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Abstract. In this short note, we solve completely the Diophantine equation

1k − 3k + 5k − · · · + (4x− 3)k − (4x− 1)k = −yn,

for 3 ≤ k ≤ 6. This may be viewed as a “character-twisted” analogue of a

classic equation of Schaffer (in which context, it was previously considered

by Dilcher). In our proof, we appeal primarily to techniques based upon the
modularity of Galois representations and, in particular, to a combination of

these ideas with suitable local information.

1. Introduction

In the study of Diophantine equations, there exists an interesting, and some-
times subtle, distinction between the effective and the explicit. As a case in point,
given a polynomial f(x) ∈ Z[x], with, say, three distinct simple complex roots, the
superelliptic equation

f(x) = yn

has, effectively, at most finitely many solutions in integers x, y and variable n ≥
2, via work of Schinzel and Tijdeman [8] using lower bounds for linear forms in
logarithms. Here, we count the solutions with yn = 0 or ±1 only once. On the other
hand, there are really very few situations where such equations can be completely
solved, essentially all corresponding to polynomials f(x) with factors over Z[x] of
very small degree (typically, at most three). As a case study, consider the equation

(1.1) 1k + 2k + · · ·+ xk = yn.

Here, the left-hand-side can be expressed as a polynomial fk(x) of degree k + 1 in
Q[x], where the denominators of the corresponding coefficients are well behaved.
The presence of linear factors x(x+ 1) in fk(x) makes it possible (see [2]) to solve
equation (1.1) completely when, say, k ≤ 11. The techniques of [2], while not
strictly speaking “algorithmic”, do provide a method for explicitly solving (1.1) for
any k of moderate size.

We have, in general, no analogous approach for the apparently similar equation

(1.2) 1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k = −yn,

effectively solved by Dilcher [5]. If we set

gk(x) = 1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k,
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then gk(x) is related (see [5]) to the classical Euler polynomials via the identity

gk(x) = −2k−1Ek(2x+ 1/2).

Work of Brillhart [4] therefore classifies the rational and repeated roots of the
polynomials gk(x); in the following table, we list the first few values of gk(x) :

k gk(x) k gk(x)
1 −2x 4 −16x2(8x2 − 3)
2 −8x2 5 −2x(16x2 − 5)2

3 −2x(16x2 − 3) 6 −8x2(256x4 − 240x2 + 75)

It is worth noting that, at least for k ≥ 6, there are no gk(x) known to possess an
irreducible quadratic factor.

In this paper, we will show that it is still possible to solve equation (1.2), at least
for small values of k; we prove the following

Theorem 1.1. Let k ∈ {3, 4, 5, 6}. If there exist positive integers x, y and n ≥ 2
satisfying (1.2), then

(k, x, y, n) = (5, 2 t2, 2 t (64t4 − 5), 2),

for t a positive integer.

We would like to emphasize that, in contrast to the work of Győry, Pintér and
the author [2] on equation (1.1), we are genuinely unable to treat values of k ≥ 7.
For the cases k ∈ {3, 4, 5}, our approach is a simple appeal to known results on
ternary Diophantine equations, together with some machinery for solving cubic
Thue inequalities. The novelty of our approach, we must confess, is limited to the
case k = 6. Here, we apply local information at the primes 2 and 7, together with
techniques based upon associating Frey-Hellegouarch curves to modular forms, to
conclude that (1.2) has no solutions in nonzero integers. These ideas have applica-
tions to more general superelliptic equations, but we will not explore them here.

2. Proof of Theorem 1.1 : the cases k = 3, 4 and 5

We begin with the straightforward cases, treating each value of k ∈ {3, 4, 5} in
turn.

2.1. k = 3. Let us suppose first that k = 3 and write d = gcd(x, 16x2 − 3), so that
d ∈ {1, 3}. We thus have

x = 2n−1 dn−1 an and 16x2 − 3 = d bn,

for positive integers a and b (whereby, from considering the latter equation modulo
8, we may suppose that n is an odd prime). If d = 3, writing c = 2n+13n−2an,
we have bn + 1 = 3c2. This immediately contradicts Theorem 1.1 of [3], provided
n ≥ 4. If n = 3, we have

4(12a2)3 − b3 = 1,

whereby the inequality

(2.1)
∣∣x3 − 2y3

∣∣ ≥√|x|,
valid for all integers x and y (see Theorem 6.1 of [1]), implies 24a2 ≤ 4, and so
a = 0.
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If, on the other hand, we have d = 1, then

bn − 22n+2a2n = −3.

For n ≥ 5 prime, this contradicts work of Kraus [6], since it implies the existence of
a weight 2 cuspidal newform of level 6. If n = 3, we may again appeal to inequality
(2.1) to conclude as desired.

2.2. k = 4. Next, we turn our attention to the case k = 4, setting

d = gcd(16x2, 8x2 − 3) ∈ {1, 3},

so that

16x2 = 22ndn−1an and 8x2 − 3 = d bn,

for positive integers a and b. The latter equation is insoluble modulo 8 if n = 2;
we thus suppose that n is an odd prime (so that a = a21 is a perfect square). If
d = 3, then for c = 2n−13(n−3)/2an1 we have bn + 1 = 6c2. Again, Theorem 1.1 of
[3] implies that n = 3. We thus have 12 (2a)3 − b3 = 1 and hence∣∣∣∣ 3

√
12− b

2a

∣∣∣∣ < 1

3 · 122/3 (2a)3
.

Combining this with the inequality∣∣∣∣ 3
√

12− b

2a

∣∣∣∣ > 0.28 (2a)−2.95,

valid for all positive integers a and b (see Corollary 1.2 of [1]) implies that a = 0, a
contradiction.

If k = 4 and d = 1, then

bn − 2n−1an = −3.

As previously, we appeal to [6] for n ≥ 5 prime (where the implied newforms are
now at levels 3 or 6), or to inequality (2.1), if n = 3.

2.3. k = 5. To begin, let us observe that if n = 2, we have that necessarily 2x is a
square, say x = 2t2 for t a positive integer. We thus obtain the infinite family of
solutions referenced in Theorem 1.1. For the remainder of this subsection, let us
suppose that n is either an odd prime, or that n = 4. Writing

d = gcd(x, 16x2 − 5) ∈ {1, 5},

there exist positive integers a and b for which

2x = dn−22nan and (16x2 − 5)2 = d2bn,

whence either n = 4 or we can find b1 such that b = b21. In the first case, we
have 16x2 − 5 = db2, a contradiction modulo 4. In the second, if d = 5, we have
bn1 + 1 = 5c2, for c = 2n+15n−3an and so Theorem 1.1 of [3] again suffices to treat
n ≥ 5. If n = 3, then 1280 a6 − 1 = b31, whereby∣∣∣∣ 3

√
20− b1

4a2

∣∣∣∣ < 1

3 · 202/3 64 a6
.

In conjunction with the inequality∣∣∣∣ 3
√

20− p

q

∣∣∣∣ > 0.01 q−2.23,
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valid for all positive integers p and q (again see Corollary 1.2 of [1]), we obtain that
a = 1, a contradiction. If, however, d = 1, then

bn1 − 22n+2a2n = −5.

The techniques of [6] allow us to conclude as desired for n ≥ 5 prime (since there do
not exist cuspidal newforms of weight 2 and level 10), while inequality (2.1) does
likewise, in case n = 3

3. Proof of Theorem 1.1 : the case k = 6

We now complete the proof of Theorem 1.1 by treating the case k = 6. Notice
that g6(x) is always divisible by 2 to an odd exponent, whereby we may assume,
without loss of generality, that n is an odd prime. Set

d = gcd(8x2, 256x4 − 240x2 + 75) ∈ {1, 3, 25, 75}.
There thus exist positive integers a and b for which

8x2 = 2n 3ν3(d)(n−1) 5ν5(d)(n−2)/2 an and 256x4 − 240x2 + 75 = d bn,

where νp(d) denotes the largest power of p dividing d. Writing d d1 = 75, the second
equation becomes

(3.1) 3ν3(d)c2 + d1 = 4bn,

where

c = 2n+2 · 3ν3(d)(n−2) · 5ν5(d)(n−3)/2 · an − 15 · 3−ν3(d) · 5−ν5(d)/2.
Suppose first that n ≥ 7 is prime. Following [3], we define a Frey-Hellegouarch
curve

E : Y 2 = X3 + 3ν3(d) cX2 + 3ν3(d) bnX.

Notice that, for each choice of d, we have

b ≡ −c ≡ −3ν3(d) (mod 4).

Combining Lemmata 2.1 and 3.3 of [3] thus implies that the canonical representation
ρEn of Gal(Q/Q) on the n-torsion points of E arises from a weight 2, cuspidal
newform f of trivial Nebentypus character and level

N = 22 · 31+ν3(d) · 51−ν5(d)/2.
For d = 1 or d = 25, the absence of nonzero cuspforms at levels 60 and 12, re-
spectively, therefore completes the proof of Theorem 1.1, in case n ≥ 7 is prime. If
d = 75, equation (3.1) has, via Theorem 1.2 of [3], no solutions in integers c > 1.

The primary novelty in this paper lies in our treatment of the remaining case,
when d = 3. Here, equation (3.1) becomes

(3.2) 3c2 + 25 = 4bn

and ρEn arises from a weight 2, cuspidal newform f of level 180. Since this space
is one-dimensional, corresponding to an elliptic curve E1/Q of conductor 180, it
follows that, for each prime p coprime to 30n, we have

(3.3) ap(E) ≡ ap(E1) (mod n),

if p fails to divide b, while

(3.4) ap(E1) ≡ ±(p+ 1) (mod n),

if p | b.
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We will apply these congruences with p = 7 – the choice of prime here is, as we
shall see, far from arbitrary. For our purposes, it is crucial that a7(E1) = 2. Note
that from (3.2), the value of a7(E) is completely determined by the residue class of c
modulo 7. If c ≡ ±1 (mod 7), then 7 | b and so (3.4) implies that n ≤ 5. Otherwise,
we have a7(E) = 0 (if c ≡ 0,±3 (mod 7)) or a7(E) = ±4 (if c ≡ ±2 (mod 7)). In
each case, a7(E) 6= a7(E1) and appealing to (3.3) leads to the conclusion that n ≤ 5.

It remains, then, to treat the exponents n = 3 and 5. In the first case, solutions
to (3.1) correspond to integral points on elliptic curves of the shape

E : Y 2 = X3 − 24 · 31+2ν3(d) · 52−ν5(d).

Standard computational packages (e.g. Magma) for finding such points on fixed
models of elliptic curves may thus be applied to show that there are no integer
points on E, if d = 1 or 3, and, if d = 25, only the points (X,Y ) = (4,±4) and
(28,±148), corresponding to (b, c) = (1,±1) and (7,±37) in equation (3.1). None
of these have, as required in this case, c ≡ −3 (mod 32). If d = 75, we find the
points (X,Y ) = (12,±36), corresponding to c = ±1, again a contradiction.

Finally, let us suppose that n = 5. In case d = 1, the fact that x2 = 4a5 implies
that a = a21 for some integer a1, and so x2 ≡ ±4 (mod 25), whereby

b5 ≡ −4± 10 (mod 25),

a contradiction. For d ∈ {3, 25, 75}, we note that solutions to (3.1) imply the
existence of integral points on hyperelliptic curves of the shape

C : Y 2 = X5 − 28 · 31+4ν3(d) · 52−ν5(d).

In case d = 3, since the Jacobian Jac(C) is readily shown to have rank 0 over Q, a
relatively easy application of Chabauty techniques implies that no such points exist.
If d = 25 or 75, we can argue similarly, or note that, since the curves C have defining
equations of the shape Y 2 = X5−2α3β and Theorem 5.1 of Mulholland [7] provides
all solutions to equations of these types, we may conclude that (X,Y ) = (4,±16),
if d = 25, and that (X,Y ) = (12,±432), if d = 75. In each case, these correspond
to c = ±1. This contradiction finishes the proof of Theorem 1.1.

4. Concluding remarks

What we have really proved in our treatment of equation (3.2) is the following :

Theorem 4.1. The Diophantine equation

3c2 + 25 = 4bn

has no solutions in coprime integers b and c with c ≡ ±3 (mod 8), and integer
n ≥ 2.

One can probably solve this equation completely, without restriction upon c,
though not through a simple application of techniques based solely upon the mod-
ularity of Galois representations. Indeed, for c ≡ ±1 (mod 8), after suitable level
lowering, one is led to consider modular forms of level 360 rather than 180. At the
former level, there are five forms, each one-dimensional, three of which resist easy
elimination. Our argument based upon analysis of Fourier coefficients at p = 7 fails
in such a case, since one of these forms corresponds to an elliptic curve E1/Q with
a7(E1) = −4.
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