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In this paper we present a theory for calculating new symmetries for ordinary
differential equations. These new symmetries lead to a systematic reduction of the
order of a differential equation. Our approach depends on computing the Lie
symmetries of a differential equation related to a given differential equation by a
Bicklund transformation. Consequently we induce new symmetries of the given
differential equation which are not in general of Lie, contact, or Lie-Backlund

type.
We obtain new symmetries and corresponding new analytic results for a class of
ordinary differential equations arising from nonlinear diffusion.

1. Introduction

IN THIS paper we present an algorithm to find new symmetry groups for ordinary
differential equations (ODE). These new symmetries reduce the order of a given
ODE in cases where a direct application of Lie’s method fails. With respect to the
given independent and dependent variables of an ODE, our new symmetries are
in general not of point, contact or Lie-Bécklund type.

We define a symumetry group of a differential equation to be a group which maps
solutions to other solutions of the differential equation.

In the latter part of the nineteenth century Sophus Lie introduced the notion of
continuous groups, now known as Lie groups, in order to unify and extend
various ad hoc methods for solving ODEs. Such groups are characterized
completely by their infinitesimal generators. Lie showed that the order of an
ODE can be reduced by one, constructively, if it is invariant under a
one-parameter Lie group of point transformations acting on the space of its
independent and dependent variables (cf. (Cohen, 1911; Dickson, 1924; Bluman
& Cole, 1974; Olver, 1986)). Moreover Lie gave an algorithm to determine the
infinitesimal generators admitted by a given ODE. If no such generator exists,
Lie’s method is not applicable. Lie extended his work to groups of contact
transformations which are point groups acting on the space of the independent
and dependent variables and the derivative of the dependent variable of a given
ODE. (Such transformations are rare.)

Lie’s work has been extended to include Lie-Bicklund symmetries for which
the infinitesimals are allowed to depend on derivatives of the dependent variable
up to any finite order (cf. (Anderson & Ibragimov, 1979). We are unaware of
examples of such symmetries for nonlinear ODES).

For an ODE with independent variable x and dependent variable u we show
how to obtain new symmetries by computing the Lie group of point transforma-
tions admitted by a related ODE with the same independent variable x and
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different dependent variable ¢. Although the connection between the given ODE
and its related ODE is not one-to-one, any solution of the related ODE maps
into a solution of the given ODE. (Often the connection is such that the general
solution of the related ODE maps into the general solution of the given ODE.)
Hence a Lie symmetry group of the related ODE induces a symmetry group of
the given ODE. We shall show, theoretically and by example, that such a
symmetry group can be a new symmetry group of the given ODE.

We find the related ODE by expressing the given ODE in a conserved form
through the introduction of an auxiliary variable ¢. This new vanable ¢ is
associated with the original variables (x, u) by a Biacklund transformation.

Bluman & Kumei (1987) found classes of new symmetries for the wave
equation. Bluman, Kumei, & Reid (1987) give a general procedure for finding
new symmetries for partial differential equations (PDE). New symmetries for
PDEs are discovered by a different procedure than that presented here for
ODEs.

Sayegh & Jones (1986) give a theoretical framework which in principle can lead
to new symmetries for ODEs. They provide no examples of new symmetries. In
their approach a new symmetry is a solution of an underdetermined system of
PDEs. In our approach a new symmetry is a solution of an overdetermined
system of PDEs. It appears that our new symmetries do not correspond to
solutions of the underdetermined system of Sayegh & Jones.

In Section 2 we present our method for finding new symmetries for ODEs.
Non-trivial examples, originating from the nonlinear diffusion equation, yield new
symmetries which are discussed in Section 3. In Section 4 we develop features of
the calculus to prepare ODEs in a form suitable for applying our method.

2. Method for finding new symmetries

Consider a second-order ODE
du d%u
F(, ,—,——)=O, 2.1
5w ot 2.1)
with independent variable x and dependent variable u. We assume that there
exists a Biacklund transformation, defining an auxiliary variable ¢,

dqb)
= — 2.2
u=1(x 0.52). 22
such that (2.1) can be expressed in the form
d du d¢>)
el — 6. X)= 2.3
= Glru D0, 3) =0 2.3)

for some function G; the function f must depend explicitly on d¢/dx. Our
second-order ODE, related to (2.1), is

de¢y d d¢ d¢y
G(x) f(x’ ¢: a); af(x, ¢r -d:)! ¢) E) =0. (24)
If ¢(x) solves ODE (2.4) then u, given by (2.2), solves ODE (2.1).
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Next we assume that (2.4) admits a one-parameter (e¢) Lie group of point
transformations

X*=X(x, ¢; €) =x + eE(x, ¢) + O(?), } (2.5)

¢* = P(x, p; €)= ¢ + l(x, ) + O(&?),

where § and { are the infinitesimals of the group. This group maps a solution of
ODE (2.4) into another solution of (2.4) and hence maps a solution of ODE (2.1)
into another solution of (2.1). Thus the group (2.5) induces a symmetry group of
ODE (2.1). This symmetry group is a new symmetry group of (2.1) if & depends
explicitly on ¢. Such a new symmetry is not a point, contact or Lie-Backlund
symmetry of ODE (2.1) since ¢, as defined by (2.2), cannot be expressed in
terms of x, u and derivatives of u to some finite order.
A generalization of this procedure to higher-order ODEs is straightforward.

3. Examples of new symmetries
Consider the nonlinear diffusion equation

d

ay(l'f(v)a ) =0, (3.1)
where K(v) is a concentration-dependent conductivity. Such equations arise in
plasma and solid-state physics (Berryman & Holland, 1978; Baeri, Campisano,
Foti, & Rimini, 1979) and polymer science (Fujita, 1952a,b, 1954). For (3.1) an
important class of solutions arises from its invariance under scalings y* = ay,
t* = a’t, namely

v =u(x), x=yt7} (3.2)
where u(x) satisfies the ODE
d du du
22 (K(u)a) +x0=0. (3.3)

Boundary-value problems leading to (3.2), (3.3) are considered in detail in
Fujita’s papers. For applications it is important to be able to reduce the order of
ODE (3.3). After a lengthy calculation one can show that ODE (3.3) admits a
one-parameter Lie group of point transformations

x*=X(x, u; €)=x + €E(x, u) + O(&%),
u*=U(x,u;e)=u+en(x, u)+ 0(32),} (3-4)
if and only if
Ku)=Au+x)", (3.5)
where {4, k, v} are arbitrary constants, or the limiting case
K(u)=Ae™. (3.6)

Correspondingly one can reduce the order of ODE (3.3) by Lie’s standard
procedure if K(u) is given by (3.5) or (3.6). Moreover these are the only forms of
K(u) for which the order of ODE (3.3) can be reduced by Lie’s method.
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We can apply the procedure introduced in Section 2 to ODE (3.3) by setting

d d
u=1(x 9, 2)=22. (3.7)
Consequently
du_dp do_
"a_dx[xdx ¢] (3-8)
and hence ODE (3.3) becomes
d du (. 49 _
o [2K(u) ax + (x ¢)] (3.9)
Thus our related ODE is
d¢\ d’¢ d¢
2K(dx) dch+ a—cp ={. (3.10)

Let ¢’ = d¢/dx. Then ODE (3.10) admits a one-parameter Lie group of the form
(2.5) if and only if there exists a non-trivial solution {&(x, ¢), {(x, ¢)} of the
determining equation

L_K@)[ 3¢, (,%_ 3 %),
ox

K@) d¢’ 3¢ %o Tox

+ (x5 -5, 052 )@ P x e (o]
ek 2+ (0orag 50 + (32 0g) @)

~Z o]+ (Rt Z-2 T

(EJ' a_f“3¢a§)¢ +tx— (¢)’] 0. (3.11)

One can show that such a non-trivial solution exists if

K(u)= (3.12)

au2+bu+cexP[ au’* + bu +c

where {a, b, ¢, A} are arbitrary constants.
In (3.12) we set =0, a=1, c = x 1. Then for the bounded conductivity

K(u)= uZ:- 7 €XP [A arctan u], (3.13)

ODE (3.3) has a new symmetry group with infinitesimals
Ex, p)=tx—¢, C(x,¢)=1Ap+x (3.14)
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For the unbounded conductivity

1 fu-1\¥
K(u)=u2—1(u+1) ’ 3.15)

ODE (3.3) has a new symmetry group with infinitesimals
g(x! ¢) = iA'x - ¢, C(x, d’) = %A(ﬁ - X. (316)
For the rest of this section we only consider the bounded conductivity (3.13).
If K(u) is given by (3.13) then the corresponding ODE (3.10) is invariant under
the group
R* =R, 0*=0+e¢, (3.17)
for the canonical coordinates
R=(x*+ ¢*)texp[—4Aarctan (¢/x)], @ =arctan(¢/x). (3.18)

(In terms of the canonical coordinates (R, 6) : x = e}**R cos 8, ¢ = e!*®R sin 8.)
Consequently ODE (3.10), expressed in terms of the canonical coordinates
(3.18), reduces to a first order ODE with respect to independent variable R and
dependent variable W = d68/dR:

' dw 2
2e““’*”[R — +2W + ARW?* + (1 + i\'—) R2W3]
dR 4
2

+R2W[1 + ARW + (1+}'

" )szz] =0, (3.19)

where

- (- (14 2))
Y 2 rRw! 1)
If =0 in (3.13), that is,
1
K(u) =i (3.21)
the canonical coordinates corresponding to (3.14):
r=(x*+¢%},  6=arctan (¢/x), (3.22)
lead to expressing ODE (3.10) in the form
d’e (4 do dey?
2P+(;+Y)E;+(2r+rj)(a}-) =0. (323)

The substitution P =d6@/dr reduces ODE (3.23) to a Bernoulli equation with
general solutton
A

P A = e — A

(3.24)
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where A is an arbitrary constant. Then the general solution of ODE (3.10) is
. (12+¢T)§
p=0( 4, B)=(+¢sin| [ Po.AYap+B|,  (29)

where A and B are arbitrary constants. The general solution of the corresponding
ODE (3.3) is

u=u(x, A, B)=tan [IFP(p, A)dp + B + arctan [rP(r, A)]], (3.26)
where
r cos UrP(p, A)dp +B] =x. (3.27)

For a given problem the constants A and B are determined from boundary data.
Fujita (1954) obtained solution (3.26) of ODE (3.3) with K(u) given by (3.21).
He found this solution after making a number of ingenious substitutions and
transformations.
Our reduction of ODE (3.3), for K(u) given by (3.13) with A # 0, appears to be
a new result.

4, Features of the calculus to find a related ODE

Our method depends on finding a Bécklund transformation (2.2) such that
ODE (2.1) can be expressed in the form (2.3). We indicate a class of ODEs for
which this is possible. Say that

du d%u
F(x’ “’afaszi)=0
can be written in the form

[l @ oG reus0 @ @

Then for ODE (4.1) the Bécklund transformation

1 d¢
= — 4.2
leads to the related second-order ODE
d¢ d*¢ b d¢
B(x, 2,8} + =26 =0 43
X dx de b’ — c dx ¢ 0 ( )
In (4.2), (4.3) a prime denotes differentiation with respect to x;
d¢ d’¢ du
B(’_’—)= (l 1_)- 4.4
X A Alx, u p (4.49)
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The example of Section 3 is of the form (4.1) with

du du
A(x, u, —) = 2K(u)a;,

dx (4.5)
b(x)=1x, c(x)=0,
yielding the Bécklund transformation u = d¢/dx.
The van der Pol equation
d*u du
E+(u2—1)a+u=0 (46)
is also of the form (4.1) with
du du 1
A(x, u, —-)= ——+u-—zu’,
de/dr 3 4.7)
b(x)=0, c(x)=-1.
Here the Bécklund transformation
u=d¢/dx (4.8)
leads to the related ODE
d’¢ d¢ 1 (d¢)3
— X4 = 4.
& axt3la) =0 (4.9)

which is the Rayleigh equation. The transformation (4.8) is the well-known
mapping of any solution of the Rayleigh equation to a solution of the van der Pol
equation (Kevorkian & Cole, 1981).

5. Discussion

In this paper we have presented a theory for obtaining new symmetries for
ordinary differential equations. Such new symmetries lead to a reduction in order
of a given differential equation. We have shown how to prepare an ordinary
differential equation in order to discover these new symmetries. For a prepared
differential equation we have given an explicit algorithm to compute new
symmetries.

Our work should prove fruitful in extending symmetry methods to wider classes
of ordinary differential equations than those amenable to Lie’s classical approach.
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