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The equation x2n + y2n = z5

par Michael A. BENNETT

Résumé. Nous montrons que l’équation diophantienne ci-dessus
n’admet pas de solutions entières x, y, z, telles que (x, y) = (y, z) =
(x, z) = 1 et xyz 6= 0. La démonstration utilise les courbes de
Frey et des résultats liés à la modularité des représentations ga-
loisiennes.

Abstract. We show that the Diophantine equation of the title
has, for n > 1, no solution in coprime nonzero integers x, y and
z. Our proof relies upon Frey curves and related results on the
modularity of Galois representations.

1. Introduction

Diophantine equations of the shape

(1.1) xp + yq = zr

have received a great deal of attention, both classically and more recently,
spurred on by the spectacular proof of Fermat’s Last Theorem by Wiles
[15]. If we restrict our attention to positive integers p, q and r with

(1.2)
1
p

+
1
q

+
1
r

< 1

and insist upon the additional (and, as it transpires, necessary) hypothesis
that x, y and z are nonzero and coprime, then a theorem of Darmon and
Granville [6] ensures that, for a fixed triple (p, q, r), we encounter at most
finitely many such solutions (x, y, z) to (1.1). Indeed, a folklore conjecture
(and consequence of the ABC-conjecture of Masser and Oesterlé) is that
(1.1) has only finitely many “nontrivial” solutions, not just for p, q and r
fixed, but even if we allow them to vary, subject to (1.2) (provided one
counts solutions corresponding to the identity 23 + 1n = 32 only once).
If one were ambitious, one might even go so far as to specify a hopefully
complete list of solutions (see e.g [11] and its Math Review by Bremner
(98j:11020) for some historical perspectives on this conjecture and a partial
cast of characters to whom it might arguably be attributed).
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Recent work on equations of type (1.1) under condition (1.2) have mostly
followed the trail blazed by Wiles. For surveys of this emerging field, the
reader is directed to papers of Kraus [10] and Merel [12], or, for more
recent developments, to, e.g. [2] and [8]. While many partial results are
available, the only infinite families (p, q, r) for which we know equation
(1.1) to have no nontrivial solutions are those with p = q and r ∈ {2, 3, p}
([7], [15]) and those of the form (p, q, r) = (2, 4, r) (see [8]) and (p, q, r) =
(2, q, 4) or (4, q, 2) (under thin disguise, these may be found in [2]). For
the case p = q and arbitrary fixed r, Darmon [5] outlines a program to
treat equation (1.1), via an ambitious generalization of the Frey-Ribet-
Wiles approach. To carry out this program, one requires analogues of
fundamental results of Mazur, Ribet and Wiles concerning elliptic curves
and their associated Galois representations, for the case of representations
attached to Jacobians of higher genus curves. The absence of such results
ensures that, for example, we cannot currently establish the aforementioned
conjecture for equations of the shape

(1.3) xn + yn = z5.

In this short note, our goal is to demonstrate that, while (1.3) may be
presently unattainable, if we add the additional constraint that n is even, we
obtain another infinite family of (p, q, r) for which equation (1.1) possesses
only trivial solutions. To be precise, we prove

Theorem 1.1. If n ≥ 2 is an integer, then the Diophantine equation

(1.4) x2n + y2n = z5

has no solutions in coprime nonzero integers x, y and z.

There are, of course, many solutions to (1.4) if we drop the restriction of
coprimality, e.g. x = y = z = n = 2. It is worth noting that our argument
is essentially limited to (1.1) with (p, q, r) = (2n, 2n, 5). Even the similar
equation

x2n − y2n = z5

is apparently beyond our grasp. Additionally, for the cases (p, q, r) =
(n, n, 2) or (n, n, 3), unlike for (n, n, 5), it seems that treating the equa-
tions

xn + yn = z2 or xn + yn = z3

for even values of n is not appreciably easier than dealing with the case
of arbitrary n (though, as an historical aside, the first of these equations
was known by Lebesgue, as early as 1840, to have no nontrivial solutions
with n = 2k, provided a like conclusion holds for the Fermat equation
xk + yk = zk).

As a final comment, we should note that a like result to Theorem 1.1
was claimed by Battaglia [1]. It appears, however, that the arguments of
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[1] are applicable only in a rather restricted setting; the reader is directed
to the corresponding Mathematical Review of Swift [11D48-69].

2. Preliminaries

We begin with an easy, classical lemma; we include its proof for the sake
of completeness.

Lemma 2.1. If, for coprime nonzero integers a, b and c, we have

a2 + b2 = c5

then necessarily there exist coprime nonzero integers u and v, of opposite
parity, for which

a = u
(
u4 − 10u2v2 + 5v4

)
and

b = v
(
v4 − 10u2v2 + 5u4

)
.

Proof. Since integral squares are congruent to 0, 1 or 4 modulo 8, it follows,
assuming gcd(a, b) = 1, that a and b are of opposite parity. Thus factoring
implies that

a + ib = (u + iv)5

for some (coprime) integers u and v. Expanding this and equating real and
imaginary parts leads to the stated expressions for a and b. The fact that
a and b are of opposite parity, together with the coprimality of u and v,
leads to the conclusion that u and v are also of opposite parity. �

Here and henceforth, we will assume (without loss of generality) that
n ≥ 2 is prime. From Lemma 2.1, if we have a solution to equation (1.4)
in, say, positive, coprime integers x, y and z, we may suppose that

xn = u
(
u4 − 10u2v2 + 5v4

)
(2.1)

and

yn = v
(
v4 − 10u2v2 + 5u4

)
(2.2)

for coprime integers u and v of opposite parity. Since u and v are coprime,
it follows that

gcd
(
u, u4 − 10u2v2 + 5v4

)
= gcd(u, 5) ∈ {1, 5}

and similarly

gcd
(
v, v4 − 10u2v2 + 5u4

)
= gcd(v, 5) ∈ {1, 5}.

We treat the cases n ≥ 7 and n ∈ {2, 3, 5} separately. In the former
situation, we will appeal to connections between Frey curves and modular
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forms. While we could, in fact, shorten our exposition by direct citation of
results from [2] (e.g. Theorems 1.2 and 1.5), we will include a reasonable
amount of detail, in the interests of keeping the paper at hand somewhat
self-contained.

3. The cases n ≥ 7

Let us begin by assuming that n ≥ 7 and that gcd(uv, 5) = 1. It follows
from (2.1) and (2.2) that there exist coprime integers A,B, C and D such
that

u = An and u4 − 10u2v2 + 5v4 = Bn(3.1)

and

v = Cn and v4 − 10u2v2 + 5u4 = Dn,(3.2)

where, without loss of generality, u and hence A is even. Combining (3.1)
and (3.2), we have that

Dn + 20A4n = w2

where we write w = v2 − 5u2.
Following [6] (where we have made minor modifications to ensure our

model’s minimality at the prime 2; see [2]), define a (Frey) elliptic curve E
via

E : Y 2 + XY = X3 +
(w − 1)

4
X2 +

5A4n

16
X.

To E we associate a Galois representation

ρE
n : Gal(Q/Q) → GL2(Fn)

on the n-torsion points E[n] of E. Since n ≥ 7, one can show that this
representation is necessarily absolutely irreducible and hence, via work of
Wiles [15] and Ribet [13] (see Lemma 3.3 of [2] for details), arises from a
weight 2 cuspidal newform of trivial character and level 10, contradicting
the fact that no forms of such a low level exist. The key fact here is the
parity of A, which ensures (since n is not too small) that E has multiplica-
tive reduction at 2 (and hence that the level of the corresponding newform
is not divisible by 4).

Next, let us suppose that gcd(uv, 5) = 5, say, 5 | u. It follows that there
exist coprime integers A,B, C and D such that we have both (3.2) and

(3.3) u = 5n−1An and u4 − 10u2v2 + 5v4 = 5Bn.

Combining (3.2) with (3.3), we thus have

(3.4) Bn + 4 C4n = 5w2
1

and

(3.5) Dn + 4 · 54n−3A4n = w2
2,
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where
w1 = u2/5− v2 and w2 = v2 − 5u2.

Again, one of A or C is even. In the first case, we consider

E1 : Y 2 + XY = X3 +
(w2 − 1)

4
X2 +

54n−3A4n

16
X

and, in the second,

E2 : Y 2 + XY = X3 +
(5w1 − 1)

4
X2 +

5 C4n

16
X.

As previously, from Lemma 3.3 of [2], we may conclude that E1 corresponds
to a weight 2, level 10 cuspidal newform and hence reach a contradiction.
On the other hand, the curve E2 (more precisely, the corresponding Galois
representation on the n-torsion of E2) gives rise to a weight 2 cuspidal
newform

f = fE =
∞∑

n=1

cnqn

of trivial character and level 50 (the space of such forms has dimension 2
over C). For this form and a prime p 6∈ {2, 5, n}, we have

trace ρE
n (Frobp) ≡ cp mod n

where (see Lemma 4.2 of [2])

trace ρE
n (Frobp) =

{
±(1 + p) if p divides BC

2 t if p fails to divide BC.

Here, t is an integer satisfying |t| ≤ √
p. In particular, considering the case

p = 3 and noting that, for each cuspidal newform f at level 50, we have
c3 = ±1 (see e.g. [14]), we deduce a contradiction from the assumption
that n ≥ 7.

4. The cases n ∈ {2, 3, 5}

In case n = 5, our theorem is a direct consequence of Fermat’s Last
Theorem [15] (or, more precisely, the special case of it first proved by
Dirichlet in 1825). If n = 3, we may invoke a comparatively recent result
of Bruin [3], who treated the more general equation

x3 + y3 = z5

via Chabauty-style techniques (and showed that it has no solutions in co-
prime nonzero integers).

Let us therefore suppose that n = 2. From (2.1) and (2.2), if uv is
coprime to 5, there exist integers A and B for which

u4 − 10u2v2 + 5v4 = ±A2 and v4 − 10u2v2 + 5u4 = ±B2,
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at least one of which is a contradiction modulo 8. We may thus assume,
without loss of generality, that 5 | u. Working modulo 8, from (2.1) and
(2.2) we infer that u is even and v odd, and hence the existence of a positive
integer A for which

(4.1) A2 = v4 − 10u2v2 + 5u4.

Here, as previously, u and v are nonzero. Writing

Y =
4v

(
A + v2 − 5u2

)
u3

and X =
2

(
A + v2 − 5u2

)
u2

,

we find that the curve defined by (4.1) is birational to the elliptic curve

F : Y 2 = X3 + 20X2 + 80X,

given as 400D1 in Cremona’s tables [4]. Via 2-descent, it is easy to show
that

F (Q) ∼= Z/2Z
with the only rational points being at infinity and the 2-torsion point
(X, Y ) = (0, 0). Since both of these correspond to u = 0 on our origi-
nal curve (4.1), we obtain a contradiction. This completes the proof of
Theorem 1.1.
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