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1. PROLOGUE. Late in the last millennium, the second author ran a seminar
course for undergraduates that was intended to introduce them to problem-solving
and question-asking in the context of mathematical research. He led them through the
classic “difficult” equation

x y = yx (x, y > 0), (1)

whose solution is much easier than one would think at first glance. Solutions were
sought, first over R, then over Z, and finally over Q. In the context of this seminar, it
was natural to consider the variant equation

x y = y2x (x, y > 0), (2)

which does not seem to have appeared in the literature. It turns out that there are
solutions to (2) that do not fit the well-known parametric pattern of (1) (see (5)). For
example,

x =
(

4

5

)128

, y =
(

4

5

)125

(3)

is a solution to (2). This preposterous fact is trivial to verify: simply substitute (3) into
(2), take logs, and transpose:

2x

y
= 2

(
4

5

)3

= 128

125
= log x

log y
.

As we shall see, the ultimate explanation for this identity is that 2 · 43 = 53 + 3. Upon
discovering (3), the second author realized he was in over his head and contacted the
first author. This paper is the result.

2. xy = yx. First, we review the familiar, but beautiful solution to (1), reserving his-
torical references to the last paragraph of the section. We acknowledge the solutions
x = y and now let y = t x , where t �= 1, so that

x y = yx ⇐⇒ (
xt

)x = (t x)x ⇐⇒ xt = t x ⇐⇒ x = t
1

t−1 . (4)

The positive real solutions to (1) are thus

(x, y) = (u, u), (x, y) = (t
1

t−1 , t
t

t−1 ). (5)

(We might equally well have set y = xr in (1) and drawn essentially the same conclu-
sion.) Since (1) implies that x1/x = y1/y and since f (u) = u1/u increases on (1, e) and
decreases on (e, ∞), for each x in (1, e) there is exactly one y in (e, ∞) so that (1)
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holds. There are at most two solutions to (1), one of which is x = y. In particular, the
only integer solution to (1) with x �= y is x = 2 and y = 4 (or vice versa).

Euler already noted that if t = 1 + n−1 for integral n, then (4) gives a rational
solution to (1); namely,

xn =
(

1 + 1

n

)n

, yn =
(

1 + 1

n

)n+1

. (6)

(Observe that, as n → ∞, we have t → 1 and (xn) and (yn) increase and decrease
monotonically to e, as is familiar from calculus.)

To show that these are the only rational solutions, we need an elementary lemma,
whose proof, relying upon the Fundamental Theorem of Arithmetic, we omit:

Lemma 1. Suppose a, b, m, and n are integers satisfying gcd(a, b) = gcd(m, n) = 1
and b, n �= 0. Then (m/n)a/b is rational if and only if m and n are |b|th powers of
integers.

Let us now proceed to find all rational solutions to (1) with x �= y. By symmetry,
we may assume that y > x , so t > 1. If x and y are rational, then so is t = y/x . Write
t in lowest terms as

t = p

q
:= q + d

q

(d, q > 0), so that 1/(t − 1) = q/d and t/(t − 1) = (q + d)/q. With this substitution,
we have

x =
(

q + d

q

)q/d

, y =
(

q + d

q

)q/d+1

.

Since gcd(d, q) = gcd(q, q + d) = gcd(d, q + d) = 1, the integers q and q + d must
both be dth powers (Lemma 1). This causes no problem when d = 1, of course, and,
setting q = n, we recover (6). Suppose that d > 1, and write q = ad , q + d = bd

for positive integers a and b with a < b, so that bd − ad = d. Observe that, for such
positive integers a and b,

bd − ad ≥ (a + 1)d − ad ≥ 1 + da ≥ 1 + d > d,

so there are no solutions with d > 1. Finally, we remark that if n = −r is allowed to
be negative in (6), then (x−r , y−r ) = (yr−1, xr−1):

(
1 − 1

r

)−r

=
(

1 + 1

r − 1

)r

,

(
1 − 1

r

)−r+1

=
(

1 + 1

r − 1

)r−1

.

Thus, by removing the restriction that n be positive, we can eliminate the constraint
y > x in (6).

A historical discussion of x y = yx occupies a paragraph in chapter 23 of Dickson
[3, p.687]. The first reference to (1) was in a letter from D. Bernoulli to C. Goldbach
dated June 29, 1728. Bernoulli asserts, without proof (see [2, p.263]), that this equation
has only one solution in positive integers, and infinitely many rational solutions. The
first person to write about (1) in detail was Euler (see [4, pp. 340–341]). Euler made
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the substitution y = t x and solved the equation over R+ and Z+, and he presented the
rational solutions (6), without claiming that they were the only ones.

Dickson mentions other writers who covered the same ground, and adds that “*A.
Flechsenhaar and R. Schimmack discussed the rational solutions” [3, p. 687]. The
cited papers appeared in 1911 and 1912 in the expository journal Unterrichtsblätter
für Mathematik und Naturwissenschaften. Dickson writes: “The reports in Chapters
XI–XXVI have been checked by the original papers in case they are to be found in
Chicago” [3, p. xxi]; the asterisk means that the paper was “not available for report”
[3, p. xxii]. We were able to examine [6] at the magnificent Mathematics Library of the
University of Illinois at Urbana-Champaign and can report that Flechsenhaar appears
to deserve credit as the first author to solve (1) over the positive rationals. In 1967, S.
Hurwitz [9] gave the first readily accessible analysis of the rational solutions; subse-
quent work on this equation, including generalizations to algebraic solutions, can be
found in [8], [14], [17], [18], [21], and [22].

3. xy = ymx. Let us now consider the generalization of Euler’s equation to

x y = ymx (7)

where m > 1 is a fixed positive integer. We again restrict our attention to positive
solutions (x, y). If x = 1 or y = 1, then necessarily (x, y) = (1, 1). Supposing that
x, y �= 1 and taking logarithms in (7), we find that

m log y

y
= log x

x
,

so x �= y. Write y = xr with x �= 1 and r �= 1. Then xr−1 = mr . Therefore, the posi-
tive real solutions to (7) are given by x = y = 1 and

x = (mr)
1

r−1 , y = (mr)
r

r−1 .

We now restrict our attention to positive rational solutions. Since y/x = mr , it
follows that r > 0; further, since x and y are rational, we have r in Q. Let us write
r = a/b where a and b are natural numbers with gcd(a, b) = 1, and set k = |a − b|.
To have x in Q, we require

x =
(ma

b

) b
a−b ∈ Q.

Suppose that gcd(b, m) = d, and write b = db′ and m = dm ′. Then gcd(am ′, b′) = 1,
so we need am ′ and b′ to be kth powers of integers. If

am ′ = uk, b′ = vk,

it follows that

∣∣uk − mvk
∣∣ = |am ′ − mb′| =

∣∣∣∣am

d
− mb

d

∣∣∣∣ = m

d
· k = m ′k. (8)

For a given positive integer m, we classify the set S(m) of positive rational solutions
to (7) as follows: write

S(m) =
∞⋃

k=0

Sk(m),
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where Sk(m) represents the set of solutions (x, y) corresponding to equation (8) for m ′
ranging over all positive integral divisors of m. Here, S0(m) denotes the solutions with
x = y (i.e., just (x, y) = (1, 1) for m > 1).

The remainder of this paper is devoted to analyzing S(m). As a consequence, we
will show how this set may be completely characterized for any given m. In case m = 2
or 3 (where all features of interest for general m may in fact be observed), we have the
following results:

Theorem 2. If x and y are positive rational numbers for which x y = y2x , then either

(a) x = (
2 + 2

n

)n
and y = (

2 + 2
n

)1+n
for n in Z, n �= 0, −1;

or

(b) (x, y) = (1, 1), (2, 16), or
((

4
5

)128
,
(

4
5

)125)
.

Theorem 3. If x and y are positive rational numbers for which x y = y3x , then either

(a) x = (
3 + 3

n

)n
and y = (

3 + 3
n

)1+n
for n in Z, n �= 0, −1;

or

(b) x = (
3wn
vn

)v2
n and y = (

3wn
vn

)3w2
n for n = 0, 1, 2, . . .;

or

(c) x = (
wn
vn

)3w2
n and y = (

wn
vn

)v2
n for n = 0, 1, 2, . . . .

In (b) and (c), vn and wn are the integers defined by

vn + wn

√
3 = (1 + √

3)(2 + √
3)n.

Our proofs of Theorems 2 and 3 (perhaps rather surprisingly) involve techniques
from transcendental number theory and Diophantine approximation. Moreover, they
provide us with an opportunity to illustrate a fairly diverse grab bag of methods for
solving Diophantine problems.

4. THE CASES k = 1 AND k = 2. The set S1(m) is easily computed. Indeed, we
immediately find that k = 1 implies that either

x =
(

m + m

n

)n
, y =

(
m + m

n

)1+n

or

x =
(

m − m

n

)−n
, y =

(
m − m

n

)1−n

for n a positive integer (with n ≥ 2 in the latter case). We note that these solutions
correspond to the parametrized family (6) of solutions to Euler’s original equation and
provide us with part (a) of Theorems 2 and 3.

If k ≥ 2, the situation becomes more interesting, though the set S2(m) is still not
too difficult to describe: it is either empty or infinite. The following lemmata provide
sufficient conditions for the former to occur. As usual, for x in N, let ν2(x) be the
largest integer such that 2ν2(x) divides x .
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Lemma 4. If ν2(m) is odd and k is even, then Sk(m) is empty.

Proof. We have gcd(a, b) = 1, and since k = |a − b| is even, a and b must both be
odd. It follows that d = gcd(b, m) is odd as well. Write, as before, b = db′, m =
dm ′, am ′ = uk , b′ = vk . Then ν2(m) = ν2(d) + ν2(m ′) is odd, hence so is ν2(am ′) =
ν2(uk) = kν2(u), which contradicts k being even.

Lemma 5. If m = 2ν2(m) · m1 is a positive integer for which m1 ≡ 1(mod 4), then
S2(m) is empty.

Proof. If ν2(m) is odd, this is a special case of Lemma 4. Since k = 2 is even, we may
conclude as before that a and b are both odd. Suppose ν2(m) is even, say ν2(m) = 2t .
It follows from (8) that

u2 − 22t m1v
2 = ±22t+1 · m1

d
,

where u and v are coprime and d divides m. Because d | b, it follows that d is odd, so
d | m1. We thus see that 2t | u, say u = 2t u1, whereby

u2
1 − m1v

2 = ±2 · m1

d
. (9)

Since the right-hand side of this equation is even, u1 and v have the same parity and,
since u and v are coprime, are both necessarily odd. Since m1 ≡ 1(mod 4), this implies
that the left-hand side of (9) is divisible by 4. Since the right-hand side of this equation
is congruent to 2 modulo 4, this yields the desired contradiction.

It is a well-known fact that if m is a positive nonsquare integer and c is a nonzero
integer, then a single solution in positive integers x and y to the equation x2 − my2 = c
implies the existence of infinitely many such solutions. In fact, one can find a finite
collection of pairs of positive integers, say

(x1, y1), (x2, y2), . . . , (xr , yr )

with x2
i − my2

i = c for i = 1, 2, . . . , r , such that every solution in positive integers
(x, y) to the equation x2 − my2 = c satisfies

x + y
√

m = (
xi + yi

√
m

) · (u1 + v1
√

m
)k

, (10)

where k is a nonnegative integer, i belongs to {1, 2, . . . , r}, and (u1, v1) is the smallest
positive integer solution to the equation u2 − mv2 = 1. The integer r here depends
upon c and, potentially, upon m.

It follows that if S2(m) is not empty, then it is infinite. From the theory of Pell equa-
tions (or Fermat-Pell equations if one likes) these correspond to elements of finitely
many recurrence sequences (see Nagell [15] for a nice, affordable exposition of such
matters). This fact is also a pretty easy consequence of (10). We note that considera-
tion of the case m = 39 demonstrates that the foregoing lemmata do not in fact provide
necessary conditions for S2(m) to be empty. A routine computation shows that, when
2 ≤ m ≤ 50, S2(m) is infinite precisely for

m ∈ {3, 7, 11, 12, 15, 19, 23, 27, 28, 31, 35, 43, 44, 47, 48}.
It is also not hard to provide sufficient conditions for S2(m) to be nonempty. An

example of such a result is as follows:
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Lemma 6. If p ≡ 3(mod 4) and p is prime, then S2(p) is infinite.

Proof. From a venerable (after citing Euler, we can hardly call this old!) result of Petr
[16], precisely one of the equations

x2 − py2 = −2, x2 − py2 = 2

is solvable in integers x and y. This implies, in either case, that S2(p) is infinite.

We leave to our gentle reader the (rather nontrivial) task of deriving necessary condi-
tions for S2(m) to be nonempty. In the next section, we observe that the behavior of
Sk(m) is dramatically different when k ≥ 3.

5. THUE EQUATIONS. A famous theorem of the Norwegian mathematician Axel
Thue [23] asserts that, if θ is an algebraic number of degree k ≥ 3 and ε > 0, then the
inequality

∣∣∣∣θ − x

y

∣∣∣∣ <
1

|y|k/2+1+ε

has at most finitely many solutions in integers x and y with y �= 0. Note that, if θ =
k
√

m, then we have the algebraic identity

|xk − myk | = yk

∣∣∣∣θ − x

y

∣∣∣∣ ·
((

x

y

)k−1

+ θ

(
x

y

)k−2

+ · · · + θ k−1

)
.

If m is not a perfect kth power and c �= 0 is an integer, then it follows that the equation

xk − myk = c (11)

has at most finitely many solutions in integers x and y. Such equations are nowadays
termed Thue equations (a nice exposition of this active area of research may be found
in the book of Fel′dman and Nesterenko [5]).

In our situation, this immediately implies that Sk(m) is finite for each fixed integer
k ≥ 3. As we shall see in the next two sections, it is possible to determine each such
Sk(m) “effectively” (and to derive an upper bound for k that depends solely upon m).

6. LINEAR FORMS IN LOGARITHMS. The sets Sk(m) are defined by equalities
of the shape

uk − mvk = ±m

d
k

for u and v positive integers. In all cases, we thus have
∣∣uk − mvk

∣∣ ≤ mk.

It follows that
∣∣∣∣∣m−1

(
u

v

)k

− 1

∣∣∣∣∣ ≤ k

vk
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and hence the linear form in logarithms |k log(u/v) − log m| is small. A classical re-
sult of Gel′fond [7] (extending his work on Hilbert’s seventh problem) indicates that,
for any given nonzero algebraic numbers α1, α2, β1, and β2 with log α1 and log α2

linearly independent over the rationals, we have

|β1 log α1 − β2 log α2| �= 0.

Moreover, Gel′fond provides lower bounds for such a form. Applying state-of-the-art
versions of these bounds, say those due to Laurent, Mignotte, and Nesterenko [11],
we may conclude as in Theorem 3 of Mignotte [13] that, in our situation, k < 600 (if
m = 2) and, more generally, as in Theorem 2 of [13], that

k < 10676 log m.

It follows that

∞⋃
k=3

Sk(m)

is finite. In the remaining sections, we describe a strategy for explicitly determining
this set and illustrate it in the cases m = 2 and m = 3.

7. SOLVING THE REMAINING EQUATIONS. For small values of k, it is pos-
sible to use standard computational techniques based upon lower bounds for linear
forms in logarithms, combined with lattice basis reduction, to solve the Thue equa-
tions that occur (a reasonably accessible book that covers this field is Smart [20]). If,
however, k is moderately large, this becomes computationally infeasible due to the dif-
ficulty in finding systems of independent units in the ring of integers of Q( k

√
m). (For

instance, it is an interesting challenge to find the fundamental units in, say, Q(
101
√

2).)
In our situation, though, we are able to find local obstructions to solvability (i.e.,

appropriate moduli m so that the equations have no admissible solutions modulo m)
for virtually all values of k under consideration, obviating the need for extensive com-
putations. For the sake of simplicity, let us restrict our attention to the case m = 2
(where, as mentioned previously, we may assume that k < 600). Here the equations to
be studied are of the shape

xk − 2yk = ±2δk,

where δ is 0 or 1. Lemma 4 also allows us to suppose that k is odd. For each such
k, we consider primes of the form p = 2nk + 1 for n in N. For these p, there are at
most (2n + 1)2 values of xk − 2yk modulo p. If none of these are congruent to ±k or
±2k modulo p, we have found a local obstruction to solvability and can thus conclude
that Sk(2) is empty. If, for example, k = 13, we consider the equation(s) modulo 53.
Noting that x13 ≡ 0, ±1, ±23(mod 53), it follows that

x13 − 2y13 ≡ 0, ±1, ±2, ±3, ±6, ±7, ±8, ±16, ±21, ±23, ±25(mod 53),

hence we may conclude that S13(2) is empty. Similar arguments suffice to eliminate all
equations (with k < 600) except for

x3 − 2y3 = ±3, x3 − 2y3 = ±6, x5 − 2y5 = ±10,

x7 − 2y7 = ±7, x7 − 2y7 = ±14, x11 − 2y11 = ±22
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(to verify this, the reader may wish to write her own piece of code; we used Maple
[12], being careful to note that the “msolve” routine is somewhat unreliable).

Similarly, when m = 3, we easily deal with all the equations encountered, with the
exceptions of

x3 − 3y3 = ±3, x5 − 3y5 = ±15, x7 − 3y7 = ±21

(though, in this case, we need to treat all k up to k = 11,728, including even values).

8. ENDGAME. As mentioned in the last section, various techniques from Diophan-
tine approximation may be used to solve these remaining equations. The symbolics
package Kash [10], for example, has a built-in Thue solver that can handle all the
equations under consideration in a matter of minutes on a Sun Ultra. In any case,
nowadays it is a routine matter to verify that, of the equations that have so far evaded
our net, only those with k = 3 possess solutions, corresponding to 53 − 2 · 43 = −3,
23 − 2 · 13 = 6, and 33 − 3 · 23 = 3. By way of example, to solve the Diophantine
equations |x3 − 2y3| = 3 or |x3 − 2y3| = 6, one can appeal to the inequality

∣∣x3 − 2y3
∣∣ ≥ √|x |,

valid for all integers x and y (see, for example, [1]).
The equation 53 − 2 · 43 = −3 maps back to the solution (x, y) to x y = y2x given

in (3). Similarly, 23 − 2 · 13 = 6 yields the solution (x, y) = (2, 16), also to x y = y2x .
The equation 33 − 3 · 23 = 3, which potentially yields a solution to x y = y3x , leads to
a = 27 and b = 24, contradicting the coprimality of a and b.

These arguments suffice to solve x y = ymx completely, with a modicum of compu-
tation, for all values of m up to 40 or so. As m increases, we are faced with the prospect
of handling Thue equations of higher and higher degree, an apparently formidable task.
We note that Sk(m) can be nonempty for arbitrarily large k (for example, this is always
the case for Sk(2k − k) if k is odd).

The reader might reasonably wonder about a generalization to xny = ymx . This Dio-
phantine equation was studied by Asher Kach, a student in that undergraduate seminar
course who is currently a graduate student at the University of Wisconsin-Madison.
He and the authors are preparing an article on this subject.

9. POSTSCRIPT: ON LOCAL-GLOBAL PRINCIPLES. A standard heuristic
employed in the field of Diophantine problems is that an equation should be solvable
over Q precisely when it is solvable over R and over the p-adic fields Qp for all
primes p. Such local-global (or Hasse) principles are known to be true in various
settings, but false in general.

One of the first instances where local-global principles were shown to fail occured
in a 1942 paper of Skolem [19], where he demonstrated that the equation x3 − 3y3 =
22 can be solved modulo pα for every prime power pα but has no solution over the
integers.

In our analysis, we encounter numerous instances for which a like conclusion holds,
with equations of degree up to (at least) 19. Such is the case, for example, for the
equations

x3 − 5y3 = 15, x5 − 2y5 = 10, x5 − 3y5 = 15, x7 − 2y7 = 7,

x7 − 2y7 = 14, x7 − 3y7 = 21, x11 − 2y11 = 22.
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To prove that the Hasse principle fails on these occasions is an interesting exercise that
we leave to our loyal (and, at this stage, perhaps rather fatigued) reader!
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23. A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909) 284–305.

MIKE BENNETT studied mathematics at Dalhousie University and the University of British Columbia. He
received his Ph.D. in 1993 as a student of David Boyd. After postdoctoral fellowships at Waterloo, Ann Arbor,
and the Institute for Advanced Study, he was a faculty member at the University of Illinois, Urbana-Champaign
until returning to Vancouver in 2001. He remains an unrepentant number theorist and favors the plucky under-
dog New York Yankees.
Department of Mathematics, University of British Columbia, Vancouver, B.C.
bennett@math.ubc.ca

BRUCE REZNICK got his degrees at Caltech (B.S.,1973) and Stanford (Ph.D.,1976) and has been at the
University of Illinois, Urbana-Champaign since 1979. He is interested in combinatorial problems in number
theory, analysis, algebra, and geometry, often involving polynomials. He continues, somehow, to root for the
Chicago Cubs.
Department of Mathematics, University of Illinois, Urbana, IL 61801
reznick@math.uiuc.edu

January 2004] POSITIVE RATIONAL SOLUTIONS TO x y = ymx 21


