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DIFFERENCES BETWEEN PERFECT POWERS: THE

LEBESGUE-NAGELL EQUATION

MICHAEL A. BENNETT AND SAMIR SIKSEK

Abstract. We develop a variety of new techniques to treat Diophantine equa-
tions of the shape x2 +D = yn, based upon bounds for linear forms in p-adic
and complex logarithms, the modularity of Galois representations attached to
Frey-Hellegouarch elliptic curves, and machinery from Diophantine approxi-
mation. We use these to explicitly determine the set of all coprime integers x

and y, and n ≥ 3, with the property that yn > x2 and x2 − yn has no prime
divisor exceeding 11.

1. Introduction

Understanding the gaps in the sequence of positive perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, . . .

is a problem at once classical and fundamentally difficult. Mihăilescu’s Theorem
[26] (née Catalan’s Conjecture) tells us that 8 and 9 are the only consecutive integers
here, but it is not, for instance, a consequence of current technology that there are
at most finitely many gaps of length k, for any fixed integer k > 1 (though this
was conjectured to be the case by Pillai; see e.g. [29]). If we simplify matters by
considering instead gaps between squares and other perfect powers, then we can
show that such gaps, if nonzero, grow as we progress along the sequence. Indeed,
the same is even true of the greatest prime factor of the gaps. Specifically, we have
the following, a special case of Theorem 2 [10, Theorem 2]; here, by P (m) we denote
the greatest prime divisor of a nonzero integer m.

Theorem 1 (Bugeaud). Let n ≥ 3 be an integer. There exists an effectively
computable positive constant c = c(n) such that if x and y are coprime positive
integers with y ≥ 2, then

P (x2 − yn) ≥ c log n

and, for suitably large x,

P (x2 − yn) ≥ log log y

30n
.

This result is a consequence of bounds for linear forms in logarithms, complex
and p-adic. As such, it can be made completely explicit and leads to an algorithm
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for solving the Lebesgue-Nagell equation

(1) x2 +D = yn,

where we suppose that x and y are coprime nonzero integers, and that either

(i) D is a fixed integer, or
(ii) all the prime divisors of D belong to a fixed set of primes S.

The terminology here stems from the fact that equation (1) with D = 1 was first
solved by V. A. Lebesgue [21], while T. Nagell [27], [28] was the first researcher to
study such equations in a systematic fashion.

Regrettably, this algorithm is still, in most instances, not a practical one. Even
in the very special case D = −2, we are not able to completely solve equation (1)
(though there are a number of partial results available in the literature; see e.g.
Chen [14]). Almost all the (very ample) literature on this problem concerns cases
where D > 0 and y is odd in (1). Under these assumptions, we may solve the
equation through appeal to a beautiful result of Bilu, Hanrot and Voutier [6] on
primitive divisors in binary recurrence sequences, at least for all but a few small
values of n. Proposition 5.1 of [12] (sharpening work of Cohn [15]) provides a very
explicit summary of this approach – one bounds the exponent n in (1) in terms
of the class numbers of a finite collection of imaginary quadratic fields, depending
only upon the primes dividing D; see Section 3 for details. Smaller values of n
may be treated via techniques from elementary or algebraic number theory, or
through machinery from Diophantine approximation. By way of example, in cases
(i) and (ii), equation (1), for fixed n, reduces to finitely many Thue or Thue-Mahler
equations, respectively. These can be solved through arguments of Tzanakis and
de Weger [35], [36], [37] (see also [16] for recent refinements).

In case either D > 0 and y is even, or if D < 0, the literature on equation (1) is
much sparser, primarily since the machinery of primitive divisors is no longer ap-
plicable. In these cases, other than bounds for linear forms in logarithms, the only
general results that we know to apply to equation (1) are derived from the mod-
ularity of Galois representations arising from associated Frey-Hellegouarch curves.
These are obtained by viewing (1) as a ternary equation of signature (n, n, 2), i.e.
as yn−D · 1n = x2. Such an approach can work to solve equation (1) in one of two
ways, either by

(a) producing an upper bound upon n that is sharper than that coming from
linear forms in logarithms, leaving a feasible set of small n to treat, or

(b) failing to produce such an upper bound, but, instead, providing additional
arithmetic information that allows one to solve all the remaining Thue
or Thue-Mahler equations below the bound coming from linear forms in
logarithms.

An example of situation (a) is the case where D is divisible by only the primes in
S = {5, 11} and y is even. Then [5, Theorem 1.5] implies that equation (1) has no
nontrivial solutions for all prime n > 11 and y even; work of Soydan and Tzanakis
[34] treats smaller values of n and the case where y is odd (where the Primitive
Divisor Theorem works readily). In general, we are potentially in situation (a)
precisely when there fails to exist an elliptic curve E/Q with nontrivial rational
2-torsion and conductor

NS∗ = 2
∏
p∈S∗

p,
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for each subset S∗ ⊆ S with the property that the product of the primes in S∗ is
congruent to −1 modulo 8. Other examples of such sets S include

{5, 19}, {11, 13, 41}, {11, 17, 29}, {11, 17, 37}, {17, 19, 37} and {19, 29}.
For situation (b), papers of Bugeaud, Mignotte and the second author [12], and

of Barros [1] deal with a number of cases of equation (1) with D fixed and positive
or negative, respectively.

In this paper, we will concentrate on the first of the two difficult cases, namely
when D > 0 and y is even in (1) (so that necessarily D ≡ −1(mod 8)), under
the additional hypothesis that D is divisible only by a few small primes. For
completeness, we will also treat the easier situation where y is odd, under like
hypotheses on D. In a companion paper [4], we will consider equation (1) in the
other challenging situation where D < 0. Our main result in the paper at hand is
the complete resolution of equation (1) in case D > 0, P (D) < 13, gcd(x, y) = 1
and n ≥ 3. We prove the following.

Theorem 2. There are precisely 1240 triples of positive integers (x, y, n) with
n ≥ 3, gcd(x, y) = 1, yn > x2 and

P (x2 − yn) < 13.

They are distributed as follows.

n #(x, y) n #(x, y) n #(x, y) n #(x, y)
3 755 7 5 12 4 26 1
4 385 8 17 13 1
5 11 9 1 14 4
6 51 10 4 15 1

We provide the complete list of the 1240 solutions at

http://homepages.warwick.ac.uk/staff/S.Siksek/progs/lebnag/

lebesgue nagell solutions.txt

Proving this result amounts to solving the equation

(2) x2 + 2α23α35α57α711α11 = yn,

where x, y and n are positive integers, with gcd(x, y) = 1, n ≥ 3, and the αi are
nonnegative integers, i.e. equation (1), where D > 0 is supported only on primes in
S = {2, 3, 5, 7, 11}. We note that earlier work along these lines typically either treat
cases where there are no S-units congruent to −1(mod 8), so that the analogous
equations cannot have y even (see e.g. the paper of Luca [22] for S = {2, 3}), or
simply exclude these cases (see Pink [30] for S = {2, 3, 5, 7}, where solutions with y
even are termed exceptional). The only exceptions to this in the literature, of which
we are aware, are the aforementioned paper of Soydan and Tzanakis [34] where
S = {5, 11} and work of Koutsianas [18] treating S = {7} with prime exponent
n ≡ 13, 23(mod 24). A comprehensive survey of the extensive literature on this
equation can be found in the paper of Le and Soydan [20].

To solve equation (2) completely, we are forced to introduce a variety of new
techniques, many of which are applicable in rather more general settings. These
include

• appeal to bounds for linear forms in two p-adic logarithms; what is interest-
ing here is that the resulting inequalities are surprisingly strong, leading to

http://homepages.warwick.ac.uk/staff/S.Siksek/progs/lebnag/lebesgue_nagell_solutions.txt
http://homepages.warwick.ac.uk/staff/S.Siksek/progs/lebnag/lebesgue_nagell_solutions.txt
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problems involving complex logarithms that are essentially the same level of
difficulty as for the apparently easier case where D > 0 is fixed in equation
(1) (as treated in [12])

• efficient sieving with Frey-Hellegouarch curves; on some level, this is likely
the most important computational innovation in this paper

• refined use of lower bounds for linear forms in two and three complex log-
arithms

• a computationally efficient approach to treat the genus one curves encoun-
tered when solving equation (2) for n ∈ {3, 4}

• new practical techniques for solving Thue-Mahler equations of moderate
(n ≤ 13) degree.

The outline of this paper is as follows. In Section 2, we deal with the cases of
exponents 3 and 4 in equation (2). In Section 3, we apply the Primitive Divisor
Theorem to handle larger exponents in (2), under the assumption that the variable
y is odd. Section 4 begins our treatment of the complementary (significantly harder)
situation when y is even, showing how equation (2) with fixed exponent n reduces
to solving a number of Thue-Mahler equations. From this, we are able to solve (2)
completely for n ≤ 11. In Section 5, we show how to associate to a putative solution
of (2) a Frey-Hellegouarch elliptic curve. We then use this connection to develop
a number of computational sieves that enable us to show that equation (2) has no
solutions with prime exponents n between 17 and a reasonably large upper bound
(which depends upon D, but is, in all cases, of order exceeding 108). This approach
also deals with n = 13, except for one case that is solved through reduction to a
Thue–Mahler equation. Finally, in Section 6, we apply inequalities for linear forms
in p-adic and complex logarithms to show that (2) has no solutions for exponents
n exceeding these upper bounds.

2. (Very) small values of n

We begin by treating equation (2) in case n ∈ {3, 4}. With these handled, we
will thus be able to assume, without loss of generality, that n ≥ 5 is prime. It
is worth observing that our methods of proof in this section work equally well in
the analogous situation where D is supported on S = {2, 3, 5, 7, 11}, but D < 0
(a conclusion that is far from true regarding our techniques for handling larger
exponents).

2.1. Exponent n = 3. If we suppose that n = 3 in equation (2), then the problem
reduces to one of determining S-integral points on

3#S = 35 = 243

Mordell elliptic curves of the shape y2 = x3 − k, where

k = 2δ23δ35δ57δ711δ11 , for δp ∈ {0, 1, 2}.
There are various ways to carry this out; if we try to do this directly using, say,
the Magma computer algebra package [7], we very quickly run into problems arising
from the difficulty of unconditionally certifying Mordell-Weil bases for some of the
corresponding curves. We will instead argue somewhat differently.

Given a solution to equation (2) in coprime integers x and y, consider the Frey-
Hellegouarch elliptic curve

Ex,y : Y 2 = X3 − 3yX + 2x,
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with corresponding discriminant

ΔEx,y
= 2α2+63α3+35α57α711α11 .

This model has c-invariants

c4 = 144y and c6 = −1728x.

We may check via Tate’s algorithm that this curve is minimal at all primes p ≥ 3
and, while possibly not minimal at 2, the fact that x and y are coprime implies
that a corresponding minimal model over Q has either

c4 = 144y, c6 = −1728x or c4 = 9y, c6 = −27x,

with the latter case occurring only if xy is odd.
The isomorphism classes of elliptic curves over Q with good reduction outside

{2, 3, 5, 7, 11} have recently been completely and rigorously determined using two
independent approaches, by von Känel and Matschke [38] (via computation of S-
integral points on elliptic curves, based upon bounds for elliptic logarithms), and
by the first author, Gherga and Rechnitzer [3] (using classical invariant theory to
efficiently reduce the problem to solutions of cubic Thue-Mahler equations). One
finds that there are precisely 592192 isomorphism classes of elliptic curves over Q
with good reduction outside {2, 3, 5, 7, 11}; details are available at, e.g.

https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-

curve-tables/good-reduction-away-from-first-primes/K deg 1/

curves K 1.1.1.1 S 2 3 5 7 11.txt

For each such class, we consider the corresponding c-invariants; if both c4 ≡
0(mod 144) and c6 ≡ 0(mod 1728), we define

(3) y =
c4
144

and x =
|c6|
1728

,

while if at least one of c4 ≡ 0(mod 144) or c6 ≡ 0(mod 1728) fails to hold, but we
have c4 ≡ 0(mod 9) and c6 ≡ 0(mod 27), we define

(4) y =
c4
9

and x =
|c6|
27

.

For the resulting pairs (x, y), we check that y > 0 and gcd(x, y) = 1. We find 755
such pairs, corresponding to 812 triples (x, y, n) satisfying 3 | n. There are 5 triples
with y > 109, with the largest value of y corresponding to the identity

2802134365828012 + 216 · 36 · 5 · 78 · 112 = 42821246413.

2.2. Exponent n = 4. In this case, we may rewrite equation (2) as

(y2 − x)(y2 + x) = 2α23α35α57α711α11

and so either α2 = 0, in which case

(5) u1 + u2 = 2y2,

where ui are coprime {3, 5, 7, 11}-units, or we have

(6) u1 + u2 = y2,

where ui are coprime {2, 3, 5, 7, 11}-units. In each case, since xy �= 0, we may
suppose that u1 > u2. To be precise, we have

u1u2 = 3α35α57α711α11 ,

√
1

2
(u1 + u2) = y and

1

2
(u1 − u2) = x,

https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/good-reduction-away-from-first-primes/K_deg_1/curves_K_1.1.1.1_S_2_3_5_7_11.txt
https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/good-reduction-away-from-first-primes/K_deg_1/curves_K_1.1.1.1_S_2_3_5_7_11.txt
https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/good-reduction-away-from-first-primes/K_deg_1/curves_K_1.1.1.1_S_2_3_5_7_11.txt
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and

u1u2 = 2α2−23α35α57α711α11 ,
√
u1 + u2 = y and u1 − u2 = x,

in cases (5) and (6), respectively.
As for n = 3, we can write down corresponding Frey-Hellegouarch curves which

have good reduction outside {2, 3, 5, 7, 11} (and, additionally, in this situation, have
nontrivial rational 2-torsion). It is easier to attack this problem more directly. Both
equations (5) and (6) take the form a + b = c2, where a and b are {2, 3, 5, 7, 11}-
units with gcd(a, b) square-free. Machinery for solving such problems has been
developed by de Weger [39], [40]. Data from an implementation of this by von
Känel and Matschke [38] is available at

https://github.com/bmatschke/solving-classical-diophantine-

equations/blob/master/sums-of-units-equations/

sumsOfUnitsBeingASquare S 2 3 5 7 11.txt

We find that there are 1418 pairs (a, b) such that a + b is a square, gcd(a, b)
is square-free, a ≥ b, and the only primes dividing a and b lie in {2, 3, 5, 7, 11}.
We further restrict our attention to those with additionally a > b ≥ 1 and either
gcd(a, b) = 1 (in which case we take x = a − b, y =

√
a+ b), or gcd(a, b) = 2

(whence we choose x = 1
2 (a − b) and y =

√
1
2 (a+ b)). This gives 385 pairs of

coprime, positive integers x, y with y4 > x2 and P (y4 − x2) < 13. These pairs
actually lead to 406 triples (x, y, n) with 4 | n, since 17 of the values of y are
squares and four of them are cubes. However the four cubes have already appeared
in our previous computation, so altogether we obtain 402 new triples (x, y, n) with
4 | n. Together with the 812 triples satisfying 3 | n we have altogether 1214 triples
(x, y, n). The largest y with n = 4 corresponds to the identity

10705281592 + 218 · 33 · 5 · 74 · 112 = 327194.

For the remainder of the paper, we may therefore assume that the exponent n
in equation (2) is prime and ≥ 5.

3. Primitive divisors : equation (2) with y odd

In this section, we treat (2) under the assumption that y is odd, using the
celebrated Primitive Divisor Theorem of Bilu, Hanrot and Voutier [6], and prove
Proposition 3.1.

Proposition 3.1. The only solutions to (2) with n ≥ 5 prime, gcd(x, y) = 1 and
y odd correspond to the identities

12 + 2 · 112 = 35, 2412 + 23 · 112 = 95, 4012 + 2 · 53 = 115,

42012 + 2 · 3 · 53 · 114 = 315 and 44432 + 22 · 7 · 116 = 375.

If we consider solutions with gcd(x, y) = 1, y odd, and n divisible by a prime ≥ 5,
then we must count one more solution corresponding to 2412+23 · 112 = 310. Thus
our total number of solutions to (2) for cases considered so far is 1214 + 6 = 1220.

3.1. Lucas sequences and the Primitive Divisor Theorem. It is convenient
to first introduce Lucas sequences as defined in [6]. A pair (γ, δ) of algebraic integers
is called a Lucas pair if γ + δ and γδ are non-zero coprime rational integers, and

https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/sums-of-units-equations/sumsOfUnitsBeingASquare__S_2_3_5_7_11.txt
https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/sums-of-units-equations/sumsOfUnitsBeingASquare__S_2_3_5_7_11.txt
https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/sums-of-units-equations/sumsOfUnitsBeingASquare__S_2_3_5_7_11.txt
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γ/δ is not a root of unity. Given a Lucas pair (γ, δ) we define the corresponding
Lucas sequence by

Lm =
γm − δm

γ − δ
, m = 0, 1, 2, . . . .

A prime � is said to be a primitive divisor of the m-th term if � divides Lm but
� does not divide (γ − δ)2 · u1u2 . . . um−1.

Theorem 3 (Bilu, Hanrot and Voutier [6]). Let (γ, δ) be a Lucas pair and write
{Lm} for the corresponding Lucas sequence. If m ≥ 30, then Lm has a primitive
divisor. Moreover, if m ≥ 11 is prime, then Lm has a primitive divisor.

Let � be a prime. We define the rank of apparition of � in the Lucas sequence
{Lm} to be the smallest positive integer m such that � | Lm. We denote the rank
of apparition of � by m�. The following theorem of Carmichael [13] will be useful
to us; for a concise proof see [2, Theorem 8].

Theorem 4 (Carmichael [13]). Let (γ, δ) be a Lucas pair, and {Lm} the corre-
sponding Lucas sequence. Let � be a prime.

(i) If � | γδ then � � Lm for all positive integers m.
(ii) Suppose � � γδ. Write D = (γ − δ)2 ∈ Z.

(a) If � �= 2 and � | D, then m� = �.
(b) If � �= 2 and

(
D
�

)
= 1, then m� | (�− 1).

(c) If � �= 2 and
(
D
�

)
= −1, then m� | (�+ 1).

(d) If � = 2, then m� = 2 or 3.
(iii) If � � γδ then

� | Lm ⇐⇒ m� | m.

3.2. Equation (2) with y odd. For the remainder of this section, (x, y, n, α2,
. . . , α11) will denote a solution to the equation

(7) x2+2α23α35α57α711α11 = yn x > 0, y odd, gcd(x, y) = 1 and n ≥ 5 prime.

We shall write

(8) 2α23α35α57α711α11 = c2d, where d is squarefree.

Lemma 3.2. There exist integers u and v such that

x+c
√
−d = (u+v

√
−d)n, where y = u2+dv2, u | x, v | c and gcd(u, dv) = 1.

If we define
γ = u+ v

√
−d and δ = u− v

√
−d,

then (γ, δ) is a Lucas pair. Let {Lm} be the corresponding Lucas sequence. Then

(9) Ln =
γn − δn

γ − δ
=

c

v
.

Proof. Write M = Q(
√
−d). From (7), we have

(x+ c
√
−d)(x− c

√
−d) = yn,

where the two factors on the left generate coprime ideals of OM . Thus (x +
c
√
−d)OM = An, for some ideal of A of OM . There are 32 possible values of d

and we checked, via Magma, that the corresponding quadratic fields M = Q(
√
−d)

have, in every case, class numbers h satisfying

h ∈ {1, 2, 4, 8, 12, 32}.
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In particular n is coprime to h, and therefore A is principal. We deduce that
x + c

√
−d = ε · γn where ε ∈ O∗

M and γ ∈ OM . The order of the unit group O∗
M

is either 4 (if d = 1), 6 (if d = 3) or 2 (in all other cases). Thus the unit group is
n-divisible and we may absorb ε into the γn factor to obtain x + c

√
−d = γn for

some γ ∈ OM . We write δ for the conjugate of γ. Note that γ + δ is a divisor of
2x = γn + δn and that γδ = y. It follows that γ + δ and γδ are non-zero coprime
rational integers. We claim that γ/δ is not a unit. If we suppose otherwise, then
(x+ c

√
−d)/(x− c

√
−d) = (γ/δ)n is a unit. By coprimality of the numerator and

denominator, we obtain that x+c
√
−d is a unit and therefore y = 1, a contradiction.

Thus γ/δ is not a unit and (γ, δ) is a Lucas pair. Write {Lm} for the corresponding
Lucas sequence.

Since γ ∈ OM , we have γ = u + v
√
−d with u and v are integers, or γ =

(u + v
√
−d)/2 where both u and v are odd integers. Suppose first that we are in

the latter case (whence we note that necessarily d ≡ 3 (mod 4)). Observe that
γn − δn = 2c

√
−d, so that v

√
−d = γ − δ divides 2c

√
−d. As v is odd, we deduce

that v | c and that

Ln =
γn − δn

γ − δ
= 2 · c

v
.

In particular, Ln is even. We note that γ+ δ = u and γδ = (u2+dv2)/4 = y. Thus
the sequence {Lm} satisfies the recurrence

L0 = 0, L1 = 1, Lm+2 = uLm+1 − yLm.

Using the fact that u and v are odd, one checks by induction that

Lm ≡ 0 (mod 2) ⇐⇒ 3 | m.

Thus, in particular, 3 | n, contradicting the assumption that n ≥ 5 is prime. It
follows that γ = u+ v

√
−d where u and v are integers. Now observe that

2u = (γ + δ) | (γn + δn) = 2x and 2v
√
−d = (γ − δ) | (γn − δn) = 2c

√
−d.

Thus u | x and v | c. Since y = u2 + dv2, we conclude that gcd(u, dv) = 1. The
lemma follows. �

Lemma 3.3. Let (x, y, n, α2, . . . , α11) be a solution to (7). Then n = 5 and

(10) 5u4 − 10du2v2 + d2v4 = ±5r · 11s,
for some r ∈ {0, 1} and s ≥ 0.

Proof. We continue with the notation of Lemma 3.2. By (9), we have Ln = c/v;
this is coprime to γδ = y. If � is any prime divisor of Ln then m� = n, by part (iii)
of Theorem 4 and the primality of n.

Suppose first that n ≥ 11. By Theorem 3, Ln must have a primitive divisor, q
say. By definition, this does not divide D = (γ− δ)2 = −4v2d. Thus by part (ii) of
Theorem 4, n | (q − 1) if (D/q) = 1 and n | (q + 1) if (D/q) = −1. As the possible
values of q | (c/v) are 2, 3, 5, 7 and 11, we obtain a contradiction. Thus n = 5 or
n = 7.

Next we deal with the case n = 7. If we suppose that L7 has a primitive
divisor q then the above argument shows that 7 | (q − 1) or 7 | (q + 1) which is
impossible as q ∈ {2, 3, 5, 7, 11}. Thus L7 has no primitive divisor and our Lucas
pair (γ, δ) = (u + v

√
−d, u − v

√
−d) is 7-defective in the terminology of [6]. In

particular, by the classification of defective Lucas pairs ([6, Theorem C]) we have
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u+ v
√
−d = ±(1+

√
−7)/2 or ±(1+

√
−19)/2. Both are impossible as u and v are

integers. Hence there are no solutions to (7) with n = 7.
Finally we deal with n = 5. Since 5 � � · (�− 1)(�+ 1) for any of � ∈ {2, 3, 7}, we

see that Ln = c/v = ±5r · 11s. Moreover, if r ≥ 1 then m5 = 5 and so 5 | dv by
Theorem 4.

Substituting γ = u + v
√
−d and δ = u − v

√
−d in (9) gives (10). We note

that if r ≥ 2 then 5 | u, contradicting the coprimality of u and dv. Therefore
r ∈ {0, 1}. �

It remains to solve the quartic Thue–Mahler equations (10) for our 32 possible
values of d. Appealing to the Thue-Mahler equation solver, implemented in Magma

and associated to the paper [16], we obtain the following solutions:

(d, u, v) = (2,−1, 1), (2, 1,−2), (7, 3,−2), (10, 1, 1) and (30, 1, 1).

These lead, respectively, to solutions of equation (2) with

(x, y, n) = (1, 3, 5), (241, 9, 5), (4443, 37, 5), (401, 11, 5) and (4201, 31, 5),

completing the proof of Proposition 3.1.

4. Reduction to Thue-Mahler equations: the case of even y

From the results of the preceding sections, we are left to treat (2) with y even
and n ≥ 5 prime. It therefore remains to consider the equation

(11) x2 + 3α35α57α711α11 = yn with y even, gcd(x, y) = 1 and n ≥ 5 prime.

Let us define

(12) N(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
6× 108 if d = 7,

4× 108 if d = 15,

5× 108 if d = 55,

1.2× 109 if d = 231.

The purpose of this section and the next is to prove Proposition 4.1.

Proposition 4.1. The only solutions to (11) with n < N(d) correspond to the
identities

312 + 32 · 7 = 45, 52 + 7 = 25, 1812 + 7 = 85, 172 + 3 · 5 · 72 = 45,

232 + 32 · 5 · 11 = 45, 1306792 + 3 · 73 · 117 = 1305, 472 + 34 · 52 · 7 = 47,

112 + 7 = 27, 72 + 33 · 5 · 112 = 47, 1172 + 5 · 72 · 11 = 47,

1032 + 3 · 52 · 7 · 11 = 47, and 81432 + 33 · 5 · 72 · 112 = 413.

This gives 12 new solutions to (2) with n ∈ {5, 7, 13} and, additionally, 8 further
solutions with exponents 10, 14 and 26. Thus the total number of solutions we
have found so far for (2) is 1220 + 12 + 8 = 1240. We shall show in Section 6 that
there are no further solutions, and that therefore (2) has precisely 1240 solutions
as claimed in Theorem 2.

We assume without loss of generality that x ≡ 1(mod 4). As before we shall
write

(13) 3α35α57α711α11 = c2d, where d is squarefree and c = 3β35β57β711β11 .
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Since y is even, it follows from (11) that d ≡ −1(mod 8), whence necessarily

(14) d ∈ {7, 15, 55, 231}.

Let M = Md = Q(
√
−d). We note the structure of the class group of M :

Cl(M) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 d = 7

C2 d = 15

C4 d = 55

C2 × C6 d = 231.

Lemma 4.2. Let c′ = ±c with the sign chosen so that c′ ≡ 1(mod 4). Let

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 d=7

2 d=2

4 d=55

6 d=231

and η=r+s
√
−d, where (r, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1/4,−1/4) d=7

(1/8,−1/8) d=15

(3/32, 1/32) d=55

(5/128,−1/128) d=231.

Let 0 ≤ κn ≤ h−1 be the unique integer satisfying κn ·n ≡ −2(mod h). Then there
is some non-zero μ ∈ OM such that

(15)
x+ c′

√
−d

2
= η(2+κn·n)/h · μn.

Moreover, η is supported only on prime ideals dividing 2 and μ is supported only
on prime ideals dividing y.

Proof. As d ≡ −1(mod 8), the prime 2 splits in OM as 2OM = P ·P, where

(16) P = 2OM +

(
1 +

√
−d

2

)
· OM .

We may rewrite (11) as

(17)

(
x+ c′

√
−d

2

)(
x− c′

√
−d

2

)
=

yn

4
.

Note that the two factors on the left hand-side of this last equation are coprime
elements of OM . Since x ≡ c′ ≡ 1(mod 4), we see that P divides the first factor on
the left-hand-side. We thus deduce that

(18)

(
x+ c′

√
−d

2

)
· OM = P

−2 · An,

where A is an integral ideal divisible by P, with A · A = yOM . The order of the
class [P] in Cl(M) is h. Thus P−h is principal, and η has been chosen so that
P−h = ηOM . Let B = Pκn · A. Then we may rewrite (18) as(

x+ c′
√
−d

2

)
· OM = P

−(2+κn·n) ·Bn = η(2+κn·n)/h ·Bn.

Since n is a prime that does not divide the order of Cl(M), the ideal B must be
principal. Let μ be a generator for B. Then

x+ c′
√
−d

2
= ±η(2+κn·n)/h · μn
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and (15) follows on absorbing the ± sign into μ. It is clear that η is supported on
P only. Moreover B is an integral ideal with norm 2κny. It follows, since y is even,
that μ is supported only on prime ideals dividing y. �

Lemma 4.3. The only solutions to equation (11) with n ∈ {5, 7, 11} are those
corresponding to the identities in Proposition 4.1.

Proof. We drop our requirement that x > 0 and replace it with the assumption
x ≡ 1(mod 4), so that we can apply Lemma 4.2. For each exponent n, there are
four cases to consider depending on the value of d ∈ {7, 15, 55, 231} in (13). For
each pair (n, d), Lemma 4.2 asserts that (x, c′) satisfies (15) with μ ∈ OM . We
write

μ = r + s(1 +
√
−d)/2,

with r and s rational integers. We will show that gcd(r, s) = 1. If 2 | r and 2 | s
then P | μ which contradicts the coprimality of the two factors in the left hand-side
of (17). If � is an odd prime with � | r and � | s, then again we contradict the
coprimality of those two factors. Hence gcd(r, s) = 1.

From (15), we have

c′ =
1√
−d

(
ηm · (r + s(1 +

√
−d)/2)n − ηm · (r + s(1−

√
−d)/2)n

)
,

where m = (2 + κn · n)/h. The expression on the right has the form 2−hmF (r, s)
where F ∈ Z[X,Y ] is homogeneous of degree n. We therefore, in each case, obtain
a Thue-Mahler equation of the form

F (r, s) = 2hm · c′ = ±2hm · 3β35β57β711β11 .

We solved these Thue-Mahler equations using the Thue-Mahler solver associated
with the paper [16]. This computation took around one day and resulted in the
solutions in Proposition 4.1 for n ∈ {5, 7}; there were no solutions for n = 11. �

5. Frey-Hellegouarch curves and related objects

We continue to treat (2) with y even, i.e. equation (11), where we maintain
the assumption that x ≡ 1(mod 4). Although the results of the previous section
allow us to assume more, for now we merely impose the following constraint on the
exponent: n ≥ 7 is prime. Following the first author and Skinner [5], we associate
to a solution (x, y, n) the Frey-Hellegouarch elliptic curve F = F (x, y, n) defined
via

(19) F : Y 2 +XY = X3 +

(
x− 1

4

)
X2 +

yn

64
X.

The model here is minimal, semistable, and we note the following invariants,

c4 = x2 − 3

4
yn, c6 = −x3 +

9

8
xyn

and

ΔF =
y2n

212
(x2 − yn) = −2−12 · 3α35α57α711α11 · y2n.

We invoke work of the first author and Skinner [5], building on the modularity of
elliptic curves over Q following Wiles and others [41], [8], Ribet’s level lowering
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theorem [31], and the isogeny theorem of Mazur [24]. Write N for the conductor
of E and let

N ′ =
N∏
�||N

n|ord�(ΔF )
�
.

The results of [5] assert the existence of a weight 2 newform f of level N ′ such that

(20) ρF,n ∼ ρf,n,

with n | n a prime ideal in the ring of integers OK of the Hecke eigenfield K of f .

Lemma 5.1. We have N ′ = 2R where R | 3·5·7·11. Moreover, for � ∈ {3, 5, 7, 11},
we have

(21) � � N ′ ⇐⇒ α� ≡ 0 (mod n) ⇐⇒ 2 ord�(c) + ord�(d) ≡ 0 (mod n),

where c and d are given in (13).

Proof. Since E is semistable, N is squarefree, and therefore N ′ is squarefree. Note
that ord2(ΔF ) = 2n ord2(y)− 12. Thus 2 || N and n � ord2(ΔF ), whereby 2 || N ′.

Next let � ≥ 13. Then ord�(ΔF ) = 2n ord�(y) and hence � � N ′. It follows that
N ′ = 2R with R | 3 · 5 · 7 · 11.

To prove the second part of the lemma, note that, for � ∈ {3, 5, 7, 11},

ord�(Δ) = α� + 2n ord�(y) = 2 ord�(c) + ord�(d) + 2n ord�(y).

If α� = 0 and ord�(y) = 0, then � � N and so � � N ′, and therefore (21) holds.
Suppose α� > 0 or ord�(y) > 0. Then � || N . By the formula for N ′, we have
� � N ′ if and only if n | ord�(Δ) which is equivalent to n | α�. This completes the
proof. �

Let f be the weight 2 newform of level N ′ satisfying (20). Write

(22) f = q+

∞∑
m=2

cmq
m

for the usual q-expansion of f . Then K = Q(c1, c2, . . .), and the coefficients ci
belong to OK .

Lemma 5.2. Let � � N ′ be a prime and write

C′
f,� =

{
(�+ 1)2 − c2� if K = Q

� · ((�+ 1)2 − c2� )) if K �= Q.

Let d be as in (13), and set

T�(f) =

⎧⎪⎨
⎪⎩
{a ∈ Z ∩ [−2

√
�, 2

√
�] : �+ 1− a ≡ 0(mod 4)} if (−d/�) = 1

{a ∈ Z ∩ [−2
√
�, 2

√
�] : �+ 1− a ≡ 0(mod 2)} if (−d/�) = −1

∅ if � | d.

Let

Cf,� = C′
f,� ·

∏
a∈T�(f)

(a− c�).

If ρF,n ∼ ρf,n, then n | Cf,�.
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Proof. Suppose � � N ′ and write N for the conductor of F . Suppose ρF,n ∼ ρf,n.
A standard consequence [32, Propositions 5.1, 5.2] of this is that{

c� ≡ a�(F )(mod n) if � �= n and � � N

c� ≡ ±(�+ 1)(mod n) if � �= n and � | N.

Here the restriction � �= n is unnecessary if K = Q. It follows if � | N that n | C′
f,�.

We observe that the discriminant of F can written as

Δ = (−d) · (cyn/26)2.

If � | d then � | N and so we take Cf,� = C′
f,�.

Suppose � � N and so � � d. Thus c� ≡ a�(F )(mod n). To complete the proof it is
sufficient to show that a�(F ) ∈ T�(f). The model for F given in (19) is isomorphic
to

(23) F : Y 2 = X3 + xX2 +
yn

4
X,

and so has a point of order 2. Thus �+1−a�(F ) = #F (F�) ≡ 0(mod 2). Moreover,
if (−d/�) = 1 then the discriminant is a square modulo �, so F/F� has full 2-torsion,
whence #F (F�) ≡ 0(mod 4). It follows that a�(F ) ∈ T�(f). �

There are a total of 76 conjugacy classes of newforms f at the levels N ′ = 2R
with R | 3 · 5 · 7 · 11, of which 59 are rational (and so correspond to elliptic curves).
Since there are four possible values of d ∈ {7, 15, 55, 231}, this gives 4 × 76 = 304
pairs (f, d) to consider. We apply Lemma 5.2 to each pair (f, d), letting

Cf,d =
∑

Cf,� · OK ,

where the sum is over all primes 3 ≤ � < 500 not dividing N ′. It follows from
Lemma 5.2 that n | Cf,d. We let

Cf,d = NormK/Q(Cf,d).

Since n | n, we have that n | Cf,d. Of the 304 pairs (f, d), the integer Cf,d is
identically zero for 114 pairs, and non-zero for the remaining 190 pairs. For the 190
pairs (f, d) where Cf,d �= 0, we find that the largest possible prime divisor of any of
these Cf,d is 11. By the results of the previous section we know all the solutions to
(11) with n ∈ {7, 11} and hence can therefore eliminate these 190 pairs from further
consideration. We focus on the 114 remaining pairs (f, d). Here, each f satisfies
K = Q and so corresponds to an elliptic curve E/Q whose conductor is equal to
the level N ′ of f . Moreover, each of these elliptic curve E has non-trivial rational
2-torsion. This is unsurprising in view of the remarks following [32, Proposition
9.1]. We observe that ρf,n ∼ ρE,n. Thus we have 114 pairs (E, d) to consider,
and if (x, y, n) is a solution to (11) with n ≥ 13 prime then there is some pair
(E, d) (among the 114) where d satisfies (13) and E/Q is an elliptic curve such that
ρF,n ∼ ρE,n. In particular, for any prime � � N ′,{

a�(E) ≡ a�(F )(mod n) if � � N

a�(E) ≡ ±(�+ 1)(mod n) if � | N.
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5.1. The method of Kraus.

Lemma 5.3. Let c′ = ±c with the sign chosen so that c′ ≡ 1(mod 4). Let

γ = u+ v
√
−d where (u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1/8, 3/8) d = 7

(7/8, 1/8) d = 15

(3/8, 1/8) d = 55

(5/16,−1/16) d = 231.

Choose εn ∈ {1,−1} to satisfy n ≡ εn(mod 3). Then there is some δ ∈ M∗ such
that

(24)
x+ c′

√
−d

x− c′
√
−d

=

{
γ · δn if d = 7, 15, 55

γ(2+εn·n)/3 · δn if d = 231.

Moreover, δ is supported only on prime ideals dividing y.

Proof. From the proof of Lemma 4.2, and in particular (18), we have

(25)

(
x′ + c

√
−d

x′ − c
√
−d

)
· OM = (P/P)2 ·Bn

with B = A/A. Here P is given by (16), and A is an integral ideal dividing y. We
observe that B is supported only on prime ideals dividing y. First let d = 7, 15 or
55. In these cases the fractional ideal (P/P)2 is principal, and we have chosen γ so
that it is a generator. Since n is a prime not dividing the order of Cl(M) we have
that B is also principal. Let δ ∈ M∗ be a generator of B. Then

x+ c′
√
−d

x− c′
√
−d

= ±γ · δn,

and we complete the proof for d = 7, 15 and 55 by absorbing the ± sign into δ.
Suppose now that d = 231. The class of the fractional ideal P/P has order 3,

and we have chosen γ to be a generator of (P/P)3. We may rewrite (25) as

x+ c′
√
−d

x− c′
√
−d

= (P/P)2+εn·n · Cn,

where C = B · (P/P)εn . Note that 3 | (2 + εn · n) and hence

(P/P)2+εn·n = γ(2+εn·n)/3 · OM .

The ideal C must be principal and hence we complete the proof by letting δ be a
suitably chosen generator for C. We note that, in all cases, δ is supported only on
primes of OM dividing y. �

Lemma 5.4. Let n ≥ 13 be a prime and (E, d) be one of the remaining 114 pairs.
Let q = kn + 1 be a prime. Suppose that (−d/q) = 1, and choose a such that
a2 ≡ −d(mod q). Let g0 be a generator for F∗

q and g = gn0 . Let (u, v) be as in the
statement of Lemma 5.3. If d = 7, 15 or 55, then let

Θ′
q =

{
(u+ va) · gi : i = 0, 1, . . . , k − 1

}
⊂ Fq.

If d = 231, then set

Θ′
q =

{
(u+ va)(2+εn·n)/3 · gi : i = 0, 1, . . . , k − 1

}
⊂ Fq
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and, in all cases, let
Θq = Θ′

q \ {0, 1}.
Suppose the following two conditions hold:

(i) aq(E)2 �≡ 4(mod n).
(ii) aq(E)2 �≡ aq(Hθ)

2(mod n) for all θ ∈ Θq, where

Hθ : Y 2 = X(X + 1)(X + θ).

Then ρF,n � ρE,n.

Proof. We suppose that ρF,n ∼ ρE,n and derive a contradiction. Since n ≥ 11, we
note that, in particular, q �∈ {2, 3, 5, 7, 11}. Suppose first that q | y. Then q + 1 ≡
±aq(E)(mod n). But q + 1 = kn + 2 ≡ 2(mod n) and hence aq(E)2 ≡ 4(mod n),
contradicting hypothesis (i). We may therefore suppose that q � y. In particular q
is a prime of good reduction for the Frey curve F , and also for the curve E, whence
aq(F ) ≡ aq(E)(mod n).

Since a2 ≡ −d(mod q), by the Dedekind-Kummer theorem, the prime q splits in
OM as a product of two primes qOM = q · q where we choose

(26) q = qOM + (a−
√
−d) · OM .

In particular a ≡
√
−d(mod q). Moreover, Fq = Fq. Since q | q and q � 2y, it follows

from (17) that q � (x± c′
√
−d). We let θ ∈ F∗

q satisfy

(27) θ ≡ x+ c′
√
−d

x− c′
√
−d

(mod q).

We will contradict hypothesis (ii), and complete the proof, by showing that θ ∈ Θq

and aq(F ) = ±aq(Hθ). If θ ≡ 1(mod q) then q | 2c′
√
−d giving that q | 2 ·3 ·5 ·7 ·11,

which is impossible. Therefore θ �≡ 1(mod q). Let (u, v), γ and δ be as in the
statement of Lemma 5.3. Note that γ is supported only at the primes above 2 and
that δ is supported at only the primes above y. Since q � y, we may reduce γ and
δ modulo q. In particular,

γ ≡ u+ av(mod q).

Moreover, δn(mod q) belongs to the subgroup of F∗
q generated by g = gn0 of order

k. The fact that θ belongs to Θ′
q (and therefore to Θq) follows from (27) and (24).

It remains to show that aq(F ) = ±aq(Hθ). The model for F in (19) is isomorphic
to the model in (23). We note that the polynomial on the right hand-side of (23)
can be factored as

(28) X

(
X +

x+ c′
√
−d

2

)(
X +

x− c′
√
−d

2

)
.

Thus, F (mod q) is a quadratic twist of Hθ, whence

aq(F ) = aq(F ) = ±aq(Hθ) = ±aq(Hθ),

completing the proof. �
Remark. We know by Dirichlet’s theorem that the natural density of primes q
satisfying the conditions q = kn+1 and (−d/q) = 1 is 1/2n. We now give a heuristic
estimate for the probability of succeeding to show that ρF,n � ρE,n using a single
q = kn+1 that satisfies (−d/q) = 1. The set Θ′

q has size k, and so Θq has size close

to k. For a given θ ∈ Θq, we expect the probability that aq(E)2 �≡ aq(Hθ)
2(mod n)

to be roughly (1− 2/n). Thus the probability of the criterion succeeding is around
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Table 1. The upper boundsN(d) are as in (12). The table records
the number of primes in the interval 13 ≤ n < N(d) and the
number of pairs (E, d).

d N(d) Number of primes 13 ≤ n < N(d) Number of pairs (E, d)

7 6× 108 31324698 39
15 4× 108 21336321 28
55 5× 108 26355862 27
231 1.2× 109 60454700 20

(1− 2/n)k. In particular, if k is large compared to n/2 then we expect failure, but
if k is small compared to n/2 then we expect success. Moreover, if we fail with one
particular value of q, we are likely to fail with larger values of q (which correspond
to larger values of k).

However, this heuristic is likely to be inaccurate when
√
q is small compared to

n, since aq(E) and aq(Hθ) both belong to the Hasse interval [−2
√
q, 2

√
q], and the

probability of the criterion succeeding is around (1− 1/
√
q)k.

We are working towards proving Proposition 4.1. Recall that we have 114 re-
maining pairs (E, d) with E/Q an elliptic curve and d ∈ {7, 15, 55, 231}; these are
distributed among the values of d according to Table 1. The table also records the
upper bounds N(d) of Proposition 4.1. We wrote a Magma script that applied the
criterion of Lemma 5.4 to the

39 ·31324698+28 ·21336321+27 ·26355862+20 ·60454700 = 3739782484 ≈ 3.7×109

triples (E, d, n). For each such triple, the script searches for a prime q = kn+1 with
k < 103 such that the hypotheses of Lemma 5.4 are satisfied. This computation took
around 29000 hours, but was in fact distributed over 64 processors, and finished
in around 20 days. For all but 1230 of the 3739782484 triples (E, d, n) the script
found some q satisfying the hypotheses of Lemma 5.4. We are therefore reduced
to considering the remaining 1230 triples (E, d, n). While these are somewhat too
numerous to record here, we note that the largest value of n appearing in any of
these triples is n = 1861 and this corresponds to E being the elliptic curve with
Cremona label 210A1 and d = 15.

5.2. A refined sieve. Our adaptation of the method of Kraus (Lemma 5.4) makes
use of one auxiliary prime q satisfying q = kn+1 and (−k/q) = 1. To treat the re-
maining 1230 triples (E, d, n), we will use a refined sieve that combines information
from several such primes q.

Lemma 5.5. Let (E, d, n) be one of the remaining 1230 triples. Let q = kn+ 1 be
a prime. Suppose that (−d/q) = 1 and choose a such that a2 ≡ −d(mod q). Let c′,
h, (r, s), κn be as in Lemma 4.2, m = (2 + κn · n)/h ∈ Z, and set

ρ1 = (r + sa)m and ρ2 = (r − sa)m.

Let g0 be a generator for F∗
q and set g = gn0 . Further, let us define

Υ′′
q =

{(
ρ1 · gi, ρ2 · gj

)
: i = 0, 1, . . . , k − 1, j = 0, 1

}
⊂ Fq × Fq,

Υ′
q =

{
(θ1, θ2) ∈ Υ′′

q : θ1θ2(θ1 − θ2) �= 0
}
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and

Υq =
{
(θ1, θ2) ∈ Υ′

q : aq(Hθ1,θ2) ≡ aq(E)(mod n)
}
,

where Hθ1,θ2/Fq is the elliptic curve

Hθ1,θ2 : Y 2 = X(X + θ1)(X + θ2).

Write

Φ′
q =

{
(θ1 − θ2)/a · (F∗

q)
2n : (θ1, θ2) ∈ Υq

}
⊂ F∗

q/(F
∗
q)

2n

and

Φq =

{
Φ′

q ∪ {(ω/a) · (F∗
q)

2n : ω∈{ρ1, ρ1g, −ρ2, −ρ2g}} if aq(E)2≡(mod n)

Φ′
q otherwise.

If ρF,n ∼ ρE,n, then necessarily

(29) c′ · (F∗
q)

2n ∈ Φq.

Proof. Let M = Q(
√
−d) and q | q be the prime ideal of OM given by (26), so that

OM/q = Fq and
√
−d ≡ a(mod q). Let μ be as in Lemma 4.2. From (15) and its

conjugate, we have

(30)
x+ c′

√
−d

2
≡ ρ1 · μn(mod q) and

x− c′
√
−d

2
≡ ρ2 · μn(mod q).

Suppose first that q � y. Thus both F and E have good reduction at q, and so
aq(F ) ≡ aq(E)(mod n). It follows from (17) that q � ((x ± c′

√
−d)/2) and that

q � μ, μ. Recall that g = gn0 where g0 is a generator for F∗
q ; in particular, g is

a non-square, it generates (F∗
q)

n, and has order k. We note that the class of μn

modulo q is either in (F∗
q)

2n or in g · (F∗
q)

2n. Hence there is some φ ∈ (F∗
q)

2n and
some 0 ≤ j ≤ 1 such that

x− c′
√
−d

2
≡ ρ2 · gj · φ(mod q).

Now the class of μn/φ modulo q belongs to (F∗
q)

n and so is equal to gi for some
0 ≤ i ≤ k − 1. We note that

x+ c′
√
−d

2
≡ ρ1 · gi · φ(mod q).

Hence (
x+ c′

√
−d

2
,
x− c′

√
−d

2

)
≡ (θ1 · φ, θ2 · φ)(mod q),

where (θ1, θ2) ∈ Υ′′
q . Since q � ((x ± c′

√
−d)/2), we see that θ1θ2 �= 0. Moreover,

θ1 − θ2 = c′
√
−d/φ ∈ F∗

q . Thus (θ1, θ2) ∈ Υ′
q. Now recall that the model for the

Frey curve F in (19) is isomorphic to the model given in (23). The polynomial on
the right hand-side of the latter model factors as in (28). Thus F/Fq is isomorphic
to the elliptic curve

Y 2 = X(X + θ1φ)(X + θ2φ).

As φ is a square in Fq, we see that this elliptic curve is in turn isomorphic to
the elliptic curve Hθ1,θ2 . Then aq(F ) = aq(F ) = aq(Hθ1,θ2) = aq(Hθ1,θ2). Since
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aq(E) ≡ aq(F )(mod n), it follows that (θ1, θ2) ∈ Υq. Moreover,

c′ =
1√
−d

·
(
x+ c′

√
−d

2
− x− c′

√
−d

2

)
≡ θ1 − θ2

a
· φ(mod q).

Since φ ∈ (F∗
q)

2n, this proves (29).
So far we have considered only the case q � y. We know that if q | y, then

aq(E) ≡ ±(q + 1) ≡ ±2(mod n).

Thus if aq(E)n �≡ 4(mod n), then q � y and the proof is complete. Suppose aq(E)2 ≡
4(mod n) and that q | y. In particular, either q | μ or q | μ, but not both (by the
coprimality of the factors on the right hand-side of (17)). Suppose q | μ. Then

x ≡ c′
√
d(mod q) and so from (30) we have

c′ ≡ ρ1√
−d

· μn ≡ ρ1
a

· μn(mod q).

However, the class of μn modulo q belongs to either (F∗
q)

2n or g ·(F∗
q)

2n, establishing
(29). The case q | μ is similar. This completes the proof. �

Lemma 5.6. Let (E, d, n) be one of the remaining 1230 triples. Let q = kn + 1
be a prime. Suppose that (−d/q) = −1. Let M = Q(

√
−d) and let q = qOM .

Write Fq = OM/q ∼= Fq2 . Let c′, h, (r, s), κn be as in Lemma 4.2, and set
m = (2+ κn · n)/h ∈ Z. Define ρ1 = (r+ sa)m, choose g0 to be a generator for F∗

q,
and set g = gn0 . Define

Υ′′
q =

{
ρ1 · gi : i = 0, 1, . . . , 2q + 1

}
⊂ F∗

q,

Υ′
q =

{
θ ∈ Υ′′

q : θ �= θq
}

and

Υq =
{
θ ∈ Υ′

q : aq(Hθ) ≡ aq(E)(mod n)
}
,

where Hθ/Fq is the elliptic curve

Hθ : Y 2 = X(X + θ)(X + θq).

Let

Φq =
{
(θ − θq)/

√
−d · (F∗

q)
2n : θ ∈ Υq

}
⊂ F∗

q/(F
∗
q)

2n.

If ρF,n ∼ ρE,n then necessarily (29) holds.

Proof. We note that in Fq Galois conjugation agrees with the action of Frobenius.
Thus if α ∈ OM and α denotes its conjugate, then α ≡ αq (mod q).

Since (−d/q) = −1 and x2 + c2d = yn we observe that q � y. Thus F and E
both have good reduction at q, and so aq(F ) ≡ aq(E) (mod n). Let μ be as in
Lemma 4.2. Thus q � μ, μ. Recall that g = gn0 where g0 is a generator for F∗

q,

whence μn ≡ gj for some integer j. From (15),

x+ c′
√
−d

2
≡ ρ1 · gj(mod q) and

x− c′
√
−d

2
≡ (ρ1 · gj)q(mod q).

Write j = i + (2q + 2)t, where i ∈ {0, 1, . . . , 2q + 1} and t is an integer. We note
that

g2q+2 = (gq+1
0 )2n.
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Moreover, gq+1
0 = g0g

q
0 ∈ F∗

q . Thus there is some θ ∈ Υ′′
q and some φ ∈ (F∗

q)
2n such

that
x+ c′

√
−d

2
≡ θ · φ(mod q) and

x− c′
√
−d

2
≡ θq · φ(mod q).

Since q � c′
√
−d, we see that θ �= θq and so θ ∈ Υ′

q. We note that the model for F
in (23) can, over Fq, be written as

Y 2 = X(X2 + φ · (θ + θq)X + φ · (θθq)),
where the coefficients are fixed by Frobenius and so do indeed belong to Fq. This
model is a twist by φ ofHθ. As φ is a square in F∗

q , we have aq(Hθ) = aq(F ) ≡ aq(E)
(mod n). Thus θ ∈ Υq. Finally,

c′ =
1√
−d

·
(
x+ c′

√
−d

2
− x− c′

√
−d

2

)
≡ θ − θq√

−d
· φ(mod q).

Since φ ∈ (F∗
q)

2n, this proves (29). �

Lemma 5.7. Let (E, d, n) be one of the remaining 1230 triples. Let q1, q2, . . . , qr
be primes satisfying qi ≡ 1(mod n). Let

ψq : (Z/2nZ)4 → F∗
q/(F

∗
q)

2n,(31)

psiq(x1, x2, x3, x4) = (−3)x15x2(−7)x3(−11)x4 · (F∗
q)

2n.(32)

If (−d/q) = 1, let Φqi be as in Lemma 5.5 and if (−d/q) = −1, let Φqi be as in
Lemma 5.6. Suppose

r⋂
i=1

ψ−1
qi (Φqi) = ∅.

Then ρF,n � ρE,n.

Proof. Recall, from (11) and (13), that

c = 3β35β57β711β11 .

Thus c ≡ (−1)β3+β7+β11(mod 4) and hence, since we choose c′ = ±c so that c′ ≡
1(mod 4),

c′ = (−1)β3+β7+β11 · 3β35β57β711β11 = (−3)β35β5(−7)β7(−11)β11 .

Suppose ρF,n ∼ ρE,n. Thus

ψq(β3, β5, β7, β11) = c′ · (F∗
qi)

2n ∈ Φqi

by (29). Therefore

((β3, β5, β7, β11) mod 2n) ∈
r⋂

i=1

ψ−1
qi (Φqi)

giving a contradiction. �
We wrote a Magma script which for each of the 1230 remaining triples (E, d, n)

recursively computes the intersections

ψ−1
q1 (Φq1),

2⋂
i=1

ψ−1
qi (Φqi),

3⋂
i=1

ψ−1
qi (Φqi), . . .

where the qi are primes ≡ 1 (mod n). It stops when the intersection is empty,
or when we have used 200 primes qi, whichever comes first. If the intersection is
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Table 2. This table gives the six triples (E, d, n) such that the

intersection
⋂200

i=1 ψ
−1
qi (Φqi) is non-empty. Here the elliptic curve

E is given in the first column in Cremona notation. We note that
n = 13 for all six triples. Therefore the intersection given in the
last column is a subset of (Z/26Z)4.

Elliptic Curve d n

200⋂
i=1

ψ−1
qi (Φqi)

462b1 231 13 { (7, 2, 19, 3), (9, 1, 24, 9) }
462f1 231 13 { (0, 15, 25, 13), (15, 18, 5, 0) }
2310j1 231 13 { (11, 6, 6, 18), (24, 19, 19, 5) }
2310l1 231 13 { (10, 5, 22, 8) }
2310m1 231 13 {(5, 14, 11, 21), (7, 21, 19, 19) }
2310o1 15 13 { (1, 0, 1, 1) }

empty, then we know from Lemma 5.7 that ρF,n � ρE,n and we may eliminate
the particular triple (E, d, n) from further consideration. We reached an empty
intersection in 1224 cases. Table 2 gives the details for the six triples (E, d, n)
where the intersection is non-empty.

5.3. Proof of Proposition 4.1. We now complete the proof of Proposition 4.1.
To summarise, Lemma 4.3 showed that the only solutions to (11) with exponent
n ∈ {5, 7, 11} are the ones given in the statement of Proposition 4.1. In view
of the results of this section, it only remains to consider the six triples (E, d, n)
given in Table 2. To eliminate further cases, we make use of the following result of
Halberstadt and Kraus [17, Lemme 1.6].

Theorem 5 (Halberstadt and Kraus). Let E1 and E2 be elliptic curves over Q
and write Δj for the minimal discriminant of Ej. Let n ≥ 5 be a prime such that
ρE1,n ∼ ρE2,n. Let q1, q2 �= n be distinct primes of multiplicative reduction for both
elliptic curves such that ordqi(Δj) �≡ 0 (mod n) for i, j ∈ {1, 2}. Then

ordq1(Δ1) · ordq2(Δ1)

ordq1(Δ2) · ordq2(Δ2)

is congruent to a square modulo n.

We shall use Theorem 5 and Lemma 5.1 to eliminate the first five of the six
outstanding triples (E, d, n) given in Table 2. In all these cases n = 13. We
know from the proof of Lemma 5.7 that (β3, β5, β7, β11)(mod 26) belongs to the
intersection in the last column of Table 1.

Consider the first triple, corresponding to the first row of the table. The β5 ≡ 1
or 2 (mod 26). But β5 = ord5(c). Thus 2 ord5(c) + ord5(d) ≡ 2β5 + ord5(231) ≡ 2
or 4 (mod 13) and so by Lemma 5.1, 5 must divide the conductor of E which is
462 giving a contradiction. The same argument eliminates the second triple.

Next we consider the third triple. Here β7 ≡ 6 or 19 (mod 26), and so ord7(c) ≡
β7 ≡ 6 (mod 13). Then 2 ord7(c) + ord7(d) ≡ 2β7 + ord7(231) ≡ 0 (mod 13). By
Lemma 5.1, 7 does not divide the conductor of E which is 2310, again a contradic-
tion.
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We next consider the fourth triple. Here the elliptic curve E with Cremona
reference 2310l1 has minimal discriminant

ΔE = 24 × 312 × 53 × 7× 11.

We apply Theorem 5 with E1 = F , E2 = E, q1 = 2 and q2 = 3. From the proof of
Lemma 5.1 we have

ord2(ΔF ) ≡ −12 ≡ 1 (mod 13),

ord3(ΔF ) = 2β3 + ord3(231) ≡ 2× 10 + 1 ≡ 8 (mod 13).

Hence
ord2(ΔF ) · ord3(ΔF )

ord2(ΔE) · ord3(ΔE)
≡ 1× 8

4× 12
≡ 11 (mod 13)

which is a non-square modulo 13, contradicting Theorem 5.
Next we consider the fifth triple. Here there are two possibilities for (β3, β5,

β7, β11). In the second possibility we have β7 ≡ 19 (mod 26) which leads to a
contradiction via Lemma 5.1. We focus on the first possibility. The minimal dis-
criminant of the curve E is

ΔE = 24 × 38 × 5× 73 × 11.

We obtain a contradiction by applying Theorem 5 with q1 = 2 and q2 = 3.
We are left with the last triple, which we have been unable to eliminate by

appealing to Theorem 5 or Lemma 5.1, or by further sieving. In fact, (11) has the
solution

(33) 81432 + 33 · 5 · 72 · 112 = 413.

Here n = 13, d = 15 and c = 3 ·7 ·11. We note that the vector of exponents for this
value of c is (β3, β5, β7, β11) = (1, 0, 1, 1) which agrees with the prediction in the
last column of the table. Moreover, letting x = −8143 ≡ 1 (mod 4), and yn = 413

in the Frey curve F gives the elliptic curve 2310o1. To complete the proof, we
need to solve (11) with d = 15 and n = 13. We do this by reducing this case
to a Thue-Mahler equation using the approach in the proof of Lemma 4.3. After
possibly changing the sign of x so that x ≡ 1 (mod 4), we have that

x+ c′
√
−15

2
=

(
1−

√
−15

8

)(
r + s · (1 +

√
−15)

2

)13

,

where y = r2 + rs+ 4s2 for some integers r and s. Equating imaginary parts leads
to the conclusion that

F13(r, s) =
13∑
i=0

air
13−isi = ±4 · 3β3 · 5β5 · 7β7 · 11β11 ,

where
i ai i ai i ai
0 1 5 36036 10 195624
1 0 6 −34320 11 −95160
2 −312 7 −226512 12 −51428
3 −1144 8 −66924 13 924.
4 8580 9 340340
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We solved this Thue-Mahler equation using the Magma package associated to the
paper [16]. The only solution is with

r = 0, s = ±1, β3 = 1, β5 = 0, β7 = 1 and β11 = 1.

This corresponds to the identity (33) and completes the proof of Proposition 4.1.

Remark. It is natural to ask if the case n = 13 could have been dealt with entirely
using the Thue-Mahler approach, just as we did for n ∈ {5, 7, 11} in Lemma 4.3.
The Thue-Mahler solver that we are using can quickly deal with the Thue-Mahler
equations associated to the pairs (d, n) = (7, 13) and (55, 13). However, the Thue-
Mahler equation for the pair (d, n) = (231, 13) appears to be somewhat beyond
its capabilities. The approach in [16] reduces solving a Thue-Mahler equation to a
certain number of S-unit equations. By way of example, the Thue-Mahler equation
for the pair (d, n) = (15, 13) reduces to solving four S-unit equations. The Thue-
Mahler equation for the pair (d, n) = (231, 13), on the other hand, corresponds
to 2240 S-unit equations. This explains the effort we invested into eliminating
(d, n) = (231, 13) via sieving and appeal to Theorem 5 and Lemma 5.1.

6. Equation (2) with y even : large exponents

From the results of the preceding sections, it remains to solve equation (2) with
y even and exponent n prime and

(34) n > N(d),

where N(d) is as defined in (12). We will accomplish this through (quite careful)
application of bounds for linear forms in logarithms.

6.1. Upper bounds for n : linear forms in logarithms, complex and q-adic.
Our first order of business will be to produce an upper bound for the exponent n;
initially it will be somewhat larger than N(d). To this end, as it transpires, it will
prove useful to have at our disposal a lower bound upon y. From the discussion
following Lemma 5.2, we have that ρF,n ∼ ρE,n for E/Q with nontrivial rational
2-torsion.

To begin, we will need to treat the case where y in equation (2) has no odd
prime divisors. Suppose that we have a solution to equation (11) with y = 2κ for
κ a positive integer. For the time being, we will relax our assumptions upon n
and suppose only that n ≥ 7 is prime. Then the Frey-Hellegouarch curve F has
nontrivial rational 2-torsion and conductor

N = 2 · 3δ35δ57δ711δ11 where δi ∈ {0, 1},
so that

N ∈ {14, 30, 42, 66, 70, 154, 210, 330, 462, 770, 2310},
and minimal discriminant

−22κn−123α35α57α711α11 .

A quick check of Cremona’s tables reveals that we find such curves with minimal
discriminant negative and divisible by precisely 22κn−12, with n ≥ 7 prime, only
for 18 isomorphism classes of curves, given, in Cremona’s notation, by

14a4, 210b5, 210e1, 210e6, 330c1, 330c6, 330e4, 462a1, 462d1, 462e1,
462g3, 770a1, 770e1, 770g3, 2310d4, 2310n1, 2310n6, 2310o1.
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Most of these have 2κn−12 = 2 and so κ = 1 and n = 7. Since P (27−x2) > 11 for
1 ≤ x < 11 odd, only the curve 14a4 with Δ = −22 · 7 corresponds to a solution,
arising from the identity 112 + 7 = 27. Four more curves have 2κn − 12 = 16 and
so κ = 2 and n = 7. Corresponding identities are

72+33·5·112=214, 472+34·52·11=214, 1032+3·52·7·11=214, 1172+5·72·11=214,

arising from the curves 330c1, 210e1, 2310n1 and 770e1, with discriminants

−216 · 33 · 5 · 112, −216 · 34 · 52 · 7, −216 · 3 · 52 · 7 · 11 and − 216 · 5 · 72 · 11,
respectively. Neither 462d1 nor 462e1 lead to any solutions while 2310o1, with
discriminant −240 · 33 · 5 · 72 · 112, corresponds to the identity

81432 + 33 · 5 · 72 · 112 = 226.

We may thus suppose that y is divisible by an odd prime factor, provided n ≥ 17.

Lemma 6.1. If n ≥ 17 and y is even, we have

y > 4n− 4
√
2n+ 2.

Proof. By our preceding remarks, there necessarily exists an odd prime p | y. Since
ρF,n ∼ ρE,n where E/Q has nontrivial rational 2-torsion, the fact that gcd(x, y) = 1
thus allows us to conclude that

ap(E) ≡ ±(p+ 1)(mod n).

From the Hasse-Weil bounds, we have that ap(E) is bounded in modulus by 2
√
p,

so that, using the fact that ap(E) is even,

n <
1

2
(
√
p+ 1)2 ≤ 1

2
(
√
y/2 + 1)2.

The desired inequality follows. �

As before, define c and d via (13), where, since y is even, d ∈ {7, 15, 55, 231}, and
let c′ = ±c with the sign chosen so that c′ ≡ 1(mod 4). To derive an upper bound
upon n, we will begin by using (24) to find a “small” linear form in logarithms.
Specifically, let us define

(35) Λ = log

(
x+ c′

√
−d

x− c′
√
−d

)
.

We prove

Lemma 6.2. If we suppose that

(36) yn > 100 c2d,

then

log |Λ| < 0.75 + log c+
1

2
log d− n

2
log y.

Proof. Assumption (36), together with, say, Lemma B.2 of Smart [33], implies that

|Λ| ≤ −10 log(9/10)

∣∣∣∣x+ c′
√
−d

x− c′
√
−d

− 1

∣∣∣∣ = 20 log(10/9)
c
√
d

yn/2
,

whence the lemma follows. �
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To show that log |Λ| here is indeed small, we first require an upper bound upon
the exponents αq in equation (11). From (24), we have that

(37)
2 · c′

√
−d

x− c′
√
−d

=

{
γ · δn − 1 if d ∈ {7, 15, 55}
γ(2+εn·n)/3 · δn − 1 if d = 231.

For prime q, let Qq denote an algebraic closure of the q-adic field Qq, and define

νq to be the unique extension to Qq of the standard q-adic valuation over Qq,
normalized so that νq(q) = 1. For any algebraic number α of degree d over Q, we
define the absolute logarithmic height of α via the formula

(38) h(α) =
1

d

(
log |a0|+

d∑
i=1

logmax
(
1, |α(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the
α(i) are the conjugates of α in C. Since gcd(x, q) = 1, it follows from (37) that, if
we set

Λ1 =

{
δn − (1/γ) if d ∈ {7, 15, 55}
δn − (1/γ)(2+εn·n)/3 if d = 231,

then νq(Λ1) ≥ αq/2, for q ∈ {3, 5, 7, 11}.
To complement this with an upper bound for linear forms in q-adic logarithms,

we will appeal to Théorème 4 of Bugeaud and Laurent [11], with, in the notation
of that result, the choices (μ, ν) = (10, 5).

Theorem 6 (Bugeaud-Laurent). Let q be a prime number and let α1, α2 denote
algebraic numbers which are q-adic units. Let f be the residual degree of the ex-
tension Qq(α1, α2)/Qq and put D = [Qq(α1, α2) : Qq]/f . Let b1 and b2 be positive
integers and put

Λ1 = αb1
1 − αb2

2 .

Denote by A1 > 1 and A2 > 1 real numbers such that

logAi ≥ max

{
h(αi),

log q

D

}
, i ∈ {1, 2},

and put

b′ =
b1

D logA2
+

b2
D logA1

.

If α1 and α2 are multiplicatively independent, then we have the bound

νq(Λ1)≤
24q(qf−1)

(q−1) log4(q)
D4

(
max

{
log b′+log log q+0.4,

10 log q

D
, 5

})2

·logA1·logA2.

We will choose q ∈ {3, 5, 7, 11} and apply this result with the following choices
of parameters :

f = 1, D = 2, α1 = δ, α2 = 1/γ, b1 = n

and

(39) b2 =

{
1 if d ∈ {7, 15, 55}

(2 + εn · n)/3 if d = 231.

We have

h(1/γ) =

{
log 2 if d ∈ {7, 15, 55}
3
2 log 2 if d = 231
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and

h(δ) ≤ 1

2
log(y/2),

and hence, from (34) and Lemma 6.1, may choose

logA1 =
1

2
log(y/2) <

1

2
log y

and

logA2 =

⎧⎪⎨
⎪⎩
log 2 if d ∈ {7, 15, 55} and q = 3,
3
2 log 2 if d = 231 and q ∈ {3, 5, 7},
1
2 log q otherwise.

Once again appealing to (34) and Lemma 6.1, we have, in all cases, that b′ > 5 log q
and

b′ ≤ n

2 log 2
+

1

log y
< 0.722n.

We thus have
log b′ + log log q + 0.4 < 1.05 log n,

whence, from Theorem 6,

νq(Λ1) < c(d, q) · 1.052 log2 n log y,

where

c(d, q) =

⎧⎪⎨
⎪⎩

576 log 2
log4 3

if d ∈ {7, 15, 55} and q = 3,
288q log 2
log4 q

if d = 231 and q ∈ {3, 5, 7},
96q

log3 q
otherwise.

It follows that

(40)
∑

q∈{3,5,7,11}
αq log q < C(d) · 1.052 log2 n log y,

where
C(d) = 2

∑
q∈{3,5,7,11}

c(d, q) log q.

We have

C(7) = C(15) = C(55) = 2

(
576 log 2

log3 3
+

480

log2 5
+

672

log2 7
+

1056

log2 11

)
< 1696

and

C(231) = 2

(
864 log 2

log3 3
+

1440 log 2

log3 5
+

2016 log 2

log3 7
+

1056

log2 11

)
< 2129.

From (24) and (35), we can write

(41) Λ = n log (τδ) + b2 log (γ) + jπi,

with b2 as in (39), while, if d = 231, we also have

(42) Λ′ = 3Λ = n log
(
τ ′δ3γεn

)
+ 2 log (γ) + j′πi.

In each case, we take the principal branches of the logarithms, choose τ, τ ′ ∈ {−1, 1}
so that Im(log (τδ)) and Im(log

(
τ ′δ3γεn

)
) have opposite signs to Im(log γ), and take

integers j and j′ so that |Λ| and |Λ′| are minimal. Notice that, with these choices,

(43) n| log(τδ)| = | log (γ) |+ |j|π ± |Λ|, if d ∈ {7, 15, 55}
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and

(44) n| log(τ ′δ3γεn)| = 2 | log (γ) |+ |j′|π ± |Λ′|.

Note further that we have

d | log (γ) |
7 arccos(1/8)
15 arccos(7/8)
55 arccos(3/8)
231 arccos(5/16).

Assume first that inequality (36) fails to hold. Then, from (40), we have

n <
2 log 10

log y
+ C(d) · 1.052 log2 n,

contradicting Lemma 6.1, (34) and C(d) < 2129. It follows that inequality (36)
holds and hence we may conclude, from Lemma 6.2, that

log |Λ| < 0.75 +
1

2
C(d) · 1.052 log2 n log y − n

2
log y.

From Lemma 6.1, (34) and C(d) < 2129, we find, in all cases, that

(45) log |Λ| < −0.499n log y.

6.1.1. Linear forms in three logarithms. To deduce an initial lower bound upon the
linear form in logarithms |Λ|, we will use the following, the main result (Theorem
2.1) of Matveev [23].

Theorem 7 (Matveev). Let K be an algebraic number field of degree D over Q
and put χ = 1 if K is real, χ = 2 otherwise. Suppose that α1, α2, . . . , αn0

∈ K∗ with
absolute logarithmic heights h(αi) for 1 ≤ i ≤ n0, and suppose that

Ai ≥ max{Dh(αi), |logαi|}, 1 ≤ i ≤ n0,

for some fixed choice of the logarithm. Define

Λ = b1 logα1 + · · ·+ bn0
logαn0

,

where the bi are integers and set

B = max{1,max{|bi|Ai/An0
: 1 ≤ i ≤ n0}}.

Define, with e := exp(1), further,

Ω = A1 · · ·An0
,

C(n0) = C(n0, χ) =
16

n0!χ
en0(2n0 + 1 + 2χ)(n0 + 2)(4n0 + 4)n0+1 (en0/2)

χ ,

C0 = log
(
e4.4n0+7n5.5

0 D2 log(eD)
)

and W0 = log (1.5eBD log(eD)) .

Then, if logα1, . . . , logαn0
are linearly independent over Z and bn0

�= 0, we have

log |Λ| > −C(n0)C0W0 D
2 Ω.
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We apply Theorem 7 to Λ as given in (41), with

D = 2, χ = 2, n0 = 3, b3 = n, α3 = τδ, α2 = γ, b1 = j, α1 = −1,

and b2 as in (39).
We may thus take

A3 = log y, A2 = 3 log 2, A1 = π and B = n.

Since

4C(3)C0 = 218 · 3 · 5 · 11 · e5 · log
(
e20.2 · 35.5 · 4 log(2e)

)
< 1.80741× 1011,

and

W0 = log (3en log(2e)) < 2.63 + log n,

we may therefore conclude that

log |Λ| > −1.181× 1012 (2.63 + log n) log y.

It thus follows from (45) that

n < 2.37× 1012(logn+ 2.63),

whence

(46) n < 8.22× 1013.

To improve this inequality, we appeal to a sharper but less convenient lower
bound for linear forms in three complex logarithms, due to Mignotte ([25, Theorem
2]).

Theorem 8 (Mignotte). Consider three non-zero algebraic numbers α1, α2 and
α3, which are either all real and > 1, or all complex of modulus one and all �= 1.
Further, assume that the three numbers α1, α2 and α3 are either all multiplicatively
independent, or that two of the numbers are multiplicatively independent and the
third is a root of unity. We also consider three positive rational integers b1, b2, b3
with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but
which are all real or all purely imaginary. We assume that

0 < |Λ| < 2π/w,

where w is the maximal order of a root of unity in Q(α1, α2, α3). Suppose further
that

(47) b2| logα2| = b1 | logα1|+ b3 | logα3| ± |Λ|
and put

d1 = gcd(b1, b2), d3 = gcd(b3, b2) and b2 = d1b
′
2 = d3b

′′
2 .

Let K,L,R,R1, R2, R3, S, S1, S2, S3, T, T1, T2, T3 be positive rational integers with

K ≥ 3, L ≥ 5, R > R1 +R2 +R3, S > S1 + S2 + S3 and T > T1 + T2 + T3.

Let ρ ≥ 2 be a real number. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ| logαi| − log |αi|+ 2D h(αi), i ∈ {1, 2, 3},
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where D = [Q(α1, α2, α3) : Q]
/
[R(α1, α2, α3) : R], and set

U =

(
KL

2
+

L

4
− 1− 2K

3L

)
log ρ.

Assume further that

(48) U ≥ (D+1) log(K2L) + gL(a1R+ a2S + a3T ) +D(K − 1) log b− 2 log(e/2),

where

g =
1

4
− K2L

12RST
and b = (b′2η0)(b

′′
2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

with

η0 =
R − 1

2
+

(S − 1)b1
2b2

and ζ0 =
T − 1

2
+

(S − 1)b3
2b2

.

Put

V =
√
(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ, we have

(i) (R1 + 1)(S1 + 1)(T1 + 1) > KM,
(ii) Card{αr

1α
s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,
(iv) Card{αr

1α
s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2KL, and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,

where

M = max
{
R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χ V

}
,

then either

(49) |Λ| · LSe
LS|Λ|/(2b2)

2|b2|
> ρ−KL,

or at least one of the following conditions (C1), (C2), (C3) holds :

(C1). |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1,

(C2). |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2,

(C3). either there exist non-zero rational integers r0 and s0 such that

(50) r0b2 = s0b1

with

(51) |r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
,

or there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(52) (t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ gcd(r1, s1) ·
(R1 + 1)(S1 + 1)

M−max{R1, S1}
,

|s1t1| ≤ gcd(r1, s1) ·
(S1 + 1)(T1 + 1)

M−max{S1, T1}
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and

|r1t2| ≤ gcd(r1, s1) ·
(R1 + 1)(T1 + 1)

M−max{R1, T1}
.

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

We will apply this result to our Λ (if d ∈ {7, 15, 55}) or Λ′ (if d = 231). To do
this, we must distinguish between a number of cases, depending on d and the signs
of the coefficients in (41) or (42). By way of example, suppose first that d = 231.
If we have j′ = 0 or j′ = ±n, then Λ′ reduces to a linear form in two logarithms
and we may appeal to Corollary 1 of Laurent [19]; actually, what we state here
is specialized for our purposes and follows from the arguments of [19] (see pages
346 and 347) after a short computation (in each case using, in the notation of [19],
values of μ in [0.555, 0.562] and ρ in [6.12, 6.31]).

Theorem 9 (Laurent). Consider the linear form

Λ = c2 log β2 − c1 log β1,

where c1 and c2 are positive integers, and β1 and β2 are multiplicatively independent
algebraic numbers. Define D = [Q(β1, β2) : Q]

/
[R(β1, β2) : R] and set

b′ =
c1

D logB2
+

c2
D logB1

,

where B1, B2 > 1 are real numbers such that

logBi ≥ max{h(βi), | log βi|/D, 1/D}, i ∈ {1, 2}.
Then

log |Λ| ≥ −CD4 (max{log b′ + 0.21,m1/D, 1})2 logB1 logB2,

for each pair (m1, C) in the following set

{(14, 28.161), (14.5, 27.812), (15, 27.486), (15.5, 27.182), (16, 26.896),
(16.5, 26.627), (17, 26.374), (17.5, 26.136), (18, 25.911), (18.5, 25.697), (19, 25.495),

(19.5, 25.303), (20, 25.120)} .

If j′ = 0, we apply this with

c2 = n, β2 = τ ′δ3γεn , c1 = 2, β1 = 1/γ, D = 1,

whence

h(β2) ≤
3

2
log(y), h(β1) =

3 log 2

2
,

and we can take

logB2 =
3

2
log(y) and logB1 = arccos(5/16).

Choosing (m1, C) = (18, 25.911), it follows that

log |Λ′| ≥ −39 arccos(5/16) (log(n) + 0.18)
2
log y,

whereby, from (45) and Λ′ = 3Λ, n < 8300, contradicting (34). Similarly, if j′ = ±n,
we may apply Theorem 9 with

c2 = n, c1 = 2, β1 = 1/γ, D = 1,

where

log β2 = log(τ ′δ3γεn)± πi.
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We can once again choose

logB2 =
3

2
log(y) and logB1 = arccos(5/16),

and derive a contradiction from taking (m1, C) = (18, 25.911). Note that from (42),

|j′|π < πn+ 2arccos(5/16) + 3 · y−0.499n < πn+ 2.51,

whereby |j′| ≤ n. We may thus suppose that |j′| < n and j′ �= 0 (so that, in
particular, we have gcd(j′, n) = 1).

We will now apply Theorem 8. From (44), we can take, in the notation of
Theorem 8 and writing υ = −j′/|j′|,
(53) b1 = 2, α1 = γ−υ, b2 = n, α2 = (τ ′δ3γεn)υ, b3 = |j′| and α3 = −1.

It follows that

h(α1) =
3 log 2

2
, h(α2) ≤

3

2
log(y) and h(α3) = 0.

We can thus choose

a1 = ρ arccos(5/16) + 3 log(2), a2 = ρπ + 3 log(y) and a3 = ρπ.

As noted in [12], if we suppose that m ≥ 1 and define
(54)

K = [mLa1a2a3], R1 = [c1a2a3], S1 = [c1a1a3], T1 = [c1a1a2], R2 = [c2a2a3],

S2 = [c2a1a3], T2 = [c2a1a2], R3 = [c3a2a3], S3 = [c3a1a3] and T3 = [c3a1a2],

where

(55)
c1 = max{(χmL)2/3, (2mL/a1)

1/2}, c2 = max{21/3(mL)2/3, (m/a1)
1/2L}

and c3 = (6m2)1/3L,

then conditions (i)–(v) are automatically satisfied. It remains to verify inequality
(48).

Define

R = R1 + R2 +R3 + 1, S = S1 + S2 + S3 + 1 and T = T1 + T2 + T3 + 1.

We choose

ρ = 5.9, L = 206, m = 25 and χ = 2.89,

so that

c1 = (χmL)2/3, c2 = 21/3(mL)2/3,

and we have

K = [K1 +K2 log(y)],

where

K1 = 16759141.618 . . . and K2 = 2712508.708 . . . .

We thus have

S1 = 106229, S2 = 65966 and S3 = 561893.

Since Lemma 6.1, (34) and N(231) = 1.2× 109 together imply that

(56) log y > 22.2,

we find, after a little work, that M = χV and that g < 0.2438.
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Since gcd(j′, n) = 1, we have

d1 = d3 = 1, b′2 = b′′2 = n,

and it follows that

η0 =
1

2
(R1 + R2 +R3) +

1

n
(S1 + S2 + S3) < 718258 + 116252 log y,

and, from |j′| < n,

ζ0 =
1

2
(T1 + T2 + T3) +

−j′

2n
(S1 + S2 + S3) <

1

2
(T1 + T2 + T3 + S1 + S2 + S3) ,

whereby
ζ0 < 734089 + 59408 log y.

From [25, Lemma 3.4], we have the inequality

(57) log

(
K−1∏
k=1

k!

) 4
K(K−1)

≥ 2 logK − 3 +
2 log

(
2πK/e3/2

)
K − 1

− 2 + 6π−2 + logK

3K(K − 1)
,

whence, from K > 106,

log

(
K−1∏
k=1

k!

) 4
K(K−1)

> 2 logK − 3.

It follows, from (56), that

b < e3n2 (718258+116252 log y) (734089+59408 log y)

(16759141.6+2712508.7 log y)2
< 0.023062n2 < 1.559×1026,

where the last inequality is a consequence of (46). The right-hand-side of inequality
(48) is thus bounded above by

4 log(K) + 2.051× 109 + 3.319× 108 log(y) + 60.312K

while the left-hand-side satisfies

U > 182.814K + 89.635.

If inequality (48) fails to hold, it follows that

122.502K < 4 log(K) + 2.051× 109 + 3.318× 108 log(y),

contradicting
K > 16759141 + 2712508 log y

and (56).
Note that we have

LSeLS|Λ|/(2b2)

2|b2|
=

75611167 e75611167|Λ|/n

n

and hence, from (45),

LSeLS|Λ|/(2b2)

2|b2|
<

75611167 exp
(

75611167
ny0.499n

)
n

< 0.127,

where the last inequality is a consequence of Lemma 6.1 and (34). If we have
inequality (49), it thus follows that

log |Λ| > 2− 365.65K.
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Once again appealing to (45), we find that

0.499n log y < 365.65K − 2 < 365.65 (16759141.62 + 2712508.71 log y)

and so

n < 1.988× 109 +
1.229× 1010

log y
,

whence, from (56),

(58) n < 2.6× 109.

If, on the other hand, inequality (49) fails to be satisfied, from inequality (34)
and our choices of S1 and S2, necessarily (C3) holds. If (50) holds then n | s0,
where

|s0| ≤
(S1 + 1)(T1 + 1)

M− T1
≤ (S1 + 1)(T1 + 1)

R1 + 1

<
106230 (106230.73 + 17193.55 log y)

207878 + 33645 log y
< 54287,

from calculus. It follows that necessarily s0 = 0, a contradiction. We thus have
(52). In particular,

(59) (2t1 + r1|j′|) s1 = r1t2n,

for integers r1, s1, t1, t2 with gcd(r1, t1) = gcd(s1, t2) = 1,

(60) |s1t1| ≤ gcd(r1, s1) ·
(S1 + 1)(T1 + 1)

χV − T1
< gcd(r1, s1) · 81

and

(61) |r1s1| ≤ gcd(r1, s1) ·
(R1 + 1)(S1 + 1)

χV −R1
< gcd(r1, s1) · 158,

again via calculus. It follows that

(62) |t1| ≤ 80 and |r1| ≤ 157.

Since r1 is coprime to t1, necessarily r1 | 2s1, while the fact that gcd(s1, t2) = 1
while n > 1.2 × 109 is prime, together imply that s1 | r1. We thus have that
r1 = ±s1 or r1 = ±2s1, whence, from (59),

(63) r1j
′ = t3n± 2t1,

where t3 = ±t2 or t3 = ±t2/2. We can thus rewrite r1Λ
′ as a linear form in two

logarithms,
r1Λ

′ = n logα− 2 log β,

where

logα = r1 log
(
τ ′δ3γεn

)
+ t3πi and log β = −r1 log(γ)± t1πi.

We apply Theorem 9 with

D = 1, c2 = n, β2 = α, c1 = 2 and log β1 = log β.

We may take

logB2 =
3

2
|r1| log(y) and logB1 = |r1| arccos(5/16) + |t1|π,

whence

b′ =
n

|r1| arccos(5/16) + |t1|π
+

4

3|r1| log(y)
.
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From (62), we thus have

logB1 < 448.05.

Again choosing (m1, C) = (18, 25.911), we conclude that

log |Λ′| > −39× 157× 448.05 log2(n) log(y)− log 157.

From (45) and Λ′ = 3Λ, we thus have

0.499n <
log 471

log y
+ 2.744× 106 log2(n),

whence, from (56), we once again obtain inequality (58).
We now iterate this argument, using slightly more care and, in each case, assum-

ing that n > N(231) = 1.2× 109. We begin by taking

ρ = 5.8, L = 144, m = 27 and χ = 3.14,

and, arguing as previously, find that either

(64) n < 1.3× 109,

or that we have (63) with

(65) |t1| ≤ 68 and |r1| ≤ 133.

From (58), we have that

b′ =
n

|r1| arccos(5/16) + |t1|π
+

4

3|r1| log(y)
< e18−0.21,

provided, crudely, |r1| ≥ 39. Applying Theorem 9 as previously, once again with
(m1, C) = (18, 25.911), if 39 ≤ |r1| ≤ 133, we find that

log |Λ′| > −39× 133× 380.28× 182 log(y)− log 133,

while, in case 1 ≤ |r1| ≤ 38,

(66) log |Λ′| > −39× 38× 261.25 log2(n) log(y)− log 38.

Once more, we have, in either case, inequality 64.
To finish the case d = 231, we repeat this argument, only now using

ρ = 6.3, L = 125, m = 27 and χ = 3.28,

and appealing to Theorem 9 with (m1, C) = (17, 26.38). We conclude then, in all
cases with d = 231, that

n < 1.2× 109 = N(231).

We argue similarly for d ∈ {7, 15, 55}, applying Theorem 8 to Λ as in (41).
As in the case d = 231, we either have inequality (49), or we find ourselves in
the degenerate case where, analogous to (63), we deduce the existence of “small”
integers t1, t3 and r1, the last nonzero, such that r1j = t3n±2t1. In the latter case,
we rewrite r1Λ as a linear form in two logarithms,

r1Λ = n logα− log β,

where

logα = r1 log (τδ) + t3πi and log β = −r1 log(γ)± 2t1πi,
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and apply Theorem 9 with

D = 1, c2 = n, β2 = α, c1 = 1, log β1 = log β,

logB2 =
1

2
|r1| log(y), logB1 = |r1|| log γ|+ 2|t1|π

and

b′ =
n

|r1|| log γ|+ 2|t1|π
+

2

|r1| log(y)
.

We make our parameter choices for Theorems 8 and 9 as in the following table. In
practice, once we have a reasonable upper bound upon n, |r1| and |t1|, we loop over
|r1| and |t1|, compute upper and lower bounds upon b′ and, in case b′ potentially
exceeds exp(m1 − 0.21), deduce sharpened versions of inequality (66).

d ρ L m χ (m1, C) upper bound upon n
7 4.8 205 45 2.96 (20, 25.120) 1.27× 109

7 5.1 142 40 3.91 (20, 25.120) 6.44× 108

7 6.2 100 40 3.00 (14, 28.161) 6× 108 = N(7)
15 5.8 180 36 2.77 (20, 25.120) 6.00× 108

15 5.1 140 40 3.00 (20, 25.120) 4× 108 = N(15)
55 5.7 189 33 3.00 (20, 25.120) 1.11× 109

55 5.2 144 35 3.41 (18, 25.911) 5.22× 108

55 6.2 100 40 3.00 (14, 28.161) 5× 108 = N(55)

This, with Proposition 4.1, completes the proof of Theorem 2.
As mentioned previously, of note here is that the bounds we obtain upon the

exponent n for the equation x2 + c2d = yn, with d ∈ {7, 15, 55, 231} and c an
S-unit, S = {3, 5, 7, 11}, are essentially identical to those deduced for the simpler
equation x2 + d = yn. This is admittedly not immediately apparent from perusal
of [12, Section 15], where the treatment of the degenerate cases (which reduce to
linear forms in two logarithms) requires some modification.

7. Concluding remarks

Extending the results of this paper to the more general equation

x2 +D = yn, gcd(x, y) = 1, D > 0, P (D) ≤ 13

is probably computationally feasible with current technology, if one is suitably
enthusiastic, while the equation

x2 +D = yn, gcd(x, y) = 1, D > 0, P (D) ≤ 17

is certainly out of reach without the introduction of fundamentally new ideas. The
two main obstructions arise from both large exponents n (where the corresponding
spaces of modular forms have extremely large dimensions) and moderately small
ones (where one will encounter Thue-Mahler equations with very many associ-
ated S-unit equations). Additionally, it is possible to relax the restriction that
gcd(x, y) = 1 in (2) (at least provided this gcd is odd), though the computational
difficulties increase substantially since, once again, the spaces of modular forms one
encounters have significantly higher dimensions.
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ings Skr. 13 (1923), 65–82.
[28] Trygve Nagell, Contributions to the theory of a category of Diophantine equations of the

second degree with two unknowns, Nova Acta Soc. Sci. Upsaliensis (4) 16 (1955), no. 2, 38.
MR70645

[29] S. S. Pillai, On aX − bY − by ± ax, J. Indian Math. Soc. (N.S.) 8 (1944), 10–13. MR11477
[30] István Pink, On the Diophantine equation x2 + 2α3β5γ7δ = yn, Publ. Math. Debrecen 70

(2007), no. 1-2, 149–166. MR2288472

[31] K. A. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent.
Math. 100 (1990), no. 2, 431–476, DOI 10.1007/BF01231195. MR1047143

[32] Samir Siksek, The modular approach to Diophantine equations (English, with English and
French summaries), Explicit methods in number theory, Panor. Synthèses, vol. 36, Soc. Math.
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