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Abstract

We develop a general framework for finding all perfect powers in sequences derived
via shifting non-degenerate quadratic Lucas–Lehmer binary recurrence sequences by a
fixed integer. By combining this setup with bounds for linear forms in logarithms and
results based upon the modularity of elliptic curves defined over totally real fields, we
are able to answer a question of Bugeaud, Luca, Mignotte and the third author by
explicitly finding all perfect powers of the shape Fk ± 2 where Fk is the k-th term in the
Fibonacci sequence.
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1 Introduction
If {un} is a non-degenerate integer binary linear recurrence sequence, then the sequence
{un} contains at most finitely many integer perfect powers, which may be effectively
determined. This result was proved independently, using bounds for linear forms in
Archimedean and non-Archimedean logarithms, by Pethő [19] and Shorey and Stew-
art [20]. The explicit determination of all such powers in a given sequence, however,
has been achieved in only a few cases, principally in those where the problem may be
reduced to a question of solving ternary Diophantine equations with integer coefficients.
In such a situation, the possibility exists to combine the machinery of linear forms in
logarithms with information derived from considering certain Frey–Hellegouarch curves
corresponding to the ternary equations. A prototype for these problems may be found in
the paper of Bugeaud, Mignotte and the third author [5], where all perfect powers in the
Fibonacci sequence are determined; this amounts to finding the solutions to the equation

x2 − 5y2p = ±4,

in integers x, y and p ≥ 2. Here, results from the theory of linear forms in logarithms pro-
vide a manageable upper bound upon the exponent p, but solving the remaining (hyperel-
liptic) equations is accomplished only through considering them as ternary equations of
signature (p, p, 2) and using arguments based upon the modularity of Galois representa-
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tions to deduce arithmetic information guaranteeing that x is necessarily extraordinarily
large (unless x ∈ {±1,±3}).
If we shift a given recurrence, considering, say, un + c for a nonzero integer c, instead

of just un, the situation becomes considerably more complicated. The resulting sequence
need not possess much of the basic structure of a binary linear recurrence sequence,
despite sharing a similar rate of growth. In particular, various divisibility statements may
no longer hold, and questions of the existence of primitive divisors are significantly harder
to address.Despite this, Shorey andStewart [23]were able to show, undermildhypotheses,
that, given fixed integers a and c, the equation

un + c = ayp

has at most finitely many, effectively computable solutions. Only in very special cases,
however, can such equations bemade to correspond to Frey–Hellegouarch curves defined
overQ (see e.g. the paper of Bugeaud, Luca,Mignotte and the third author [3] for a number
of such examples).
In a previous paper [1], the first and third authors, with Dahmen and Mignotte, devel-

oped a method combining information derived from Frey–Hellegouarch curves defined
over real quadratic fields with lower bounds for linear forms in logarithms to explicitly
determine all shifted powers in certain binary recurrence sequences. The setup in [1] was
as follows. Let K be a real quadratic number field, OK its ring of integers and ε ∈ OK a
fundamental unit in K , with conjugate ε. Define the Lucas sequences Uk and Vk , of the
first and second kinds, respectively, via

Uk = εk − (ε)k

ε − ε
and Vk = εk + (ε)k , for k ∈ Z.

Let a, c ∈ Z with a �= 0, and consider the problem of determining the shifted powers
ayp − c in one of these sequences, i.e. determining all integers k, y and p with p ≥ 2 prime
(say) such that we have

Uk + c = ayp (1)

or

Vk + c = ayp. (2)

In [1], techniques were introduced to potentially resolve such problems corresponding
to either

• Eq. (1) with k odd and Norm(ε) = −1, or
• Eq. (2) with either k even or Norm(ε) = 1.

Let us now describe an approach to treat the remaining cases. For instance, a solution to
(1) leads to the equation

εk − (ε)k

ε − ε
= ayp − c

and so we have

ε2k + (ε − ε)cεk − Norm(ε)k = (ε − ε)aεkyp.

It follows that(
2εk + (ε − ε)c

)2 −
(
4Norm(ε)k + (ε − ε)2c2

)
= 4(ε − ε)aεkyp. (3)
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Similarly, in the case of Eq. (2), we have

εk + (ε)k = ayp − c

whereby
(
2εk + c

)2 + 4Norm(ε)k − c2 = 4aεkyp. (4)

In either case (3) or (4), we can attach to a solution a Frey–Hellegouarch curve of signature
(p, p, 2), defined over the totally real (quadratic) field K .

2 Shifted powers in the Fibonacci sequence
We will now describe an open question from the literature which our techniques enable
us answer. Let Fk be the Fibonacci sequence defined by

F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk .

Define further the Lucas sequence by

L0 = 2, L1 = 1 and Lk+2 = Lk+1 + Lk .

For K = Q(
√
5), writing

ε = 1 + √
5

2
and ε = 1 − √

5
2

,

it follows that ε is a fundamental unit of K and, by Binet’s formula,

Fk = εk − εk√
5

and Lk = εk + εk ,

from which we obtain the well-known identity

L2k − 5F2
k = 4(−1)k . (5)

In general, one has, for any integers a and b,

FaLb = Fa+b + (−1)bFa−b. (6)

This identity is used with |a − b| ∈ {1, 2} in [3] to solve the equations Fk ± 1 = yp by
reducing them to equations of the shape Fk = αyp, for fixed integers α (which may be
treated by considering Frey–Hellegouarch curves defined overQ). In this initial reduction,
it is of importance that F−1 = F1 = F2 = 1 and F−2 = −1; more generally, analogous
arguments allow one to treat equations of the form Fn + c = yp, for c = Fk where
k ≡ n (mod 4). In particular, such a reduction does not appear to be possible in general
for the similar equation Fk ± 2 = yp (which is posed an an open problem in [3]).
In this paper, we prove the following.

Theorem 1 If k, y and p ≥ 2 are integers, and

Fk ± 2 = yp, (7)

then |k| ∈ {1, 2, 3, 4, 9}.
Let us suppose that k, y and p ≥ 2 are integers satisfying (7). In case k is odd, say

k = 2n + 1, choosing a = n + 2 and b = n − 1 in (6),

Fk + (−1)n−12 = Fn+2Ln−1,
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while a = n − 1 and b = n + 2 gives

Fk + (−1)n+22 = Fn−1Ln+2,

and hence

Fn+δ1Ln+δ2 = yp where {δ1, δ2} = {−1, 2}. (8)

We claim that

gcd(Fk±3, Lk ) =

⎧⎪⎨
⎪⎩

4 if k ≡ 3 (mod 6),
2 if k ≡ 0 (mod 6),
1 otherwise.

(9)

To see this, note the identities

3Fk+3 = Lk + 4Fk+2 and 3Fk−3 = Lk − 4Fk−2

which imply, since gcd(Fj+1, Fj) = 1 for each integer j, that gcd(Fk±3, Lk ) | 4. The fact that
Fk±3 ≡ Lk ≡ 2 (mod 4) if k ≡ 0 (mod 6)

and

Fk±3 ≡ Lk ≡ 0 (mod 4) if k ≡ 3 (mod 6),

while Fk and Lk are odd unless 3 | k completes the proof.
From (8) and (9), it thus follows that Ln+δ2 = 2αyp1 for integers α ≥ 0 and y1. Appealing

to Theorem 2 of [4], and the identity L−m = (−1)mLm, we thus have that

|n + δ2| ∈ {0, 1, 3, 6}.
We check that F2n+1 ± 2 is a perfect power only for those n corresponding to

F−9 + 2 = F9 + 2 = 62, F−9 − 2 = F9 − 2 = 25, F−3 + 2 = F3 + 2 = 22,

F−3 − 2 = F3 − 2 = 0 and F−1 − 2 = F1 − 2 = −1.

We may thus suppose for the remainder of this paper that k = 2n is even, so that
F−k = −Fk , and hence, without loss of generality, that F2n + 2 = ±yp. The case p = 2
is easily dealt with by reducing the problem to the determination of integral points on
elliptic curves; we will do this in Lemma 3.1. Assuming this result for the remainder of
this section, we may therefore suppose, without loss of generality, that p ≥ 3 is an odd
prime and so, if necessary, absorb the minus sign into the yp. We therefore consider the
equation

F2n + 2 = yp. (10)

This is of the shape (1) with k = 2n, c = 2 and a = 1. Writing x = ε2n + √
5, equation (3)

implies that

x2 − 6 = √
5ε2nyp. (11)

By thinking of the constant −6 as −6 · 1p, we may view this equation as a generalized
Fermat equation of signature (p, p, 2) over Q(

√
5). To the solution (x, y, n, p) of (11) (and

hence to the solution (n, y, p) to (10)) we associate the Frey–Hellegouarch curve

En : Y 2 = X3 + 2xX2 + 6X, x = ε2n + √
5. (12)

This will prove much easier to deal with than the corresponding (p, p, p) equation defined
over Q(

√
5,

√
6) that we obtain from the arguments of [1]. We shall apply modularity and

level-lowering to the mod p representation of En to deduce the following.
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Proposition 2.1 Let (n, y, p) be a solution to (10) with p ≥ 5. Let ρEn,p be the mod p
representation of En. Then ρEn,p is irreducible. Moreover, ρEn,p ∼ ρf,π where f is a Hilbert
eigenform over Q(

√
5) of weight (2, 2) that is new of level

N = (2)7 · (3) · (√5); (13)

here π | p is some prime of Of, the ring of integers of the number field generated by the
Hecke eigenvalues of f.

The Hilbert newspace for weight (2, 2) and levelN has dimension 6144. It is not possible
using current software and hardware capabilities to compute the eigenforms belonging to
this space. One of the novelties of the current paper is a sieving argument that works with
mod p eigensystems to eliminate all of the space except for three elliptic curves.
The resolution of (10) will require certain non-trivial computations. These are carried

out in the computer algebra system Magma [2]. The reader can find our Magma scripts at
https://www.math.ubc.ca/~bennett/BePaSi.

3 Dealing with small p and small |y|
We shall apply the methods of Galois representations and modularity to equation (10).
Such techniques are somewhat harder to utilize with small exponent p, and so in this
section we deal with the cases p = 2 and p = 3 separately. Later on, we will appeal to
bounds for linear forms in logarithms to (10), and for this it is useful to know that y is not
too small. We show below that if n �= −2, −1 then |y| ≥ 19.

Lemma 3.1 The only solutions to the equation F2n + 2 = ±y2 are (n, y) = (−1,±1) and
(−2,±1).

Proof Let Y = 5yL2n and X = 5y2. It follows from identity (5) that (X, Y ) is an integral
point on one of the two elliptic curves

Y 2 = X(X2 − 20X + 120) or Y 2 = X(X2 + 20X + 120).

To determine the integral points on these two elliptic curves we used the computer
package Magma [2] which utilizes a standard algorithm that employs lower bounds for
linear forms in elliptic logarithms [22] (implemented in Magma as IntegralPoints). We
find that the integral points on the first curve are given by

(X, Y ) ∈ {(0, 0), (5,±15), (24,±72)
}
,

and those on the second are

(X, Y ) ∈ {(0, 0), (5,±35), (24,±168)
}
.

The lemma follows. �	
Lemma 3.2 If p = 3 then the only solutions to (10) are (n, y) = (−1, 1) and (n, y) =
(−2,−1).

Proof Write 2n = α + 3m where α = 0, ±1. Let

X = √
5εm+αy, Y = √

5εαx.

From (11), we deduce that (X, Y ) is anOK -integral point on the elliptic curve

Y 2 = X3 + 30ε2α .

https://www.math.ubc.ca/~bennett/BePaSi
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These three elliptic curves (corresponding to α = 0, 1, −1) all have rank 2 over K , and we
are able to compute the OK -integral points via an algorithm of Smart and Stephens [23]
implemented in Magma. These points are

(19,±83), ((−3 − √
5)/2,±(1 − 2

√
5)), ((−3 + √

5)/2,±(1 + 2
√
5)),

for α = 0, and

((3 − 5
√
5)/2,±(8 − 5

√
5)), (

√
5,±(5 + 2

√
5)),

((5 + 3
√
5)/2,±(10 + 3

√
5)), ((55 + 15

√
5)/2,±(165 + 58

√
5)) ,

for α = 1, with conjugate points for α = −1. The lemma easily follows. �	

Lemma 3.3 Suppose (n, y, p) is a solution to (10). If q | y is prime, then

q ≡ 1, 5, 19, 23 (mod 24).

In particular, 2 � y and 3 � y. Moreover,

n ≡ 2, 4, 7, 8, 10, 11 (mod 12).

Proof Suppose 2 | y. From F2n + 2 = yp we have 2 || F2n. However, 2 | F2n implies that
3 | n. Thus F6 | F2n. As F6 = 8 we have a contradiction.
Now suppose q | y is an odd prime. From (5) we obtain

L22n = 5y2p − 20yp + 24,

so 24 ≡ L22n (mod q2). Thus q �= 3, and 6 is a quadratic residue modulo q. It follows that
q ≡ 1, 5, 19, 23 (mod 24).
The final part of the lemma follows from considering F2n + 2 modulo 6. �	

Lemma 3.4 The only solutions to the equation F2n + 2 = ±5m are F−4 + 2 = −1,
F−2 + 2 = 1, F4 + 2 = 5.

Proof As above we deduce that

L22n = 5 · 52m ∓ 20 · 5m + 24.

Ifm is even then write

X = 5m+1, Y = 5(m+2)/2 · L2n.
Then (X, Y ) satisfies

Y 2 = X3 ∓ 20X2 + 120X ;

we are interested in computing the integral points on these two elliptic curves. For this
we again used the computer package Magma [2]. The integral points on the model Y 2 =
X3 − 20X2 + 120X are (0, 0), (5,±15), (24,±72), and lead to the solution F−2 + 2 = 1.
The integral points on the model Y 2 = X3 + 20X2 + 120X are (0, 0), (5,±35), (24,±168),
and lead to the solution F−4 + 2 = −1.
Ifm is odd then write

X = 5m+2, Y = 5(m+5)/2 · L2n.
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Then (X, Y ) satisfies

Y 2 = X3 ∓ 100X2 + 3000X.

The integral points on the model Y 2 = X3 − 100X2 + 3000X are (0, 0), (24,±168),
(125,±875) and lead to the solution F4 + 2 = 5. The integral points on the model Y 2 =
X3 + 100X2 + 3000X are (0, 0), (2904,±159192) and do not lead to any solutions to the
original equation. �	
Lemma 3.5 Let (n, y, p) be a solution to (10) and suppose that n �= −2,−1. Then |y| ≥ 19.

Proof As n �= −2, −1 it follows that |y| > 1. Suppose |y| < 19. By Lemma 3.3, the only
prime divisor of y is 5. This now contradicts Lemma 3.4. �	

4 Irreducibility of themod p representation
Henceforth (n, y, p) is a solution to (10) with prime exponent p ≥ 5, and En is the Frey–
Hellegouarch curve En given by (12). An easy application of Tate’s algorithm (together
with Lemma 3.3) yields the following.

Lemma 4.1 The model in (12) is minimal with discriminant and conductor

� = 28 · 32 · ε2n · √
5 · yp, N = (2)7 · (3) · (√5) ·

∏

q|y,q �=(
√
5)

q.

We would like to apply level-lowering to the mod p representation ρEn,p, and for this we
need to show that it is irreducible.We shall make use of the following result due to Freitas
and the third author [12], which is based on the work of David [8] and Momose [18].

Proposition 4.2 Let K be a totally real Galois number field of degree d, with ring of
integersOK and Galois group G = Gal(K/Q). Let S = {0, 12}G, which we view as the set of
sequences of values 0, 12 indexed by τ ∈ G. For s = (sτ ) ∈ S and α ∈ K, define the twisted
norm associated to s by

Ns(α) =
∏
τ∈G

τ (α)sτ .

Let ε1, . . . , εd−1 be a basis for the unit group of K , and define

As := Norm (gcd((Ns(ε1) − 1)OK , . . . , (Ns(εd−1) − 1)OK )) . (14)

Let B be the least common multiple of the As taken over all s �= (0)τ∈G, (12)τ∈G. Let p � B
be a rational prime, unramified in K , such that p ≥ 17 or p = 11. Let E/K be an elliptic
curve, and q � p be a prime of good reduction for E. Define

Pq(X) = X2 − aq(E)X + Norm(q)

to be the characteristic polynomial of Frobenius for E at q. Let r ≥ 1 be an integer such that
qr is principal. If E is semistable at all p | p and ρE,p is reducible then

p | Res(Pq(X) , X12r − 1 ) (15)

where Res denotes the resultant of the two polynomials.

Weobserve inpassing that sincePq(X) has twocomplex roots of absolute value
√
Norm(q),

the resultant in (15) cannot be zero. We now arrive at the main result of this section.
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Lemma 4.3 Let (n, y, p) be a solution to (10) with p ≥ 5 prime. Let En be the Frey curve
given in (12). Then ρEn,p is irreducible.

Proof Let

M0 = 2520 = 23 · 32 · 5 · 7 , (16)

and

Q′ = {q a prime ideal ofOK : q � 2 · 3 · √
5 and Norm(q) < 300}.

Let

Q = {q ∈ Q′ : the multiplicative order of ε2 in Fq dividesM0}. (17)

The set Q contains 25 prime ideals q. The Frey curve (12) modulo q depends only on n
moduloM0. Let

M = {0 ≤ m ≤ M0 : m ≡ 2, 4, 7, 8, 10, 11 (mod 12)}. (18)

By Lemma 3.3, if (n, y, p) is a solution to (10) then n ≡ m (modM0) for some unique
m ∈ M. In particular, ε2n ≡ ε2m (mod q). Suppose q � ((ε2m + √

5)2 − 6) so that, from
(11), we have q � y. By Lemma 4.1 we see that En has good reduction modulo q. Moreover,
aq(En) = aq(Em). In particular, if t2 − aq(Em)t + Norm(q) is irreducible modulo p, then
ρEn,p is irreducible.
We wrote a short Magma script which did the following. For each of the values p = 5, 7,

13, and for eachm ∈ M, it verified that there exists a q ∈ Q such that q � ((ε2m+√
5)2−6)

and that t2 − aq(Em)t + Norm(q) is irreducible modulo p. This completes the proof for
p = 5, 7, 13.
Thuswe suppose that p = 11 or p ≥ 17.We apply the above proposition. A fundamental

unit for K = Q(
√
5) is ε, and it follows that B = 320, where B is as in the statement of the

proposition. Thus p � B. Moreover, from Lemma 4.1, En is semistable at p | p. We suppose
that ρEn,p is reducible. Let

S = {q ∈ Q : q is above a rational prime q �≡ 1, 5, 19, 23}.
The set S has 15 elements. By Lemma 3.3, it follows that En has good reduction at all q ∈ S.
Recall that n ≡ m (modM0) for some unique m ∈ M. Moreover, aq(En) = aq(Em) for
q ∈ S. It follows from the above proposition that p divides

gcd({Res(t2 − aq(Em)t + Norm(q), t12 − 1) : q ∈ S}).
We computed this greatest common divisor for eachm ∈ M and verified that it is never
divisible by 11 or any prime ≥ 17. The lemma follows. �	

5 Level-lowering and consequences
We are now in a position to prove Proposition 2.1

Proof of Proposition 2.1 The elliptic curve En is modular by [10], and the mod p repre-
sentation ρEn,p is irreducible by Lemma 4.3. If p > 5, then the proposition immediately
follows from the statement of Theorem 7 of [11] (which, we should note, is based on the
work of Fujiwara, Jarvis and Rajaei). Now let p = 5. In this case the statement of theorem
in [11] is inapplicable to our situation. Specifically condition (v) of that theorem is not
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satisfied in our setting as 5 � ord√
5(�). However that condition is only needed to remove

the primes above p from the level without increasing the weight. In our situation we con-
tent ourselves, when p = 5, with removing from the level the primes dividing y that do
not also divide 2 · 3 · √

5. As in [11] this can be done whilst keeping the weight (2, 2). �	

Lemma 5.1 With notation as in Proposition 2.1, let q � p · N be a prime of OK . Let m be
an integer satisfying ε2m ≡ ε2n (mod q). Write

bq(m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aq(Em) q � (F2m + 2)

Norm(q) + 1 q | (F2m + 2) and − (ε2m + √
5)

is a square modulo q

−Norm(q) − 1 otherwise.

(19)

Then bq(m) ≡ aq(f) (mod π ).

Proof Suppose q � p · N . Since F2n + 2 = yp, we see from Lemma 4.1 that En has good
reduction at q if q � (F2n + 2) and multiplicative reduction at q if q | (F2n + 2). Suppose we
are in the latter case. We know [21, Theorem V.5.3] that the reduction at q is split if and
only if −c6/c4 is a q-adic square, where c4 and c6 are the usual c-invariants of En. In our
case

c4 = 25(2x2 − 9), c6 = 27x(−4x2 + 27).

From (11) we have x2 ≡ 6 (mod q) and so −c6/c4 ≡ −4x (mod q). As x = ε2n + √
5, the

multiplicative reduction at q is split if and only if −(ε2n + √
5) is a square modulo q.

By comparing the traces of the images of the Frobenius element at q in ρEn,p ∼ ρf,π we
obtain bq(n) ≡ aq(f) (mod π ) in all cases. Finally, as ε2m ≡ ε2n (mod q), it follows that
F2m ≡ F2n (mod q), and so bq(m) = bq(n) proving the lemma. �	

Write S = Snew(2,2)(N ). Using Magma we find that S has dimension 6144. We let F be the
set of eigenforms f belonging to S (thus #F = 6144). Whilst it is not feasible to compute
these newforms with current tools, it is, however, quite practical using Magma to compute
the action of the Hecke operators Tq on S for small primes q of OK . For the theoretical
details behind these algorithms, we recommend [9].
Weused aMagmaprogramwritten by StephenDonnelly to search for elliptic curves over

number fields with a given conductor. This program found 288 pairwise non-isogenous
elliptic curves F/K with conductor N . We know by [10] that these corresponds to 288
distinct f ∈ F with rational Hecke eigenvalues. We let E be this set of these 288 elliptic
curves and we let F ′ be the subset of F coming from these 288 elliptic curves.

6 Reducing to elliptic curves
Proposition 6.1 Let (n, y, p) be a solution to (10)with prime exponent p ≥ 5. Then ρEn,p ∼
ρE,p where E ∈ E .

We shall prove Proposition 6.1 by contradiction. Suppose ρEn,p � ρE,p for any E ∈ E .
Then ρEn,p ∼ ρg,π for some g ∈ F − F ′. Let Q and M be as in the proof of Lemma 4.3.
Let m be the unique element of M such that m ≡ n (modM0). In particular, we know
that ε2m ≡ ε2n (mod q) for all q ∈ Q. From Lemma 5.1 we see that



   15 Page 10 of 27 Bennett et al. Res. Number Theory           (2019) 5:15 

bq(m) ≡ aq(g) (mod π ) (20)

for all q ∈ Q with q � p.
Suppose for now that q ∈ Q and q � p. Write Tq for the Hecke operator corresponding

to q acting on the space S = Snew(2,2)(N ). LetCq(x) = det(xI−Tq) ∈ Z[x] be its characteristic
polynomial; this has roots aq(f) with f running through f ∈ F . Now let

C ′
q(x) =

∏
E∈E

(x − aq(E)) ∈ Z[x].

Thus C ′
q(x) divides Cq(x). Moreover, let

C ′′
q(x) = Cq(x)

C ′
q(x)

∈ Z[x].

The roots of C ′′
q(x) are aq(f) with f running through f ∈ F ′. We see from (20) that

C ′′(bq(m)) ≡ 0 (mod π ). However as C ′′ ∈ Z[x] and bq(m) ∈ Z it follows that

C ′′(bq(m)) ≡ 0 (mod p).

Now let

Gm,q = Norm(q) · C ′′(bq(m)) ∈ Z.

We see that p | Gm,q for all q ∈ Q regardless of whether q divides p or not. Thus p divides

Hm := gcd{Gm,q : q ∈ Q}.
We computed the integers Hm for all m ∈ M and factored them. It turns that all are
non-zero, which means we have bounded p under the assumption that ρEn,p � ρE,p for
all E ∈ E . In particular, our computations reveal that p ≤ 109. More precisely, we are left
to consider precisely 9391 pairs (p,m) where p ≥ 5 is a prime dividing Hm.
To proceed further we remark that the Hilbert Modular Forms package in Magma

computes a matrix, which shall denote by Rq, giving the action of the operator Tq (with q

not dividing the level N ) with respect to a Z-basis of a lattice in Snew(2,2)(N ) that is Hecke-
stable. Write Rq for the reduction of Rq modulo p and g for the mod p eigensystem
corresponding to g. It follows from the above that the intersection

⋂
q∈Q
q�p

Ker
(
Rq − bq(m) · I

)
(21)

contains anFp-line corresponding to g.We computed the intersection (21) for all the 9391
remaining pairs (p,m). This is merely Fp-linear algebra once the matrices Rq representing
the Hecke operators were computed. We found that for all but 21 of the 9391 pairs (p,m)
the space (21) is 0-dimensional giving us a contradiction. For the proof of Proposition 6.1
we need now only consider the following 21 remaining pairs (p,m):

(5, 2), (5, 2518), (5, 2519), (7, 2), (7, 2518), (7, 2519),

(11, 2), (11, 2518), (11, 2519), (13, 2), (13, 2518), (13, 2519),

(17, 2), (17, 2519), (19, 2), (19, 2519), (23, 2518), (29, 2518),

(29, 2519), (41, 2), (43, 2518).

Observe that m ≡ 2, −2, −1 (modM0) in every one of these 21 cases. The presence of
the possibilities −2, −1 is hardly surprising in view of the solutions (n, y, p) = (−2,−1, p)
and (−1, 1, p) to (10); for an explanation of the value 2 see the next section. In all these
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21 cases we found that the intersection (21) is 1-dimensional. We let E be E2 if m =
2, E−2 if m = 2518 ≡ −2 (modM0) and E−1 if m = 2519 ≡ −1 (modM0). These
all have conductors N . Let f ∈ F be the Hilbert eigenform corresponding to E. Then
bq(m) ≡ aq(E) = aq(f) (mod p). It follows that the reduction of the line corresponding
to f belongs to the 1-dimensional intersection (21), which also contains the reduction of
the line corresponding to g. Thus the mod p eigensystems f and g are equal. It follows
that ρf,p ∼ ρg,π . Thus ρEn,p ∼ ρE,p. But E2, E−2, E−1 ∈ E ; this completes the proof of
Proposition 6.1.

7 Reducing to only three elliptic curves
We know from Proposition 6.1 that ρEn,p ∼ ρE,p where E is one of the 288 elliptic curves
belonging to E . In this section we eliminate all but three of the elliptic curves belonging
to E .

Proposition 7.1 Let (n, y, p) be a solution to (10) with p ≥ 5. Then n ≡ m (modM0) and
ρEn,p ∼ ρE,p where

(i) m = 2 and E = E2;
(ii) m = M0 − 2 and E = E−2;
(iii) m = M0 − 1 and E = E−1.

We shall need the following slight strengthening of Lemma 5.1.

Lemma 7.2 Let (n, y, p) be a solution to (10) with p ≥ 5 and E ∈ E satisfy ρEn,p ∼ ρE,p.
Further, let q � N be a prime of OK and suppose that m is an integer satisfying ε2m ≡
ε2n (mod q). Then bq(m) ≡ aq(E) (mod p), where bq(n) is given by (19).

Proof If q � p then this is a special case of Lemma 5.1. If q | p then this follows from the
proof of Lemma 5.1 together with [13]. �	

Now letQ be as in the proof of Lemma 4.3. The following is immediate.

Lemma 7.3 Let (n, y, p) be a solution to (10) with p ≥ 5 prime. Let E ∈ E such that
ρEn,p ∼ ρE,p. Let n ≡ m (modM0) with m ∈ M. Then p divides

Bm(E) = gcd({bq(m) − aq(E) : q ∈ Q}).
We computed Bm(E) for all of the 288 elliptic curves E ∈ E andm ∈ M. We found that

Bm(E) is not divisible by any primes p ≥ 5 except in three cases where Bm(E) = 0:

(i) m = 2 and E = E2;
(ii) m = M0 − 2 and E = E−2;
(iii) m = M0 − 1 and E = E−1.

The possibilities (ii) and (iii) are natural, and they correspond to the solutions (n, y, p) =
(−2,−1, p) and (−1, 1, p) respectively. Thepossibility (i) is a result of the identityF4+2 = 5
from which it is easy to deduce that E2 has conductor N and so it is natural (though
annoying) that our sieve cannot eliminate this possibility. This proves Proposition 7.1.
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8 EnlargingM0

We let

M1 = M0 ×
∏

	 prime
11≤	<104

	, (22)

where, as before,M0 = 2520. In this section we prove the following.

Lemma 8.1 Let (n, y, p) be a solution to (10) with p ≥ 5 prime. Then ρEn,p ∼ ρE,p and
n ≡ m0 (modM1) where

(i) either m0 = 2 and E = E2;
(ii) or m0 = −2 and E = E−2;
(iii) or m0 = −1 and E = E−1.

Proof Fix m0 ∈ {−2,−1, 2}, let E = Em0 and suppose ρEn,p ∼ ρE,p. We would like to
show that n ≡ m0 (modM1).
There are 164 primes in the interval [11, 10000]; we denote them by

	1 = 11, 	2 = 13, . . . , 	164 = 9973.

We let L0 = M0, and Li = 	i · Li−1 for 1 ≤ i ≤ 164. Then L164 = M1. We shall
show inductively that n ≡ m0 (mod Li) for 0 ≤ i ≤ 164 which gives the lemma. We
know by the previous section that n ≡ m0 (mod L0). For the inductive step, suppose
n ≡ m0 (mod Li−1). We want to show that n ≡ m0 (mod Li). Let Qi be a set of prime
ideals q � N satisfying the following

(i) Norm(q) = q is a rational prime ≡ 1 (mod 5);
(ii) 	i | (q − 1) and (q − 1) | Li.
Let

Mi = {0 ≤ m ≤ Li − 1 : m ≡ m0 (mod Li−1)}.
Thus n ≡ m (mod Li) for some uniquem ∈ Mi. Moreover, it follows from (i) and (ii) that
ε2n ≡ ε2m (mod q) for all q ∈ Qi. Define

Bm(Qi) := gcd{bq(m) − aq(E) : q ∈ Qi}.
By Lemma 7.2, p | Bm(Qi). We wrote a simple Magma script which for each 1 ≤ i ≤ 164
and for each m0 ∈ {−2,−1, 2} found a set Qi satisfying (i), (ii), such that, for all m ∈ Mi
withm �≡ m0 (mod Li), the integer Bm(Qi) is non-zero and divisible only by the primes 2
and 3. Our computation took a total of around 45 minutes. This proves the inductive step
and completes the proof. �	

9 Linear forms in three logs
For any algebraic number α of degree d over Q, we define the absolute logarithmic height
of α via the formula

h(α) = 1
d

⎛
⎝log |a0| +

d∑
i=1

log max
(
1, |α(i)|

)⎞⎠ , (23)

where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i) are
the conjugates of α in C. The following is the main result (Theorem 2.1) of Matveev [16].
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Theorem 2 (Matveev) Let K be an algebraic number field of degree D over Q and put
χ = 1 if K is real, χ = 2 otherwise. Suppose that α1,α2, . . . ,αn0 ∈ K∗ with absolute
logarithmic heights h(αi) for 1 ≤ i ≤ n0, and suppose that

Ai ≥ max{Dh(αi),
∣∣log αi

∣∣}, 1 ≤ i ≤ n0,

for some fixed choice of the logarithm. Define

� = b1 log α1 + · · · + bn0 log αn0 ,

where the bi are integers and set

B = max{1,max{|bi|Ai/An0 : 1 ≤ i ≤ n0}}.
Define, with e := exp(1), further,

� = A1 · · ·An0 ,

C(n0) = C(n0,χ ) = 16
n0!χ

en0 (2n0 + 1 + 2χ )(n0 + 2)(4n0 + 4)n0+1 (en0/2)χ ,

C0 = log
(
e4.4n0+7n5.50 D2 log(eD)

)
and W0 = log (1.5eBD log(eD)) .

Then, if log α1, . . . , log αn0 are linearly independent over Z and bn0 �= 0, we have

log |�| > −C(n0)C0W0 D2 �.

From (10), we have that
√
5yp − ε2n = 2

√
5 − ε2n

and so

0 < � = p log y + log(
√
5) − 2n log ε <

2
√
5

ε2n
<

2.1
yp

. (24)

We apply Theorem 2 with

D = 2, χ = 1, n0 = 3, b1 = 1, α1 = √
5, b2 = −2n, α2 = ε, b3 = p, α3 = y,

where, from Lemma 3.5, we have y ≥ 19. We may thus take

A1 = log 5, A2 = log ε, A3 = 2 log y and B = max
{
n log ε

log y
, p
}

= p.

Since

C0(3) = 218 · 32 · 5 · e4 < 6.45 × 108, C0 = log
(
e20.2 · 35.5 · 4 log(4e)

)
< 28.5

and

W0 = log (3ep log(2e)) < 2.63 + log p

we may therefore conclude that

log� > −1.139 · 1011 (2.63 + log p) log y.

From (24), we thus have that

p log y < 1.139 · 1011 (2.63 + log p) log y + log(2.1),
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and hence
p

2.63 + log p
< 1.139 · 1011 + log(2.1)

(2.63 + log p) log y
< 1.14 · 1011,

whereby p < 3.6 × 1012.
Our immediate goal is to sharpen this inequality by proving that p < 1011. We will

assume for the remainder of this section that
1011 ≤ p < 3.6 × 1012. (25)

We begin by appealing to a sharper but less convenient lower bound for linear forms in
three complex logarithms, due to Mignotte (Proposition 5.1 of [17]).

Theorem 3 (Mignotte) Consider three non-zero algebraic numbers α1, α2 and α3, which
are either all real and > 1, or all complex of modulus one and all �= 1. Further, assume
that the three numbers α1,α2 and α3 are either all multiplicatively independent, or that
two of the numbers are multiplicatively independent and the third is a root of unity. We
also consider three positive rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the
linear form

� = b2 log α2 − b1 log α1 − b3 log α3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are
all real or all purely imaginary. Suppose further that

b2| log α2| = b1 | log α1| + b3 | log α3| ± |�|
and put

d1 = gcd(b1, b2) and d3 = gcd(b3, b2).

Let ρ ≥ e be a real number. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ| log αi| − log |αi| + 2D h(αi), i ∈ {1, 2, 3},
where D = [Q(α1,α2,α3) : Q]

/
[R(α1,α2,α3) : R], and assume further that

� := a1a2a3 ≥ 2.5 and a := min{a1, a2, a3} ≥ 0.62.

Let m and L be positive integers with m ≥ 3, L ≥ D+ 4 and set K = [m�L]. Let χ be fixed
with 0 < χ ≤ 2 and define

c1 = max{(χmL)2/3,
√
2mL/a}, c2 = max{21/3 (mL)2/3, L

√
m/a}, c3 = (6m2)1/3L,

Ri = [cia2a3] , Si = [cia1a3] and Ti = [cia1a2] ,

for i ∈ {1, 2, 3}, and set

R = R1 + R2 + R3 + 1, S = S1 + S2 + S3 + 1 and T = T1 + T2 + T3 + 1.

Define

c = max
{

R
La2a3

,
S

La1a3
,

T
La1a2

}
.

Finally, assume that the quantity
(
KL
2 + L

4 − 1 − 2K
3L

)
log(ρ) − (D + 1) log L − 3gL2c�

−D(K − 1) log B − 2 logK + 2D log 1.36
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is positive, where

g = 1
4

− K 2L
12RST

and B = e3c2�2L2

4K 2d1d3

(
b1
a2

+ b2
a1

)(
b3
a2

+ b2
a3

)
.

Then either

log� > −(KL + log(3KL)) log(ρ), (26)

or the following condition holds :
either there exist non-zero rational integers r0 and s0 such that

r0b2 = s0b1 (27)

with

|r0| ≤ (R1 + 1)(T1 + 1)
M − T1

and |s0| ≤ (S1 + 1)(T1 + 1)
M − T1

, (28)

where

M = max
{
R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χ τ

1/2
1

}
,

τ1 = (R1 + 1)(S1 + 1)(T1 + 1),

or there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, (29)

which also satisfy

|r1s1| ≤ gcd(r1, s1) · (R1 + 1)(S1 + 1)
M − max{R1, S1} ,

|s1t1| ≤ gcd(r1, s1) · (S1 + 1)(T1 + 1)
M − max{S1, T1}

and

|r1t2| ≤ gcd(r1, s1) · (R1 + 1)(T1 + 1)
M − max{R1, T1} .

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

We apply this result with
b2 = p, α2 = y, b1 = 1, α1 = √

5, b3 = 2n and α3 = ε,
so that we may take

D = 2, d1 = 1, d3 ∈ {1, p}, a1 = ρ + 3
2

log 5, a2 = (ρ + 3) log y

and a3 = (ρ + 1) log(ε), whence a = a3.
Notice that, in our situation, (27) becomes the equation r0p = s0 fromwhich necessarily

|s0| ≥ p > 1011, whereby (28) implies that
(S1 + 1)(T1 + 1)

M − T1
≥ 1011. (30)

If instead we have (26), then inequality (24) implies that
p log y < (KL + log(3KL)) log(ρ) + log(2.1). (31)

We will choose L, m, ρ and χ to contradict both (30) and (31), whereby we necessarily
have (29). Specifically, we set

L = 485, m = 20, ρ = 5.7 and χ = 2,
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so that

K = [
20 · 485 · 4.35 log(5) · 6.7 log(ε) · 8.7 log y] ,

whereby

1904870 log y < K ≤ 1904871 log y.

We have

c1 < 721.996, c2 < 1207.96, c3 < 6493.5,

R1 < 20252 log y, R2 < 33883 log y, R3 < 182142 log y,

S1 = 16297, S2 = 27266, S3 = 146572,

T1 < 43977 log y, T2 < 73576 log y, T3 < 395514 log y,

so that

R < 236277 log y + 1, S = 190136, T < 513067 log y + 1,

and

c < 17.37, g < 0.244 and B < 0.3 p2.

We check that(
KL
2

+ L
4

)
log(ρ) + 4 log(1.36) > 8.03 · 108 log y,

while, using that p < 3.6 · 1012 and y ≥ 19,
(
1 + 2K

3L

)
log(ρ) + 3 log L + 3gL2c� + 2(K − 1) log B + 2 logK < 8.021 · 108 log y.

It follows that the hypotheses of Theorem 3 are satisfied. Since we may check that M >

7.6 · 106 log y, we have that
(S1 + 1)(T1 + 1)

M − T1
< 95

contradicting (30). Also,

(KL + log(3KL)) log(ρ) + log(2.1) < 5 · 109,
contradicting (31).
We may thus conclude that there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0,

such that

(t1 + 2nr1)s1 = r1t2p, (32)

where, again using thatM > 7.6 · 106 log y,
∣∣∣∣

r1s1
gcd(r1, s1)

∣∣∣∣ ≤ 43 and
∣∣∣∣

s1t1
gcd(r1, s1)

∣∣∣∣ ≤ 94.

Since, in all cases, we assume that p > 1011, we thus have

max{|r1|, |s1|, |t1|} < p,

whence, from the fact that gcd(r1, t1) = gcd(s1, t2) = 1, we have r1 = ±s1 and so t1 +
2r1n = ±t2p. Without loss of generality, we may thus write
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u + 2r|n| = tp,

where r = |r1| and t = |t2| are positive integers, u = ±t1, r ≤ 43 and |u| ≤ 94.
We can thus rewrite the linear form

� = p log y + log(
√
5) − 2n log ε

as a linear form in two logarithms

� = p log
( y

εt/r

)
+ log

(
51/2εu/r) . (33)

We are in position to apply the following sharp lower bound for linear forms in two
complex logarithms of algebraic numbers, due to Laurent (Theorem 2 of [15]).

Theorem 4 (Laurent) Let α1 and α2 be multiplicatively independent algebraic numbers,
h, ρ and μ be real numbers with ρ > 1 and 1/3 ≤ μ ≤ 1. Set

σ = 1 + 2μ − μ2

2
, λ = σ log ρ, H = h

λ
+ 1

σ
,

ω = 2
(
1 +

√
1 + 1

4H2

)
, θ =

√
1 + 1

4H2 + 1
2H

.

Consider the linear form � = b2 log α2 − b1 log α1, where b1 and b2 are positive integers.
Put

D = [Q(α1,α2) : Q] / [R(α1,α2) : R]

and assume that

h ≥ max
{
D
(
log

(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ,

D log 2
2

}
,

ai ≥ max
{
1, ρ| log αi| − log |αi| + 2Dh(αi)

}
(i = 1, 2),

and

a1a2 ≥ λ2.

Then

log |�| ≥ −C
(
h + λ

σ

)2
a1a2 − √

ωθ

(
h + λ

σ

)
− log

(
C ′
(
h + λ

σ

)2
a1a2

)
(34)

with

C = μ

λ3σ

⎛
⎝ω

6
+ 1

2

√
ω2

9
+ 8λω5/4θ1/4

3√a1a2H1/2 + 4
3

(
1
a1

+ 1
a2

)
λω

H

⎞
⎠

2

and

C ′ =
√
Cσωθ

λ3μ
.

We apply this result with

b1 = 1, b2 = p, α1 = 51/2εu/r , α2 = εt/r

y
,
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so that D = 2r,

h(α1) ≤ log 5
2

+ |u|
2r

log ε and h(α2) ≤ log y + t
2r

log ε.

We take μ = 1 and ρ = e4, so that σ = 1 and λ = 4. From (33), inequality (24), |u| ≤ 94,
1 ≤ r ≤ 43, and p > 1011, we have that

∣∣∣∣log y − t
r
log ε

∣∣∣∣ <
1
p

(
2.1
yp

+ log
(
51/2ε94

))
< 10−9

and hence may choose

a1 = 2562 and a2 = 6r log y + 1.

We have

2r
(
log

(
1

6r log y + 1
+ p

2562

)
+ log 4 + 1.75

)
+ 0.06 < 2r log p

whence

h = 2r log p

is a valid choice for h. A short computation reveals that

C < 0.029, C ′ < 0.044,

and hence from (34), y ≥ 19 and p > 1011,
log |�|
log y

> −1784 (r log p + 2)2 r − 1.39 (r log p + 2) − 3 − 0.7 log (r log p + 2) − log r
log y

.

From (24),
log |�|
log y

<
log 2.1
log y

− p < 0.26 − p

whereby it follows that

p < 1784 (r log p + 2)2 r + 1.39 (r log p + 2) + 3.26 + 0.7 log (r log p + 2) + log r
log y

and so, since r ≤ 43, we find that p < 9.1 · 1010, contradicting (25).

10 Themethod of Kraus
We letM1 be given by (22). The aim of this section is to prove the following proposition,
which improves on Lemma 8.1.

Proposition 10.1 Let (n, y, p) be a solution to (10) with p ≥ 5 prime. Then there is an
m0 ∈ {−2,−1} such that

(i) ρEn,p ∼ ρE,p where E = Em0 ;
(ii) n ≡ m0 (modM1);
(iii) n ≡ m0 (mod p).

Observe that this proposition improves over Lemma8.1 in twoways. First the elliptic curve
E2, corresponding to the ‘pseudo-solution’ F4 + 2 = 5, is eliminated. But also we know
that n ≡ m0 (mod p). This will allow us to rewrite our linear form in three logarithms
as a linear form in two logarithms (Sect. 11) and deduce a much sharper bound for the
exponent p.
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In view of Section 9 we need only prove Proposition 10.1 for prime exponents 5 ≤ p <

1011. Fixm0 ∈ {−2,−1, 2} and suppose n ≡ m0 (modM1). Write E = Em0 . By Lemma 8.1
we know that ρEn,p ∼ ρE,p. We shall give a computational criterion, modelled on ideas of
Kraus [14] (see also [5, Lemma 7.4]) which allows us, for each 5 ≤ p < 1011, to deduce
a contradiction when m0 = 2, and to conclude that n ≡ m0 (mod p) when m0 = −2 or
m0 = −1.
Let k be a positive integer satisfying the following:

(I) q = kp + 1 is a prime with q ≡ ±1 (mod 5).

Let θi be the two square roots of 5 modulo q. Then qOK = q1q2 where the prime ideals
qi are given by qi = (q,

√
5 − θi). Observe that

OK /q1 = Fq = OK /q2.

Moreover,
√
5 ≡ θi (mod qi).

If we write

ε1 = (1 + θ1)/2,

then it follows that

ε ≡ ε1 (mod q1).

As θ2 = −θ1, we know that

ε ≡ −1/ε1 (mod q2).

If q | y then En has multiplicative reduction at both q1 and q2. In this case by Lemma 7.2
we know that aqi (E) ≡ ±(q + 1) ≡ ±2 (mod p). We impose the following condition:

(II) aq1 (E) �≡ ±2 (mod p) or aq2 (E) �≡ ±2 (mod p).

From condition (II) we have q � y. Let � be a primitive root (i.e. a cyclic generator) for F∗
q ,

and let ω = �p. Let

Yq,p = {ωr : 0 ≤ r ≤ k − 1}.
Observe that the set Yq,p has cardinality k and that yp (mod q) ∈ Yq,p. In practice we
choose k to be small so that (I) and (II) are satisfied. This is one of the key ideas underlying
the method of Kraus.
Now fix � ∈ Yq,p and suppose yp ≡ � (mod q). Note that

√
5 ≡ θ1 (mod qi). By (11)

we see that ε2n (mod q1) is a root (in Fq) of the quadratic polynomial

P� = T 2 + (2 − � ) · θ1 · T − 1.

We will write

Tq,p = {t ∈ Fq : P� (t) = 0 for some � ∈ Yq,p, and t is a square}.
Thus ε2n (mod q1) belongs to Tq,p. The set Tq,p has at most 2k elements. We will reduce
its size using what we know about n. Recall that n ≡ m0 (modM1) and therefore 2n ≡
2m0 (mod 2M1). Let v = (q−1)/ gcd(q−1, 2M1). It follows that (ε2n/ε2m0 )v ≡ 1 (mod q).
We deduce that ε2n (mod q1) belongs to

Sq,p(m0) = {t ∈ Tq,p : (t/ε2m0
1 )v ≡ 1 (mod q)}.
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Lemma 10.2 With notation and assumptions as above, let q be a prime satisfying condi-
tions (I) and (II). Let

Rq,p(m0) = {t ∈ Sq,p : aq(Gt ) ≡ aq1 (E) and aq(Ht ) ≡ aq2 (E) (mod p)},
where the elliptic curves Gt/Fq and Ht/Fq are given by

Gt : Y 2 = X3 + 2(t + θ1)X2 + X and Ht : Y 2 = X3 + 2(t−1 + θ2)X2 + X,

respectively. Then ε2n (mod q1) belongs toRq,p.

Proof Let t ∈ Sq,p satisfy t ≡ ε2n (mod q1). ThenGt is the reduction of En modulo q1, and
Ht is the reduction of En modulo q2. In particular, aq1 (En) = aq(Gt ) and aq2 (En) = aq(Ht ).
But by Lemma 7.2 we have aqi (En) ≡ aqi (E) for i = 1, 2. It follows that aq(Gt ) ≡
aq1 (E) (mod p) and aq(Ht ) ≡ aq2 (E) (mod p). �	

Finally we shall need one more assumption on q.

(III) ε2k1 �≡ 1 (mod q).

Lemma 10.3 Let (n, y, p) be a solution to (10) with p ≥ 5.

(a) Let q be a prime satisfying (I), (II) and suppose that Rq,p(2) = ∅. Then n �≡
2 (modM1).

(b) Let q be a prime satisfying (I), (II), (III). Suppose n ≡ m0 (modM1)where m0 = −2 or
−1. Suppose every t ∈ Rq,p(m0) satisfies (t/ε2m0

1 ) ≡ 1 (mod q). Thenn ≡ m0 (mod p).

Proof Part (a) follows immediately fromtheabove. Forpart (b), recall that ε ≡ ε1 (mod q1)
and also that the reduction of ε2n modulo q1 belongs to Rq,p(m0). From the hypothesis
in (b), we have ε

2(n−m0)
1 ≡ 1 (mod q). However q = 2kp + 1 and by assumption (III),

ε2k1 �≡ 1 (mod q). Thus p | (n − m0) as required. �	

10.1 Proof of Proposition 10.1

In Section 9 we showed that if n �= −2, −1, then p < 1011. We may therefore assume this
bound. We wrote a short Magma script which for each prime in the range 5 ≤ p < 1011,
searches for primes q satisfying (I), (II), (III) and applies the criteria in Lemma10.3 to prove
Proposition 10.1. The total processor time for the proof is roughly 1200 days, although
the computation, running on a 2499MHz AMDOpterons, was spread over 50 processors,
making the actual computation time about 24 days.

11 Linear forms in two logs
Lemma 11.1 Let (n, y, p) be a solution to (10) with n �= −1, −2. Then p < 5000.

Let us assume that p > 5000. Note that F−2n = −F2n. Let N = |n| and Y = |y|. Thus
F2N ± 2 = Y p. This can be rewritten as

ε2N√
5Y p

− 1 = ε−2N ∓ 2
√
5√

5Y p
.

Let

� = 2N log ε − log
√
5 − p log Y.



Bennett et al. Res. Number Theory            (2019) 5:15 Page 21 of 27    15 

Using Lemma B.2 of [22], we have

|�| <
2.1
Y p ,

and therefore

log|�| < log 2.1 − p log(Y ). (35)

By Proposition 10.1 we have n ≡ −1, −2 (mod p). Thus we can write N = kp + δ where
δ = ±1, ±2. Therefore the linear form in three logarithms � may now be rewritten as a
linear form in two logarithms,

� = p log(ε2k/Y ) − log(
√
5/ε2δ).

From (35), |δ| ≤ 2, Y ≥ 19 and p > 5000, we have that
∣∣2k log ε − log Y

∣∣ <
16
p

< 0.0032. (36)

We will apply Theorem 4 with

b1 = 1, b2 = p, α1 = √
5/ε2δ , α2 = ε2k/Y, and D = 2.

We have that

h(α1) ≤ 1
2
log

(
15
2

+ 7
2
√
5
)

< 1.365

and

h(α2) ≤ max{log Y, 2k log ε} < 1.01 log Y,

whereby we can choose, from (36),

a1 = (ρ − 1) log(
√
5 ε4) + 5.46

and

a2 = 0.0032 (ρ − 1) + 4.04 log Y.

Lemma 11.2 Suppose n �= −1, −2. Then α1, α2 are multiplicatively independent.

Proof If α1, α2 are multiplicatively dependent then y = ±5r for some r. This contradicts
Lemma 3.4. �	
We now choose ρ = 23 and check that, in all cases, inequality (34) contradicts (35).

This completes the proof of Lemma 11.1.

12 Deriving the unit equation
With a reasonably good upper bound upon p in hand, our objective now is to obtain a
bound for n in terms of p (which we will obtain in the next section). Towards this goal
we reduce (10) to a unit equation. We start with (11), where we recall that x = ε2n + √

5.
Thus

(ε2n + √
5 + √

6)(ε2n + √
5 − √

6) = √
5 · ε2n · yp. (37)

Let K = Q(
√
5) and K ′ = K (

√
6). Write O and O′ for the rings of integers of K and K ′;

these both have class number 1. As gcd(6, y) = 1 (Lemma 3.3), the two factors on the
left-hand side of (37) are coprime in O′. The prime ideal

√
5O splits as a product of two

primes inO′:
√
5O′ = ϕ1O′ · ϕ2O′
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where

ϕ1 = −2 + √
5 +

(
1 − √

5
2

)√
6 and ϕ2 = −2 + √

5 −
(
1 − √

5
2

)√
6.

Let

δ = √
5 + √

6 and μ = 5 + 2
√
6.

Then ε, δ, μ is a system of fundamental units for O′, and the torsion unit group is just
{±1}. It follows that

ε2n + √
5 + √

6 = εa · δb · μc · ϕi · αp (38)

for some i ∈ {1, 2}, a, b, c ∈ Z and α ∈ O′. The exponents a, b, cmatter to us only modulo
p, as we can absorb any p-th power into the term αp.
We now write M2 = lcm(M1, p), where M1 is given by (22). By Proposition 10.1 we

know that n ≡ −2 or −1 (modM2).

Lemma 12.1 Let m0 ∈ {−2,−1}. Let (n, y, p) be a solution to (10) with p ≥ 5, and
n ≡ m0 (modM2). Then

ε2n + √
5 + √

6 =
(
ε2m0 + √

5 + √
6
)

· αp (39)

for some α ∈ OK .

Proof The lemma certainly holds if n = −2 or −1. We may therefore suppose n �= −2,
−1, whence, by Lemma 11.1, that p < 5000. We observe that

ε−4 + √
5 + √

6 = −1 · ε−2 · μ · ϕ1,

and

ε−2 + √
5 + √

6 = ε−1 · δ · ϕ2.

Thus, ifm0 = −2, then we want to show, in (38), that i = 1 and

(a, b, c) ≡ (−2, 0, 1) (mod p),

while, ifm0 = −2, we want to show that i = 2 and

(a, b, c) ≡ (−1, 1, 0) (mod p).

Observe that

NormK ′/K (ε) = ε2, NormK ′/K (δ) = −1 and NormK ′/K (μ) = 1.

Taking norms on both sides of (38) and comparing with (37) we deduce that 2a ≡
2n (mod p) and so a ≡ n (mod p). As p | M2 we have derived the required congruences
for a.
Now let q be a prime ideal of K ′ satisfying the following conditions:

(i) q has degree 1; we denote by q the rational prime below q, so Norm(q) = q.
(ii) p | (q − 1).
(iii) (q − 1) | M2.

Fix a choice of a primitive root � for F∗
q = F∗

q and let logq : F∗
q → Z/pZ be the compo-

sition of the discrete logarithm F∗
q → Z/(q − 1)Z induced by � with the quotient map
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Z/(q− 1)Z → Z/pZ; it is here that we make use of condition (ii). Now n ≡ m0 (modM2)
wherem0 = −2 or −1. By assumption (iii) we have ε2n ≡ ε2m0 (mod q). Applying logq to
(38) we obtain

b logq(δ) + c logq(μ) ≡ logq(ε
2m0 + √

5 + √
6) − m0 logq(ε) − logq ϕi (mod p).

It follows that for each choice of q satisfying conditions (i), (ii) and (iii), we obtain a linear
congruence for b and c modulo p. We wrote a Magma script which did the following. For
each prime 5 ≤ p < 5000, each choice m0 ∈ {−2,−1} and i ∈ {1, 2}, the script found
five prime ideals q satisfying (i), (ii) and (iii), and solved the corresponding linear system
of congruences for b and c. We found that for m0 = −2 the system had precisely one
solution when i = 1, and that solution is (b, c) ≡ (0, 1) (mod p), and no solution when
i = 2. Likewise we found that for m0 = −1 the system had precisely one solution when
i = 2, namely (b, c) ≡ (1, 0) (mod p), and no solution when i = 1. This completes the
proof. �	

Next we let

κ = (ε2m0 + √
5 + √

6) · (√6 − √
5).

Then we can rewrite (39) as

− (
√
5 + √

6) · ε2n = 1 − κ · αp. (40)

The left hand-side is a unit of K ′. Let

τj = 1 − ζ j · p√κ · α, ζ = exp(2π i/p)

for j = 0, . . . , p − 1. It follows that τj is a unit in the ring of integers of Kj = K ′(ζ j · p√κ).
Let

ν0 = ζ 2 − ζ , ν1 = 1 − ζ 2, ν2 = ζ − 1.

We obtain the unit equation

ν0τ0 + ν1τ1 + ν2τ2 = 0. (41)

13 A bound for n
In this section we derive a bound for the unknown index n in (10). This bound will follow
from the bounds on the heights of the solutions to the unit equation (41). In order to obtain
bounds for solutions to unit equations we closely follow [6]. For this wemerely need some
information about the number fields containing these solutions. Recall K ′ = Q(

√
5,

√
6)

and Kj = K ′(ζ j · p√κ). Let L = K ′( p√κ , ζ ) = K0(ζ ).

Lemma 13.1

[Kj : Q] = 4p, [L : Q] =
⎧⎨
⎩
40 if p = 5

4p(p − 1) if p > 5.

Moreover, the signature of Kj is (4, 2p − 2).

Proof The element κ ∈ O′ generates a prime ideal of norm 5 or 19 depending on whether
m0 = −2 or−1. Thus [Kj : K ′] = p, and so [Kj : Q] = 4p by the tower law. To deduce the
signature we observe that for each of the four embeddings σ : K ′ → R, there is exactly
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one real choice for the p-th root of σ (κ), and (p − 1)/2 complex conjugate pairs of such
choices.
Next we compute Q(ζ )∩Kj . Since Q(ζ ) has degree p− 1, which is not divisible by p, we

see that Q(ζ ) ∩ Kj = Q(ζ ) ∩ K ′. If p > 5 then the intersection is Q, as the intersection is
unramified at all primes. If p = 5 then the intersection in Q(

√
5). The assertion regarding

[L : Q] follows. �	
We shall need a bound for the absolute discriminant of Kj ; such a bound is furnished by

the following lemma.

Lemma 13.2 Write �Kj for the absolute discriminant of Kj. If m0 = −2 then �Kj divides
26p · 32p · 53p−1 · p4p. If m0 = −1 then �Kj divides 26p · 32p · 52p · 19p−1 · p4p.
Proof The absolute discriminant of K ′ is �K ′ = 14400 = 26 × 32 × 52. The extension
Kj/K ′ is generated by a root of the polynomial xp − κ , and hence its relative discriminant
ideal divides the discriminant of this polynomial which is ±ppκp−1. We now apply the
following standard formula [7, Theorem 2.5.1] for the absolute discriminant

�Kj = ±NormK ′/Q(�Kj/K ′ ) · �
[Kj :K ′]
K ′ .

The result follows as NormK ′/Q(κ) = −5 or 19 depending on whetherm0 = −2 or −1. �	
Recall thatwe are interested in bounding the heights of the solutions to the unit equation

(41) for m0 = −2, −1 and 5 ≤ p < 5000 prime. For each possible choice of m0 and p,
Lemma 13.2 gives us an upper bound for the absolute value of the discriminant ofKj . Now
[6, Section 5], based on a theorem of Landau, gives a computational method for deriving
an upper bound for the regulators RKj . As an illustration, we mention that with p = 4999
(the largest prime in our range) the bounds we obtain for RKj are

RKj < 2.2 × 1064529, RKj < 1.4 × 1066241

form0 = −2, −1 respectively.
We now explain how to obtain a bound for n. Proposition 8.1 of [6] gives positive

numbers A1, A2 (depending on the regulators and unit ranks of the Kj) such that

h(ν2τ2/ν0τ0) ≤ A2 + A1 log(H + max{h(νjτj) : j = 0, 1, 2}), (42)

where H is an upper bound for the heights h(νj). We shall make repeated use of the
following properties for absolute logarithmic heights (see for example [6, Lemma 4.1]):

(i) if r is an integer and β is a non-zero algebraic number then h(βr) = |r| · h(β);
(ii) if β1, . . . ,βm are algebraic numbers then

h(β1 · · · · βm) ≤ h(β1) + · · · + h(βm) and h(β1 + · · · + βm)

≤ logm + h(β1) + · · · + h(βm).

As each νj is a sum of two roots of unity, (ii) implies that h(νj) ≤ log 2, so we can take
H = log 2. By the definition of logarithmic height

h(τ2/τ0) = h(ν2τ2/ν0τ0)

since ν2/ν0 = ζ−1 is a root of unity. We let Y = h(α · p√κ). Recall that τj = 1− ζ j ·α · p√κ .
Thus

α · p√κ = 1 + ζ 2 − 1
τ2/τ0 − ζ 2
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so

Y ≤ 3 log 2 + h(τ2/τ0).

Observe that

h(νjτj) ≤ 2 log 2 + h(τj) = 2 log 2 + h(1 − ζ j · α · p√κ) ≤ Y + 3 log 2.

From (42) we deduce

Y ≤ A2 + 3 log 2 + A1 log(Y + 4 log 2). (43)

By Lemma 9.1 of [6] we have

Y ≤ 2A1 logA1 + 2A2 + 10 log 2.

Now that we have obtained a bound for Y = h(α · p√κ) we deduce a bound for n. From
(40)

|n| · log(ε) ≤ pY + log 2 + 1
2
log(

√
5 + √

6),

which yields a completely explicit bound for n. As an illustration with p = 4999, we obtain
the bounds

|n| ≤ 2.57 × 10398775 and |n| ≤ 1.01 × 10402199,

respectively for m0 = −2 and m0 = −1. The corresponding upper bounds for smaller
values of p are, in each case, rather less.

14 Completing the proof of Theorem 1
Lemma 14.1 Suppose p ≤ 79. Then n = −2, −1.

Proof Proposition 10.1 tells us that n ≡ m0 (modM1) where M1 is given by (22), and
m0 = −2 or −1. In fact

M1 ≈ 7.12 × 104298.

We computed the upper bounds upon n for all p < 5000. We found that for p ≤ 79 we
have

|n| < 1.14 × 104196 and |n| < 2.75 × 104254 ,

respectively form0 = −2 or −1. Thus for p ≤ 79, n = −2 or −1. �	

The bounds for n we obtain as in the previous section are larger than M1 for the
remaining values 83 ≤ p < 5000. To complete the proof of Theorem 1, we will show, for
m0 ∈ {−2,−1} and for each of the remaining p, the existence of some M′ that is much
larger than the corresponding bound for n, and such that n ≡ m0 (modM′). For this we
shall use a very simple sieve. Fix a prime 83 ≤ p < 5000 and a value m0 ∈ {−2,−1}. Let
3 ≤ 	 < 104 be a prime, distinct from p. Suppose we know that n ≡ m0 (modM′), where
M′ is a large smooth integer, certainly divisible byM1. Let r = ord	(M′).Wewant to show
that n ≡ m0 (mod 	r+1) and so n ≡ m0 (mod 	M′). We look for primes q ≡ ±1 (mod 5)
of the form q = kp	r+1 + 1, such that kp	r | M′ (recall that M1 | M is divisible by all
primes < 104 and so certainly divisible by p). LetQ be a (small) set of such primes. Let

S := {m0 + t · 	r : 0 ≤ t ≤ 	 − 1}.
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Then n ≡ m (mod 	r+1) for some unique value m ∈ S . We would like to obtain a
contradiction for each possible m ∈ S except for m = m0. It would then follow that
n ≡ m0 (mod 	r+1) and so n ≡ m0 (mod 	M′) as required. Fix m ∈ S , m �= m0. As
q = kp	r+1 + 1 and kp	r | M′, the assumptions n ≡ m (mod 	r) and n ≡ m0 (modM′)
force n ≡ nq(m) (mod q − 1) for some unique congruence class n(m, q) (which depends
on our choices of q and m ∈ S). Now from Binet’s formula, as q ≡ ±1 (mod 5), we have
F2n ≡ F2n(m,q) (mod q). Since F2n + 2 = yp we have

(F2n(m,q) + 2)k	r+1 ≡ 0 or 1 (mod q). (44)

If we find some prime q ∈ Q such that (44) fails, then we will have eliminated that
particular value ofm. Once we have eliminated all possibilities for allm ∈ S ,m �= m0, we
will have deduced n ≡ m0 (mod 	M′) and we can replaceM′ by 	M′.
We wrote a simple Magma script which keeps increasing the exponents of the primes

3 ≤ 	 < 104, 	 �= p in M′ until M′ is sufficiently large to deduce that n = m0. The total
processor time for the proof is roughly 70 days, although the computation, running on a
2499MHzAMDOpterons, was spread over 50 processors, making the actual computation
time about 1.4 days. This completes the proof of Theorem 1.
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