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Abstract

Szpiro’s Conjecture asserts the existence of an absolute constant K > 6
such that if E is an elliptic curve over Q, the minimal discriminant ∆(E)
of E is bounded above in modulus by the K-th power of the conductor
N(E) of E. An immediate consequence of this is the existence of an
absolute upper bound upon min {vp(∆(E)) : p | ∆(E)}. In this paper, we
will prove this local version of Szpiro’s Conjecture under the (admittedly
strong) additional hypotheses that N(E) is divisible by a “large” prime p,
and that E possesses a nontrivial rational isogeny. We will also formulate a
related conjecture which, if true, we prove to be sharp. Our construction
of families of curves for which min {vp(∆(E)) : p | ∆(E)} ≥ 6 provides
an alternative proof of a result of Masser on the sharpness of Szpiro’s
conjecture. We close the paper by reporting on recent computations of
examples of curves with large Szpiro ratio.

1 Introduction

If E is an elliptic curve over Q, two classical invariants attached to E which
measure the primes of bad reduction of E are the conductor of E and the min-
imal discriminant of E, denoted in this paper by N(E) and ∆(E), respectively.
These have the property that a prime p divides N(E) or ∆(E) precisely when E
has bad reduction at p. Furthermore, either quantity can be calculated locally
by studying E/Qp. They are related via

Proposition 1.1 (Ogg’s Formula). Let L/Qp be a local field, E/L an elliptic
curve, and set

• v(∆) = the valuation of the minimal discriminant of E/L,

• f(E/L) = the exponent of the conductor of E/L,

• m(E/L) = the number of components of the special fibre of E/L.

Then
v(∆) = f(E/L) +m(E/L)− 1.
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Using Ogg’s formula, it is immediate that N(E) divides ∆(E) and, in partic-
ular, that N(E) ≤ |∆(E)|. A well-known conjecture of Szpiro provides a bound
in the other direction:

Conjecture 1.1 (Szpiro’s Conjecture). Given ε > 0, there exists a constant Cε
such that for every elliptic curve E/Q,

|∆(E)| ≤ CεN(E)6+ε.

This conjecture lies very deep and is (nearly) equivalent to the abc-conjecture
of Masser and Oesterlé. An immediate consequence of Szpiro’s Conjecture is
that the Szpiro ratio

S(E) =
log (|∆(E)|)
log (N(E))

is absolutely bounded as E ranges over all elliptic curves over Q. The example
we know with S(E) largest corresponds to

E : y2+xy = x3−424151762667003358518x−6292273164116612928531204122716,

which has minimal discriminant

∆(E) = −233 · 718 · 1327 · 193 · 292 · 127,

conductor
N(E) = 2 · 7 · 13 · 19 · 29 · 127

and hence S(E) = 9.01996 . . .. In the following table, we list some data on the
largest Szpiro ratios known to us (information on coefficients for Weierstrass
models of these curves will be tabulated later) :

Table 1. Top Ten Largest Szpiro Ratios

Conductor Cremona Label Szpiro ratio
12735814 − 9.01996406836501

1290 h1 8.90370022470358
9510 e1 8.84312822607337

2526810 − 8.81194357194048
9690 m2 8.80159647164269
3990 ba1 8.79237406416090
32658 b1 8.78266784426543
858 k2 8.75731614557112

89150698 − 8.69894197172524
167490523410 − 8.68896770822104

An immediate corollary of Conjecture 1.1 is the following
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Proposition 1.2. Assume that Szpiro’s conjecture is true for some ε < 1 and
Cε. Let E/Q be a semistable elliptic curve of conductor N (so that N is square

free). Then, if there exists a prime p | N for which p > C
1
6
ε N

5+ε
6 , we may

conclude that vp(∆(E)) ≤ 6.

This proposition suggests the following, to which we will henceforth refer as
the local Szpiro conjecture:

Conjecture 1.2. Let E/Q be an elliptic curve with conductor N(E) and min-
imal discriminant ∆(E). Then there is a prime p | N(E) for which

vp(∆(E)) ≤ 6 vp(N(E)).

In particular, if E is semistable, there exists a prime p | N(E) with vp(∆(E)) ≤
6.

Using Ogg’s formula, one can reword this conjecture in terms of the size of the
component group of the special fibre of E/Qp. Alternatively, for large enough
p (so that E[p] is irreducible), vp(∆(E)) is closely related to level lowering of
the modular form attached to E (see [6]). As such, Proposition 1.2 can be
restated in terms of congruences between modular forms of levels M and N ,
where M | N .

The goal of this paper is to study Proposition 1.2, without the assumption
of Szpiro’s conjecture. We can, in fact, deduce a like conclusion (with different
bounds on p) under the additional assumption that E(Q) has a non-trivial
rational isogeny.

Theorem 1.3. Let E be an elliptic curve over Q, with conductor N(E) = Mp
and minimal discriminant ∆(E). Assume that there is an integer n > 1 such
that E possesses a rational n-isogeny. Then there exists a constant C = C(M)
such that if p ≥ C then vp(∆(E)) ≤ 6.

Optimistically, one might view this as evidence for the validity of Szpiro’s
conjecture (although the property of having a nontrivial rational isogeny is
admittedly rather special).

We now give a brief outline of the paper. The general approach for the
proof of Theorem 1.3 is to study universal elliptic curves associated to standard
modular curves, and exploit the fact that they have correspondingly nice dis-
criminant formulae. We begin, in Section 2, by considering the case of elliptic
curves having more than three rational torsion points. In Section 3, we carry
out a similar anaysis for elliptic curves with a rational N -isogeny, and finally, in
Section 4, we deal with elliptic curves with rational 2 or 3 isogenies. The results
of these three sections combine to prove Theorem 1.3. In Section 5 we apply the
results of Section 2 to prove Szpiro’s conjecture when the ramification of elliptic
curves are limited (see Theorem 5.1). In Section 6 we reinterpret Theorem 1.3
in terms of level lowering, and suggest some other problems that seem related
to the subject at hand.
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Section 7 is devoted to a construction which produces infinitely many curves
E/Q for which min {vp(∆(E)) : p | ∆(E)} ≥ 6 (whereby Conjecture 1.2, if true,
is necessarily sharp). This provides an alternate proof to that given by Masser
in [3], that the same is true for Szpiro’s Conjecture. Finally, in Section 8 we
extend some of the computations of [4] to find more examples of elliptic curves
with large Szpiro ratio.

2 Elliptic curves with rational N-torsion

Let X/K be a moduli space of elliptic curves with some given level structure.
Assume that X is a genus 0 curve, and note that any such curve will have a
natural map j : X → X(1) 1. The set j−1(∞) is the set of cusps of X and the
ramification index of each cusp is the multiplicity of the cusp in this preimage.
The goal of this section is to prove the following

Theorem 2.1. Let X be a modular curve of genus zero. Assume that the cusps
of X are in g distinct Galois orbits with g ≥ 3, and let e1, e2, . . . , eg be the
ramification indices of the cusps in each Galois orbit. Then, for any integer M ,
there exists a constant C = C(M) such that if

(a) E/Q is an elliptic curve of conductor Mp1p2 . . . pg−2 and minimal discrim-
inant ∆E, where the pi are distinct primes, for 1 ≤ i ≤ g − 2,

(b) min(p1, p2, . . . , pg−2) > C, and

(c) there is τ ∈ X(Q) such that j(τ) = j(E),

then the multiset {vpi(∆E)} is a multisubset of {e1, e2, . . . , eg}.

The main application of the above theorem for us is to prove a small result
towards the local Szpiro conjecture for elliptic curves having #E(Q)tors > 3.
Specifically, we have the following sharpening of Theorem 1.3 :

Corollary 2.2. Given M and N > 3 there is an effectively computable constant
C = C(M) such that if

p1, p2, . . . , p[N/2]−1

is a set of primes with pi > C for each i, and E/Q is an elliptic curve with
conductor Mp1p2 . . . p[N/2]−1 and minimal discriminant ∆E, having a rational
N torsion point, then we have vpi(∆E) | N for all i, and vpj (∆E) ≤ 6 for some
j.

Proof. (of Corollary 2.2) If E(Q) has an N torsion point, then j(E) is in the
image of j : X → X(1) where X = X1(N) is one of the modular curves in the
following table (with, we note, at least distinct Galois orbits of three rational
cusps, since N > 3).

1We can extend our results to any genus 0 curve X/K with a map j : X → X(1); we will
only state our results, however, for modular curves.
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Table 2. X1(N) and X(2)×X1(2) X1(2N) Data

X Number of Galois Ramification data
orbits of cusps

X(1) 1 1
X1(2) 1, 1 2, 1
X1(3) 1, 1 3, 1
X1(4) 1, 1, 1 4, 1, 1
X1(5) 1, 1, 2 5, 5, 1
X1(6) 1, 1, 1, 1 6, 3, 2, 1
X1(7) 1, 1, 1, 3 7, 7, 7, 1
X1(8) 1, 1, 1, 1, 2 8, 8, 4, 2, 1
X1(9) 1, 1, 1, 2, 3 9, 9, 9, 3, 1
X1(10) 1, 1, 1, 1, 2, 2 10, 10, 5, 5, 2, 1
X1(12) 1, 1, 1, 1, 2, 2, 2 12, 12, 6, 2, 4, 3, 1
X(2) 1, 1, 1 2, 2, 2

X(2)×X1(2) X1(4) 1, 1, 1, 1 4, 4, 2, 2
X(2)×X1(2) X1(6) 1, 1, 1, 1, 1, 1 6, 6, 6, 2, 2, 2
X(2)×X1(2) X1(8) 1, 1, 1, 1, 2, 2, 2 8, 8, 8, 8, 4, 2, 2

The result now follows immediately by studying the ramification indices of
each Galois orbit, and applying Theorem 2.1.

We will prove Theorem 2.1 using effective methods from Diophantine ap-
proximation for solving Thue-Mahler and S-unit equations. Throughout this
section, we denote by K a finite extension of Q, OK the ring of integers of K,
S a finite collection of primes of OK , OK,S the set of S-integers in K, and S
the set of S-units in OK (i.e. set of x ∈ OK such that vπ(x) = 0 for all primes
π 6∈ S). Furthermore let N(π) be the norm of the ideal π, and let ||x|| be the
maximum modulus of the image of x for all embeddings K → C.

Proposition 2.3 (Thue-Mahler equations). Let f(x, y) ∈ OK [x, y] be a binary
form (i.e. homogeneous polynomial) of degree n. Assume that f(X, 1) has at
least three distinct roots in K. Then for every solution of

f(a, b) = z in a, b ∈ OK , z ∈ S

with N(aOK + bOK) = 1, there is a unit ε ∈ OK such that

max(||εa||, ||εb||) < C

where C is an effectively computable constant that only depends on K, S and f .

Proof. See Theorem 7.6 of [11].
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Proposition 2.4 (S-unit equations). Let f(x, y) ∈ OK [x, y] be a binary form
such that the polynomial f(x, 1) has no repeated roots in C. Then there exist at
most finitely many a, b ∈ S such that the equation

f(a, b) = uzr

has solutions with u ∈ S, z ∈ OK and r ∈ N, r ≥ 2.

Proof. This is standard, and one can find the argument for the case r = 2 in,
for example, Theorem 4.3 of [12]. We will present the proof here for the benefit
of the reader. We begin by extending K so that f splits into linear factors

f(x, y) = A(x− α1y)(x− α2y) · · · (x− αny)

and subsequently enlarge S so that

(a) A ∈ S,

(b) αi ∈ S for all i,

(c) αi − αj ∈ S for all i 6= j, and

(d) OK,S is a principal ideal domain.

It follows that we may write x − αiy = uiz
r
i and, after changing variables, we

arrive at the equation x − y = zri with x, y ∈ S. This equation, however, has
only finitely many solutions for r ≥ 2, via e.g. Theorem 9.4 of [11].

We can appeal to the preceding two propositions to prove

Proposition 2.5. Let g ≥ 3, F1, F2, . . . , Fg ∈ OK [x, y] be distinct irreducible
binary forms and e1, e2, . . . , eg be positive integers. Furthermore, assume that
OK,S is a unique factorization domain. Then there is an effectively computable
constant C such that if a, b ∈ OK,S satisfy

F1(a, b)e1F2(a, b)e2 · · ·Fg(a, b)eg = upr11 p
r2
2 · · · p

rg−2

g−2 (1)

for some u ∈ S, and some collection of primes p1, · · · , pg−2 with ||pi|| > C for
all i, then {r1, r2, . . . , rg−2} is a multisubset of {e1, e2, . . . , eg}.

Proof. Since we assume that the Fi’s are distinct irreducible forms, for any pair
of integers a, b ∈ OK we have gcd(Fi(a, b), Fj(a, b)) | R where R is the product of
the resultants of each pair Fi and Fj with i 6= j. Let C1 be large enough so that
if ||pi|| > C1 then pi fails to divide R. Consider the set of solutions (a, b, {pi})
to equation (1) with min(||pi||) > C1. First, let us assume that for some i there
exist j1 and j2 such that pj1pj2 | Fi(a, b). Then, by the box principle, there are
three polynomials (say F1, F2, and F3) such that F1(a, b)F2(a, b)F3(a, b) = v for
some v ∈ S. Since F1F2F3 has degree at least three, by Proposition 2.3, it follows
that max(||εa||, ||εb||) < C2 for some S-unit ε. Therefore, Fi(a, b) will take only
finitely many possible prime values in this case. Let C3 be the larger of the
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largest prime value that divides Fi(a, b) and C1. If we choose min(||pi||) > C3,
then, the equation

∏
Fi(a, b)

ei = u
∏
p
rj
j implies that each Fi has at most one

prime pj dividing it. Without loss of generality, we may therefore assume that
prii | Fi(a, b)ei , for i = 1, 2, . . . , g − 2, and that

Fg−1(a, b)eg−1Fg(a, b)
eg = v, v ∈ S.

Furthermore, Fg−1 and Fg must both be linear, and, after a linear change of
variables, we may assume Fg−1(x, y) = x and Fg(x, y) = y. We conclude that
a, b ∈ S and hence may write

Fi(a, b) = vip
ri/ei
i , (2)

where now a, b and vi ∈ S. By Proposition 2.4, there are only finitely many
solutions to equation (2) with ri 6∈ {0, ei}. Choosing C4 large enough, it follows
that if min(||pi||) > C4 then ri ∈ {0, ei} for i = 1, 2, . . . , g − 2, as desired.

Interpreting the above proposition geometrically finishes the proof of The-
orem 2.1. Specifically, let P1 = A1 ∪ {∞}. Then each element of P1(K) has a
representative [a : b] ∈ K2 \ {[0 : 0]}, with the point at infinity represented by
[1 : 0]. Note that any point z = [a : b] ∈ A1 corresponds to a rational number
a/b ∈ K. Therefore, any valuation on K extends naturally to a valuation on
P1(K), specifically v([a : b]) = v(a) − v(b). Note that v([0 : 1]) = −∞ and
v([1 : 0]) =∞. Furthermore, given any pair of K-rational points P and Q, there
is a K-rational isomorphism that will send P to [0 : 1] and Q to [1 : 0] (since
we can map any three given rational points to any other three rational points).

Let j : X → X(1) be a K-rational map. Then we can write down this
explicitly as

[a : b] 7→ [G(a, b), F (a, b)]

for F and G homogeneous polynomials with rational coefficients of the same
degree. We may assume, without loss of generality, that F and G are coprime
to each other and have coefficients in OK . We define the degree of φ to be the
degree of F (or G). Note that φ−1(∞) = {[a : b] ∈ P1 : F (a, b) = 0.} We can
factor F (a, b) =

∏g
i=1 Fi(a, b)

ei where each Fi is K-irreducible, and any pair Fi
and Fj are coprime to each other. Note that the points Pi = {[a : b] : Fi(a, b) =
0} is a Galois-orbit of a point in φ−1(∞), and g is the number of Galois orbits
of φ−1(∞). We also have

∑g
i=1 deg(Fi) ei = deg(φ). This completes the proof

of Theorem 2.1.

3 Elliptic curves with rational N-isogenies

The methods in the previous section do not seem amenable to studying the local
Szpiro conjecture for elliptic curves with a rational N -isogeny (but without
rational N -torsion). Specifically, X0(N) has, for N prime, only two cusps,
which necessitates a modification of our approach. If, however, we consider
ramification data over j = 0 and 1728, we arrive at the following result.
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Theorem 3.1. Let X be a modular curve of genus zero. Assume that X has
g cusps, all rational, and let ei be the ramification index of these cusps. Fur-
thermore assume that there are two unramified points above j = 1728 or j = 0.
Then for any integer M , there exists a constant C = C(M) such that if

(a) E/Q is an elliptic curve of conductor Mp1p2 . . . pg−1 and minimal discrim-
inant ∆E,

(b) min(pi) > C,

(c) there is τ ∈ X(Q) such that j(τ) = j(E),

then the points above j = 0 are all ramified and the multiset {vpi(∆E)} is a
multisubset of {e1, e2, . . . , eg}.

An immediate corollary of the above theorem is

Corollary 3.2. Given positive integers M and N > 3 there is an effectively
computable constant C = C(M) such that for any prime p > C and any elliptic
curve E/Q possessing a rational N -isogeny with conductor Mp and minimal
discriminant ∆E, we have vp(∆E) | N and vp(∆E) ≤ 6.

Proof. (of Corollary 3.2) Note that, with finitely many exceptions, all rational
elliptic curves having a rational N isogeny and no complex multiplication, arise
from rational points on X0(N), where N has genus 0. We know that if E has
complex multiplication, then E has potentially good reduction everywhere, and
hence it can not have multiplicative reduction at p. Therefore E arises from a
rational point on one of the curves in the following table.

Table 3. X0(N) Data

X Number of Galois Ramification data # of unramified
orbits of cusps points above

j = 0 and j = 1728
X0(2) 1, 1 2, 1 0, 1
X0(3) 1, 1 3, 1 1, 0
X0(4) 1, 1, 1 4, 2, 1 0, 0
X0(5) 1, 1 5, 1 0, 2
X0(6) 1, 1, 1, 1 6, 3, 2, 1 0, 0
X0(7) 1, 1 7, 1 2, 0
X0(8) 1, 1, 1, 1 8, 4, 2, 1 0, 0
X0(9) 1, 1, 1 9, 3, 1 0, 0
X0(10) 1, 1, 1, 1 10, 5, 2, 1 0, 2
X0(12) 1, 1, 1, 1, 1, 1 12, 6, 4, 3, 2, 1 0, 0
X0(13) 1, 1 13, 1 2, 2
X0(16) 1, 1, 1, 1, 1 16, 8, 4, 2, 1 0, 0
X0(18) 1, 1, 1, 1, 1, 1 18, 9, 6, 3, 2, 1 0, 0
X0(25) 1, 2, 1 25, 5, 1 0, 2

8



When N is prime, we can apply Theorem 3.1 to obtain the desired result.
For the other cases, there are sufficiently many Galois orbits of cusps to apply
Theorem 2.1.

The following lemma is the main ingredient for proving Theorem 3.1. For
simplicity we assume that K = Q and S is a finite set of primes including 2 and
3. As such, OK,S = Z[1/S].

Lemma 3.3. Let j = g/f and j − 1728 = h/f with f, g, h ∈ OK,S coprime
S-integers, gh 6= 0. Then

(a) the elliptic curve Ej given by the model y2 = x3−3ghx+2gh2 has j(Ej) = j
and discriminant 17282fg2h3,

(b) if, for p 6∈ S, we have either (i) 3 - vp(g), or (ii) 2 - vp(h), and if E/Q is
any elliptic curve with j(E) = j, then E has additive reduction at p.

Proof. The first part of the lemma is a straightforward calculation. For the
second part, note that any elliptic curve with the same j-invariant is a quadratic
twist of Ej , which we can write explicitly as y2 = x3 − 3ghr2x + 2gh2r3. If
3 - vp(g) or 2 - vp(h), then any such twist will still have additive reduction at
p.

Now let j : X → X(1) be as before, given by j = [G,F ] where G and F
are homogeneous polynomials of the same degree, with no common factor. Let
j − 1728 = [H,F ] (that is, G−H = 1728F ). Let G = GuG

3
r and H = HuH

2
r .

Note that degree of Gu (respectively Hu) is the number of unramified points
above the point j = 0 (respectively, j = 1728). Assume that E is an elliptic
curve such that j(E) = j([a : b]) for some [a : b] ∈ X(Q). By Lemma 3.3, if E
has semistable reduction outside S, then

Gu(a, b) = ug3,

Hu(a, b) = vh2,

where u, v ∈ S and g, h ∈ Z. Since S is a finite set of primes, any such elliptic
curve corresponds to solutions to a finite number of such Diophantine equations.
We will focus on the case when Gu and Hu are of degree 2 or 0 (when X =
X0(N), this is satisfied for N > 3 prime). The following lemma is well known:

Lemma 3.4. Let Q(x, y) be a binary quadratic form in Q[x, y], and let r ≥ 1.
Then there exists a finite number of pairs of homogeneous polynomials Ai, Bi
of degree r such that (i) (Ai(α, β), Bi(α, β)) is a solution to Q(a, b) = cr for
all coprime α, β, and (ii) all solutions to Q(a, b) = cr, with a and b coprime
integers, belongs to one of the above families.

Proof. The above Diophantine equation is just a twist of the Diophantine equa-
tion x2 − y2 = zr, which gives us the desired result. (See [2]).
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We are now ready to prove Theorem 3.1. Specifically, since we are assuming
that there is a pair of unramified points above either j = 0 or j = 1728, it follows
that either Gu or Hu is a binary quadratic form. When Hu (respectively, Gu)
is a binary quadratic form, Lemma 3.4 tells us that if j(E) = j([a, b]), then
(a, b) = (A(α, β), B(α, β)) for some A and B of degree two (respectively, degree
three) coming from a finite list of possibilities. On the other hand, since we
assume that X has precisely g (rational) cusps, it follows that

F (a, b) =

g∏
i=1

Fi(a, b)
ei = u

g−1∏
i=1

prii ,

where the Fi’s are linear forms. Substituting (A(α, β), B(α, β)) for (a, b), we
may write

g∏
i=1

Fi(α, β)ei = u

g−1∏
i=1

prii

where Fi is a homogeneous polynomial of degree two (respectively three). If we
choose the pi’s large enough, then, for some i, we must have Fi(α, β) = u where
u ∈ S. Assume without loss of generality that i = g. When the degree of Fg
equals three, then, from Proposition 2.4, it follows that there are only finitely
many such solutions. Assume that degree Fg = 2. First consider the case when
pj1pj2 - Fi(α, β). Then, possibly after reordering labels, we deduce the following
system of equations

Fi(α, β) = uip
ri/ei
i , 1 ≤ i ≤ g − 1, Fg(α, β) = ug,

where ui ∈ S. Such a system of Diophantine equations has been studied in [10],
where it is shown that if ri/ei 6= 1 then there are only finitely many solutions to
the above equation, the heights of which can be bounded effectively. Therefore,
by choosing our constant C large enough, we conclude that if min(pi) > C then
ri = ei, as desired. If pj1pj2 | Fi(α, β), then necessarily Fi′(α, β) is an S-unit
for some i′ 6= g. Assume without loss of generality that i′ = 1,whereby

F1(α, β) = u1,

Fg(α, β) = ug.

Again, by the results of [10], such equations have at most finitely many solutions.
This finishes the proof of Theorem 3.1.

4 X0(N) for N = 2, 3

The final case we wish to consider is that of elliptic curves with rational two (or
three) isogenies. Our methods of earlier sections do not apply in these cases.
We can, however, prove the following
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Proposition 4.1. Given an integer M , there exists a constant C such that
for any elliptic curve E/Q with a rational two (respectively, three) isogeny of
conductor Mp with p > C we have vp(∆E) ∈ {1, 2, 4} (respectively, vp(∆E) ∈
{1, 3}).

Proof. Let

E2 : uy2 = x(x+ ax+ b),

E3 : uy2 = x3 +
a2

4
x2 +

ab

2
x+

b2

4
.

Then, for any elliptic curve E with a rational two (respectively, three) isogeny,
we can find integers a, b and a square free integer u such that E ' E2(a, b, u)
(respectively, E ' E3(a, b, u)). Furthermore, if E has semistable reduction at a
given prime q > 3, then we can demand that q - u gcd(a, b), which ensures that
the model for E2 (respectively, E3) is minimal at q. As before, let S be the set
of primes dividing M , together with 2 and 3, and let S be the set of S-units in
Z. If E = El(a, b, u) for l = 2 or 3, with conductor Mp, then we may assume
without any loss of generality that u ∈ S. Let ∆l be the discriminant of El, and
note that

∆2 = 24u6b2(a2 − 4b),

∆3 = u6b3(a3 − 27b).

Assuming p > M , we may suppose that E has multiplicative reduction at p
and, in particular, that p - u and p - gcd(a, b). Write ∆E = ∆′pr, where ∆′ ∈ S.
Assume first that p - ab. Then b ∈ S and

δpr =

{
a2 − 4b l = 2,

a3 − 27b l = 3,

where δ ∈ S. We are thus led to the Diophantine equation

al − δpr = β

in variables a, p, and r, where β, δ ∈ S. Appealing to Theorem 12.2 of [11], we
deduce the existence of an effectively computable constant C, depending only
on S, such that if p > C then necessarily lr ≤ 4. From this conclusion, it follows
that r = 1 when l = 3, and r = 1 or 2 when l = 2, which proves the theorem in
this case.

Now assume that p | ab (so that p | b, since otherwise, from the fact that
p - gcd(a, b), we would have p - ∆E). We may thus write b = βpρ, where β ∈ S.
Note that in this case vp(∆E) = lρ = r. Furthermore we have that

δ =

{
a2 − 4b l = 2,

a3 − 27b l = 3,

11



where δ ∈ S. This leads to the Diophantine equation

al − β′pρ = δ,

in a, p, ρ, where β′, δ ∈ S. Again by Theorem 12.2 of [11] we may conclude,
for p > C, that r = lρ ≤ 4. It follows that (l, r) ∈ {(2, 2), (2, 4), (3, 3)}, as
claimed.

Combining Corollaries 2.2 and 3.2 with the above proposition immediately
yields Theorem 1.3. We remark here that for E of conductor Mp having a
rational N isogeny with N > 2, we may conclude that vp(∆E) | N , provided
p is suitably large, relative to M . We are unable to prove a similar result for
N = 2. This is partly because the family of elliptic curves with rational two
torsion naturally contains elliptic curves with a rational four torsion point, and
there are infinitely many elliptic curves with conductor Mp arising from the
latter family.

5 Applications to Szpiro’s Conjecture

In this section we apply Theorem 2.1 to deduce Szpiro’s conjecture for certain
families of elliptic curves with limited ramification. Specifically, we prove

Theorem 5.1. Let j : X → X(1) be a modular curve of genus 0 over K, and
let d be the degree of j, f be the number of cusps of X, and g the number of
Galois orbits of cusps. Assume that g ≥ 3 and 2

(f − 2) ≥ d

6
. (3)

Then for any integer M and any ε > 0, there are only finitely many elliptic
curves E/K such that

(a) j(E) = j(z) for some z ∈ X(K),

(b) N(E) = Mp1p2 . . . pg−2 for any collection of primes pi,

(c) ||N(E)||6+ε < ||∆(E)||.

We note that inequality 3 is satisfied for all the curves in Table 2 except for
X1(2) and X1(3). As an immediate corollary of Theorem 5.1, we have

Corollary 5.2. For any integer M and real number ε > 0, there are only finitely
many elliptic curves E/Q such that

(a) N(E) = Mp1p2 · · · pl for p1, . . . , pl prime,

(b) N(E)6+ε > |∆(E)|,
2Note that when all the points above j = 0 and j = 1728 are ramified to order 3 and 2

respectively, then Hurwitz’s theorem implies that f − 2 = d/6.
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(c) E(Q) has a rational 2l + 2 torsion point.

To prove this theorem, we appeal to estimates for linear forms of logarithms,
in order to bound the primes pi. As usual, let K be a number field and S a
finite set of primes. For the remainder of this section, we fix an embedding of
K in the complex numbers and suppose that | · | is the usual complex norm. We
will appeal to the following two results.

Proposition 5.3 (Linear Forms in Complex Logarithms). There exists a posi-
tive constant C1 depending on K and S such that for any a, b ∈ S we have

|a− b| > max(|a|, |b|)B−C1 ,

where B = B(a, b) = maxp∈S |vp(a/b)|.

Proof. This is almost immediate from [1]; see also Theorem B.2 in [11].

Proposition 5.4 (Linear Forms in p-adic Logarithms). There is a constant C2

depending on K and S such that for any coprime a, b ∈ S

vq(a− b) < C2 log(B),

for any q ∈ S, where B = B(a, b) = maxp∈S |vp(a/b)|.

Proof. This is proved in [5] (see also Theorem B.4 in [11]).

We can apply this latter proposition to bound the absolute value of the
S-unit part of a− b.

Corollary 5.5. There is a constant C3 depending on K and S such that for
any triple a, b, c ∈ S and z ∈ OK satisfying

a− b = cz,

we have |c| < BC3 .

Combining Corollary 5.5 and Proposition 5.3, it follows that if a − b = cz
with a, b, c ∈ S, then

max(|a|, |b|)BC1 < |a− b| < |z|BC3 ,

whereby
|z| > max(|a|, |b|)B(a, b)C4 . (4)

We can actually prove a similar bound for a general homogeneous polynomial.

Corollary 5.6. Let F ∈ OK be a binary form of degree n, such that the poly-
nomial F (x, 1) has no repeated roots in C, and let S be a finite set of primes.
Then there exists constants C (possibly negative) depending on F , K, and S so
that for any solution to the equation

F (a, b) = up

with a, b, u ∈ S and p prime, we have

|p| > max(|a|, |b|)nB(a, b)C .
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Proof. Let K ′ be the splitting field of F so that

F (x, y) =

n∏
i=1

(αix− βiy).

Enlarge S to contain all primes dividing αi and βi, for each i = 1, . . . , n, and
so that OK,S is a unique factorization domain. Assuming p is large enough, we
may thus write

αia− βib = uipi

for i = 1, 2, . . . , n. From equation (4), it follows that

|pi| > max(|αia|, |βib|)B(αia, βib)
C1 ,

where C1 depends upon K ′ and S. Let m = max(|a|, |b|). Note that

max(|αia|, |βib|) ≥ mmin(|αi|, |βi|) ≥ C2m,

for some constant C2 depending on F . Similarly

B(αia, βib) ≥ B(a, b) + C3.

We thus have
|pi| > C2m(B(a, b) + C3)C1 > mB(a, b)C4 ,

for each i, and hence the existence of C such that

|p| > mnB(a, b)C .

We note that by considering all possible embeddings of K in C, we actually
obtain

||p|| > max(||a||, ||b||)nB(a, b)C .

Setting m = max(||a||, ||b||), and noting that we can find κ such that ||q|| > κ >
1 for all q ∈ S, we thus have B(a, b) > logκ(m) and so

||p|| > mn logκ(m)C .

We will use this inequality to prove the main theorem of this section.

Proof (of Theorem 5.1). Given M , let C1 be the constant from Theorem 2.1.
As in Section 2, we have that if E is a semistable elliptic curve of conductor
Mp1p2 . . . pg−2 with ||pi|| > C1 such that j(E) = j(z) for some z ∈ X(K), then

∆(E) = aegbeg−1

g−2∏
i=1

Fi(a, b)
ei ,
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with a, b ∈ S and Fi(a, b) = uipi. From Corollary 5.6, there exists a constant
C2 such that

||pi|| > mfi logκ(m)C2 ,

where fi = degFi. Let f =
∑
fi be the number of cusps ofX, and let d =

∑
fiei

be the degree of j. We thus have

||N(E)|| > ||M ||mf−2 logκ(m)C3 ,

for some C3. On the other hand, by the triangle inequality, there is a constant
C4, depending only on F , so that

||∆(E)|| = ||F (a, b)|| ≤ C4m
d.

Now assume that E does not satisfy the inequality

||N(E)||6+ε > ||∆(E)||. (5)

Then
||M ||6+εm(f−2)(6+ε) logκ(m)C3(6+ε) < C4m

d,

and so
m(f−2)(6+ε)−d < C5 logκ(m)C6 .

Since we suppose f > 2 and 6(f − 2) ≥ d, it follows that

mC7ε < C5 logκ(m)C6 ,

whereby there exists a constant C8 > 0 so that

m = max(||a||, ||b||) < C8.

This implies that there are only finitely many elliptic curves that do not satisfy
the inequality (5), as desired.

6 Modular Forms

In this section, we will interpret our preceding results in terms of modular forms
and Galois representations. Recall that attached to an elliptic curve E/Q and
integer n, we have a Galois representation

ρE,n : GQ → Aut(E[n]) ' GL2(Z/n),

where GQ = Gal(Q/Q). Let E have conductor Nand l be prime. Assume for
simplicity that p ‖N and that p 6= l. Then ρE,l is unramified at p if and only if
l | vp(∆(E)).

Corollary 6.1. Let E be an elliptic curve of conductor Mp with p > C(M), as
in Theorem 1.3. Assume that E(Q) has a nontrivial torsion point. Then, for
l > 2 prime, either ρE,l is ramified at p, or reducible at p.
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In terms of modular forms, we know by work of Wiles [15], Taylor-Wiles [14],
et al, that there is a modular newform fE ∈ S2(Γ0(N)) with integer coefficients
attached to E. If l | vp(∆(E)) is an odd prime and if ρE,l is surjective, by
the work of Ribet [6], et al, there exists a modular form g ∈ S2(Γ0(N/p)), say
g ∈ O[[q]], and a prime λ ⊂ O such that fE ≡ g (mod λ). Corollary 6.1 thus
implies that if N = Mp with p > C(M) then (modulo some technicalities)
there is no congruence with the p-old subspace of S2(Γ0(N)). This is somewhat
surprising since we have the following level-raising result.

Proposition 6.2. Let g =
∑
bnq

n ∈ S2(Γ0(M)) be a modular eigenform of level
M . Let l | a2

p − (p + 1)2. Then there is a modular form f ∈ S2(Γ0(Mp)p−new

such that f ≡ g (mod λ) for some λ | l.

In this context, our result implies that when one performs level raising for a
suitably large prime p, then the form f cannot arise from an elliptic curve with
non-trivial E(Q)tors.

What about the corresponding situation for other modular forms? It is
tempting to suppose that for any newform f of weight 2 and level N , there
exists p | N such that for any prime ideal λ of characteristic larger than 6 we
have that ρf,λ is either ramified at p or reducible. This is false, however, as
there exists a modular form f of level 407, with Fourier coefficients in a field of
degree 12 over Q, which is congruent modulo a prime above 41 to a modular
form attached to the elliptic curve 11A, and also modulo a prime above 17 to a
form attached to the elliptic curve 37A. One might guess that for any modular
eigenform f with coefficients defined over Kf , there is a p | N and a constant
C, depending only on the degree of Kf/Q, such that for any prime ideal of λ of
characteristic larger than C, ρf,λ is necessarily unramified at p. Unfortunately,
we have little data to support such a hypothesis.

7 The local Szpiro conjecture : sharpness

Our goal in this section is to show that Conjecture 1.2, if true, is sharp. We
will restrict our attention to the case of semi-stable E/Q, where we conjecture
the existence of a prime of bad reduction p such that vp(∆E) ≤ 6. Note that
vp(∆E) = −vp(j(E)) when E is semistable. We remark that searching through
Cremona’s tables of elliptic curves of conductor N ≤ 200000, one finds no elliptic
curve where this bound is achieved, tempting one to suppose that it might be
possible to replace the upper bound of 6 here with 5. In this section, we will
show that there are in fact infinitely many semistable elliptic curves such that

min
p |∆E

vp(∆E) = 6.

To prove this, we start by considering a semistable elliptic curve E with
minimal discriminant prMn. If n is a prime number, and E[n] is irreducible,
then by work of Ribet [6], one can find a modular form g of level p such that g
is congruent to fE . If g has integral coefficients, then for some elliptic curve F

16



of conductor p we have F [n] ' E[n] as symplectic Galois modules. Conversely,
given F/Q an elliptic curve of conductor p, assuming E/Q is a semistable elliptic
curve such that F [n] ' E[n], then E will have minimal discriminant of the form
prMn (we don’t need n to be prime here). Therefore, if we are interested in
semistable elliptic curves with minimal discriminant prM6, it is natural to study
the pairs (E, φ) where E is an elliptic curve and φ : E[6]→ F [6] is a symplectic
isomorphism. This moduli problem is representable by the curve XF (6) over
the rationals, a twist of the modular curve X(6). This curve is itself an elliptic
curve and has positive Mordell-Weil rank for almost all F ’s (see [8]). Instead of
working with elliptic curves with prime conductor, we can (and will) work with
any semistable elliptic curve with good reduction at 2 and 3.

Let F be any elliptic curve with square-free conductor N coprime to 6. We
will find points on XF (6) where the p-adic valuation of the minimal discriminant
of corresponding elliptic curve is larger than 6 for all primes p | N . First, note
that XF (6) is birationally isomorphic to XF (2) ×X(1) XF (3) in a natural way,
where the map XF (n) → X(1) is just (E, φ) 7→ E. Rubin and Silverberg have
studied this map when n = 2, 3, and 5 ([7] and [9]). Let F : Y 2 = X3 + aX + b
be an elliptic curve with minimal discriminant D. Then the map XF (2)→ X(1)
can be written as

J(u, v) =
(3au2 + 9buv − a2v2)3 j(F )

(3a)3(u3 + auv2 + bv3)2
,

where [u : v] are the coordinates of XF (2) and J(u, v) is the j-invariant map.
Similarly, there is a concrete formula for XF (3)→ X(1), and we can verify that
the image is j(F ) times a perfect cube. Therefore the map XF (6) → XF (2)
factors through the curve C : u3 + auv2 + bv3 = z3. The map C → XF (2) is of
degree 3, therefore XF (6) → C is of degree 4. Notice that both C and XF (6)
are genus one curves without a rational 2-isogeny for a generic choice of a and b
([8] shows that the equation for XF (6) is given by Y 2 = X3 − 16(4a3 + 27b2)).
Therefore, by choosing appropriate base points, the map XF (6) → C is just
multiplication by 2. Using (b,−a, b) as a base point for C we find that C is
birationally isomorphic to C ′ : Y 2 = X3 − 16(4a3 + 27b2) under the map

ψ(x, y, z) = (ψ1(x, y, z), ψ2(x, y, z), ψ3(x, y, z)),

where
ψ1(x, y, z) = ax2 − 8a2xz − 6byz + 16a3 + 216b2z2,

ψ2(x, y, z) = −36bxz + 6ayz − 72abz2

and
ψ3(x, y, z) = ax2 + 4a2xz − 6byz − 32a3 − 216b2z2.

Note that the above argument provides us with explicit rational maps π :
XF (6)→ XF (2) and π′ : C ′ → XF (2).

We can now use the explicit maps π and π′ to prove the following results.
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Lemma 7.1. Let F be a semistable elliptic curve of conductor N coprime to 6.
Then any rational point P on XF (6) that reduces to a nonsingular point modulo
p | N satisfies vp(J(π(P ))) ≤ vp(j(F )).

Proof. Assume that F : Y 2 = X3 + aX + b. If vp(J(π(P ))) > vp(j(F )), then
we must have p | 3au2 + 9buv − a2v2 on XF (2). Since p | 4a3 + 27b2, this
implies that u

v ≡
−3b
2a (mod p), which corresponds to the rational points on C

that reduce to the singular point of C modulo p.

Lemma 7.2. Let F : Y 2 = X3 + aX + b be a model for a semistable elliptic
curve of conductor N coprime to 6. Assume, without loss of generality, that
gcd(a, b,N) = 1. Then for any rational point P of C ′ : zy2 = x3 − 16(4a3 +
27b2)z3 in the domain of π′ that reduces to (92ab2,−93b3, a3) modulo p | N , we
have vp(J(π′(P ))) < vp(j(F )).

Proof. For the inequality vp(J(u, v)) < vp(j(F )) to occur, we must have u/v
congruent to either −3b

2a or −3b
a modulo p. The former corresponds to a singular

point on C ′, and the latter to a point that reduces to the desired congruence
class.

Lemma 7.3. Let F : Y 2 = X3 + aX + b be a semistable elliptic curve of
conductor N coprime to 6. Assume that gcd(a, b,N) = 1, and let C ′ : zy2 =
x3−16(4a3 +27b2)z3. Let C ′ns(Fp) be the set of nonsingular points of C ′ modulo
p. Then we have that C ′(Q) surjects onto

∏
p|N C

′
ns(Fp).

Proof. We know that C ′ns(Fp) ' Ga(Fp) = Z/pZ as an abelian group, and in this
model we can write this isomorphism explicitly as (x, y, z) 7→ x/y. Appealing
to the Chinese Remainder Theorem, we find that

∏
p|N C

′
ns(Fp) ' Z/NZ. It

suffices, therefore, to show that there is a rational point on C ′(Q) that reduces
to a generator of Z/NZ. From [8], P = (4a(a3 + 9b2),−36b(a3 + 6b2), a3) is a
rational point on C ′ which does not reduce to a singular point on C ′(Fp) for

any p | N . In particular, P is mapped to 4a(a3+9b2)
−36b(a3+6b2) ≡

a
3b ∈ Z/NZ. Since

we are assuming that gcd(a, b,N) = 1 and since 3 - N , this point generates∏
p|N C

′
ns(Fp).

Proposition 7.4. Let F a semistable elliptic curve of conductor N coprime to
6 and minimal discriminant ∆F . Then there are infinitely many rational points
on (E, φ) ∈ XF (6)(Q) such that E is semistable with minimal discriminant ∆E

such that for any prime p | ∆E we have vp(∆E) = 6k+ vp(∆F ) for some k > 0.
In particular, minp|∆E

vp(∆E) ≥ 6.

Proof. We know that XF (6) → C is just the multiplication-by-2 map. It fol-
lows that if we can find a point on 2C ′(Q) which reduces to (92ab2,−93b3, a3)
modulo N , we will have the desired result. However, by Lemma 7.3, we know
that C ′(Q) surjects onto

∏
p|N C

′
ns(Fp) ' Z/NZ. Since (92ab2,−93b3, a3) is a

nonsingular point modulo all primes p | N , and since N is odd, there is nec-
essarily a point in 2C ′(Q) that reduces to the desired congruence class, which
proves the proposition.
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We remark that the point (4a(a3 +9b2),−36b(a3 +6b2), a3) ∈ C ′(Q) reduces
to a

3b ∈ Z/NZ '
∏
p|N C

′
ns(Fp), which happens to be −3 times the residue class

of interest.
We now use Magma to find such points explicitly. Let F be the elliptic curve

11a3 from Cremona’s table. This curve has a short Weierstrass model

F : y2 = x3 − 432x+ 8208,

which means our corresponding curve C is given by the homogeneous equation

C : z3 = u3 − 432uv2 + 8208v3.

From Magma, we find that C is isomorphic to the elliptic curve Y 2 = X3 − 11,
which has rank 2 over Q, generated by P1 = (3,−4) and P2 = (9/4, 5/8). We can
check that for any pair of integersA andB, the point−3P1+11AP1+B(P2−4P1)
maps to a point on C with 11 | z, which in turn corresponds to an elliptic curve
with minimal discriminant 11rM6 with r > 6. As a particular example, consider
the point 2P2 which gives rise to the point [9225759,−125710, 8904159] ∈ C(Q).
This point corresponds to an elliptic curve with j-invariant

j = −212 973 2273 860632493

117 536 16976
.

The elliptic curve

E : y2 + y = x3 − x2 − 631675559910x− 247424709035468556

has the above j-invariant, and is semistable of minimal discriminant 11753616976.
We remark that any rational point P ∈ C ′(Q) that satisfies the congruences

in Lemma 7.2 and is in the image of XF (6)(Q)→ C ′(Q) will lead to an elliptic
curve with a Szpiro ratio strictly greater than 6. In particular, the preceding
argument provides a rather different proof of a result of Masser [3], to the effect
that Szpiro’s Conjecture, if true, is necessarily sharp. Masser goes further,
proving, given δ > 0, the existence of infinitely many elliptic curves E/Q for
which

|∆(E)| ≥ N(E)6 exp
(

(24− δ) (logN(E))1/2(log logN(E))−1
)
. (6)

From our construction, it appears to be somewhat difficult to deduce lower
bounds of the flavour of (6).

8 Tables : Examples of E/Q with large Szpiro
ratio

We conclude our paper by reporting on a number of computations related to
Szpiro’s Conjecture. We begin by listing all E/Q with conductor N(E) ≤
200000 and having a Szpiro ratio exceeding 8.5; these are found by simply
searching through Cremona’s tables :
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Table 4. Largest Szpiro Ratios in Cremona’s tables

Cremona Label Szpiro ratio
1290h1 8.90370022470358
9510e1 8.84312822607337
9690m2 8.80159647164269
3990ba1 8.79237406416090
32658b1 8.78266784426543
858k2 8.75731614557112

28530v1 8.53865571757066
128310bw4 8.52531149126014

3870u1 8.51754395179071
97974g1 8.51666093397246
29070bb2 8.50211900205277

The remainder of our search for examples of elliptic curves with large Szpiro
ratio primarily followed arguments of Nitaj [4], restricting attention to curves
with nontrivial rational torsion or isogeny structure. We tabulate the results
of our computations as follows. First, in Table 5, we list models of E/Q with
given rational torsion and isogeny structures. To do this, we denote by EN , the
universal elliptic curve over X1(N) , and by E′N the elliptic curve EN/ < P >
where P is the point of order N . We also write E22 for a parametrization of
elliptic curves with full rational two-torsion, and E′22 = E22/ < P > for one of
these points. The formulae for E′N , when N = 5 or 7, can be found in [4], where
they are denoted by E18 and E39, respectively.

Our final table, Table 6, lists the results of our search within the families
given in Table 5; in this table, the quantity d indicates that the curve under
consideration is the d-quadratic twist of one of our models from Table 5. We
have restricted attention to those examples with Szpiro ratio larger than 8.486
(which is the cutoff we needed to include elliptic curves with a rational five
torsion point). More extensive data are available from the authors upon request.
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Table 5. Families of Elliptic Curves and their Discriminants

Curve Model ∆
E2 y2 = x(x2 + ax+ b) 24b2(a2 − 4b)
E′2 y2 = x(x2 − 2ax+ (a2 − 4t)) 28b(a2 − 4b)2

E3 y2 + by = x(x2 + a2

4 x+ ab
2 ) b3(a3 − 27b)

E′3 y2 + by = x3 + a2

4 x
2 − 9ab

2 x− b(a3 + 7b) b(a3 − 27b)3

E5 y2 + (a− b)xy − a2by = x3 − abx2 a5b5(a2 − 11ab− b2)
E′5 . . . ab(a2 − 11ab− b2)5

E7 y2 − (a2 − ab− b2)xy − a2b3(a− b)y = a7b7(a− b)7(a3 − 8a2b+ 5ab2 + b3)
x3 − a2b(a− b)x2

E′7 . . . ab(a− b)(a3 − 8a2b+ 5ab2 + b3)7

E22 y2 = x(x− a)(x+ b) 24a2b2(a− b)2

E′22 y2 = x(x2 + 2(a+ b)x+ (a− b)2) 28ab(a− b)4

Table 6. Top Szpiro ratios found via computer search

Curve (a, b) d Szpiro Ratio
E′3 −2 · 5 · 107 · 191,−236 · 292 · 127 1 9.01996406836501
E′22 −13 · 196, 230 · 5 1 8.81194357194048
E2 2 · 1087 · 3187, 317 · 173 · 19 1 8.80159647164269
E′7 −32, 2 1 8.75731614557112
E′3 −2 · 5 · 107 · 191,−236 · 292 · 127 −7 8.69894197172524
E′2 −24 · 5 · 172 · 2127165978817991, 277 · 174 · 1012 · 491 1 8.66221765946058
E′22 210 · 52 · 715, 318 · 23 · 2269 1 8.68896770822104
E3 −2 · 5 · 107 · 191,−236 · 292 · 127 1 8.62243074548933
E′22 −13 · 196, 230 · 5 −3 8.61692936402403
E′3 −2 · 5 · 107 · 191,−236 · 292 · 127 13 8.61065865983309
E′3 2 · 811 · 3089,−28 · 418 · 1069 1 8.59658011129187
E′22 210 · 52 · 715, 318 · 23 · 2269 −3 8.57932311185482
E′3 −2 · 5 · 107 · 191,−236 · 292 · 127 −19 8.55933774170168
E′2 −24 · 5 · 172 · 2127165978817991, 277 · 174 · 1012 · 491 −3 8.54579452396547
E′22 −27 · 238, 199 · 8572 1 8.53729295364890
E′22 322 · 13 · 472, 27 · 238 1 8.53728818586093
E′22 −13 · 196, 230 · 5 5 8.53517775868216
E′22 514 · 19,−25 · 3 · 713 1 8.53180512280382
E′22 210 · 52 · 715, 318 · 23 · 2269 −5 8.53133002997689
E′3 2 · 811 · 3089,−28 · 418 · 1069 29 8.50447784478959
E2 2 · 1087 · 3187, 317 · 173 · 19 −3 8.50211900205277
E′22 −24 · 516 · 97 · 919, 73 · 295 · 1512 1 8.50127729380151
E′22 210 · 52 · 715, 318 · 23 · 2269 −7 8.50068162668746
E′3 19 · 4211, 135 · 17239 1 8.49294029016210
E′5 −27 · 3727, 310 · 7 1 8.48609917814708
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