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Abstract. We discuss positive integer solutions to Diophantine equa-
tions of the shape

x(x+ 1)(x+ 2) = ny2,

where n is a fixed positive integer. From the by-no-means-original ob-
servation that such solutions guarantee that n is a congruent number,
we show that, given a positive integer m and a nonzero integer a, there
exist infinitely many congruent numbers in the residue class a modulo
m. After sketching relationships to various classical quartic equations,
we conclude with some remarks on computational problems.

1. Introduction

Une pile de boulets à base carée ne contient un nombre de
boulets égal au carré d’un nombre entier que lorsqu’elle en
contient vingt-quatre sur le côté de la base. Éduouard Lucas
[26]

This assertion of Lucas, made first in 1875, amounts to the statement that
the only solutions in positive integers (s, t) to the Diophantine equation

(1.1) 12 + 22 + · · ·+ s2 = t2

are given by (s, t) = (1, 1) and (24, 70). Putative solutions by Moret-Blanc
[32] and Lucas [27] contain fatal flaws (see e.g. [42] for details) and it was
not until 1918 that Watson [42] was able to completely solve equation (1.1).
His proof depends upon properties of elliptic functions of modulus 1/

√
2 and

arguably lacks the simplicity one might desire. A second, more algebraic
proof was found in 1952 by Ljunggren [24], though it also is somewhat
on the complicated side. Attempts to repair this perceived defect have, in
recent years, resulted in a number of elementary proofs, by Ma [28] and [29],
Cao and Yu [7] , Cucurezeanu [11] and Anglin [2]. Various generalizations,
distinct from that considered here, have been addressed in [12] and [36].
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We rewrite equation (1.1) as

s(s+ 1)(2s+ 1)

6
= t2

and, multiplying by 24 and setting x = 2s, y = 2t, find that

(1.2) x(x+ 1)(x+ 2) = 6y2.

In this paper, we will consider the generalization of this equation obtained
by replacing the constant 6 in (1.2) by an arbitrary square free integer n;
viz

(1.3) x(x+ 1)(x+ 2) = ny2.

This corresponds to finding integral “points” on quadratic twists of the
elliptic curve y2 = u3 − u. We begin by proving a general upper bound on
the number of integral solutions to (1.3) which implies Lucas’ problem as a
special case.

2. Solutions to equation (1.3)

If b and d are positive integers, let us denote by N(b, d) the number of
solutions in positive integers (x, y) to the Diophantine equation

(2.1) b2x4 − dy2 = 1.

Our first result is the following :

Theorem 2.1. If n is a squarefree positive integer, then equation (1.3) has
precisely ∑

N(b, d) ≤ 2ω(n) − 1

solutions in positive integers x and y. Here, the summation runs over pos-
itive integers b and d with bd = n and ω(n) denotes the number of distinct
prime factors of n.

Proof. From (1.3), we may write

x = 2δau2, x+ 1 = bv2, x+ 2 = 2δcw2

where a, b, c, u, v and w are positive integers, δ ∈ {0, 1} and

(a, b) = (a, c) = (b, c) = 1.

Setting d = ac, it follows that

b2v4 − d
(
2δuw

)2
= 1

where bd = n. Conversely, if X and Y are positive integers for which
b2X4 − dY 2 = 1, where b and d are positive integers with bd = n, writing
x = bX2 − 1 and y = XY , we find that

x(x+ 1)(x+ 2) = bdy2 = ny2.
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To prove the inequality in Theorem 2.1, we note, since we assume n to be
squarefree, that there are precisely 2ω(n) pairs of positive integers (b, d) with
bd = n. Since N(b, 1) = 0, the stated bound is essentially a consequence
of theorems of Cohn [10] and the author and Gary Walsh [4]. To state this
result, we require some notation. Let d > 1 be a squarefree integer and let
T + U

√
d be the fundamental solution to X2 − dY 2 = 1; i.e. T and U are

the smallest positive integers with T 2 − dU2 = 1. Define Tk and Uk via the
equation

Tk + Uk
√
d =

(
T + U

√
d
)k

and let the rank of apparition α(b) be the smallest positive integer k such
that b divides Tk (where we set α(b) =∞ if no such integer exists).

Theorem 2.2. Let b and d be squarefree positive integers. Then N(b, d) ≤ 1
unless (b, d) = (1, 1785) in which case there are two positive solutions to
(2.1), given by (x, y) = (13, 4) and (239, 1352). If N(b, d) = 1, so that (2.1)
has a solution in positive integers (x, y), then, if b = 1, we may conclude
that x2 ∈ {T1, T2}. If, on the other hand, b > 1, then bx2 = Tα(b).

For n = 1785 = 3 · 5 · 7 · 17, it remains to show that (1.3) has at most 15
positive integral solutions (x, y). This is immediate from Theorem 2.2 upon
noting that (2.1) is insoluble modulo 3 if (b, d) = (255, 7).

�

Since (1.2) has the solutions

(x, y) = (1, 1), (2, 2), and (48, 140),

we conclude from Theorem 2.1 that it has no others with x and y positive.
These lead to precisely the solutions (s, t) = (1, 1) and (24, 70) in Lucas’
original problem.

Theorem 2.1 implies that equation (1.3) has at most a single solution in
positive integers, if n is prime. In fact, work of Ljunggren [24] on N(1, p)
immediately enables one to strengthen this :

Corollary 2.3. If n is prime, then equation (1.3) has no solutions in pos-
itive integers x and y, unless n ∈ {5, 29}. In each of these cases, there
is precisely one such solution, given by (x, y) = (8, 12) and (9800, 180180),
respectively.

It is reasonable to suppose that the dependence in Theorem 2.1 on ω(n) is
an artificial one. Indeed, a conjecture of Lang (see e.g. Abramovich [1] and
Pacelli [34]) implies that the number of integral solutions to (1.3) should be
absolutely bounded. We present some computations in support of this in
our final section.
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3. Congruent Numbers

A positive integer n is called a congruent number if there exists a right
triangle with sides of rational length and area n. It is a classical result (and
elementary to prove; see e.g. Chahal [9], Theorems 1.34 and 7.24) that n is
congruent precisely when the elliptic curve

En : Y 2 = X3 − n2X

has positive Mordell rank; i.e. En(Q) is infinite. This leads to

Proposition 3.1. If n is a positive integer for which equation (1.3) has a
solution in positive x, y ∈ Q, then n is a congruent number or, equivalently,
En(Q) has positive rank.

Proof. As is well known (see e.g Corollary 7.23 of [9]), the torsion subgroup
of En(Q) consists of the point at infinity, together with (0, 0), (n, 0) and
(−n, 0) (i.e. the obvious points of order 2). Writing X = n(x+ 1) and Y =
n2y, it follows that a positive rational solution (x, y) to (1.3) corresponds to
a point with positive rational coordinates (X, Y ) on En, which is necessarily
of infinite order. By our above remarks, this implies that n is a congruent
number. �

In [8], Chahal applied an identity of Desboves to show that there are
infinitely many congruent numbers in each residue class modulo 8 (and,
in particular, infinitely many squarefree congruent numbers, congruent to
1, 2, 3, 5, 6 and 7 modulo 8). We can generalize this as follows :

Theorem 3.2. If m is a positive integer and a is any integer, then there
exist infinitely many (not necessarily squarefree) congruent numbers n with
n ≡ a (mod m). If, further, gcd(a,m) is squarefree, then there exist infin-
itely many (squarefree) congruent numbers n with n ≡ a (mod m).

Proof. Suppose that l is a positive integer and set

n = m4l3 − l = (m2l − 1)(m2l + 1)l.

It follows that (x, y) = (m2l−1, m) is a positive solution to (1.3). Since n ≡
−l (mod m), every l ≡ −a (mod m) yields a value of n with n ≡ a (mod m)
and, by Proposition 3.1, n congruent. If, further, gcd(a,m) is squarefree, we
may apply work of Mirsky [30] to conclude that n is squarefree for infinitely
many l ≡ −a (mod m). Indeed, writing l = mk − a for k ∈ N, Theorems
1 and 2 of [30] show, if we denote by N(X) the cardinality of the set of
positive integers k ≤ X for which n is squarefree, that

N(X) = AX +O
(
X2/3+ε

)
as X →∞,

for any ε > 0. Here A = A(a,m) > 0 is a computable constant.
�
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It is worth remarking that a much more refined version of the above result
should follow from the work of Gouvea and Mazur [13].

4. Quartic Equations

There is a vast literature on equations of the form Ax4 −By2 = ±1 (the
reader is directed to the survey paper of Walsh [41] for more details). In
particular, there are many papers giving explicit characterizations of N(b, d)
when ω(bd) is suitably small (see e.g. [5], [6], [14], [15], [16], [17], [18], [19],
[20]). The preceding observations (specifically Theorem 2.1 and Proposition
3.1) imply that N(b, d) = 0 whenever bd is noncongruent. Together with
criteria for noncongruent numbers (see e.g. Table 3.8 of [37]), this enables
one to recover many classical vanishing results for N(b, d). It also leads to
various new statements, the simplest of which is the following:

Corollary 4.1. If b and d are positive integers with bd = 2pq, where p and
q are distinct primes with

p ≡ q ≡ 5 (mod 8),

then equation (2.1) has no solution in positive integers x and y.

For the state of the art on the problem of determining congruent numbers,
the reader is directed to, for example, [31], [33] and [39]. A good overview
of this subject can be found in [21].

5. Computations

Given n ∈ N, as noted previously, the set of positive integer solutions
to (1.3) corresponds to a subset of the integer “points” on En. We could
thus apply standard computational techniques based either on the solution
of Thue equations (see e.g. [40]) or on lower bounds for linear forms in
elliptic logarithms (see e.g. [38]) to find all integer solutions (X, Y ) to
Y 2 = X3 − n2X and check to see which, if any, yield solutions to (1.3). To
find positive integral solutions to (1.3), for all squarefree n up to some
bound, say n ≤ N , it is computationally much more efficient however,
to rely upon Theorem 2.2. With this approach, we begin by computing
fundamental units in Q(

√
d) for each squarefree d ≤ N (see e.g. [23]). For

each squarefree n, we then retrieve the data for the 2ω(n)−1 quadratic fields
corresponding to nontrivial divisors n1 of n, and determine N(n1, n/n1) by
combining Theorem 2.2 with the following lemma due to Lehmer [22]:

Lemma 5.1. Let ε = T+U
√
d be the fundamental solution to X2−dY 2 = 1,

and Tk + Uk
√
d = εk for k ≥ 1. Let p be prime and α(p) denote, as before,
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the rank of apparition of p in the sequence {Tk}.
(i) If p = 2 then α(p) = 1 or ∞
(ii) If p > 2 divides d then α(p) =∞
(iii) If p > 2 fails to divide d then either α(p)|p−(d

p
)

2
or α(p) =∞.

Here (d
p
) denotes the usual Legendre symbol.

We carry out this program with n ≤ N = 105 and note that, in each
instance, equation (1.3) has at most three solutions in positive integers x and
y. In fact, of the 60794 squarefree n, 1 ≤ n ≤ 105, only 280 corresponding
equations of the shape (1.3) possess positive solutions. Moreover, only for

n = 6, 210, 546, 915, 1785, 7230, 13395, 16206, 17490, 20930, 76245

do we find more than a single such solution (with the first two values having
three positive solutions and the remaining ones having two apiece).
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