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Abstract. We discuss a new algorithm for finding all elliptic curves over Q
with a given conductor. Though based on (very) classical ideas, this approach
appears to be computationally quite efficient. We provide details of the output

from the algorithm in case of conductor p or p2, for p prime, with comparisons

to existing data.

1. Introduction

Elliptic curves are ubiquitous objects in pure mathematics, particularly in Num-
ber Theory and Algebraic Geometry. It is therefore of some interest to be able
to generate or tabulate elliptic curves with desired properties. In this paper, we
will describe an algorithm for computing models for all elliptic curves with integer
coefficients and given conductor. This last quantity is an invariant that provides in-
formation about how a given elliptic curve behaves over finite fields Fp, as p ranges
over all primes. For the purposes of this paper, we will mostly restrict our attention
to the case of conductor p or p2, for prime p.

If K is a number field and S is a finite set of places of K, containing the infinite
places, then a theorem of Shafarevich [42] from 1963 ensures that there are at most
finitely many K-isomorphism classes of elliptic curves defined over K with good
reduction outside S. In the simplest case, where K = Q, an effective version of this
result was proved by Coates [12] in 1970, using bounds for linear forms in p-adic
and complex logarithms. Early attempts to make such results explicit, for fixed sets
of “small” primes S, have much in common with the arguments of [12], in that they
(often) reduce the problem to one of solving a number of Thue-Mahler equations.
These are Diophantine equations of the form

(1) F (x, y) = u,

where F is a binary form (of degree at least 3) and u is an S-unit, that is, an integer
whose prime factors all lie in S (strictly speaking, for K = Q, we are assuming here
that 2 ∈ S). In case the form F is reducible in Z[x, y] (which turns out to be
the case when the elliptic curves we are considering have at least one rational 2-
torsion point), equation (1) typically is somewhat less challenging to solve. The
earliest examples where a complete determination of all elliptic curves E/Q with
good reduction outside a given set S was made were for S = {2, 3} (by Coghlan
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[13] and Stevens (see e.g. [7])), and for S = {p} for certain small primes p (by e.g.
Setzer [41] and Neumann [35]).

The first case where such a determination was made with corresponding forms
in equation (1) irreducible was for S = {11}, by Agrawal, Coates, Hunt and van
der Poorten [1]. The reduction to (1) in this situation is not especially problemat-
ical, but subsequent computations (involving the arguments of [12] together with
a variety of techniques from computational Diophantine approximation) are quite
involved. For whatever reason, there are very few if any subsequent attempts in
the literature to find elliptic curves of given conductor via Thue-Mahler equations.
Instead, one finds a wealth of results on a completely different approach to the
problem, using modular forms. This method relies upon the Modularity theorem
of Breuil, Conrad, Diamond and Taylor [9], which was still a conjecture (under var-
ious guises) when these ideas were first implemented. Much of the success of this
approach can be attributed to Cremona (see e.g. [14], [15]) and his collaborators,
who have devoted decades of work to it (and are responsible for the current state-of-
the-art). To apply this method to find all E/Q of conductor N , one computes the
space of Γ0(N) modular symbols and the action of the Hecke algebra on it, and then
searches for one-dimensional rational eigenspaces. After calculating a large number
of Hecke eigenvalues, one is then able to extract corresponding elliptic curves. For
a detailed description of how this technique works, the reader is directed to [15].
Via this method (assuming the results of [9]), all E/Q of conductor N ≤ 380000
been determined by Cremona, as of April 2016.

In this paper, we will instead return to techniques based upon solving Thue-
Mahler equations. Our goal is to provide a treatment that makes the connection
between the conductors in question and the corresponding equations (1) straight-
forward, and the subsequent Diophantine approximation problem as painless as
possible. We will rely upon a number of results from classical invariant theory
and, for purposes of clarity and simplicity, focus our attention on curves with bad
reduction at a single prime (i.e. curves of conductor p or p2 for p prime). We will
unconditionally find all curves of prime conductor up to 2 · 109 (1010 in the case
of curves of positive discriminant) and conductor p2 for p ≤ 106. Conditionally,
we extend these computations, in the case of prime conductor p, to p ≤ 1012. The
outline of our paper is as follows. In Section 2, we will outline some basic facts and
notation about elliptic curves. In Section 3, we will discuss the invariant theory
of cubic forms and state our main theorem which provides our algorithm. Section
4 is devoted to the actual computation of the cubic forms we require. In Section
5, we discuss the special cases where N = p or p2 for p prime while, in Section 6,
we provide a variety of computational details for these cases and an outline of a
heuristic approach to the problem. Finally, in Section 7, we give an overview of
our output, comparing it to previous results in the literature. In this paper, we
concentrate on results specialized to the cases of conductor p and p2, omitting both
more general considerations and any proofs. More general results are described in
forthcoming work of the authors [5]. Readers interested in the proofs of a number
of results stated here as well as more extensive data should consult that paper. We
are in the process of making our data more easily available through the LMFDB.
Until this is completed, anyone interested should feel free to contact the authors.
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2. Elliptic curves

Let S = {p1, p2, . . . , pk} be a set of rational primes. Suppose that we wish to
find models for isomorphism classes of elliptic curve over Q with given conductor
N = pα1

1 · · · p
αk

k , where the αi are positive integers. Such a curve has a minimal
model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai ∈ Z and discriminant ∆E = (−1)δpβ1

1 · · · p
βk

k , where the βi ≥ αi are
again positive integers and δ ∈ {0, 1}. Writing

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6,

c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6,

we find that

1728∆E = c34 − c26
and

jE = c34/∆E .

We therefore have

(2) c26 = c34 + (−1)δ+1L,

where

L = 26 · 33 · pβ1

1 · · · p
βk

k .

For each prime p, since our model is minimal, we may suppose (via Tate’s algorithm;
see e.g. Papadopolous [36]), defining νp(x) to be the largest power of a prime p
dividing a nonzero integer x, that

(3) min{3νp(c4), 2νp(c6)} < 12 + 12νp(2) + 6νp(3).

In fact, it is equation (2) that lies at the heart of our approach (see also Cremona
and Lingham [17] for an approach to the problem that takes as its starting point
equation (2), but then heads in a rather different direction).

3. Cubic forms

Let us suppose that a, b, c and d are integers, and consider the binary cubic form

(4) F (x, y) = ax3 + bx2y + cxy2 + dy3,

with discriminant

DF = −27a2d2 + b2c2 + 18abcd− 4ac3 − 4b3d.

To such a form we associate a pair of covariants, the Hessian H = HF (x, y) given
by

H = HF (x, y) = −1

4

(
∂2F

∂x2
∂2F

∂y2
−
(
∂2F

∂x∂y

)2
)

and the Jacobian determinant of F and H, a cubic form G = GF defined via

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

Note that, explicitly,

H = (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2
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and
G = (−27a2d+ 9abc− 2b3)x3 + (−3b2c− 27abd+ 18ac2)x2y

+(3bc2 − 18b2d+ 27acd)xy2 + (−9bcd+ 2c3 + 27ad2)y3.

These covariants satisfy the syzygy

(5) 4H(x, y)3 = G(x, y)2 + 27DFF (x, y)2.

We further have

Res(F,G) = −8D3
F and Res(F,H) = D2

F .

We can now state our main result, which leads to our algorithm.

Theorem 3.1. Let E/Q be an elliptic curve of conductor N = 2α3βN0, where N0

is coprime to 6. Then there exists an integral binary cubic form F of discriminant

DF = (|∆E |/∆E)2α03β0N1,

and relatively prime integers u and v with

(6) F (u, v) = ω0u
3 + ω1u

2v + ω2uv
2 + ω3v

3 = 2α1 · 3β1 ·
∏
p|N0

pκp ,

such that E is isomorphic over Q to ED where

(7) D =
∏

p|gcd(c4(E),c6(E))

pmin{[νp(c4(E))/2],[νp(c6(E))/3]}

and
ED : 3[β0/3]y2 = x3 − 27D2HF (u, v)x+ 27D3GF (u, v).

Here, N1 | N0,

(α0, α1) =



(2, 0) or (2, 3) if α = 0,
(3,≥ 3) or (2,≥ 4) if α = 1,
(2, 1), (4, 0) or (4, 1) if α = 2,
(2, 1), (2, 2), (3, 2), (4, 0) or (4, 1) if α = 3,
(2,≥ 0), (3,≥ 2), (4, 0) or (4, 1) if α = 4,
(2, 0) or (3, 1) if α = 5,
(2,≥ 0), (3,≥ 1), (4, 0) or (4, 1) if α = 6,
(3, 0) or (4, 0) if α = 7,
(3, 1) if α = 8,

(β0, β1) =


(0, 0) if β = 0,
(0,≥ 1) or (1,≥ 0) if β = 1,
(3, 0), (0,≥ 0) or (1,≥ 0) if β = 2,
(β, 0) or (β, 1) if β ≥ 3,

and κp ∈ Z with κp ∈ {0, 1} if p2 | N1. If β0 ≥ 3, we further have that 3 | ω1 and
3 | ω2.

A few observations are worth making here. Firstly, there might actually exist
a cubic form for which the corresponding Thue-Mahler equation has a solution,
where the corresponding ED has conductor NED 6= N (this can occur if certain
local conditions at 2 are not satisfied). These local conditions are easy to check
and are a minor issue computationally. In practice, for producing tables of elliptic
curves of bounded conductor, we will typically apply the above result to find all
curves with bad reduction outside a fixed set of primes, working with a number
of conductors simultaneously. For such a computation, every twist we encounter
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will have conductor of interest to us. It is also the case, that the cubic forms
arising need not be either primitive (in the sense that gcd(ω0, ω1, ω2, ω3) = 1) or
irreducible. The former situation (i.e. that of imprimitive forms) can occur if each
of the coefficients of F is divisible by 3. The latter occurs precisely when the curve
E has at least one rational 2-torsion point. We note that necessarily

(8) D | 23 · 32 ·
∏
p|N0

p,

so that, given N , there are a finite set of ED to consider.
In the event that, for a given binary form F (x, y) = ax3 + bx2y+ cxy2 + dy3, we

have 3 | b and 3 | c, say b = 3b0 and c = 3c0, then we have that 27 | DF and can

write DF = 27D̃F , where

D̃F = −a2d2 + 6ab0c0d+ 3b20c
2
0 − 4ac30 − 4b30d.

One may observe that the set of forms with both 3 | b and 3 | c is closed within the
larger set of all binary cubic forms in Z[x, y], under the action of both SL2(Z) and
GL2(Z). Note that, for such a form, we have

H̃F (x, y) =
HF (x, y)

9
= (b20 − ac0)x2 + (b0c0 − ad)xy + (c20 − b0d)y2

and

G̃F (x, y) = GF (x,y)
27 = (−a2d+ 3ab0c0 − 2b30)x3 + 3(−b20c0 − ab0d+ 2ac20)x2y

+3(b0c
2
0 − 2b20d+ ac0d)xy2 + (−3b0c0d+ 2c30 + ad2)y3,

whereby our syzygy now becomes

(9) 4H̃F (x, y)3 = G̃F (x, y)2 + D̃FF (x, y)2.

Theorem 3.1 is based upon a generalization of a very classical result of Mordell
[32] (see also Theorem 3 of Chapter 24 of Mordell [33]), where the Diophantine
equation X2 + kY 2 = Z3 is treated through reduction to binary cubic forms and
their covariants, under the assumption that X and Z are coprime. That this last re-
striction could be eliminated, with some care, was noted by Sprindzuk (see Chapter
VI of [44]).

Converting Theorem 3.1 into an algorithm for finding all E/Q of conductor N
is a straightforward exercise. We proceed as follows.

(1) Compute GL2(Z)-representatives for every binary form F with discriminant

∆F = ±2α03β0N1

for each divisor N1 of N0, and each possible pair (α0, β0) given in the state-
ment of Theorem 3.1. The (very efficient) algorithm for carrying this out
is described in detail in Section 4.

(2) Solve the corresponding Thue-Mahler equations. This is a deterministic
procedure (see Tzanakis and de Weger [48], [49]) but not, in general, one
that could reasonably be described as routine.

(3) Check “local” conditions and output the elliptic curves that arise.
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As we shall see, the first and third of these steps are straightforward (indeed,
the third is essentially trivial). All of the real work is concentrated in step (2). In
Section 5, we will focus our attention on carrying out this procedure in the special
case where N = p or N = p2 for p prime. For these conductors, we encounter the
happy circumstance that the Thue-Mahler equations (6) reduce to Thue equations
(i.e. where the exponents on the right hand side of (6) are all absolutely bounded).
In such a situation, there are easily implemented computational routines for solving
such equations, available in Pari/GP [37] or in Magma [8]. Further, it is possible
to apply a much more computationally efficient argument to find all such elliptic
curves heuristically (but not deterministically). We will describe such an approach
later in the paper, in Section 6.

4. Finding representative forms

As we have seen, in order to find elliptic curves over Q with good reduction
outside a given set of primes, it suffices to determine a set of representatives for
GL2(Z)-equivalence classes of binary cubic forms with certain discriminants, and
then solve a number of corresponding Thue-Mahler equations. In this section, we
will describe how to find distinguished reduced representatives for equivalence classes
of cubic forms with a given discriminant. In each case, the notion of reduction is
related to associating to a given cubic form a particular definite quadratic form – in
case of positive discriminant, for example, the Hessian H defined earlier. In what
follows, we will state our definitions of reduction solely in terms of the coefficients
of the given cubic form, keeping the associated Hessian hidden.

4.1. Forms of positive discriminant. In the case of positive discriminant forms,
we will appeal to a classical reduction theory, dating back to work of Hermite [27],
[28] and later used by Davenport (see e.g. [18], [19] and [20]). This procedure allows
us to determine a reduced element within a given equivalence class of forms. We will
assume the forms we are treating are irreducible, (and treat the case of reducible
forms somewhat differently). We follow work of Belabas [2] (see also Belabas and
Cohen [3] and Cremona [16]), a modern treatment and refinement of Hermite’s
method.

Definition 1. An irreducible binary integral cubic form

F (x, y) = ax3 + bx2y + cxy2 + dy3

of positive discriminant is called reduced if we have

• |bc− 9ad| ≤ b2 − 3ac ≤ c2 − 3bd,
• a > 0, b ≥ 0, where d < 0 whenever b = 0,
• if bc = 9ad, d < 0,
• if b2 − 3ac = bc− 9ad, b < |3a− b|, and
• if b2 − 3ac = c2 − 3bd, a ≤ |d|, and b < |c| whenever |d| = a.

The main value of this notion of reduction is in the following result (Corollary
3.3 of [2]).

Proposition 4.1. Any irreducible cubic form with positive discriminant is GL2(Z)-
equivalent to a unique reduced one.

To determine equivalence classes of reduced cubic forms with bounded discrimi-
nant, we will appeal to the following result (Lemma 3.5 of Belabas [2]).
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Lemma 4.2. Let X be a positive real number and

F (x, y) = ax3 + bx2y + cxy2 + dy3

be a reduced form whose discriminant lies in (0, X]. Then we have

1 ≤ a ≤ 2X1/4

3
√

3

and

0 ≤ b ≤ 3a

2
+

(√
X − 27a2

4

)1/2

.

If we denote by P2 the unique positive real solution of the equation

−4P 3
2 + (3a+ 2b)2P 2

2 + 27a2Z = 0,

then
b2 − P2

3a
≤ c ≤ b− 3a.

4.2. Forms of negative discriminant. In case of negative discriminant, we re-
quire a different notion of reduction, as the Hessian is no longer a definite form.
We will instead, following Belabas [2], use an idea of Berwick and Mathews [6].
We take as our definition of a reduced form an alternative characterization due to
Belabas (Lemma 4.2 of [2]).

Definition 2. An irreducible binary integral cubic form

F (x, y) = ax3 + bx2y + cxy2 + dy3

of negative discriminant is called reduced if we have

• d2 − a2 > bd− ac,
• −(a− b)2 − ac < ad− bc < (a+ b)2 + ac,
• a > 0, b ≥ 0 and d > 0 whenever b = 0.

Analogous to Proposition 4.1, we have, as a consequence of Lemma 4.3 of [2] :

Proposition 4.3. Any irreducible cubic form with negative discriminant is GL2(Z)-
equivalent to a unique reduced one.

To count the number of reduced cubic forms in this case, we use Lemma 4.4 of
Belabas [2] :

Lemma 4.4. Let X be a positive real number and

F (x, y) = ax3 + bx2y + cxy2 + dy3

be a reduced form whose discriminant lies in [−X, 0). Then we have

1 ≤ a ≤
(

16X

27

)1/4

0 ≤ b ≤ 3a

2
+

(√
X/3− 3a2

4

)1/2

1− b ≤ c ≤
(
X

4a

)1/3

+

{
b2/3a if a ≥ 2b/3,
b− 3a/4 otherwise.
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It is worth noting here that a different notion of reduction for cubic forms of
negative discriminant is described in Cremona [16], arising from classical work of
Julia [29]. This definition leads to shorter loops for the coefficient a and a slight
improvement in the expected complexity (though the number of (a, b, c, d) one treats
still grows linearly in the variable X).

The techniques we have described here provide a computationally efficient way
to write down representatives for classes of irreducible cubic form with bounded
absolute discriminant. The problem of finding all such forms of a fixed discriminant
(without computing those of smaller discriminant) is a slightly different one. One
approach would be to loop over the first three coefficients a, b, c of the form as
previously, and then solve the corresponding quadratic equation for d. Even a
relatively simplistic approach like this makes it computationally feasible to find
forms of a desired, fixed discriminant exceeding 1015.

4.3. Reducible forms. We can define somewhat similar notions of reduction for
reducible forms (see e.g. [4]). For our purposes, though, it is enough to recall that
we may suppose that a reduced form is equivalent to one of the shape

F (x, y) = bx2y + cxy2 + dy3 with 0 ≤ d ≤ c,

whereby we have

∆F = b2(c2 − 4bd).

To determine all elliptic curves with good reduction outside S = {p1, p2, . . . , pk},
corresponding to reducible cubics in Theorem 3.1 (i.e. those E with at least one
rational 2-torsion point), it suffices to find all such triples (b, c, d) for which there
exists integers x and y with, writing S∗ = S ∪ {2}, both b2(c2 − 4bd) and bx2y +
cxy2 + dy3 S∗-units. For this to occur, it is clearly necessary that b, c2− 4bd, y and
µ = bx2 + cxy+ dy2 are S∗-units. Taking the discriminant of this last quadratic as
a function of x, we thus require that

(10) (c2 − 4bd)y2 + 4bµ = Z2,

for some integer Z. This is an equation of the shape

(11) X + Y = Z2

in S∗-units X and Y . There is an algorithm for solving such equations described
in detail in Chapter 7 of de Weger [51] (see also [52]), relying upon bounds for
linear forms in p-adic and complex logarithms and various reduction techniques.
As of now, we are unaware of any implementation of this algorithm in available
computational algebra packages. While a priori equation (10) arises as only a
necessary condition for the existence of an elliptic curve of the desired form, given
any solution to (10), the curve

E : y2 = x3 + Zx2 + bµx

has discriminant

∆E = 16b2µ2(Z2 − 4bµ) = 16b2µ2(c2 − 4bd)y2,

and hence good reduction outside S∗.
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4.4. A final note. One last observation which is necessary here before we proceed
is that while G2

F is GL2(Z)-covariant, the same is not actually true for GF (it is,
however, an SL2(Z)-covariant). This may seem like a subtle point, but what it
means for us in practice is that, having found our GL2(Z)-representative forms F
and corresponding curves of the shape ED from Theorem 3.1, we need also check
to see if

ẼD : 3[β0/3]y2 = x3 − 27D2HF (u, v)x− 27D3GF (u, v),

the quadratic twist of ED by −1, yields a curve of the desired conductor.

5. Conductors N = p and N = p2

In the case where we want to find elliptic curves E of conductor N = p prime,
as noted earlier, things are especially simple. Suppose that E is such curve with
invariants c4 and c6. From Papadopolous [36], we necessarily have

(νp(c4), νp(c6)) = (0, 0) and νp(L) ≥ 1,
(ν2(c4), ν2(c6)) = (0, 0) or (≥ 4, 3), and ν2(L) = 6,
(ν3(c4), ν3(c6)) = (0, 0) or (1,≥ 3), and ν3(L) = 3,

and hence D = 1 or 2. Theorem 3.1 thus implies that there is a cubic form of
discriminant ±4 or ±4p, and integers u, v, with

F (u, v) = pn or 8pn, c4 = D2HF (u, v) and c6 = −1

2
D3GF (u, v), D ∈ {1, 2},

for some integer n. Similarly, if N = p2, we are interested in finding cubic forms of
discriminant ±4 · pτ for τ ∈ {0, 1, 2}, and solving F (x, y) = 8 · pn, where n ∈ {0, 1}
if τ = 2. In this situation, we have that D | 2p.

If we first consider the case of a curve E of conductor p, appealing to Théorème
2 of Mestre and Oesterlé [30] (and using [9]), we either have ∆E = ±p, or our prime
p ∈ {11, 17, 19, 37}, or we have p = t2 + 64 for some integer t ≡ 1 (mod 4) and our
curve E is isomorphic to that given by

y2 + xy = x3 +
t− 1

4
x2 + 4x+ t.

In this case, we have a rational point of order 2 given by (x, y) = (−t/4, t/8)
and discriminant (t2 + 64)2. Excluding these latter cases, in the notation of the
preceding section, we thus have α0 = 2, α1 ∈ {0, 3}, β0 = β1 = 0, κp = 0 and
N1 ∈ {1, p}. We are therefore interested in finding all binary cubic forms (reducible
and irreducible) F of discriminant ±4 and ±4p and subsequently solving

F (x, y) ∈ {1, 8}.
Next consider when E has conductor N = p2, so that p | c4 and p | c6. From

(3), we may suppose that (νp(c4), νp(c6), νp(∆E)) is one of

(≥ 1, 1, 2), (1,≥ 2, 3), (≥ 2, 2, 4), (2, 3,≥ 7), (≥ 3, 4, 8), (3,≥ 5, 9) or (≥ 4, 5, 10),

or we have that (νp(c4), νp(c6), νp(∆E)) = (≥ 2,≥ 3, 6). In this last case, the qua-

dratic twist of our curve E by (−1)(p−1)/2p has good reduction at p and hence
conductor 1, a contradiction. If we have (νp(c4), νp(c6), νp(∆E)) = (2, 3,≥ 7), then

E necessarily arises as the (−1)(p−1)/2p-twist of a curve of conductor p, say E1,
with corresponding (νp(c4(E1)), νp(c6(E1)), νp(∆E1)) = (0, 0, νp(∆E) − 6). Simi-
larly, curves with (νp(c4), νp(c6), νp(∆E)) = (≥ 3, 4, 8) arise as twists of those with
(νp(c4), νp(c6), νp(∆E)) = (≥ 1, 1, 2), those with (νp(c4), νp(c6), νp(∆E)) = (3,≥
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5, 9) come from ones with (νp(c4), νp(c6), νp(∆E)) = (1,≥ 2, 3), and those with
(νp(c4), νp(c6), νp(∆E)) = (≥ 4, 5, 10) from ones with (νp(c4), νp(c6), νp(∆E)) = (≥
2, 2, 4).

Supposing we have already computed all curves of conductor p, it remains there-
fore, up to twisting, to find E/Q with minimal discriminant

∆E ∈ {±p2,±p3,±p4}
(as noted by Edixhoven, de Groot and Top in Lemma 1 of [21]). In particular, from
Theorem 3.1, we are led to consider equations of the shape

(12) F (x, y) = 8 for F a form of discriminant ± 4p2,

(13) F (x, y) = 8p for F a form of discriminant ± 4p

and

(14) F (x, y) = 8p for F a form of discriminant ± 4p2,

corresponding to ∆E = ±p2, ±p3 and ±p4, respectively.

5.1. Reducible forms. To find all elliptic curves E/Q with conductor p or p2

arising (in the notation of Theorem 3.1) from reducible forms, we are led to solve
the equation

F (x, y) = 8 pn, n ∈ Z, gcd(x, y) | 2,
for reducible binary cubic forms of discriminant ±4, ±4p and ±4p2. This is an
essentially elementary exercise (if somewhat painful). Alternatively, we may note
that the elliptic curves of conductor p or p2 arising from reducible cubic forms are
precisely those with at least one rational 2-torsion point and hence we can appeal
to Theorem I of Hadano [24] to the effect that the only such p are p = 7, 17 and
p = t2 + 64 for integer t.

In any case, after a little work, we can show that the elliptic curves of conductor
p or p2 corresponding to reducible forms, are precisely those given by

(c4, c6) p ∆E NE
(273, 4455) 17 172 17
(33, 12015) 17 −174 17

(p− 256,−t(p+ 512)) t2 + 64 −p2 p
(105, 1323) 7 −73 72

(1785, 75411) 7 73 72

(33,−81) 17 173 17
(4353, 287199) 17 17 17

(p− 16,−t(p+ 8)) t2 + 64 p p

Here, for the sake of concision, we omit quadratic twists by ±p of conductor p2.

5.2. Irreducible forms : conductor p. It is straightforward to show that there
are no irreducible cubic forms of discriminant ±4. If we begin by searching for
elliptic curves of conductor p coming from irreducible cubics, we thus need to solve
equations of the shape F (x, y) = 8 for all cubic forms of discriminant ±4p.

5.3. Irreducible forms : conductor p2. As noted earlier, to find the elliptic
curves of conductor p2 coming from irreducible cubics, we need to find those of
conductor p and those of conductor p2 with ∆F = ±p2,±p3 and ±p4 (and subse-
quently twist them).
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5.3.1. Elliptic curves of discriminant ±p3. For these, we can use the cubic forms of
discriminant ∆F = ±4p we have already found in the course of computing curves
of conductor p, and then solve the Thue equation F (x, y) = 8p. We can either do
this directly, or reduce this problem to one of solving a pair of new Thue equations
of the shape Gi(x, y) = 8. To see how this “reduction” proceeds, note, since we
assume that p ‖∆F , we have, for F (x, y) = ax3 + bx2y + cxy2 + dy3,

F (x, y) ≡ a(x− r0y)2(x− r1y) (mod p),

where, since we may suppose that F is a reduced form (whereby 1 ≤ a < p), we
necessarily have that p - a. We thus obtain

2r0 + r1 ≡ −b/a (mod p),

r20 + 2r0r1 ≡ c/a (mod p)

and

r20r1 ≡ −d/a (mod p).

From the first two of these, we have

3ar20 + 2br0 + c ≡ 0 (mod p)

and so, assuming that t2 ≡ b2 − 3ac (mod p),

(r0, r1) ≡ (3a)−1 (−b± t,−b∓ 2t) (mod p).

Given these two pairs, we are left to check to see which one satisfies r20r1 ≡
−d/a (mod p).

To list our pairs (r0, r1), we need to find a square root of b2 − 3ac modulo p.
There are efficient ways to do this via the Tonelli-Shanks algorithm, for example
(and almost trivially if, say, p ≡ 3 (mod 4)).

Given that we know r0 and r1, we thus have, if F (x, y) = 8p, either x ≡
r0y (mod p) or x ≡ r1y (mod p). In either case, we write x = riy+pu so that, from
ax3 + bx2y + cxy2 + dy3 = 8p, we are led to solve the two equations Gi(u, y) = 8,
where

Gi(u, y) = ap2u3 +(3apri+ bp)u2y+(3ar2i +2bri+ c)uy2 +
1

p
(ar3i + br2i + cri+d)y3.

We observe that ∆Gi
= p2∆F .

In practice, for our deterministic approach, we will actually solve the equation
F (x, y) = 8p directly. For our heuristic approach (where a substantial increase in
the size of the form’s discriminant is not especially problematic), we will reduce to
consideration of the equations Gi(x, y) = 8.

We note that there are (conjecturally infinite) families of primes for which we
can guarantee that the equation F (x, y) = 8p has solutions. For example, if we
write pr,s = r4 + 9r2s2 + 27s4, then, if p = pr,s for some choice of integers r and s,
we have that the cubic form

F (x, y) = sx3 + rx2y − 3sxy2 − ry3

has discriminant 4p. Further, we have a polynomial identity F (x, y) = 8p for
x = 2r2/s+ 6s and y = −2r, or if x = 6s and y = −18s2/r− 2r. In particular, this
provides four one-parameter families of primes for which there exists a cubic form
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F of discriminant 4p and integers x and y such that F (x, y) = 8p. Specifically, we
have, choosing s ∈ {1, 2}, in the first case and r ∈ {1, 2} in the second, i.e.

(p, x, y) = (r4 + 9r2 + 27, 2r2 + 6,−2r), (r4 + 36r2 + 432, r2 + 12,−2r),
(27s4 + 9s2 + 1, 6s,−18s2 − 2), (27s4 + 36s2 + 16, 6s,−9s2 − 4).

Similar, if pr,s = r4 − 9r2s2 + 27s4, the form

F (x, y) = sx3 + rx2y + 3sxy2 + ry3

has discriminant −4p. The equation F (x, y) = 8p has solutions

(x, y) = (−2r2/s+ 6s, 2r) and (6s,−18s2/r + 2r)

and hence we again find (one parameter) families of primes corresponding to either
r or s in {1, 2} :

(p, x, y) = (r4 − 9r2 + 27,−2r2 + 6, 2r), (r4 − 36r2 + 432,−r2 + 12, 2r),
(27s4 − 9s2 + 1, 6s,−18s2 + 2), (27s4 − 36s2 + 16, 6s,−9s2 + 4).

We expect that each of the quartic families described here attains infinitely many
prime values, but proving this is beyond current technology.

5.3.2. Elliptic curves of discriminant p2 and p4. Elliptic curves of discriminant
p2 and p4 arise from solving the Thue equations F (x, y) = 8 and F (x, y) = 8p,
respectively, for cubic forms F of discriminant 4p2. In order for there to exist a
cubic form of discriminant 4p2, it is necessary and sufficient that we are able to
write p = r2 + 27s2 for positive integers r and s, whereby F is equivalent to the
form

Fr,s(x, y) = sx3 + rx2y − 9sxy2 − ry3.
From this we are led to solve

Fr,s(x, y) = 8 and Fr,s(x, y) = 8p.

In the latter case, we may, if we choose, reduce the equation to a single Thue
equation of the form Gr,s(x, y) = 8. To see this, note that we may suppose that
p - y. It follows that the congruence

su3 + ru2 − 9su− r ≡ 0 (mod p)

has a single solution modulo p (since p2 | ∆F ), given (as is readily checked) by
r0 ≡ 9r−1s (mod p). We thus have x ≡ r0y (mod p), so that, writing x = r0y+ vp,
we have

Fr,s(r0y + vp, y) = p(a0v
3 + b0v

2y + c0vy
2 + d0y

3)

and hence, renaming v,

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where

a0 = sp2, b0 = (3r0s+r)p, c0 = 3r20s+2rr0−9s and d0 = (r30s+rr20−9r0s−r)/p.

We observe that

∆Gr,s
= 4p4.

Once again, for our deterministic approach, we solve the equation Fr,s(x, y) =
8p directly, while, for our heuristic approach, we consider instead the equation
Gr,s(x, y) = 8.
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5.3.3. Elliptic curves of discriminant −p2 and −p4. Elliptic curves of discriminant
−p2 and −p4 arise from again solving the Thue equations F (x, y) = 8 and F (x, y) =
8p, respectively, this time for cubic forms F of discriminant −4p2. For such form to
exist, we require that p = |r2 − 27s2| for integers r and s (so that these primes are
precisely those of the form ±1 (mod 12)) and find that F is necessarily equivalent
to

Fr,s(x, y) = sx3 + rx2y + 9sxy2 + ry3.

If we wish to solve Fr,s(x, y) = 8p, as previously, we may note that, if r0 ≡
−9r−1s (mod p), then

sr30 + rr20 + 9sr0 + r ≡ r−3(r2 − 27s2)(r2 + 27s2) ≡ 0 (mod p).

Again write x = r0y + vp, so that, renaming v, we have

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where now

a0 = sp2, b0 = (3r0s+r)p, c0 = 3r20s+2rr0+9s and d0 = (r30s+rr20 +9r0s+r)/p.

While it is not immediately obvious that, given we know the existence of inte-
gers r and s such that p = |r2 − 27s2|, we can actually find them, it is, in fact,
computationally straightforward to do so, via the following result, an almost direct
consequence Theorem 112 of Nagell [34] :

Proposition 5.1. If p ≡ 1 (mod 12) is prime, there exist positive integers r and s
such that

r2 − 27s2 = p

and

r <
3

2

√
6p, s <

5

18

√
6p.

If p ≡ −1 (mod 12) is prime, there exist positive integers r and s such that

r2 − 27s2 = −p

and

r <
5

2

√
2p, s <

1

2

√
2p.

As a final comment, we note that if we have two solutions to the equation
|r2 − 27s2| = p, say (r1, s1) and (r2, s2), then the corresponding forms

s1x
3 + r1x

2y + 9s1xy
2 + r1y

3 and s2x
3 + r2x

2y + 9s2xy
2 + r2y

3

are readily seen to be GL2(Z)-equivalent.

6. Computational details

The computations required to generate curves of prime conductor p (and subse-
quently conductor p2) fall into a small number of distinct parts.



14 MICHAEL A. BENNETT AND ANDREW RECHNITZER

6.1. Generating the required forms. To find the irreducible forms potentially
corresponding to elliptic curves of prime conductor p ≤ X for some fixed posi-
tive real X, arguing as in Section 4, we generated all reduced forms F (x, y) =
ax3 + bx2y + cxy2 + d with discriminants in (0, 4X] and [−4X, 0), separately, by
looping over a finite set of a, b, c, d values as prescribed by Lemmata 4.2 and 4.4,
respectively. As each form was generated, we checked to see if it actually satisfied
the desired definition of reduction. Of course, this does not only produce forms
with discriminant ±4p – as each form was produced, we kept only those whose
discriminant was in the appropriate range, and equal to ±4p for some prime p.
Checking primality was done using the Miller-Rabin primality test (see [31], [40];
to make this deterministic for the range we require, we appeal to [43]). While it
is straightforward to code the above in computer algebra packages such as sage,
maple or magma, we instead implemented it in c++ for speed. To avoid possible
numerical overflows, we used the CLN library [25] for c++.

Constructing all the required positive discriminant forms took approximately
40 days of CPU time on a modern server, and about 300 gigabytes of disc space.
Thankfully, the computation is easily parallelised and it only took about 1 day of
real time. We split the jobs by running a manager which distributed a-values to
the other cores. The output from each a-value was stored as a tab-delimited text
file with one tuple of p, a, b, c, d on each line.

Generating all forms of negative discriminant took about 3 times longer and
required about 900 gigabytes of disc space. The distribution of forms is heavily
weighted to small values of a. To allow us to spread the load across many CPUs
we actually split the task into 2 parts. We first ran a ≥ 3, with the master node
distributing a-values to the other cores. We then ran a = 1, 2 with the master node
distributing b-values to the other cores. The total CPU time was about 3 times
longer than for the positive case (there being essentially three times as many forms),
but more real-time was required due to these complications. Thus generating all
forms took less than 1 week of real time but required about 1.2 terabytes of disc
space.

We then sorted the forms into discriminant order, while keeping positive and neg-
ative discriminant separated. Sorting a terabyte of data is a non-trivial task, and
in practice we did this by first sorting1 the forms for each a-value and then splitting
them into files of discriminants in the ranges [n×109, (n+1)×109) for n ∈ [0, 999].
Finally, all the files of each discriminant range were sorted together. This pro-
cess for positive and negative forms took around 2 days of real time. We found
9247369050 forms of positive discriminant and 27938060315 of negative discrimi-
nant, with absolute value bounded by 1012. Of these, 475831852 and 828238359,
respectively had F (x, y) = 8 solvable, leading to 159552514 and 276339267 elliptic
curves of positive and negative discriminant, respectively, with prime conductor up
to 1012.

6.2. Complete solution of Thue equations : conductor p. For each form
encountered, we needed to solve the Thue equation

ax3 + bx2y + cxy2 + dy3 = 8

We approached this in two distinct ways.

1Using the standard unix sort command and taking advantage of multiple cores.
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To solve the Thue equation rigorously, we appealed to by now well-known argu-
ments of Tzanakis and de Weger [47], based upon lower bounds for linear forms in
complex logarithms, together with lattice basis reduction; these are implemented
in several computer algebra packages, including magma [8] and Pari/GP [37]. The
main computational bottleneck in this approach is typically that of computing the
fundamental units in the corresponding cubic fields; for computations p of size up
to 109 or so, we encountered no difficulties with any of the Thue equations arising
(in particular, the fundamental units occurring can be certified without reliance
upon the Generalized Riemann Hypothesis).

We ran this computation in magma [8], using its built in Thue equation solver.
Due to memory consumption issues, we fed the forms into magma in small batches,
restarting magma after each set. We saved the output as a tuple

p, a, b, c, d, n, {(x1, y1), . . . , (xn, yn)},

where p, a, b, c, d came from the form, n counts the number of solutions of the
Thue equation and (xi, yi) the solutions. These solutions can then be converted
into corresponding elliptic curves in minimal form using Theorem 3.1 and standard
techniques.

For positive discriminant, this approach works without issue for p < 1010. For
negative discriminant, however, the fundamental units in the associated cubic field
can be extremely large (in the neighbourhood of e

√
p). For this reason, finding all

negative discriminant curves with prime conductor exceeding 2 · 109 or so proves
to be extremely slow. Consequently, for large p, we turned to a non-exhaustive
method, which, though it finds solutions to the Thue equation, is not actually
guaranteed to find them all.

6.3. Non-exhaustive, heuristic solution of Thue equations. If we wish to
find all “small” solutions to a Thue equation (which, subject to various well-
accepted conjectures, might actually prove to be all solutions), there is an obvious
and very quick computational approach we can take, based upon the idea that,
given any solution to the equation F (x, y) = m for fixed integer m, we necessarily
either have that x and y are small, or that x/y is a convergent in the infinite simple
continued fraction expansion to a root of the equation F (x, 1) = 0.

Such an approach was developed in detail by Attila Pethő [38], [39]; in particular,
he provides a precise and computationally efficient distinction between “large” and
“small” solutions. Following this, for each form F under consideration, we expanded
the roots of F (x, 1) = 0 to high precision, again using the CLN library for c++. We
then computed the continued fraction expansion for each real root, along with its
associated convergents. Each convergent x/y was then substituted into F (x, y) and
checked to see if F (x, y) = ±1,±8. Replacing (x, y) by one of (−x,−y), (2x, 2y)
or (−2x,−2y), if necessary, then provided the required solutions of F (x, y) = 8.
The precision was chosen so that we could compute convergents x/y with |x|, |y| ≤
2128 ≈ 3.4× 1038. We then looked for solutions of small height using a brute force
search over a relatively small range of values.

To “solve” F (x, y) = 8 by this method, for all forms with discriminant ±4p
with p ≤ 1012, took about 1 week of real time using 80 cores. The resulting
solutions files (in which we stored also forms with no corresponding solutions)
required about 1.5 terabytes of disc space. Again, the files were split into files of
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absolute discriminant (or more precisely absolute discriminant divided by 4) in the
ranges [n× 109, (n+ 1)× 109) for n ∈ [0, 999].

6.4. Conversion to curves. Once one has a tuple a, b, c, d, x, y, one then computes
GF (x, y) and HF (x, y), appeals to Theorem 3.1 and checks twists. This leaves us
with a list of pairs (c4, c6) corresponding to elliptic curves. It is now straightforward
to derive a1, a2, a3, a4, a6 for a corresponding elliptic curve in minimal form (see
e.g. Cremona [15]). For each curve, we saved a tuple p, a1, a2, a3, a4, a6,±1 with
the last entry being the sign of the discriminant of the form used to generate the
curve (which coincides with the sign of the discriminant of the curve). We then
merged the curves with positive and negative discriminants and added the curves
with prime conductor arising from reducible forms (i.e. of small conductor or for
primes of the form t2 + 64). After sorting by conductor, this formed a single file of
about 17 gigabytes.

6.5. Conductor p2. The conductor p2 computation was quite similar, but was
split into parts.

6.5.1. Twisting conductor p. The vast majority of forms of conductor p2 are qua-
dratic twists of curves of conductor p. To compute these we took all curves with
conductor p ≤ 1010 and computed c4 and c6. The twisted curve then has corre-
sponding c-invariants

c′4 = p2c4 and c′6 = (−1)(p−1)/2p3c6.

The minimal a-invariants were then computed as for curves of conductor p.
We wrote a simple c++ program to read curves of conductor p and then twist

them, recompute the a-invariants and output them as a tuple p2, a1, a2, a3, a4, a6,±1.
The resulting code only took a few minutes to process the approximately 1.1× 107

curves.

6.5.2. Solving F (x, y) = 8p with F of discriminant ±4p. There was no need to find
forms for this computation; we reused the positive and negative forms of discrim-
inant ±4p with p ≤ 1010 from the conductor-p computations. We subsequently
rigorously solved the corresponding equations F (x, y) = 8p for p ≤ 108. To solve
the Thue equation F (x, y) = 8p for 108 < p ≤ 1010, using the non-exhaustive,
heuristic method, we first converted the equation to a pair of new Thue equations
of the form Gi(x, y) = 8 as described in Section 5.3.1 and then applied Pethő’s
solution search method.

The solutions were then processed into curves as for the conductor p case above,
and the resulting curves were twisted by ±p in order to search for more curves of
conductor p2.

6.5.3. Solving F (x, y) ∈ {8, 8p} with F of discriminant ±4p2. To find forms of
discriminant 4p2 with p ≤ 1010 we need only check to see which primes are of
the form p = r2 + 27s2 in the desired range. To do so, we simply looped over r
and s values and then again checked primality using Miller-Rabin. As each prime
was found, the corresponding p, r, s tuple was converted to a form as in Section
5.3.2, and the Thue equations F (x, y) = 8 and F (x, y) = 8p were solved, using the
rigorous approach for p < 106 and the non-exhaustive method described previously
for 106 < p ≤ 1010. Again, in the latter situation, the equation F (x, y) = 8p was
converted to a new equation G(x, y) = 8 as described in Section 5.3.2. The process
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for forms of discriminant−4p2 was very similar, excepting that more care is required
with the range of r and s. The non-exhaustive method solving both F (x, y) = 8
and F (x, y) = 8p for positive and negative forms took a total of approximately
5 days of real time on a smaller server of 20 cores. The rigorous approach, even
restricted to prime p < 106 was much, much slower.

The solutions were then converted to curves as with the previous cases and each
resulting curve was twisted by ±p to search for other curves of conductor p2.

7. Data

7.1. Previous work. The principal prior work on computing table of elliptic
curves of prime conductor was carried out in two lengthy computations, by Brumer
and McGuinness [10] in the late 1980s and by Stein and Watkins [45] slightly more
than ten years later. For the first of these computations, the authors fixed the
a1, a2 and a3 invariants (12 possibilities) and looped over a4 and a6 chosen to make
the corresponding discriminant small. By this approach, they were able to find
311243 curves of prime conductor p < 108 (representing approximately 99.6% of
such curves). In the latter case, the authors looped instead over c4 and c6, subject
to (necessary) local conditions. They obtained a large collection of elliptic curves
of general conductor to 108, and 11378912 of those with prime conductor to 1010

(which we estimate to be slightly in excess of 99.8% of such curves).

7.2. Counts : conductor p. By way of comparison, we found the following num-
bers of isomorphism classes of elliptic curves over Q with prime conductor p ≤ X:

X ∆E > 0 ∆E < 0 Ratio2 Total Expected
103 33 52 2.4830 85 68
104 130 228 3.0760 358 321
105 625 1116 3.1884 1741 1669
106 3388 5913 3.0460 9301 9223
107 19606 34006 3.0084 53612 52916
108 114453 198041 2.9940 312494 311587
109 685278 1187687 3.0038 1872965 1869757
1010 4171055 7226983 3.0021 11398038 11383665
1011 25661634 44466340 3.0026 70127974 70107401
1012 159552514 276341397 2.9997 435893911 435810488

The data above the line is rigorous (in case of positive discriminant); for negative
discriminant, we have a rigorous result only up to 2 × 109. For the positive forms
this took about 1 week of real time using 80 cores. Unfortunately, the negative
discriminant forms took significantly longer, roughly 2 months of real times using
80 cores. Heuristics given by Brumer and McGuinness [10] suggest that the number
of elliptic curves of negative discriminant of absolute discriminant up to X should be
asymptotically

√
3 times as many as those of positive discriminant in the same range

– here we report the square of this ratio in the given ranges. The aforementioned
heuristic count of Brumer and McGuinness suggests that the expected number of
E with prime NE ≤ X should be

√
3

12

(∫ ∞
1

1√
u3 − 1

du+

∫ ∞
−1

1√
u3 + 1

du

)
Li(X5/6),
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which we list (after rounding) in the table above. It should not be surprising that
this “expected” number of curves appears to slightly undercount the actual number,
since it does not take into account the roughly

√
X/ logX curves of conductor

p = n2 + 64 and discriminant −p2 (counting only curves of discriminant ±p).

7.3. Counts : conductor p2. To compile the final list of curves of conductor p2,
we combined the five lists of curves: twists of curves of conductor p, curves from
forms of discriminant +4p and −4p, curves from discriminant +4p2 and −4p2. The
list was then sorted and any duplicates removed. The resulting list is approximately
1 gigabyte. The counts of curves are below.

X ∆E > 0 ∆E < 0 Total Ratio2

103 53 94 147 3.1456
104 192 322 514 2.8126
105 765 1304 2069 2.9056
106 3764 6357 10121 2.8524
107 20540 35096 55636 2.9195
108 116895 200799 317694 2.9507
109 691806 1195263 1887069 2.9851
1010 4189445 7247980 11437425 2.9931

Subsequently we decided that we should recompute the discriminants of these
curves as a sanity check, by reading the curves into sage and using its built-in
elliptic curve routines to compute and then factor the discriminant. This took
about 1 day on a single core.

The only curves of real interest are those that do not arise from twisting, i.e.
those of discriminant ±p2, ±p3 and ±p4. In the last of these categories, we found
only 5 curves, of conductors 112, 432, 4312, 4332 and 330132. The first four of
these were found by Edixhoven, de Groot and Top [21] (and are of small enough
conductor to now appear in Cremona’s tables). The fifth, satisfying

(a1, a2, a3, a4, a6) = (1,−1, 1,−1294206576, 17920963598714),

has discriminant 330134. For discriminants ±p2 and ±p3, we found the following
numbers of curves, for conductors p ≤ X :

X ∆E = −p2 ∆E = p2 ∆E = −p3 ∆E = p3

103 12 4 7 4
104 36 24 9 5
105 80 58 12 9
106 203 170 17 15
107 519 441 24 23
108 1345 1182 32 36
109 3738 3203 48 58
1010 10437 9106 60 86

It is perhaps worth observing that the majority of these curves arise from, in the
case of discriminant ±p2, forms with, in the notation of Sections 5.3.2 and 5.3.3,
either r or s in {1, 8}. Similarly, for ∆E = ±p3, most of the curves we found come
from forms in the eight one-parameter families described in Section 5.3.1.
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7.4. Thue equations. It is worth noting that all solutions we encountered to the
Thue equations F (x, y) = 8 and F (x, y) = 8p we treated were with |x|, |y| < 230.
The “largest” such solution corresponded to the equation

355x3 + 293x2y − 1310xy2 − 292y3 = 8,

with solution

(x, y) = (188455233,−82526573).

This leads to the elliptic curve of conductor 948762329069,

y2 + xy + y = x2 − 2x2 + a4x+ a6,

with

a4 = −1197791024934480813341

and

a6 = 15955840837175565243579564368641.

In the following table, we collect data on the number of GL2(Z)-equivalence
classes of irreducible binary cubic forms of discriminant 4p or −4p for p in [0, X],
denoted P3(0, X) and P3(−X, 0), respectively. We also provide counts for those
forms where the corresponding equation F (x, y) = 8 has at least one integer solu-
tion, denoted P ∗3 (0, X) and P ∗3 (−X, 0) for positive and negative discriminant forms,
respectively.

X P3(0, X) P ∗3 (0, X) P3(−X, 0) P ∗3 (−X, 0)
103 24 23 79 62
104 205 163 741 453
105 1852 1159 6105 2641
106 16334 7668 53203 16079
107 147654 49867 466602 97074
108 1330935 314722 4126542 582792
109 12050911 1966105 36979558 3530820
1010 109730654 12229663 334260482 21576585
1011 1004607004 76122366 3045402452 133115651
1012 9247369050 475831852 27938060315 828238359

Our expectation is that the number of forms for which the equation F (x, y) = 8 has
solutions with absolute discriminant up to X is o(X) (i.e. this occurs for essentially
zero percent of forms).

7.5. Elliptic curves with the same prime conductor. One might ask how
many isomorphism classes of curves of a given prime conductor can occur. If one
believes new heuristics that predict that the Mordell-Weil rank of E/Q is absolutely
bounded, then this number should also be so bounded. As noted by Brumer and
Silverman [11], there are 13 curves of conductor 61263451. Up to p < 1012, the
largest number we encountered was for p = 530956036043, with 20 isogeny classes,
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corresponding to [a1, a2, a3, a4, a6] as follows :

[0,−1, 1,−1003, 37465] , [0,−1, 1,−1775, 45957] ,
[0,−1, 1,−38939, 2970729] , [0,−1, 1,−659,−35439] ,
[0,−1, 1, 2011, 4311] , [0,−2, 1,−27597,−1746656] ,
[0,−2, 1, 57, 35020] , [1,−1, 0,−13337473, 18751485796] ,
[0, 0, 1,−13921, 633170] , [0, 0, 1,−30292,−2029574] ,
[0, 0, 1,−6721,−214958] , [0, 0, 1,−845710,−299350726] ,
[0, 0, 1,−86411851, 309177638530] , [0, 0, 1,−10717, 428466] ,
[1,−1, 0,−5632177, 5146137924] , [1,−1, 0, 878, 33379] ,
[1,−1, 1, 1080, 32014] , [1,−2, 1,−8117,−278943] ,
[1,−3, 0,−2879, 71732] , [1,−3, 0,−30415,−2014316] .

Of these 20 curves, 2 have rank 3, 3 have rank 2, 9 have rank 1 and 6 have rank 0.
All have discriminant −p. The class group of Q(

√
3 · 530956036043) is isomorphic

to

Z/3Z⊕ Z/3Z⊕ Z/3Z,
which, via a classical result of Hasse [26], explains the existence of a large number
of cubic forms of discriminant −4p. Elkies [22] found examples of rather larger
conductor with more curves, including 21 for p = 14425386253757 and discriminant
p, 24 for p = 998820191314747 and discriminant −p.

7.6. Rank and discriminant records. In the following table, we list the smallest
prime conductor with a given Mordell-Weil rank. These were computed by running
through our data, using Rubinstein’s upper bounds for analytic ranks (as imple-
mented in Sage) to search for candidate curves of “large” rank which were then
checked using mwrank.

N [a1, a2, a3, a4, a6] sign(∆E) rk(E(Q)
37 [0, 0, 1,−1, 0] + 1
389 [0, 1, 1,−2, 0] + 2
5077 [0, 0, 1,−7, 6] + 3

501029 [0, 1, 1,−72, 210] + 4
19047851 [0, 0, 1,−79, 342] − 5

6756532597 [0, 0, 1,−547,−2934] + 6

It is perhaps noteworthy that the curve listed here of rank 6 has the smallest
known minimal discriminant for such a curve (see Table 4 of Elkies and Watkins
[23]).

If we are interested in similar records over all curves, including composite con-
ductors, we have

N [a1, a2, a3, a4, a6] sign(∆E) rk(E(Q)
37 [0, 0, 1,−1, 0] + 1
389 [0, 1, 1,−2, 0] + 2
5077 [0, 0, 1,−7, 6] + 3

234446 [1,−1, 0,−79, 289] + 4
19047851 [0, 0, 1,−79, 342] − 5

5187563742 [1, 1, 0,−2582, 48720] + 6
382623908456 [0, 0, 0,−10012, 346900] + 7
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Here, the curves listed above the line are proven to be those of smallest conductor
with the given rank. Those listed below the line have the smallest known conductor
for the corresponding rank.

7.7. Completeness. We will conclude with a few remarks on how likely it is that
we have missed any curves of conductor p < 1012 (other than potentially through
data corruption or something similar). A conjecture of Hall, widely disbelieved
without modification at present, admittedly, is that if x and y are integers for
which x3 − y2 is nonzero, then the Hall ratio

|x|1/2

|x3 − y2|
should be absolutely bounded. The pair (x, y) corresponding to the largest known
Hall ratio comes from the identity

58538865167812233 − 4478849284284020423079182 = 1641843,

discovered by Elkies, with |x|1/2
|x3−y2| > 46.6. If there is an elliptic curve we have

missed with conductor p < 1012, then, from the identity |c34 − c26| = 1728p, we have
a Hall ratio

(15)
|c4|1/2

1728p
>

|c4|1/2

1.728 · 1015
.

Since we have c4 = D2HF (u, v) forD ∈ {1, 2}, and since we have checked all possible
solutions with min{|u|, |v|} ≤ 1030 or so, we may assume that min{|u|, |v|} > 1030,
whereby it is possible to show that |c4| > 1059 (more generally, if we assume that
min{|u|, |v|} > X, we have that |c4| � X2). It follows that any elliptic curve of
prime conductor p < 1012 that we have missed necessarily leads to a Hall ratio in
excess of 1014.
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Grundlage, Math. Z. 31 (1930), 565–582.
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