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Abstract. We show, if p is prime, that the equation xn + yn = 2pz2 has no

solutions in coprime integers x and y with |xy| ≥ 1 and n > p132p2
, and, if

p 6= 7, the equation xn + yn = pz2 has no solutions in coprime integers x and

y with |xy| ≥ 1 and n > p12p2
.

1. Introduction

In the years following Wiles’ [19] proof of Fermat’s Last Theorem, there has
arisen a substantial body of work on solving more general ternary Diophantine
equations of the shape

(1) Axp + Byq = Czr,

via similar techniques, based on the modularity of Galois representations. The
reader is directed to [6], [12], [15] and the forthcoming book of Cohen [3] for survey
articles, and to [5] and [2] for relatively recent developments. In this short note,
we will restrict our attention to families of triples (A,B,C) for which (1) may be
proven unsolvable, for all suitably large prime n, where (p, q, r) = (n, n, 2). We
prove the following.

Theorem 1.1. Let p 6= 7 be prime. Then the equation

(2) xn + yn = 2α p z2

has no solutions in coprime nonzero integers x and y, positive integers z and α,
and prime n satisfying n > p132p2

.

As an almost immediate consequence of this, we have

Corollary 1.2. Let p 6= 7 be prime. Then equation (2) has at most finitely many
solutions in coprime nonzero integers x and y, and positive integers z, α and n ≥ 5.

We note that our techniques lead to the same conclusions if p = 7, in the case
where α is additionally assumed to be odd.

2. From elliptic curves to modular forms

Let us suppose, here and henceforth, that n ≥ 7 is an odd prime, and that
(a, b, c) are coprime nonzero integers satisfying

(3) an + bn = 2βpc2,

where, β ∈ {0, 1} and, in case β = 0, c is even and, without loss of generality,
b ≡ −p (mod 4). As in [1], we associate to the solution (a, b, c) an elliptic curve

E = Eβ(a, b, c) : Y 2 = X3 + 2β+1cpX2 + 2βpbnX
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with corresponding mod n Galois representation

ρE
n : Gal(Q/Q) → GL2(Fn)

on the n-torsion E[n] of E. Via Lemmata 3.2 and 3.3 of [1], this representation
arises from a cuspidal newform f of weight 2, trivial Nebentypus character, and
level 32p2 (if β = 0) or 256p2 (if β = 1).

To prove Theorem 1.1, it remains to show that the modular forms under dis-
cussion here cannot, in fact, give rise to ρE

n . The following three results from [1]
provide us with the means to eliminate forms from consideration. The first propo-
sition enables us to discount the possibility of f being of dimension greater than
one, at least for large enough n. It is from this result that we derive the stated
lower bound for n in our theorem.

Proposition 2.1. Suppose n ≥ 7 is prime and E = Eβ(a, b, c) is as given previ-
ously. Suppose further that

f =
∞∑

m=1

cmqm (q := e2πiz)

is a newform of weight 2 and level N giving rise to ρE
n and that Kf is a number

field containing the Fourier coefficients of f . If q is a prime, coprime to 2pn, then
n divides one of either

NormKf /Q (cq ± (q + 1))

or
NormKf /Q(cq ± 2r),

for some integer 0 ≤ r ≤ √
q.

The following pair of results will prove crucial in eliminating one-dimensional
forms from consideration.

Proposition 2.2. Suppose n ≥ 7 is prime with n 6= p, and that E = Eβ(a, b, c) is
as given previously. Suppose also that E′ is another elliptic curve defined over Q
such that ρE

n
∼= ρE′

n . Then the denominator of the j-invariant j(E′) is not divisible
by p.

Proposition 2.3. Suppose n ≥ 7 is prime and E = Eβ(a, b, c) is as given previ-
ously. Suppose that ρE

n arises from a newform having CM by an imaginary quadratic
field K. Then one of the following holds:
(a) ab = ±2r, r > 0, 2 6 |ABC and 2 splits in K.
(b) n = 7 or 13, n splits in K and either E(K) has infinite order for all elliptic
curves of conductor 2n or ab = ±2r3s with s > 0 and 3 ramifies in K.

3. Elliptic curves with rational 2-torsion

To apply the previous results, we need to understand one-dimensional weight
2 cuspidal newforms of level N = 32p2 or 256p2. These correspond to elliptic
curves over Q of conductor 32p2 or 256p2. The second author [17] has provided a
classification of such curves, provided they possess at least one rational 2-torsion
point. We restate the relevant results in the following two propositions.
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Proposition 3.1. Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with
a rational 2-torsion point and conductor 32p2. Then E is isogenous over Q to a
curve of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.

p a2 a4 j-invariant
any 0 −p2 1728
any 0 (−1)(p+1)/2p 1728
any 0 (−1)(p+1)/2p3 1728
7 ±7 2·72 8000/7
7 ±7 2·7 −26

7 ±72 2·73 −26

s2 + 1, s ∈ Z 2ps −p2 64(4p−1)3

p

s2 + 8, s ∈ Z ps −2p2 64(p−2)3

p

s2 − 8, s ∈ Z ps 2p2 64(p+2)3

p

Proposition 3.2. Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with
a rational 2-torsion point and conductor 256p2. Then E is isogenous over Q to a
curve of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.

p a2 a4 j-invariant
any 0 ±2p 1728
any 0 ±2p2 1728
any 0 ±2p3 1728
any ±4p 2p2 2653

23 ±23·23·39 2·235 263340573

236

23 ±24·23·39 23·235 263340573

236

2s2 + 1, s ∈ Z ±4ps 2p3 −64(p−4)3

p2

2s2 + 1, s ∈ Z ±4ps −2p2 64(4p−1)3

p√
2s2 + 1, s ∈ Z ±4ps 2p4 64(p2−4)3

p4√
2s2 + 1, s ∈ Z ±4ps −2p2 64(4p2−1)3

p2

2s2 − 1, s ∈ Z ±4ps 2p3 64(p+4)3

p2

2s2 − 1, s ∈ Z ±4ps 2p2 64(4p+1)3

p√
2s2 − 1, s ∈ Z ±4ps 2p4 64(p2+4)3

p4√
2s2 − 1, s ∈ Z ±4ps 2p2 64(4p2+1)3

p2

The main feature of these propositions we will use is that an elliptic curve E/Q
with rational 2-torsion and conductor 32p2 or 256p2 either has CM or p dividing
the denominator of j(E), with a single exception: there are curves of conductor
32p2 when p = 7 without CM and potentially good reduction at p, namely

y2 = x3 ± 7x2 + 14x and y2 = x3 ± 49x2 + 686x.
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It is the presence of these curves which prevents us from extending Theorem 1.1 to
include p = 7.

4. Proof of Theorem 1.1

To prove Theorem 1.1, we will combine Propositions 3.1 and 3.2 with a result of
Kraus (Lemme 1 of [10]) and the Proposition of Appendice II of Kraus and Oesterlé
[13] (regarding this last assertion, note the comments in the Appendice of [10]). We
define

µ(N) = N
∏
l|N

(
1 +

1
l

)
,

where the product is over prime l.

Proposition 4.1. (Kraus) Let N be a positive integer and f =
∑

n≥1 cnqn be a
weight 2, level N newform, normalized so that c1 = 1. Suppose that for every prime
p with (p, N) = 1 and p ≤ µ(N)/6 we have cp ∈ Z. Then we may conclude that
cn ∈ Z for all n ≥ 1.

Proposition 4.2. (Kraus and Oesterlé) Let k be a positive integer, χ a Dirichlet
character of conductor N and f =

∑
n≥0 cnqn be a modular form of weight k,

character χ for Γ0(N), with cn ∈ Z. Let p be a rational prime. If cn ≡ 0 (mod p)
for all n ≤ µ(N)k/12, then cn ≡ 0 (mod p) for all n.

We now proceed with the proofs of Theorem 1.1; as noted earlier, we may assume
the existence of a weight 2, level N cuspidal newform f (with trivial character),
where

N ∈
{
32p2, 256p2

}
.

If f has at least one Fourier coefficient that is not a rational integer, then, from
Proposition 4.1, there is a prime l coprime to 2p with

(4) l ≤

{
8p(p + 1) if N = 32p2,

64p(p + 1) if N = 256p2.

such that cl 6∈ Z. It follows from Proposition 2.1 that n divides NormKf /Q(cl− al),
where al is the lth Fourier coefficient corresponding to the Frey curve Eβ(a, b, c).
Since al ∈ Z (whereby al 6= cl), and l is coprime to 2p, the Weil bounds; |c`| ≤ 2

√
`,

|a`| ≤ ` + 1, imply that

(5) n ≤
(
l + 1 + 2

√
l
)[Kf :Q]

=
(√

l + 1
)2[Kf :Q]

,

where, as previously, Kf denotes the field of definition for the Fourier coefficients
of the form f . Next, we note that [Kf : Q] ≤ g+

0 (N) where g+
0 (N) denotes the

dimension (as a C-vector space) of the space of cuspidal, weight 2, level N newforms.
Applying Theorem 2 of Martin [14] we have

g+
0 (32p2) ≤ 32p2 + 1

12
≤ 3p2,

and

g+
0 (256p2) ≤ 256p2 + 1

12
≤ 22p2.
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Combining these with inequalities (4) and (5), we may therefore conclude that

(6) n ≤


(√

8p(p + 1) + 1
)6p2

if N = 32p2,(√
64p(p + 1) + 1

)44p2

if N = 256p2.

It follows, after routine calculation, that

n ≤

{
p12p2

if N = 32p2,

p132p2
if N = 256p2.

where these inequalities are a consequence of (6) for p ≥ 5.
It remains, then, to consider the case when the form f has rational integer Fourier

coefficients cn for all n ≥ 1. In such a situation, f corresponds to an isogeny class
of elliptic curves over Q with conductor N = 32p2 or 256p2. Define

f∗ =
∑

n≥1,(n,2p)=1

cnqn and g∗ =
∑

n≥1,(n,2p)=1

σ1(n)qn,

where σ1(n) is the usual sum of divisors function; i.e. σ1(n) =
∑

d|n d. Lemma
4.6.5 of Miyake [16] ensures that f∗ and g∗ are weight 2 modular forms of level
dividing 512p3. Applying Proposition 4.2 (at the prime 2) to f∗− g∗ and using the
fact that σ(l) = l + 1, for all primes l one of the following necessarily occurs :

(i) There exists a prime l, coprime to 2p, satisfying l ≤ 128p2(p + 1) and
cl ≡ 1 (mod 2).

(ii) cl ≡ 0 (mod 2) for all prime l coprime to 2p.

In the former case, since n divides the (nonzero) integer cl − al, we obtain the
inequality

(7) n ≤ l + 1 + 2
√

l ≤ 128p2(p + 1) + 1 + 16p
√

p + 1 < p2p,

where the last inequality is valid for p ≥ 5. In the latter situation, then any
curve in the given isogeny class, say F , necessarily has a rational 2-torsion point.
Propositions 3.1 and 3.2 then immediately imply, if p 6= 7, that F has j-invariant
whose denominator is divisible by p or CM by an order in Q(

√
−1) or Q(

√
−2).

In the former case, Proposition 2.2 provides an immediate contradiction. In the
latter, we conclude from Proposition 2.3 that n ≤ 13 (after noting that part (a)
of Proposition cannot occur in this case since we are assuming ab ≡ 1 (mod 2)).
Combining these observations with (7) and the inequalities following (6) completes
the proofs of Theorem 1.1.

Corollary 1.2 is an easy consequence of Theorem 1.1, after applying a result
of Darmon and Granville [4] (which implies, for fixed values of n ≥ 5, that the
equation xn + yn = 2αpz2 has at most finitely many solutions in coprime, nonzero
integers x, y and z, and positive integer α).

5. Concluding remarks

In case p ∈ {2, 3, 5}, equation (2) is solved completely in [1], for n ≥ 4. The
equation

xn + yn = 7z2
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with x, y and z coprime nonzero integers, z even, may, as in e.g [11], be treated for
fixed values of n.
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