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Abstract. It is proven that if a, b and c are positive integers then the simul-
taneous Diophantine equations

ax2 − by2 = 1, by2 − cz2 = 1

possess at most one solution in positive integers (x, y, z). The proof utilizes
estimates for linear forms in logarithms of algebraic numbers.

1. Introduction

In the problem session of the Fifth Conference of the Canadian Number Theory
Association (CNTA5), Herman J. J. te Riele posed the following:

When I became 49, I realized that this square is preceded by 3 times a
square and followed by 2 times a square. Are there more (nontrivial)
such squares?

In other words, we would like to know if the simultaneous equations

(1) 2x2 − y2 = 1, y2 − 3z2 = 1

have a solution in positive integers (x, y, z) other than that given by x = 5, y = 7
and z = 4. A negative answer to this question follows from a classical result of
Ljunggren [8], as recently refined by Cohn [4]:

Theorem 1.1. Let the fundamental solution of the equation v2 − Du2 = 1 be
a+b
√
D (i.e. (v, u) = (a, b) is the smallest positive solution). Then the only possible

solutions of the equation x4 −Dy2 = 1 are given by x2 = a and x2 = 2a2 − 1; both
solutions occur in only one case, D = 1785.

To see this, note that (1) implies that y4−6(xz)2 = 1. More generally, if a, b and
c are positive integers, one may consider the simultaneous Diophantine equations

(2) ax2 − by2 = 1, by2 − cz2 = 1.

In this paper, we prove

Theorem 1.2. If a, b and c are positive integers then the simultaneous equations
(2) possess at most one solution (x, y, z) in positive integers.

The special cases where b = 1 correspond to the aforementioned work of Ljung-
gren and Cohn, upon noting that, if (x, y, z) is a positive solution to (2), then
b2y4 − ac(xz)2 = 1.
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The equations in (2) fit into the broader framework of simultaneous Pell equa-
tions, defined, more generally, for a, b, c, d, e and f integers, by

ax2 − by2 = c, dx2 − ez2 = f.

Under fairly mild restrictions upon the coefficients, such a system of equations
defines a curve of genus one and hence has at most finitely many integral solutions,
by work of Siegel. The literature associated with determining these solutions (or
bounding their number) is an extensive one (see e.g. [1], [2], [7], [10] and [12]). For
comparison to Theorem 1.2, in [3] the author, extending a result of Masser and
Rickert [9], obtained

Theorem 1.3. If a and b are distinct nonzero integers, then the simultaneous equa-
tions

x2 − az2 = 1, y2 − bz2 = 1

possess at most three solutions (x, y, z) in positive integers.

Along these lines, if we take a = 2A, b = C and c = 2B, Theorem 1.2 immediately
implies

Corollary 1.4. if A,B and C are nonzero integers, then the simultaneous equa-
tions

Ax2 −Bz2 = 1, Cy2 − 2Bz2 = 1

possess at most one solution (x, y, z) in positive integers.

A like result in the special case A = C = 1 has been obtained by Walsh [13]
through application of Theorem 1.1. While the results of Cohn and Walsh are
elementary, our approach to proving Theorem 1.2 utilizes lower bounds for linear
forms in logarithms of algebraic numbers.

In Section 2, we will derive a result which ensures that if (2) has two positive
solutions, then their heights cannot be too close together. In Section 3, we combine
this with estimates from the theory of linear forms in logarithms of algebraic num-
bers to obtain Theorem 1.2 in all but a few exceptional cases. Finally, in Section
4, we treat these remaining cases.

For the remainder of the paper, we will assume that the system of equations (2)
is solvable in positive integers (x, y, z). Under this hypothesis, it is readily observed
that the three fields Q(

√
a), Q(

√
b) and Q(

√
c) are necessarily distinct (i.e.

√
a,
√
b

and
√
c are linearly independent over Q). We further suppose, without loss of

generality, that a, b and c are squarefree.

2. A Gap Principle

Suppose, for i an integer, that (xi, yi, zi) is a positive solution to (2). From the
theory of Pellian equations (see e.g. Walker [11]), it follows that

(3) yi =
αji − α−ji

2
√
b

=
βki + β−ki

2
√
b

where α and β are the fundamental solutions to the equations ax2 − by2 = 1 and
by2−cz2 = 1 (i.e. α =

√
au0+

√
bv0 and β =

√
bu1+

√
cv1 where (u0, v0) and (u1, v1)



ON CONSECUTIVE INTEGERS OF THE FORM ax2, by2 AND cz2 3

are the smallest solutions in positive integers to ax2 − by2 = 1 and by2 − cz2 = 1
respectively). Here ji and ki are positive integers satisfying

ki ≡ 1 (mod 2) if a = 1
ji ≡ 1 (mod 2) if b = 1
ji ≡ ki ≡ 1 (mod 2) otherwise.

It follows that there exists an integer m ≥ 2 such that

(4) αj1 =
√
m+

√
m+ 1 and βk1 =

√
m− 1 +

√
m.

Let us define [n] to be the square class of n (i.e. the unique integer s such that s
is squarefree and n = st2 for some integer t). Since we assume a, b and c to be
squarefree, for a fixed choice of m in (4), we therefore have

(a, b, c) = ([m+ 1], [m], [m− 1]).

Lemma 2.1. Suppose that (x1, y1, z1) and (x2, y2, z2) are two positive solutions to
(2) with corresponding α, β, j1, j2, k1 and k2. If y2 > y1, then

j2 >
log β
2.1

α2j1 .

Proof. Let us first note that (3) implies

βki = αji
(
1− α−2ji − β−kiα−ji

)
. (1 ≤ i ≤ 2)

If we suppose that αji > 20 (whence βki > 19), we therefore have

βki > 0.994αji .

Applying this to (3) yields the inequalities

2α−ji < αji − βki < 2.007α−ji .

Considering the Taylor series expansion for eΛ where we take

Λ = ji logα− ki log β,

we therefore have

(5) 2α−2ji < ji logα− ki log β < 2.02α−2ji

or, roughly equivalently,

(6)
2

ji log β
α−2ji <

logα
log β

− ki
ji
<

2.02
ji log β

α−2ji .

Since α and β are each no less than 1 +
√

2 and αji > βki > 19 (for 1 ≤ i ≤ 2), we
may conclude from (6) that ki/ji is a convergent in the continued fraction expansion
to logα/ log β. Also, y2 > y1 implies j2 > j1 and so k1/j1 6= k2/j2 (since otherwise
(6) implies that

2
j1 log β

α−2j1 <
2.02

j2 log β
α−2j2 <

2.02
j1 log β

α−2j1−2

and so α2 < 1.01, contradicting α ≥ 1 +
√

2).
Now if pr/qr is the rth convergent in the continued fraction expansion to logα/ log β,

then ∣∣∣∣ logα
log β

− pr
qr

∣∣∣∣ > 1
(ar+1 + 2)q2

r
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where ar+1 is the (r + 1)st partial quotient to logα/ log β (see e.g. [5] for details).
It follows from (6) that if k1/j1 = pr/qr then

2.02
d1l1 log β

α−2d1l1 >
1

(ar+1 + 2)l21
where gcd(kt, jt) = dt and jt = dtlt for 1 ≤ t ≤ 2, and so

ar+1 >
d1 log β
2.02l1

α2d1l1 − 2.

Since k2/j2 is distinct from k1/j1 and provides a better approximation to logα/ log β,
it follows that l2 ≥ ar+1l1 and thus

j2 >
d1d2 log β

2.02
α2j1 − 2d2l1.

Since d1 and d2 are positive integers and αj1 > 20, we conclude as stated upon
noting that

(logα log β)−1(
1

2.02 −
1

2.1

) < 52.5

(since max{α, β} ≥
√

2 +
√

3 and min{α, β} ≥ 1 +
√

2) while

α2j1

log (α2j1 )
> 66.7

follows from α2j1 > 400.
If, on the other hand, we have αj1 ≤ 20, then we need only consider (4) with

2 ≤ m ≤ 100. For each of these cases, we may readily compute corresponding
(a, b, c), α, β, (x1, y1, z1) and (j1, k1). In all cases in question, except those with
m = 48, 49 or 50, we have (j1, k1) = (1, 1). In these remaining situations, we have
(j1, k1) = (2, 1), (3, 2) and (1, 3), respectively. Checking that, for these 99 values
of m, there are no new solutions (x2, y2, z2) with corresponding j2 ≤ log β

2.1 α
2j1

completes the proof.

3. Linear Forms in Two Logarithms

From the recent work of Laurent, Mignotte and Nesterenko [6], we infer

Lemma 3.1. If α and β are as in (3), j and k are positive integers,

Λ = k log β − j logα

and

h = max
{

12, 4 log
(

k

logα
+

j

log β

)
− 1.8

}
,

then
log |Λ| ≥ −61.2 (logα log β) h2 − 24.3 (logα+ log β)h− 2h

−48.1 (logα log β)1/2
h3/2 − log

(
h2 logα log β

)
− 7.3.

Proof. This is virtually identical to Lemma 4.1 of [3] and follows readily from
Théorème 2 of [6] upon choosing (in the notation of that paper) α1 = α, α2 = β,
b1 = j, b2 = k, D = 4, ρ = 11 (so that λ = log 11), a1 = 18 logα and a2 = 18 logβ.
The Q-linear independence of logα and log β is a consequence of the same property
holding for

√
a,
√
b and

√
c.

We prove
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Proposition 3.2. Suppose that (x1, y1, z1) and (x2, y2, z2) are positive integral so-
lutions to (2) with corresponding α, j1 and j2. If y1 < y2, then αj1 < 1400 and
j2 < 800000.

Proof. Note that Lemma 2.1 and αj1 ≥ 1400 together imply j2 > 800000, so that
it suffices to derive the inequality j2 < 800000. Let us suppose the contrary. We
apply Lemma 3.1 with j = j2 and k = k2. Since j2

log β >
k2

logα and β ≥ 1 +
√

2, we
have

h ≤ max{12, 4 log j2 + 1.5}
and the lower bound for j2 thus implies

4.12 log j2 > 4 log j2 + 1.5 > 12

whereby

log |Λ| ≥ −1038.9 logα log β log2 j2 − 100.2 (logα+ log β) log j2 − 8.3 log j2
−402.3 (logα log β)1/2 log3/2 j2 − log

(
log2 j2 logα log β

)
− 10.2.

On the other hand, (5) gives that

log |Λ| < log 2.02− 2j2 logα

and so

j2 < 519.5 logβ log2 j2 + 201.2 log1/2 β log−1/2 α log3/2 j2
+50.1

(
1 + log β log−1 α

)
log j2 + (4.2 log j2 + log log j2) log−1 α

+ (0.5 log (logα log β) + 5.5) log−1 α.

Applying the inequalities α ≥ 1+
√

2 and j2 ≥ 800000 (which implies that log log j2/ log j2 <
0.2) yields

j2 < 519.5 logβ log2 j2 + 214.4 log1/2 β log3/2 j2 + 56.9 logβ log j2
+55.1 log j2 + 0.6 log log β + 6.2.

Since Lemma 2.1 implies,

j2 >
log β
2.1

α2j1 >
log β
2.1

β2k1 ,

the inequalities k1 ≥ 1, β ≥ 1 +
√

2 and j2 ≥ 800000 yield

log β <
1
2

log j2 + 0.44 < 0.54 log j2.

Substituting this implies that

j2 < 280.6 log3 j2 + 188.3 log2 j2 + 55.1 log j2 + 0.6 log log j2 + 5.9.

This, however, contradicts our initial assumption that j2 ≥ 800000, completing the
proof.

4. Small Solutions

To finish the proof of Theorem 1.1, it remains only to deal with those (a, b, c) for
which (2) possesses a positive solution (x1, y1, z1) with corresponding αj1 < 1400.
These coincide with the values 2 ≤ m ≤ 490000 in (4), which, as is readily verified
using Maple V, define distinct triples (a, b, c). From Proposition 3.2, for each such
m, we need only show that there fails to exist a second solution (x2, y2, z2) with
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corresponding j2 < 800000. Assume that such a solution exists. Then Lemma 2.1
implies

j2 >
log(1 +

√
2)

2.1

(√
2 +
√

3
)2

and so j2 ≥ 5 (whence αj2 > 20). We therefore have from (4) and (6) that

(7) 0 < θm −
j1k2

k1j2
<

2.02j1
k1j2 log β

α−2j2

where

θm =
j1 logα
k1 log β

=
log(
√
m+

√
m+ 1)

log(
√
m+

√
m− 1)

and k1/j1 6= k2/j2. It follows, therefore, that

j1k2

k1j2
=
p2i+1

q2i+1

for p2i+1/q2i+1 the (2i+ 1)st convergent in the continued fraction expansion to θm
(with i ≥ 1). Arguing as in the proof of Lemma 2.1 implies that

(8) a2i+2 >
k1 log β
2.02j1j2

α2j2 − 2

where a2i+2 is the (2i+ 2)nd partial quotient to θm.
If m = 2, then j1 = k1 = 1, α =

√
2 +
√

3, β = 1 +
√

2 and so Lemma 2.1
implies j2 ≥ 5 whence (8) yields a2i+2 ≥ 8293. On the other hand, in this case,
q11 = 2030653 and max1≤i≤4 a2i+2 = a4 = 20, contradicting j2 < 800000.

If m ≥ 3, then Lemma 2.1 and (8) imply that a2i+2 > 108. Observe that the
only values of m with 2 ≤ m ≤ 490000 and k1 > 1 are given by

k1 = 2, m = (2n2 − 1)2, 2 ≤ n ≤ 18
k1 = 3, m = n(4n− 3)2, 2 ≤ n ≤ 31
k1 = 4, m ∈ {9409, 332929}
k1 = 5, m ∈ {1682, 23763, 131044, 465125}
k1 = 7, m = 57122.

We check, using Maple V, that q2i+1 > 800000k1 provided m ≥ 64224 (m 6= 71825,
82369, 113569) if i = 1, m ≥ 23296 if i = 2, m ≥ 9271 if i = 3, m ≥ 3754 if i = 4,
m ≥ 770 if i = 5, m ≥ 50 if i = 6, m ≥ 29 if i = 7 and m ≥ 2 if i ≥ 8. It therefore
remains to prove that max1≤i≤t a2i+2 ≤ 108 for

23926 ≤ m ≤ 64223 and m = 71825, 82369, 113569 if t = 1
9271 ≤ m ≤ 23925 if t = 2
3754 ≤ m ≤ 9270 if t = 3
770 ≤ m ≤ 3753 if t = 4
50 ≤ m ≤ 769 if t = 5
29 ≤ m ≤ 49 if t = 6
2 ≤ m ≤ 28 if t = 7.

To do this, we compute the continued fraction expansion to θm for the 64226 values
of m under discussion, again using Maple V. In all cases, we verify that the partial
quotients in question never exceed 108. In fact, only three of them exceed 105 :
a12 = 138807 for m = 1324, a4 = 177667 for m = 17878 and a4 = 332360 for
m = 30962. This concludes the proof of Theorem 1.1.
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