM/F; oy = £ )
v




15

Page 18 of 27 Bennett et al. Res. Number Theory(2019)5:15

so that D = 2r,

log5 = |u|
h < —= 4+ —
@) ===+

We take it = 1 and p = e*, so that o = 1 and A = 4. From (33), inequality (24), |u| < 94,
1<r<43,andp > 10!, we have that

1/21
< - (— + log (51/2594)> <107°
P\

t
loge and h(az) <logy+ > loge.
r

t

logy — -loge
r

and hence may choose

a; = 2562 and ay = 6rlogy + 1.

We have

1 14
2r (1 log4 + 1.75 0.06 < 2rl
r<og(6rlogy+1+2562>+ og4 + >+ < 2rlogp

whence
h=2rlogp

is a valid choice for 4. A short computation reveals that
C <0.029, C' < 0.044,

and hence from (34), y > 19 and p > 10!,

log |A 1
8 IA 1784 (rlogp+ 22 r — 139 (rlogp + 2) — 3 — 0.7 log (rlog p + 2) — 28"
logy logy
From (24),
log |A log 2.1
o8| |< %8 —p<026—p
logy logy

whereby it follows that
1
p <1784 (rlogp +2)* r + 139 (rlog p + 2) + 3.26 + 0.7 log (rlog p + 2) + loﬁ
ogy

and so, since < 43, we find that p < 9.1 - 10'°, contradicting (25).

10 The method of Kraus
We let M; be given by (22). The aim of this section is to prove the following proposition,
which improves on Lemma 8.1.

Proposition 10.1 Let (1, y, p) be a solution to (10) with p > 5 prime. Then there is an
mo € {—2, —1} such that

(i) PE,p ~ PEp Where E = Ep;
(ii) n = mg (mod My);
(iii) n = mgp (mod p).

Observe that this proposition improves over Lemma 8.1 in two ways. First the elliptic curve
Ej, corresponding to the ‘pseudo-solution’ F4 + 2 = 5, is eliminated. But also we know
that n = mg (mod p). This will allow us to rewrite our linear form in three logarithms
as a linear form in two logarithms (Sect. 11) and deduce a much sharper bound for the
exponent p.
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In view of Section 9 we need only prove Proposition 10.1 for prime exponents 5 < p <
10, Fix mg € {—2, —1, 2} and suppose n = mg (mod M;). Write E = E,;,. By Lemma 8.1
we know that pg, , ~ P, We shall give a computational criterion, modelled on ideas of
Kraus [14] (see also [5, Lemma 7.4]) which allows us, for each 5 < p < 10!, to deduce
a contradiction when my = 2, and to conclude that n = mg (mod p) when my = —2 or
mo = —1.

Let k be a positive integer satisfying the following:

(I) g =kp+ 1isaprime with g = £1 (mod 5).

Let 6; be the two square roots of 5 modulo g. Then gOx = q1q2 where the prime ideals
q; are given by q; = (g, V5 — 6;). Observe that

Ok/a =F4 = Ok /qo.
Moreover,
V5 = 6; (mod ;).
If we write
e1=(1+61)/2
then it follows that
e = &1 (mod q1).
As 6, = —01, we know that
e = —1/g; (mod qp).
If g | y then E, has multiplicative reduction at both q; and q». In this case by Lemma 7.2
we know that a;(E) = (g + 1) = £2 (mod p). We impose the following condition:
(II) agq,(E) # £2 (mod p) or aq,(E) # %2 (mod p).
From condition (II) we have g 1 y. Let o be a primitive root (i.e. a cyclic generator) for F*,
and let w = @F. Let
Vyp =1{0" : 0<r<k—1}.

Observe that the set ), has cardinality k and that y” (mod q) € ). In practice we
choose k to be small so that (I) and (II) are satisfied. This is one of the key ideas underlying
the method of Kraus.

Now fix @ € ), and suppose ¥ = @ (mod q). Note that V5 = 6; (mod q;). By (11)
we see that €2 (mod q1) is a root (in ;) of the quadratic polynomial

Pp=T>+Q-w)-6,-T—1
We will write
Typ =t €Fy : Py (t) = 0for some o € ), and £ is a square}.

Thus " (mod q1) belongs to 7. The set 7, has at most 2k elements. We will reduce
its size using what we know about #. Recall that n = m( (mod M;) and therefore 2n =
2mg (mod 2M1). Let v = (g —1)/ ged(q — 1, 2M;). It follows that (£2" /2"0)” = 1 (mod q).
We deduce that £2 (mod q;) belongs to

Syplmo) ={t € Ty : (t/s%mo)" = 1 (mod gq)}.

Page 19 of 27
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Lemma 10.2 With notation and assumptions as above, let q be a prime satisfying condi-
tions (I) and (II). Let

Ryp(mo) = {t € Syp : a4(G;) = aq,(E) and ay(H;) = aq,(E) (mod p)),
where the elliptic curves G; /F; and Hy /4 are given by

Ge : Y2=X3420+0)X*+X and H; : Y2=X>+20t"1 +6)X% + X,
respectively. Then ¥ (mod q1) belongs to R g,p.

Proof Lett € Syp satisfyt = £2" (mod q1). Then G; is the reduction of E,, modulo q;, and
H; is the reduction of E;, modulo q5. In particular, aq, (E,) = a4(G;) and ag, (E,) = a,(Hy).
But by Lemma 7.2 we have aq,(E,) = aq,(E) for i = 1, 2. It follows that a,(G;) =
aq, (E) (mod p) and a4 (H;) = aq,(E) (mod p).

m|

Finally we shall need one more assumption on gq.
(1) &2 1 (mod g).
Lemma 10.3 Let (n, y, p) be a solution to (10) withp > 5.

(a) Let q be a prime satisfying (I), (II) and suppose that Ry,p(2) = 0. Then n #
2 (mod M).

(b) Let q be a prime satisfying (1), (I1), (II1). Suppose n = mgy (mod M) where my = —2 or
—1. Supposeeveryt € Rq,p(mo)satisﬁes(t/sfmo) = 1 (mod q). Thenn = my (mod p).

Proof Part (a) follows immediately from the above. For part (b), recall thate = ¢; (mod q1)
and also that the reduction of % modulo q; belongs to R,,,(mm). From the hypothesis

2(n—mp)
1

in (b), we have ¢ = 1 (mod g). However ¢ = 2kp + 1 and by assumption (III),

S%k # 1 (mod g). Thus p | (n — mp) as required. O

10.1 Proof of Proposition 10.1

In Section 9 we showed that if # # —2, —1, then p < 101, We may therefore assume this
bound. We wrote a short Magma script which for each prime in the range 5 < p < 101,
searches for primes ¢ satisfying (I), (II), (III) and applies the criteria in Lemma 10.3 to prove
Proposition 10.1. The total processor time for the proof is roughly 1200 days, although
the computation, running on a 2499MHz AMD Opterons, was spread over 50 processors,
making the actual computation time about 24 days.

11 Linear forms in two logs
Lemma 11.1 Let (i, y, p) be a solution to (10) with n #= —1, —2. Then p < 5000.

Let us assume that p > 5000. Note that F_y, = —Fy,. Let N = |n| and Y = |y|. Thus
Fyny £+ 2 = YP. This can be rewritten as

&2N . ¢~2N £2./5

J5YP J5YP

Let

A:ZNlogs—log«/g—plogY.
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Using Lemma B.2 of [22], we have

2.1
Al < -
Yr

and therefore

log|A| < log2.1 — plog(Y). (35)

By Proposition 10.1 we have n = —1, —2 (mod p). Thus we can write N = kp + § where
8 = *£1, 2. Therefore the linear form in three logarithms A may now be rewritten as a

linear form in two logarithms,
A= plog(82k/Y) — log(\/g/(e%).
From (35), |§] <2,Y > 19 and p > 5000, we have that
|2kloge —log Y| < ;76 < 0.0032. (36)

We will apply Theorem 4 with
bi=1 by=p o= x/g/ez‘s, oy = 52]‘/}’, and D = 2.
We have that

1 15 7
h(ag) < E log (7 + 5\/§> < 1.365

and
h(ag) < max{log Y, 2kloge} < 1.01log Y,
whereby we can choose, from (36),
a;=(p—1) log(x/§84) + 5.46
and

aps = 0.0032(p — 1) + 4.04log Y.
Lemma 11.2 Suppose n # —1, —2. Then a1, oy are multiplicatively independent.

Proof If a1, g are multiplicatively dependent then y = £5" for some r. This contradicts
Lemma 3.4. O

We now choose p = 23 and check that, in all cases, inequality (34) contradicts (35).
This completes the proof of Lemma 11.1.

12 Deriving the unit equation

With a reasonably good upper bound upon p in hand, our objective now is to obtain a
bound for # in terms of p (which we will obtain in the next section). Towards this goal
we reduce (10) to a unit equation. We start with (11), where we recall that x = 2" + V5.
Thus

(" + V5 +V6)(e? + V5 — V6) = V5 - ¥ 5. (37)

Let K = Q(+v/5) and K’ = K(+/6). Write O and (0’ for the rings of integers of K and K’;
these both have class number 1. As gcd(6,y) = 1 (Lemma 3.3), the two factors on the
left-hand side of (37) are coprime in (. The prime ideal /50 splits as a product of two

primes in O:

V50" = 1O - 90
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where

¢1:—2+x/§+<1_2ﬁ>£ and <p2:—2+\/_—<1_2\/§>\/6.

Let
§=+5++6 and u=5+2V6

Then ¢, §,  is a system of fundamental units for (', and the torsion unit group is just
{£1}. It follows that

e 4 V546 =268 u g ? (38)

forsomei € {1,2},a,b,c € Zand a € O'. The exponents a, b, c matter to us only modulo
P, as we can absorb any p-th power into the term o”.

We now write My = lem(Mj, p), where M is given by (22). By Proposition 10.1 we
know that # = —2 or —1 (mod M>).

Lemma 12.1 Let my € {—2,—1}. Let (1,3, p) be a solution to (10) with p > 5, and
n = mo (mod My). Then

82"+«/§+«/E=(s2’”°+«/§+«/8)-a” (39)
for some o € Ok.

Proof The lemma certainly holds if # = —2 or —1. We may therefore suppose n # —2,
—1, whence, by Lemma 11.1, that p < 5000. We observe that

8_4+\/§+\/€=—1-8_2-,u-(p1,

and
8_2+\/§+\/g:8_1-5~§02.

Thus, if my = —2, then we want to show, in (38), that i = 1 and
(@ b, c) =(—2,0,1) (mod p),

while, if my = —2, we want to show that i = 2 and
(@ b, c) = (-1, 1,0) (mod p).

Observe that

Normg/x () = &2, Normg/(8) = =1 and Normgr/x(u) = 1

Taking norms on both sides of (38) and comparing with (37) we deduce that 2a =
2n (mod p) and so a = n (mod p). As p | My we have derived the required congruences
for a.

Now let q be a prime ideal of K’ satisfying the following conditions:

(i) g has degree 1; we denote by g the rational prime below g, so Norm(q) = ¢.
(i) pl(g—1).
(iii) (g —1) | Ma.

Fix a choice of a primitive root @ for Fy = I and let log,, : Fy; — Z/pZ be the compo-
sition of the discrete logarithm Fy — Z/(q — 1)Z induced by @ with the quotient map
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Z/(q — 1)Z — 7./pZ; it is here that we make use of condition (ii). Now n = mg (mod M>)
where mg = —2 or —1. By assumption (iii) we have £¢%" = £2” (mod q). Applying log, to
(38) we obtain

blogq(S) + clogq(,u) = logq(szm0 + V5 +/6) — my logq(s) — logq @i (mod p).

It follows that for each choice of g satisfying conditions (i), (ii) and (iii), we obtain a linear
congruence for b and ¢ modulo p. We wrote a Magma script which did the following. For
each prime 5 < p < 5000, each choice my € {—2, —1} and i € {1, 2}, the script found
five prime ideals q satisfying (i), (ii) and (iii), and solved the corresponding linear system
of congruences for b and ¢. We found that for my = —2 the system had precisely one
solution when i = 1, and that solution is (b, ¢) = (0, 1) (mod p), and no solution when
i = 2. Likewise we found that for mo = —1 the system had precisely one solution when
i = 2, namely (b, ¢) = (1,0) (mod p), and no solution when i = 1. This completes the
proof. ]

Next we let
Kk = (£2 + /54 6) - (v6 — V/5).
Then we can rewrite (39) as
—(V5+v6)- e =1—k ol (40)
The left hand-side is a unit of K. Let
g=1-¢ - c-a, ¢ =exp(2mi/p)
forj =0,...,p — 1. It follows that 7; is a unit in the ring of integers of K; = K'(¢ - ).
Let
vw=¢%—¢ v=1-¢% wm=c¢-1
We obtain the unit equation

voTo + V171 + Va2 = 0. (41)

13 Abound forn
In this section we derive a bound for the unknown index # in (10). This bound will follow
from the bounds on the heights of the solutions to the unit equation (41). In order to obtain
bounds for solutions to unit equations we closely follow [6]. For this we merely need some
information about the number fields containing these solutions. Recall K’ = Q(v/5,V6)
and Kj = K'(¢/ - ¥k). Let L = K' (¥, ¢) = Ko(¢).
Lemma 13.1

40 ifp=5

Kj:Ql=4p, [L:Q]=
4p(p —1) ifp >5.

Moreover, the signature of K; is (4, 2p — 2).

Proof Theelementk € O generates a prime ideal of norm 5 or 19 depending on whether
mo = —2 or —1. Thus [Kj : K'] = p,and so [Kj : Q] = 4p by the tower law. To deduce the
signature we observe that for each of the four embeddings o : K’ — R, there is exactly
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one real choice for the p-th root of o (k), and (p — 1)/2 complex conjugate pairs of such
choices.

Next we compute Q(¢) N Kj. Since Q(¢) has degree p — 1, which is not divisible by p, we
see that Q(¢) N K; = Q(¢) N K'. If p > 5 then the intersection is Q, as the intersection is
unramified at all primes. If p = 5 then the intersection in Q(+/5). The assertion regarding
[L : Q] follows. O

We shall need a bound for the absolute discriminant of Kj; such a bound is furnished by
the following lemma.

Lemma 13.2 Write Ag; for the absolute discriminant of Kj. If mo = —2 then Ag; divides
20 3% . 5371 p*. If my = —1 then A, divides 27 - 3% . 5% . 19771 . p*,

Proof The absolute discriminant of K’ is Agr = 14400 = 2° x 32 x 52, The extension
Kj/K' is generated by a root of the polynomial ¥ — «, and hence its relative discriminant
ideal divides the discriminant of this polynomial which is +p”«x”~1. We now apply the
following standard formula [7, Theorem 2.5.1] for the absolute discriminant

A](]. =4 Norm](//Q(A](/./[(/) . Az(,j:[( ].
The result follows as Normg (k) = —5 or 19 depending on whether my = —2 or —1. 0

Recall that we are interested in bounding the heights of the solutions to the unit equation
(41) for my = —2, —1 and 5 < p < 5000 prime. For each possible choice of m and p,
Lemma 13.2 gives us an upper bound for the absolute value of the discriminant of K;. Now
[6, Section 5], based on a theorem of Landau, gives a computational method for deriving
an upper bound for the regulators Rg;. As an illustration, we mention that with p = 4999
(the largest prime in our range) the bounds we obtain for Ry; are

Rg, <2.2x10%%%, R < 1.4 x 1004
for mg = —2, —1 respectively.

We now explain how to obtain a bound for n. Proposition 8.1 of [6] gives positive
numbers A1, A3 (depending on the regulators and unit ranks of the Kj) such that

h(va12/v970) < Az + Aq log(H + max{h(v;7j) : j=0,1,2}), (42)
where H is an upper bound for the heights /(v;). We shall make repeated use of the

following properties for absolute logarithmic heights (see for example [6, Lemma 4.1]):

(i) ifr is aninteger and B is a non-zero algebraic number then 4(8") = |r| - h(B);
(ii) if B1, ..., Bm are algebraic numbers then

h(Br--- - Bm) < h(B1) + -+ h(Bm) and h(B1+ -+ Bm)
<logm +h(p1) + - - - + h(Bm).
As each v; is a sum of two roots of unity, (ii) implies that 4(v;) < log2, so we can take
H = log 2. By the definition of logarithmic height
h(z2/70) = h(v272/v070)
since v2/vg = ¢ ~!isaroot of unity. Welet Y = h(c - ¢/k). Recall that 7; = 1 — ¢/ - - k.
Thus

2
-1
o -Yc=1+ £

T2/T0 — ¢2
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SO
Y < 3log2+ h(t2/70).
Observe that
h(vjt)) < 2log2 + h(tj)) = 2log 2 + h(1 — oo Yk)<Y + 3log2.
From (42) we deduce
Y <Ay +3log2+ A log(Y + 4log 2). (43)
By Lemma 9.1 of [6] we have
Y <24, logA; + 24, + 10log 2.
Now that we have obtained a bound for Y = h(« - &/k) we deduce a bound for n. From
(40)
|n| - log(e) < pY +log2 + % log(+v/5 + +/6),

which yields a completely explicit bound for n. As an illustration with p = 4999, we obtain
the bounds

n <257 x 10”7 and  |n| < 1.01 x 10%%1%%,

respectively for my = —2 and my = —1. The corresponding upper bounds for smaller
values of p are, in each case, rather less.

14 Completing the proof of Theorem 1
Lemma 14.1 Supposep <79. Thenn = —2, —1.

Proof Proposition 10.1 tells us that n = mg (mod M;) where M is given by (22), and
mo = —2 or —1. In fact

My ~ 7.12 x 10%2%,

We computed the upper bounds upon # for all p < 5000. We found that for p < 79 we
have

In] < 1.14 x 10M% and || < 2.75 x 10%2%%,

respectively for myg = —2 or —1. Thus forp <79, n = —2 or —1. O

The bounds for n we obtain as in the previous section are larger than M; for the
remaining values 83 < p < 5000. To complete the proof of Theorem 1, we will show, for
mo € {—2, —1} and for each of the remaining p, the existence of some M’ that is much
larger than the corresponding bound for #, and such that n = mg (mod M’). For this we
shall use a very simple sieve. Fix a prime 83 < p < 5000 and a value m € {—2, —1}. Let
3 < £ < 10* be a prime, distinct from p. Suppose we know that # = mg (mod M’), where
M’ is alarge smooth integer, certainly divisible by M;. Let r = ord,(M’). We want to show
that # = mg (mod £"*1) and so n = m( (mod £M’). We look for primes g = +1 (mod 5)
of the form q¢ = kpt’+! 4 1, such that kp¢” | M’ (recall that M; | M is divisible by all
primes < 10* and so certainly divisible by p). Let Q be a (small) set of such primes. Let

S={my+t-£": 0<t=<e-1}.
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Then n = m (mod £'t1) for some unique value m € S. We would like to obtain a
contradiction for each possible m € S except for m = my. It would then follow that
n = mg (mod ¢"*1) and so n = my (mod £M’) as required. Fix m € S, m # my. As
q = kpt"™! + 1 and kpt” | M’, the assumptions # = m (mod £") and n = mg (mod M’)
force n = ny(m) (mod g — 1) for some unique congruence class n(m, g) (which depends
on our choices of g and m € S). Now from Binet’s formula, as ¢ = +1 (mod 5), we have
Fop = Foym,q) (mod q). Since Fy, + 2 = y* we have

r+1
(FZn(m,q) + 2)“ =0 or 1(modg). (44)

If we find some prime g € Q such that (44) fails, then we will have eliminated that
particular value of m. Once we have eliminated all possibilities for all m € S, m # myg, we
will have deduced #n = mp (mod £M’) and we can replace M’ by ¢M’.

We wrote a simple Magma script which keeps increasing the exponents of the primes
3<¢<10%¢ # p in M’ until M’ is sufficiently large to deduce that n = my. The total
processor time for the proof is roughly 70 days, although the computation, running on a
2499MHz AMD Opterons, was spread over 50 processors, making the actual computation
time about 1.4 days. This completes the proof of Theorem 1.
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