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ABSTRACT. In this note, we sharpen work of Ulas to provide what is, in some
sense, the minimal counterexample to a “conjecture” of Erdős and Graham about
square values of products of disjoint blocks of consecutive integers.

1. INTRODUCTION

A remarkable paper of Erdős and Selfridge [2] completed a long-standing
project of Erdős, showing that the product of consecutive integers cannot be
a perfect power (and, in particular, a square). Referencing this problem, in
Erdős and Graham [1] we find the following quote :

In the same spirit one could ask when the product of two or more disjoint
blocks of consecutive integers can be a power. For example, if A1, . . . ,An

are disjoint intervals each consisting of at least 4 integers then perhaps the
product

∏
k=1
∏

ak∈Ak
ak is a nonzero square in only a finite number of cases.

In making such an assertion, one presumes that Erdős and Graham were
guided by density arguments (which do indeed suggest finiteness for the
integer points on the corresponding hypersurfaces). As noted in Ulas [5],
however, these arguments can fail to hold in this situation; if the Ai ’s are
taken to be blocks of precisely 4 integers, and if the number of such blocks
is large enough, then the products take on square values infinitely often. In
fact, Ulas suggests that there are likely infinitely many such blocks, in every
case where the number of blocks is suitably large relative to the interval
lengths. What seems to occur is that we have integral curves lying on our
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hypersurfaces; to predict or guarantee that such curves do in fact exist appears
to be a hard problem.

In this short note, we will search for what might be termed minimal
counterexamples to the proposal of Erdős and Graham (as one can observe
from the quote above, it is probably unfair to characterize this as a conjecture).
Along the way, we will sharpen and generalize the results of [5].

2. SOME RESULTS

Let us, fixing a positive integer j and the j -tuple (k1, k2, . . . , kj) of positive
integers, consider the equation

(2.1)
j∏

i=1

ki−1∏
l=0

(xi + l) = y2,

where the variables x1, x2, . . . , xj are positive integers with the property that

(2.2) xs < xt implies that xs + ks ≤ xt.

We may clearly suppose, without loss of generality, that j > 1 (else we may
appeal to the aforementioned theorem of Erdős-Selfridge) and that

2 ≤ k1 ≤ k2 ≤ · · · ≤ kj

(if k1 = 1, then (2.1) has, trivially, infinitely many solutions).
Our two results are as follows. The first is a generalization of Theorem 1

of [5]. This result deals with situations omitted from consideration by Erdős
and Graham; we include it for completeness.

THEOREM 2.1. If either k1 = 2 or (k1, k2) = (3, 3) then equation (2.1)
has infinitely many solutions with (2.2).

We also prove

THEOREM 2.2. If j ≥ 3 and ki = 4 for 1 ≤ i ≤ j then equation (2.1) has
infinitely many solutions with (2.2).

This latter result affirms a conjecture of Ulas (who deduced a like statement
for j = 4 and j ≥ 6). The families of examples we construct to show that (2.1)
has infinitely many solutions with (2.2) in case j = 3 and (k1, k2, k3) = (4, 4, 4)
are, we believe, minimal in j amongst counterexamples to the Erdős-Graham
proposal.
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3. PROOF OF THEOREM 2.1

Let us begin by supposing that k1 = 2. We choose the xi ’s such that the
product

j∏
i=2

ki−1∏
l=0

(xi + l)

is of the form 4m1m2
2 , where m1 > 1 is squarefree. In particular, if j = 2,

k2 ∈ {2, 3} , we take x2 = 3, while, otherwise, we may choose the xi ( i ≥ 2)
such that

j∏
i=2

ki−1∏
l=0

(xi + l) = m!

where m =
∑j

i=2 ki (note that m! cannot be equal to a square, by Bertrand’s
Postulate). We thus find that (2.1) is satisfied precisely when there exists an
integer y1 for which

x1(x1 + 1) = m1y2
1

or, equivalently,
(2x1 + 1)2 − m1(2y1)2 = 1.

Since this equation has, for each squarefree m1 , infinitely many solutions in
positive integers x1 and y1 , we conclude that, if j ≥ 2 and k1 = 2, then (2.1)
necessarily has infinitely many solutions.

Next, suppose that (k1, k2) = (3, 3) . If j = 2, as noted by K. R. S. Sastry,
we may choose x1 = n , x2 = 2n , where n and m are positive integers
satisfying

(n + 2)(2n + 1) = m2

(see Guy [3]). As is well-known, there are infinitely many such solutions. We
may therefore suppose that j > 2 and choose the xi ’s such that the product

j∏
i=3

ki−1∏
l=0

(xi + l)

is of the form m1m2
2 , where m1 6= 2 is squarefree. To do this, we may take

the xi such that
j∏

i=3

ki−1∏
l=0

(xi + l) = m!

with m =
∑j

i=3 ki ,
x2 = 2x1 + 2 and x1 = 3 x0.
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Having a solution to equation (2.1) is thus equivalent to finding positive
integers x1 and y1 satisfying

x0(2x0 + 1) = m! y2
1

and so
(4x0 + 1)2 − 8 m! y2

1 = 1.

Since m!/2 is not a square (for m > 2), it follows that this equation has
infinitely many solutions in integers x0 and y1 . This completes our proof.

4. PROOF OF THEOREM 2.2

As noted previously, Ulas derived Theorem 2.2 for j = 4 or j ≥ 6. He
observed a number of solutions in case j = 3 and strongly conjectured that
there are infinitely many if j = 5. Since there exists a solution to equation
(2.1) with

j = 2, k1 = k2 = 4, x1 = 33, x2 = 1680,

we may conclude as desired by showing that (2.1) has infinitely many solutions
with (2.2), if j = 3. In fact, we will provide three infinite families of solutions
in this case.

Let us begin by considering the Diophantine equation

(4.1) u2 − 3v2 = −2.

The positive integral values of u that satisfy this equation are given by the
recurrence

u1 = 1, u2 = 5, un+1 = 4un − un−1 for n ≥ 2.

There are thus infinitely many such solutions with u ≡ 1 mod 4. If we
additionally assume that u ≥ 265 and set

(x1, x2, x3) =
(

u− 5
4

,
v − 3

2
,

u + 1
2

)
,

then

x1(x3 + 2)x2(x2 + 3) =
(u2 − 25)(v2 − 9)

32
=

(u2 − 25)2

96
and

(x1 + 1)x3(x2 + 1)(x2 + 2) =
(u2 − 1)(v2 − 1)

32
=

(u2 − 1)2

96
,

whereby



ON A QUESTION 5

3∏
i=1

3∏
l=0

(xi + l) =
(

(u2 − 1)(u + 3)(u + 7)(u2 − 25)
768

)2

.

The assumption that u ≥ 265 guarantees that the xi ’s satisfy (2.2).
Next, we note that (4.1) also has infinitely many solutions with u ≡ −1

mod 4. For such a solution with u ≥ 3691, we take

(x1, x2, x3) =
(

u− 7
4

,
v − 3

2
,

u− 7
2

)
.

A little work shows that now
3∏

i=1

3∏
l=0

(xi + l) =
(

(u2 − 1)(u− 3)(u− 7)(u2 − 25)
768

)2

.

Our third family is also given by a recurrence. We now consider solutions
to the equation

(4.2) u2 − 5v2 = 4

in odd integers u and v (so that u ≡ 3 mod 4). We then take

(x1, x2, x3) =
(
v − 3

2
,

u− 7
4

,
u + 1

2

)
and find that

3∏
i=1

3∏
l=0

(xi + l) =
(

(u2 − 9)(u + 1)(u + 5)(u2 − 49)
1280

)2

.

Notice that solutions to equation (4.2) satisfy (u, v) = (L6n±2,F6n±2) , where
Lk and Fk denote the k th Lucas and Fibonacci numbers, respectively.

5. CONCLUDING REMARKS

It is worth noting that the examples in [5] in case j = 4 (and ki = 4 for
1 ≤ i ≤ 4) grow polynomially (that is, the number of such examples with
max{xi} < X exceeds Xθ for some θ > 0), while those constructed here, for
j = 3 (and ki = 4) with max{xi} < X , are bounded in number by c log X for
some constant c . It may be that this represents the true state of affairs for
solutions to (2.1) in these instances, but it would appear to be most difficult to
prove. More generally, it is possible that the behaviour of solutions to (2.1) is
governed in some way by the size of

∑j
i=1 1/ki . There is no obvious heuristic

that comes to mind to support this, however.
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We suspect that the case j = 3, k1 = k2 = k3 = 4 is, in some sense,
minimal for (2.1) to have infinitely many solutions with (2.2). Indeed, we
would guess that if j = 2 and k1 ≥ 4 then (2.1) has at most finitely many
solutions with (2.2). The hypothesis that k1 ≥ 4 is certainly necessary here
(even when we cannot apply Theorem 2.1) as it is easy to show that (2.1)
has infinitely many solutions with j = 2 and (k1, k2) = (3, 4) (as before, one
can construct at least two families from recurrence sequences). An argument
of P.G. Walsh (private communication) provides reasonable support (via the
ABC conjecture) for the belief that the number of solutions to (2.1) with (2.2)
if j = 2, k1 = k2 = 4 is finite.
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