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For any partial differential equation �PDE� system, a local conservation law yields
potential equations in terms of some potential variable, which normally is a non-
local variable. The current paper examines situations when such a potential variable
is a local variable, i.e., is a function of the independent and dependent variables of
a given PDE system, and their derivatives. In the case of two independent variables,
a simple necessary and sufficient condition is presented for the locality of such a
potential variable, and this is illustrated by several examples. As a particular ex-
ample, two-dimensional reductions of equilibrium equations for fluid and plasma
dynamics are considered. It is shown that such reductions with respect to helical,
axial, and translational symmetries have conservation laws which yield local po-
tential variables. This leads to showing that the well-known Johnson–Frieman–
Kruskal–Oberman �JFKO� and Bragg–Hawthorne �Grad–Shafranov� equations are
locally related to the corresponding helically and axially symmetric PDE systems
of fluid/plasma dynamics. For the axially symmetric case, local symmetry classifi-
cations and arising invariant solutions are compared for the original PDE system
and the Bragg–Hawthorne �potential� equation. The potential equation is shown to
have additional symmetries, denoted as restricted symmetries. Restricted symme-
tries leave invariant a family of solutions of a given PDE system but not the whole
solution manifold, and hence are not symmetries of the given PDE system. Corre-
sponding reductions are shown to yield solutions, which are not obtained as invari-
ant solutions from local symmetry reduction. © 2010 American Institute of
Physics. �doi:10.1063/1.3432619�

I. INTRODUCTION

Potentials and potential theory are widely used as tools for formulating and solving problems
in mechanics, field theory, electromagnetism, fluid dynamics, etc. The introduction of auxiliary
potential variables often allows one to recast a given partial differential equation �PDE� system in
a form more suitable for a particular method of analysis. Potential variables and corresponding
potential equations follow from local conservation laws of a PDE system. A potential PDE system
includes a given PDE system and potential equations arising from local conservation laws.

One of the most important properties of potential variables is their nonlocality, i.e., potentials
are given by nonlocal �e.g., integral� expressions in terms of the variables of a given PDE system.
In general, PDE systems nonlocally related to a given one arise not only as potential systems but
also as nonlocally related subsystems. A systematic procedure for construction of nonlocally
related PDE systems is described in Refs. 1–3.

An important application of nonlocally related PDE systems was discovered in Refs. 4 and 5,
where it was shown that potential systems can have point symmetries, which correspond to
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nonlocal symmetries of a given PDE system. Moreover, potential systems can lead to the system-
atic determination of �nonlocal� conservation laws that are not equivalent to local conservation
laws of a given PDE system.6

In the vast subsequent literature, such nonlocal symmetries and nonlocal conservation laws
have been found for many PDE systems arising in applications. For example, nonlocal symmetries
were found for the nonlinear heat and wave equations,4,7,8 the equations of planar gas
dynamics,2,9,10 the equations of nonlinear elasticity,11 Maxwell’s equations,12 and many other PDE
systems. Nonlocal symmetries have been successfully used for the construction of exact invariant
solutions of nonlinear PDE systems, which do not arise as invariant solutions with respect to local
symmetries �e.g., see Refs. 2, 4, and 11�. Infinite-dimensional groups of nonlocal symmetries and
infinite sets of nonlocal conservation laws can be used to derive a mapping of a nonlinear PDE
system into an equivalent linear PDE system by a noninvertible transformation.13,14

Since a given PDE system and PDE systems nonlocally related to it have the same solution
sets, it follows that any general method of analysis that fails to work for a given PDE system,
especially a method that is not coordinate dependent, could turn out to be successful when applied
to a nonlocally related system. In particular, many examples of PDE systems are known that have
useful nonlocal conservation laws, noninvertible linearizations, or additional physical exact solu-
tions, which are found through considerations of nonlocally related PDE systems. Many examples
can be found in Ref. 1 and references therein.

Normally, one would expect a potential system to be able to lead to the above-described new
results for a given PDE system only when its potential variables are functionally independent of
the local variables of the given PDE system. This paper addresses two questions: �i� determining
the conditions under which a potential variable is functionally dependent on local variables and �ii�
determining restricted symmetries arising from such “local” potential variables that are not local
symmetries of the given PDE system. For a given PDE system, topologically, such restricted
symmetries leave invariant a family of its solutions but do not leave invariant the whole solution
manifold.

We only consider PDE systems with two independent variables. The paper is organized as
follows.

In Sec. II, we present a simple necessary and sufficient condition for a potential variable to be
a local variable and give basic examples.

In Sec. III, we consider the main physical example: the time-independent PDE system of
incompressible Euler equations of fluid dynamics in three space dimensions �or, equivalently,
magnetohydrodynamics �MHD� equations describing static equilibria of ideal plasmas� and its
two-dimensional helically, axially, and translationally symmetric versions. These PDE systems are
widely used in applications. In particular, helical fluid flows are known to form under various
conditions �e.g., Ref. 15�. Helically symmetric dynamic and equilibrium plasma configurations are
important in plasma confinement, in particular, in tokamak theory, as well as in astrophysical
modeling �e.g., Refs. 16–18�. Axially symmetric MHD equilibrium equations have been used to
derive families of exact plasma equilibria.19–21

Using a conservation law �incompressibility condition� for each of the three two-dimensional
reductions of Euler equations, a potential variable �the flux function� is introduced. Then in each
of the reductions, the corresponding Euler system can be written as a single equation for the flux
function, yielding the fundamental equations of fluid and plasma theory: the Johnson–Frieman–
Kruskal–Oberman �JFKO� equation22 �helical symmetry�, the Bragg–Hawthorne �Grad–
Shafranov� equation23–26 �axial symmetry�, and the corresponding PDE for the translational sym-
metry. Bragg–Hawthorne and JFKO equations are widely used in fluid and plasma modeling.

In each symmetry reduction, the potential variable �flux function� is functionally dependent on
local variables of the problem and, in particular, this specific dependence plays the role of a
constitutive function.

In Sec. IV, we compare the Lie point symmetries of the axially symmetric MHD equilibrium
equations and the Bragg–Hawthorne equation for the potential variable. Interestingly, even though
the two PDE systems have a local relationship, their point symmetry classifications are rather
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different. We study the seemingly paradoxical relationship between these point symmetry classi-
fications. In particular, we show that the Bragg–Hawthorne equation has point symmetries �in-
cluding an infinite number of point symmetries for the linear case�, which are restricted symme-
tries of the original axially symmetric system of Euler equations since they turn out to only hold
for a particular class of solutions.

Finally, in Sec. V, we compare invariant solutions of the axially symmetric MHD equilibrium
equations with classes of solutions invariant with respect to restricted symmetries of the Bragg–
Hawthorne equation. We show that in several cases, the consideration of restricted symmetries of
the Bragg–Hawthorne equation yields additional solutions, which are not invariant with respect to
any point symmetries of the axially symmetric Euler equations. This example illustrates that
considering a potential formulation for symmetry analysis can lead to obtaining new solutions,
even in the case when potential variables are local variables.

The symbolic software package GEM for MAPLE �Ref. 27� was used for all symmetry compu-
tations.

II. CONDITIONS FOR THE LOCALITY OF A POTENTIAL VARIABLE

A. Conservation laws and potential systems

Consider a PDE system R�x , t ;u� of order k, with m dependent variables u= �u1 , . . . ,um� and
two independent variables �x , t�,

R��u� = R��x,t,u,�u, . . . ,�ku� = 0, � = 1, . . . ,N . �2.1�

Here, �u denotes first-order partial derivatives and �pu denotes pth order partial derivatives ap-
pearing in �2.1�, 1� p�k.

A local conservation law of the PDE system �2.1� is given by

Dt��u� + Dx��u� = 0 �2.2�

for some density ��u�=��x , t ,u ,�u , . . . ,�ru� and flux ��u�=��x , t ,u ,�u , . . . ,�ru�, r�0. In Eq.
�2.2�, the total derivative operators are given by

Dt =
�

�t
+ ut

�

�u
+ uxt

�

�ux
+ utt

�

�ut
+ . . . ,

Dx =
�

�x
+ ux

�

�u
+ uxx

�

�ux
+ uxt

�

�ut
+ . . . .

For any given PDE system �2.1�, local conservation laws �2.2� can be systematically sought using
the direct method28,29 involving multipliers.

Each conservation law �2.2� yields a pair of potential equations

P: �vx = ��u�
vt = − ��u� 	 �2.3�

for some auxiliary potential variable �potential� v=v�x , t�. A potential system S�x , t ;u ,v� is given
by the union of the given system �2.1� and the potential equation �2.3�,

S�x,t;u,v�: 
R��u� = R��x,t,u,�u, . . . ,�ku� = 0, � = 1, . . . ,N

vx = ��u�
vt = − ��u� .

� �2.4�

�Redundant equations can be excluded from �2.4� or kept.�
The potential system S�x , t ;u ,v� �2.4� has essentially the same solution set as that of the given

PDE system R�x , t ;u� �2.1�. In particular, if u=��x , t� is a solution of �2.1�, then due to the
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satisfaction of the integrability condition vxt=vtx, it follows that there is a corresponding solution
v=��x , t� of the potential system �2.4� unique to within an arbitrary constant, i.e., if �u ,v�
= ���x , t� ,��x , t�� is a solution of the potential system �2.4�, then so is �u ,v�= ���x , t� ,��x , t�
+C� for any constant C. Conversely, if �u ,v�= ���x , t� ,��x , t�� solves the potential system �2.4�,
then by projection, u=��x , t� solves the given PDE system �2.1�. Consequently, through this
relationship between their solution sets, the potential system S�x , t ;u ,v� �2.4� is nonlocally
equivalent to the given PDE system R�x , t ;u� �2.1�, and the mapping that relates systems �2.1� and
�2.4� is noninvertible.

B. The condition for locality of a potential variable

For the case of two independent variables, it is straightforward to establish a necessary and
sufficient condition for a potential to be a local variable. Indeed, the following lemma holds.

Lemma 1: Suppose a PDE system R�x , t ;u� (2.1) has a local conservation law (2.2). The
corresponding potential variable v�x , t� defined by the potential equation (2.3) is a local variable
[i.e., for the general solution of (2.4), v�x , t� is a function of at most x , t ,u�x , t� and partial
derivatives of u�x , t�] if and only if there exists a function g�u�=g�x , t ,u ,�u , . . . ,�lu�, l�0, such
that the equation

��u�Dtg�u� + ��u�Dxg�u� = 0 �2.5�

holds on solutions u�x , t� of the PDE system (2.1).
Proof: It is well known that if, for two smooth functions f�x , t� and h�x , t� defined on an open

neighborhood of some point �x0 , t0�, the Poisson bracket

�f�x,t�,h�x,t���x,t� � fxht − f thx = 0,

and 
grad h�x , t�
�0, then f�x , t� and h�x , t� are functionally dependent, in particular, there exists
a function F�s� such that f�x , t�=F�h�x , t��.

On solutions u�x , t� of the given PDE system R�x , t ;u� �2.1�, the potential variable v�x , t� is
functionally dependent on the variables of R�x , t ;u� if and only if there is some function g�u�
=g�x , t ,u ,�u , . . . ,�lu�, l�0, such that

�v�x,t�,g�u���x,t� = vxDtg�u� − vtDxg�u� = 0. �2.6�

Substituting the potential equation �2.3� into �2.6�, one obtains the statement of the lemma. �

The simplest example is given by the linear advection equation

ut + ux = 0. �2.7�

The solution of �2.7� is obviously given by u�x , t�=G�x− t�, where G is an arbitrary smooth
function. Equation �2.7� is a conservation law as it stands. The corresponding potential equation
�2.3� is given by

vx = u ,

vt = − u . �2.8�

Using, for example, g�u�=u in �2.5�, one obtains

uDtu + uDxu = u�ut + ux� = 0

on all solutions of �2.7�. Hence, the potential v is functionally dependent on u. Another way to see
this dependence is to observe that from �2.8�, vt+vx=0; hence, v�x , t�=H�x− t�, and therefore v is
functionally dependent on u�x , t�=G�x− t�.

As a second example, consider the PDE system UW�x , t ;u ,w� given by
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ut = wxx,

wt = − u−1�u − w�xwx + wxx. �2.9�

The first equation of �2.9� is a conservation law as it stands. Hence, one can introduce a potential
variable v, defined by the potential equations

vx = u ,

vt = wx. �2.10�

Let g�u ,w�=u−w. Then �2.5� becomes

vx�ut − wt� − vt�ux − wx� = u�u−1�u − w�xwx� − wx�ux − wx� = 0

on solutions of �2.10�. It follows that the potential variable v is functionally dependent on the
linear combination u−w, and hence is a local variable of the PDE system �2.9�.

III. LOCAL POTENTIALS IN TWO-DIMENSIONAL REDUCTIONS OF FLUID AND
PLASMA EQUILIBRIUM EQUATIONS

A. Equations of fluid and plasma equilibria in three dimensions

The well-known Euler system of fluid dynamics equations in three dimensions, describing
inviscid incompressible flows, is given by

div V = 0, Vt + �V · grad�V = −
1

	
grad p . �3.1�

Here, V=V1ex+V2ey +V3ez is the fluid velocity vector, p is the fluid pressure, and 	=const is the
fluid density. �Throughout this paper, we use upper index notation for components of vector
fields.�

The equilibrium version of the Euler equation �3.1� is given by the PDE system

div V = 0, V 
 �curl V� = grad� p

	
+

1

2

V
2� . �3.2�

The nonlinear PDE system �3.2� includes four equations for four independent variables.
Interestingly, the same PDE system arises in a completely different application. In the ideal

MHD framework, the PDE system describing static plasma equilibrium configurations is given by
the system BP�x ,y ,z ;B1 ,B2 ,B3 , P�,

div B = 0, �curl B� 
 B = grad P , �3.3�

where B=B1ex+B2ey +B3ez is the magnetic field vector and P is the plasma pressure. Through the
association V=B and p /	+ 
V
2 /2= P0− P, P0=const, one observes that systems �3.2� and �3.3�
coincide. From now on, we consider only the MHD equilibrium system BP�x ,y ,z ;B1 ,B2 ,B3 , P�
�3.3�.

Since B·grad P=0, the magnetic field lines lie on magnetic surfaces, which are the level
surfaces P�x ,y ,z�=const. For bounded plasma configurations without edges, if either B or curl B
nowhere vanishes in the plasma domain, it follows that such magnetic surfaces are nested tori.30

The PDE system �3.3� is obviously invariant under spatial translations and rotations. In par-
ticular, in terms of Lie point symmetries, the system BP�x ,y ,z ;B1 ,B2 ,B3 , P� �3.3� has the trans-
lation symmetry in the z-direction with infinitesimal generator
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XT =
�

�z
, �3.4�

and the axial symmetry with infinitesimal generator

XR = x
�

�y
− y

�

�x
=

�

��
�3.5�

�� is the polar angle�. In general, the PDE system �3.3� has the helical symmetry corresponding to
any linear combination of the infinitesimal generators XT and XR given by

XH = a
�

��
− b

�

�z
, �3.6�

where the case ab�0 corresponds to a genuine helical symmetry, and the special cases a
=0, b�0 and a�0, b=0 to translation and axial symmetries �3.4� and �3.6�, respectively.

B. The three two-dimensional reductions

We now consider the two-dimensional reductions of the MHD equilibrium system
BP�x ,y ,z ;B1 ,B2 ,B3 , P� �3.3� with respect to the point symmetries �3.4�–�3.6�. Here, it is natural
to rewrite the PDE system �3.3� in terms of cylindrical coordinates �r ,� ,z�,

B = B1�r,�,z�er + B2�r,�,z�e� + B3�r,�,z�ez, P = P�r,�,z� . �3.7�

It will be seen that reductions with respect to the three symmetries �3.4�–�3.6� will have similar
forms. Hence, we proceed with the reduction with respect to the general symmetry �3.6�, a2+b2

�0.

1. The general helically symmetric reduction

Choosing canonical coordinates for the helical symmetry �3.6�, note that one can choose the
polar radius r and the quantity u=az+b� as the two invariants. As the third canonical coordinate,
we choose v=a�−bz /r2, which runs along each helix. The corresponding invariant physical
variables in the coordinates �r ,u ,v� take the form

B = B1�r,u�er + Bu�r,u�eu + Bv�r,u�ev, P = P�r,u� ,

where

Bu�r,u� =
b

r
B2�r,�,z� + aB3�r,�,z� and Bv�r,u� = aB2�r,�,z� −

b

r
B3�r,�,z� .

In this notation, system �3.3� can be written as the PDE system H�r ,u ;B1 ,Bu ,Bv , P� given by

�rB1�r + �rBu�u = 0, �3.8a�

Bu�B1�u − 1
2r2M�r���Bu�2 + �Bv�2�r − rM2�r��b2��Bu�2 + �Bv�2� + �bBu + arBv�2� = Pr,

�3.8b�

B1�rBv�r + Bu�rBv�u = 0, �3.8c�

− B1�B1�u + r2M�r��B1�Bu�r − Bv�Bv�u� + 2brM2�r�B1�bBu + arBv� = Pu, �3.8d�

where
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M�r� = �a2r2 + b2�−1.

Equation �3.8a� is a conservation law as it stands with fluxes

�r = rB1, �u = rBu, �3.9�

and hence leads to potential variable 
�r ,u� satisfying the potential equations


u = rB1,


r = − rBu. �3.10�

The corresponding potential system H��r ,u ;B1 ,Bu ,Bv , P ,
� is given by


u = rB1, �3.11a�


r = − rBu, �3.11b�

Bu�B1�u − 1
2r2M�r���Bu�2 + �Bv�2�r − rM2�r��b2��Bu�2 + �Bv�2� + �bBu + arBv�2� = Pr,

�3.11c�

B1�rBv�r + Bu�rBv�u = 0, �3.11d�

− B1�B1�u + r2M�r��B1�Bu�r − Bv�Bv�u� + 2brM2�r�B1�bBu + arBv� = Pu. �3.11e�

Multiplying Eq. �3.11c� by r, one obtains

�r�rBv�r + �u�rBv�u = 0,

where �r and �u are given by �3.9�. From Lemma 1 with g=rBv, it follows that the potential
variable 
�r ,z� is a local variable, in particular,


 = F�rBv� or Bv =
I�
�

r
,

for any functions F and I of their respective arguments. Consequently, the potential system
H��r ,u ;B1 ,Bu ,Bv , P ,
� �3.11� is locally related to the helically symmetric MHD equilibrium
system H�r ,u ;B1 ,Bu ,Bv , P� �3.8�. Moreover, using Eqs. �3.8b� and �3.8d�, one finds that the
Poisson bracket

�
,P��r,u� = − �b2 + a2r2�I�
��
,I�
���r,u� = 0,

and hence the pressure P= P�
�. Subsequently, from �3.8b� and �3.8d�, one finds that both the
helically symmetric PDE system �3.8� and its potential system �3.11� are locally equivalent to the
scalar equation �the JFKO equation22�

r2M�r�
rr − rM2�r��a2r2 − b2�
r + 
uu + r2M�r�I�
�I��
� − 2abr2M2�r�I�
� = − r2P��
�

�3.12�

for the unknown function 
�r ,u�, where I�
� and P�
� can be treated as arbitrary smooth func-
tions �constitutive functions�. The corresponding physical variables are given by

B =

z

r
er + M�r��arI�
� − b
r�e� − M�r��ar
r + bI�
��ez, P = P�
� .

Here, it is essential to note that the solutions of �3.12� for a particular choice of I�
� and P�
�
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correspond to a subclass of solutions of the PDE system �3.8� or its potential system �3.11�.
Physically, since P= P�
�, the level surfaces 
�r ,u�=const define magnetic surfaces of the

helically symmetric plasma configuration.
We now single out two important cases included in the above derivation that are often used

independently in applications.

2. The axially symmetric reduction

To consider the rotationally invariant version of the MHD equilibrium PDE system �3.3�, one
sets a=1, b=0, u=z, and v=� in the above derivation. Then the physical variables take on the
form

B = B1�r,z�er + B2�r,z�e� + B3�r,z�ez, P = P�r,z� . �3.13�

The corresponding rotationally invariant PDE system of MHD equilibrium equations
A�r ,z ;B1 ,B2 ,B3 , P� obtained from �3.8� is given by the four equations

�rB1�r + �rB3�z = 0, �3.14a�

rB3��B1�z − �B3�r� − B2�rB2�r = rPr, �3.14b�

B1�rB2�r + B3�rB2�z = 0, �3.14c�

− B2�B2�z + B1��B3�r − �B1�z� = Pz. �3.14d�

The corresponding locally related potential system A��r ,z ;B1 ,B2 ,B3 , P ,
� is given by


z = rB1,


r = − rB3,

rB3��B1�z − �B3�r� − B2�rB2�r = rPr,

B1�rB2�r + B3�rB2�z = 0,

− B2�B2�z + B1��B3�r − �B1�z� = Pz, �3.15�

where 
=F�rB2� or B2= I�
� /r, and P= P�
�. Thus, both the PDE system �3.14� and the potential
system �3.15� are locally equivalent to the well-known scalar Bragg–Hawthorne �Grad–Shafranov�
equation ��r ,z ;
�,23–26


rr −
1

r

r + 
zz + I�
�I��
� = − r2P��
� , �3.16�

where I�
� and P�
� are arbitrary constitutive functions. �It is interesting to note that the Bragg–
Hawthorne equation has been rediscovered many times. After its original derivation in the context
of fluid dynamics in 1950,23 it was found by Lüst and Schlüter in plasma physics in 1957,24 and
then independently in 1958 by Grad and Rubin25 and Shafranov.26 In plasma physics, the common
name of the equation is the Grad–Shafranov equation, and in fluid dynamics, it is commonly
referred to as the Bragg–Hawthorne equation.� The magnetic field and pressure are given by

B =

z

r
er +

I�
�
r

e� −

r

r
ez, P = P�
� . �3.17�
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3. The translationally symmetric reduction

The version of the MHD equilibrium PDE system �3.3� invariant with respect to translations
�3.4� is obtained by setting a=0, b=1 in Sec. III B 1. However, it is more convenient to use the
Cartesian representation B=Bx�x ,y�ex+By�x ,y�ey +Bz�x ,y�ez, P= P�x ,y�. It follows that these
quantities satisfy the PDE system T�x ,y ;Bx ,By ,Bz , P� given by

�Bx�x + �By�y = 0, �3.18a�

− B3�Bz�x − B2��By�x − �Bx�y� = Px, �3.18b�

− B3�Bz�y − B1��Bx�y − �By�x� = Py , �3.18c�

B2�Bz�y − B1�Bz�x = 0. �3.18d�

One uses the conservation law �3.18a� to introduce a potential variable ��x ,y� satisfying

�x = By ,

�y = − Bx �3.19�

From Eq. �3.18d� and Lemma 1 with g=Bz, it follows that the potential variable � is a local
variable,

� = F�Bz� or Bz = I��� ,

and moreover, P= P���. Hence, it is easy to show that the PDE system �3.18� reduces to the scalar
equation

�xx + �yy = Q��� ª − I���I���� − P���� , �3.20�

which is locally equivalent to the PDE system T�x ,y ;Bx ,By ,Bz , P� �3.18� for arbitrary Q���.

IV. COMPARISON OF POINT SYMMETRIES OF LOCALLY RELATED PDE SYSTEMS
„3.14…–„3.16…

In spite of equivalence and the local relations connecting the axially symmetric MHD equi-
librium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�, the potential system A��r ,z ;B1 ,B2 ,B3 , P ,
� �3.15�,
and the Bragg–Hawthorne equation ��r ,z ;
� �3.16�, the forms of these nonlinear equations are
rather different. In particular, the scalar Bragg–Hawthorne equation �3.16� has two arbitrary con-
stitutive functions I�
� and P�
�, whereas systems �3.14� and �3.15� have none. A comparison is
now made of the Lie point symmetry structures of the PDE systems A�r ,z ;B1 ,B2 ,B3 , P� �3.14�,
A��r ,z ;B1 ,B2 ,B3 , P ,
� �3.15�, and ��r ,z ;
� �3.16�.

In this section, we focus on symmetry comparisons for the axially invariant reduction of the
MHD equilibrium system �3.3�; the helically and translationally symmetric cases are conceptually
the same, and symmetry analysis proceeds in a similar manner.

The point symmetry analysis of the PDE systems �3.14� and �3.15� yields the following
results.

A. Point symmetries of the potential system A�ˆr ,z ;B1 ,B2 ,B3 ,P ,�‰ „3.15…

The potential system A��r ,z ;B1 ,B2 ,B3 , P ,
� �3.15� has six point symmetries �three trans-
lations and three scalings�,

X1 =
�

�z
, X2 =

�

�P
, X3 =

1

r2B2

�

�B2 , X4 = r
�

�r
+ z

�

�z
+ 2


�

�

,
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X5 = B1 �

�B1 + B2 �

�B2 + B3 �

�B3 + 2P
�

�P
+ 


�

�

, X6 =

�

�

. �4.1�

B. Point symmetries of the MHD equilibrium system Aˆr ,z ;B1 ,B2 ,B3 ,P‰ „3.14…

The axially symmetric MHD equilibrium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� has five point
symmetries given by the projections of X1, . . . ,X5 on the space of variables r ,z ,B1 ,B2 ,B3 , P,

Y1 =
�

�z
, Y2 =

�

�P
, Y3 =

1

r2B2

�

�B2 , Y4 = r
�

�r
+ z

�

�z
,

Y5 = B1 �

�B1 + B2 �

�B2 + B3 �

�B3 + 2P
�

�P
. �4.2�

C. Point symmetries of the scalar Bragg–Hawthorne equation �ˆr ,z ;�‰ „3.16…

In classifying the point symmetries of the Bragg–Hawthorne equation �3.16�, first note that its
equivalence transformations are given by

r̃ = c4c5
−1r, z̃ = c4c5

−1z + c1,


̃ = c4
4c5

−2
 − 1
8c2r4 − 1

4c3r2�2 log r − 1� ,

P̃��
̃� = c5
2P��
� + c2, Ĩ�
̃�I�̃�
̃� = c4

2I�
�I��
� + c3, �4.3�

the pressure translation,

P̃�
� = P�
� + c6, �4.4�

as well as the well-known transformation,

Ĩ�
� = � �I2�
� + c7, �4.5�

where c1 , . . . ,c7 are arbitrary constants, c4c5�0.
Modulo the equivalence transformations �4.3�–�4.5�, the point symmetry classification of

�3.16� is presented in Table I. �Partial results for the symmetry classification given in Table I
appeared in Refs. 31 and 32.�

1. Relations between the point symmetries

The point symmetry classifications for the PDE system �3.14� and the scalar Bragg–
Hawthorne equation �3.16� are clearly different. We now consider the symmetry relations in detail.

For any particular choice of the constitutive functions I�
� and P�
�, a solution of the PDE
�3.16� yields a solution of system �3.14�. Conversely, any solution �B1 ,B2 ,B3 , P� of the axially
symmetric PDE system �3.14� yields a solution of the Bragg–Hawthorne equation �3.16� for some

particular I�
� and P�
�; however, two different solutions �B1 ,B2 ,B3 , P� and �B̃1 , B̃2 , B̃3 , P̃� of
�3.14�, in general, yield solutions of the PDE �3.16� corresponding to different pairs of constitutive

functions �I�
� , P�
��, �Ĩ�
� , P̃�
��. In other words, the solution set of the Bragg–Hawthorne
equation �3.16� for a prescribed pair of functions �I�
� , P�
�� corresponds to a subset of the
solution set of the PDE system �3.14�.

Consequently, a symmetry of the Bragg–Hawthorne equation �3.16� leaves invariant a subset
of the solution set of the PDE system �3.14�, i.e., it leaves invariant a submanifold of the solution

073502-10 A. F. Cheviakov and G. W. Bluman J. Math. Phys. 51, 073502 �2010�

Downloaded 08 Jul 2011 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



manifold of the PDE system. In particular, it leaves invariant the subset of solutions corresponding
to a fixed choice of the constitutive functions I�
� and P�
�, and hence does not necessarily yield
a symmetry of system �3.14�.

In particular, the differences in the point symmetry classifications of the locally related sys-
tems A�r ,z ;B1 ,B2 ,B3 , P� �3.14� and ��r ,z ;
� �3.16� arise due to the following main reasons.

• The relation between quantities B2 and P is implicit in A�r ,z ;B1 ,B2 ,B3 , P� �3.14�. In the
point symmetry analysis of the PDE system �3.14�, B2 and P are treated as distinct dependent
variables. On the other hand, in equation ��r ,z ;
� �3.16�, B2=B2�
� /r. Moreover, in the
Bragg–Hawthorne equation �3.16�, both B2= I�
� /r and P= P�
� are not dependent variables
but are treated as fixed constitutive functions. Hence, the solutions sets of �3.14� and �3.16�
are not necessarily equivalent.

• The local potential variable is present in the system ��r ,z ;
� �3.16� and absent in the system
A�r ,z ;B1 ,B2 ,B3 , P� �3.14�.

Firstly, we consider how the point symmetries of the Bragg–Hawthorne equation �3.16� in
Table I correspond to the point symmetries �4.2� of the PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�.
We consider the restricted situation when B2=F�P� /r in the PDE system A�r ,z ;B1 ,B2 ,B3 , P�
�3.14�. Then system �3.14� reduces to the system of three PDEs Ã�r ,z ;B1 ,B3 , P� given by

�rB1�r + �rB3�z = 0,

r2B3��B1�z − �B3�r� − F�P�F��P�Pr = r2Pr,

TABLE I. Classification of point symmetries of the Bragg–Hawthorne equation �3.16�.

Case No. Conditions on I�
� , P�
� Point symmetries

1 Arbitrary Z1 =
�

�z
.

2 I�
�I��
�=e
,
P��
�=e2
 Z1, Z2 = r

�

�r
+ z

�

�z
− 2

�

�

.

3 I�
�I��
�=
1+1/�,
P��
�=
1+2/�,
�=const

Z1, Z3 = r
�

�r
+ z

�

�z
− 2�


�

�

.

4 I�
�I��
�=
−3,
P��
�=
−7, Z1, Z3�� = − 1/4�, Z4 = rz

�

�r
+

1

2
�z2 − r2�

�

�z
+

1

2
z


�

�

.

5 I�
�I��
�=a1
+a2,
P��
�=a3
+a4

�a1 , . . . ,a4=const�

Z1,

Z� = g
�

�

,

g=g�r ,z� is an arbitrary solution of the PDE

grr −
1

r
gr + gzz + a1g = − a3r2g

�due to the linearity of �3.16��.

5a a2=a4=0 Z1,Z�,Z5 = 

�

�

.

5b a1=a2=a3=0 Z1,Z�,Z6 = r
�

�r
+ z

�

�z
+ 4


�

�

.

5c a1=a3=a4=0 Z1,Z� ,Z7=r
�

�r
+z

�

�z
+2
� / �
 .

5d a1=a2=a3=a4=0 Z1,Z� ,Z4 ,Z5 ,Z6.
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B1Pr + B3Pz = 0. �4.6�

Here, the fourth equation of �3.14� becomes redundant. The point symmetry classification of the

system Ã�r ,z ;B1 ,B3 , P� �4.6� with respect to its constitutive function F�P� is given in Table II.
Note that cases 1–3 in Table I arise in Table II. However, the symmetries Z4 , . . . ,Z7 and the

infinite set of symmetries Z� appearing in Table I do not correspond to point symmetries of

Ã�r ,z ;B1 ,B3 , P� �4.6�. More generally, one can show that these point symmetries do not corre-
spond to other local �i.e., higher order� symmetries of �4.6�. This means that the symmetries
Z4 , . . . ,Z7 and Z� essentially depend on the relationship connecting the local variable 
 introduced
in the Bragg–Hawthorne equation �3.16� with the dependent variables B1 and B3 in the PDE
system �3.14�.

In particular, symmetries Z4 , . . . ,Z7 and Z� are restricted symmetries of the PDE system

Ã�r ,z ;B1 ,B3 , P� �4.6�, i.e., symmetries holding only for submanifolds of solutions of �4.6�.
Moreover, all symmetries appearing in Table II, except for N1, are restricted symmetries of the

PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� since the latter system is related to the PDE system �4.6�
through the “restriction” B2=F�P� /r, with special cases of this restriction listed in Table II.
Furthermore, the symmetries Z4 and Z� appear under even more restricted conditions that cannot
be formulated in terms of a single constitutive function F�P�.

Secondly, we consider the correspondence between the point symmetries �4.2� of the PDE
system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� and the point symmetries of the Bragg–Hawthorne equation
�3.16�. Due to the correspondence P�r ,z�= P�
�, B2�r ,z�= I�
� /r, it is natural to seek analogs of
the point symmetries �4.2� through the equivalence transformations �4.3�–�4.5� of the Bragg–
Hawthorne equation �3.16�. The following relations are observed.

• The point symmetry Y1 corresponds to the equivalence transformation �4.3� with c1 arbitrary,
c4=c5=1, and c2=c3=0.

• The point symmetry Y2 corresponds to the equivalence transformation �4.4�.
• The point symmetry

Y3 =
1

r2B2

�

�B2 =
1

I

�

�I

corresponds to the equivalence transformation �4.5�.
• The point symmetry Y4 corresponds to the transformation �4.3� with c4 arbitrary, c5=1, and

c1=c2=c3=0.
• The point symmetry Y5 corresponds to the equivalence transformation with the infinitesimal

generator

TABLE II. Classification of point symmetries of the PDE system �4.6�.

Case No. Conditions on F�P� Point symmetries

1 Arbitrary N1 =
�

�z
.

2 F�P�F��P�=eP N1, N2 = r
�

�r
+ z

�

�z
+ 2

�

�P
.

3 F�P�F��P�= P� N1, N3 = ��r
�

�r
+ z

�

�z
� + 2P

�

�P
+ B1 �

�B1 + B3 �

�B3 .

4 F��P�=0 N1, N3�� = 0�, N4 =
�

�P
.

5 F�P�=0 N1, N2, N3�� = 0�, N4.
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E2 = 

�

�

+ F

�

�F
+ G

�

�G
,

where F= I�
�I��
� and G= P��
�. In particular, it corresponds to a linear combination of the
generators arising from the equivalence transformation �4.3� with arbitrary parameters c4 and
c5 together with c1=c2=c3=0.

V. RELATIONS BETWEEN INVARIANT SOLUTIONS

The PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�, its potential system A��r ,z ;B1 ,B2 ,B3 , P ,
�
�3.15�, and the Bragg–Hawthorne equation ��r ,z ;
� �3.16�, are locally equivalent, i.e., their
solution sets are the same, in the following sense.

• Every solution �B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z� ,
�r ,z�� of the potential system �3.15� di-
rectly yields a solution 
�r ,z� of �3.16�, and a solution �B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z�� of
the PDE system �3.14�, by projection.

• Every solution �B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z�� of �3.14� yields a solution 
�r ,z� of �3.16�
satisfying


z = rB1, 
r = − rB3

for some I�
�=rB2 and P�
�= P�r ,z�. Such solution 
�r ,z� is unique �modulo equivalence
transformations �4.3� with c1=c2=c3=0 , c4=c5=1�. Moreover, the quintuple
�B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z� ,
�r ,z�� is the corresponding solution of the potential sys-
tem �3.15�.

• For any prescribed pair of functions �I�
� , P�
��, each solution 
=
�r ,z� of the Bragg–
Hawthorne equation �3.16� yields a unique solution �B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z�� �3.17�
of the PDE system �3.14� and a corresponding unique solution
�B1�r ,z� ,B2�r ,z� ,B3�r ,z� , P�r ,z� ,
�r ,z�� of the potential system �3.15�.

However, as it has been shown above, since the Bragg–Hawthorne equation �3.16� has two
constitutive functions, while the PDE systems �3.14� and �3.15� have none, the symmetry classi-
fications differ. In particular, for the Bragg–Hawthorne equation �3.16�, one has a symmetry
classification with respect to specific constitutive functions �Table I�, whereas the PDE systems
�3.14� and �3.15� have similar point symmetry structures given by the generators �4.1� and �4.2�.
It is now of interest to examine relations between families of invariant solutions arising from the
different symmetry classifications.

In the Appendix, all invariant solutions arising from point symmetry reductions for the axially
symmetric plasma equilibrium PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� are computed.

We now find invariant solutions arising from point symmetry reductions for the Bragg–
Hawthorne equation ��r ,z ;
� �3.16� and isolate new classes of solutions, i.e., solutions that do
not arise as point symmetry-invariant solutions of the PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�.

A. Reductions of the nonlinear Bragg–Hawthorne equation „3.16…

In the current section, we find solutions of the PDE �3.16� arising for each specific case listed
in Table I. In particular, we obtain solutions invariant with respect to the admitted point symme-
tries in each nonlinear case listed in Table I and separable solutions in the linear case.

Case 5.1.1: [I�
� , P�
� arbitrary] Solutions of the Bragg–Hawthorne equation �3.16� invari-
ant with respect to z-translations can be constructed for any choice of the arbitrary functions I�
�,
P�
�. In particular, here 
�r ,z�=��r� satisfies the ordinary differential equation �ODE�
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���r� −
1

r
��r� + I���r��I����r�� = − r2P����r�� . �5.1�

For an arbitrary ��r�, one can find I���r�� and P���r�� such that Eq. �5.1� is satisfied. However,
as to be expected, the corresponding solutions of the plasma equilibrium PDE system
A�r ,z ;B1 ,B2 ,B3 , P� �3.14� arise from its invariance under z-translations Y1 and are given by
formula �A1b� in the Appendix.

Case 5.1.2: [I�
�I��
�=�1e
 , P��
�=�2e2
] Here, it suffices to consider solutions invariant
with respect to the symmetry Z2. �Considering solutions invariant with respect to a linear combi-
nation Z1+�Z2, ��0, only adds an obvious z-translation.� Z2-invariant solutions are given by

� = z/r, 
�r,z� = 2 log r + ���� ,

which reduces the Bragg–Hawthorne equation �3.16� to the ODE

�1 + �2������ + 3������ + 4 + �1e���� + �2e2���� = 0. �5.2�

The authors are unaware of any closed-form exact solutions of the nonlinear ODE �5.2�.
For each solution ���� of the ODE �5.2�, the corresponding solution of the axially symmetric

MHD equilibrium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� is given by �3.13� with

B1�r,z� =
1

r

�

�z
�� z

r
�, B2�r,z� =

1

r
�2�1e��z/r�+�, B3�r,z� = −

1

r

�

�r
�� z

r
� ,

P = P0 + 1
2�2e2��z/r�,

�1,�2,�,P0 = const. �5.3�

By comparison with the solutions presented in the Appendix one can observe that the solutions
�5.3� do not arise as invariant solutions with respect to any point symmetry of the MHD equilib-
rium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�.

Case 5.1.3: [I�
�I��
�=
1+1/� , P��
�=
1+2/�] In this case, one can demonstrate that the
corresponding invariant solutions are obtainable from a reduction of the MHD equilibrium system
A�r ,z ;B1 ,B2 ,B3 , P� �3.14� with respect to its symmetry Y4+�Y2+�Y3+�Y5, and the corre-
sponding exact solution is given by formula �A18� in the Appendix.

Case 5.1.4: [I�
�I��
�=
−3 , P��
�=
−7] In this particular power nonlinearity case ��=
−1 /4�, the Bragg–Hawthorne equation �3.16� has an additional symmetry Z4. Consider invariant
solutions with respect to the most general symmetry

Z = �Z1 + �Z3 + �Z4, �,�,� = const, � � 0.

Such solutions have the form

w = w�r,z� =
2�� + �z� + �z2 + r2

r
, 
�r,z� = r1/2��w� . �5.4�

With respect to the Ansatz �5.4�, the Bragg–Hawthorne equation �3.16� reduces to the nonlinear
ODE

�4�2 − 8�� + w2����w� + 2w���w� − 3
4��w� + ���w��−3 + ���w��−7 = 0. �5.5�

The ODE �5.5�, in general, does not belong to any ODE class for which exact closed-form
solutions are known. For the particular case 4�2−8��=0, ODE �5.5� is invariant under scalings in
w and, accordingly, can be reduced to the first-order ODE
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4X7�Y��X� − Y2�X�� + �3X8 − 4�X4 + 1��Y3�X� = 0,

where X=��w� and Y�X�=1 / �w���w��.
For each solution ��w� of the ODE �5.5�, the corresponding solution of the axially symmetric

MHD equilibrium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� is given by �3.13� with

B1�r,z� =
1

r

�

�z
��w�r,z��, B2�r,z� =

1

r
�� − �−2�w�r,z�� ,

B3�r,z� = −
1

r

�

�r
��w�r,z��, P = P0 −

1

6
�−6�w�r,z�� ,

�,P0 = const. �5.6�

The solutions �5.6� do not arise as invariant solutions with respect to any point symmetry of
the MHD equilibrium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14� �cf. Appendix�.

B. Exact solutions of the linear Bragg-Hawthorne equation „3.16…

We now consider case 5 in Table I, i.e., the linear Bragg–Hawthorne equation


rr −
1

r

r + 
zz + a1
 + a2 + r2�a3
 + a4� = 0, a1, . . . ,a4 = const, �5.7�

with I�
�I��
�=a1
+a2 and P��
�=a3
+a4. From its linearity, the PDE �5.7� has an infinite
number of symmetries. Instead of looking for symmetry-invariant solutions, we seek separable
solutions of �5.7�.

By comparison with the Appendix, it will be seen that none of the exact solutions obtained in
the present section arises as an invariant solution with respect to any point symmetry of the MHD
equilibrium system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�.

First we note that through either using equivalence transformations �4.3� or, directly, the
substitution


�r,z� = ��r,z� − 1
2 �a4r2 + a2�z2,

one can convert PDE �5.7� into the linear homogeneous PDE

�rr −
1

r
�r + �zz + a1� + a3r2� = 0. �5.8�

Seeking separable solutions ��r ,z�=R�r�Z�z� of �5.8�, one obtains

Z��z� = �Z�z� , �5.9a�

R��r� −
1

r
R��r� + ��a1 + �� + a3r2�R�r� = 0, � = const. �5.9b�

Consequently, one has the following cases.
Case 5.2.1: (a3�0) Following Ref. 21, assume that a1=�2 and a3=−4�2. The substitution

x=2�r2 converts the ODE �5.9b� into

xR��x� +
�2 + � − 2�x

8�
R�x� = 0, �5.10�

which is a classical Whittaker’s differential equation with �= ��2+�� /8�, �=1 /2,33 and thus has
a general solution in terms of the two Whittaker functions,
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R�x� = C1M�,��x� + C2W�,��x� . �5.11�

Solutions from the family �5.11� with specific relations between physical plasma parameters � and
� can have a significantly simpler form and a transparent physical meaning, which is demonstrated
as follows. In �5.10�, the substitution R�x�=e−x/2U�x�, yields the ODE

xU��x� − xU��x� +
�2 + �

8�
U�x� = 0. �5.12�

In the important special case where n= ��2+�� /8� is a non-negative integer, there exist polyno-
mial solutions of �5.12� related to the Laguerre polynomials,21

U�x� = Ln
��x� = −

x

n!
ex dn

dxn �e−xxn−1�, L0
��x� = − 1. �5.13�

Case 5.2.1.1: (z-periodic or quasiperiodic solutions� When �=−�2�0, ODE �5.9a� has the
obvious periodic solutions given by Z�z�=A sin��z�+B cos��z�. It follows that in order for the
radial part U�x� to have a polynomial form, one must require

� = �n = ��2 − 8�n, n = 0, . . . ,N, N = � �2

8�
� .

Then the corresponding solutions of the Bragg–Hawthorne equation �5.8� are given by an arbitrary
linear combination involving 2N+2 arbitrary constants,

��r,z� = e−�r2�
n=0

N

Ln
��2�r2��an cos��nz� + bn sin��nz�� . �5.14�

Solution �5.14� represents z-periodic or quasi-z-periodic flux functions of global axially symmetric
plasma equilibria, satisfying important physical conditions. In particular, �a� the corresponding
plasma magnetic field and pressure �3.17�, as well as electric current density J=curl B, are
bounded functions in R3, and �b� in the limit r→�, one has B→0, J→0, P→const. For further
details, see Ref. 21.

Case 5.2.1.2: (Axially symmetric plasma equilibria in half-space z�0) When �=�2�0, ODE
�5.9a� has the general solution Z�z�=A exp��z�+B exp�−�z�, ��0. For the half-space z�0, one
must take Z�z�=exp�−�z�. In order for the radial part U�x� to have a polynomial form, one again
requires

� = �n = �8�n − �2, n = N,N + 1, . . . , N � � �2

8�
� .

The corresponding solutions of the Bragg–Hawthorne equation �5.8� are given by a general linear
combination

��r,z� = e−�r2 �
n=N

N+m

anLn
��2�r2�exp��nz� , �5.15�

which contains an arbitrary number of terms m�0, each involving a free constant an. Plasma
equilibrium configuration �3.17� corresponding to flux function �5.15� have finite total magnetic
energy E=����B2 /2�dV in the half-space z�0.21 �For Euler equations �3.2�, this corresponds to a
finite total kinetic energy.�

Case 5.2.2: (a3=0) In this case, ODE �5.9b� is related to Bessel’s equation of order one and
the general solution is given by
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R�r� = r�C1J1�r�a1 + �� + C2Y1�r�a1 + ���, C1,C2 = const.

Since �d /dr��rJ1��r��=�J0��r�, it follows that for any nontrivial choice of constants C1 ,C2 ,a1 ,�,
the corresponding solution �B�r ,z� , P�r ,z�� �3.17� of the MHD equilibrium system �3.14� is sin-
gular on the symmetry axis r=0.

Case 5.2.3: (a1= p=0) If a3�0, let a3=4�2. Then the general solution of the ODE �5.9b� is
given by

R�r� = C1 sin��r2� + C2 cos��r2�, C1,C2 = const,

and if a3�0, letting a3=−4�2, one obtains

R�r� = C1 sinh��r2� + C2 cosh��r2� .

The corresponding solution for the z-component is given by

Z�z� = �z + �, �,� = const.

The corresponding solution �B�r ,z� , P�r ,z�� �3.17� of the axially symmetric MHD equilibrium
system �3.14� can be regular and bounded in r in each cross-sectional plane z=const. For example,
when a2=a4=0, I�
�=0, P�
�= P0+a3
2 /2, C1=1, and C2=0, one has

B�r,z� =
�

r
sin��a3

2
r2�er − �a3��z + ��cos��a3

2
r2�ez,

P�r,z� = P0 +
a3

2
sin2��a3

2
r2�
2/2. �5.16�

Case 5.2.4: (a1=a3=�=0) This case corresponds to trivial solutions

��r,z� = �C1 + C2r2���z + ��, C1,C2,�,� = const

of the PDE �5.8�, which yield unbounded solutions of the MHD equilibrium PDE system �3.14�.

VI. DISCUSSION

Usually a conservation law of a given PDE system yields a potential variable that is nonlocal,
i.e., it is not expressible in terms of the independent variables as well as the dependent variables
and their derivatives of the given PDE system. However, in this paper, we have presented ex-
amples where a local conservation law of a given PDE system with two independent variables
yields a potential variable, which is also a local variable of the given PDE system and, in particu-
lar, a function of its dependent and independent variables. Lemma 1 gives a simple necessary and
sufficient condition for such a situation.

As physical examples, we considered two-dimensional reductions of the PDE system of
incompressible equilibrium Euler equations of fluid dynamics �or, equivalently, static MHD equi-
librium equations� with respect to helical, axial, and translational symmetries. It was shown that
each such reduction �Sec. III� has a conservation law which yields a local potential variable. In
terms of its corresponding local potential variable, each PDE system further reduces to a scalar
equation in terms of the potential variable: the JFKO equation �3.12�, the Bragg–Hawthorne
equation �3.16�, and the “flat Bragg-Hawthorne equation” �3.20�, respectively. It follows that these
three well-known nonlinear second-order PDEs are locally related to the original two-dimensional
PDE systems from which they are derived.

Due to the local relations between each such two-dimensional PDE system and its potential
equation, one might expect a straightforward relation between correspondence local symmetries.
As an example, we studied the point symmetry classifications of the Bragg–Hawthorne �potential�
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equation �3.16� and the axially symmetric version �3.14� of the system of MHD equilibrium
equations �3.3�. It was shown that local symmetry relations between these systems are restricted
due to the fact that the dependent variables B2 and P of system �3.14� relate to arbitrary consti-
tutive functions in the potential �Bragg–Hawthorne� equation �3.16�. Moreover, the introduced
potential variable has a particular relationship with the dependent variables B1 and B3 of system
�3.14�. As a consequence of this relationship, most point symmetries of the PDE system �3.14�
correspond to equivalence transformations of the potential equation �3.16�. Conversely, further
local symmetries arising in special cases of the symmetry classification of the potential equation
�3.16� are restricted symmetries holding only for special classes �i.e., subsets� of solutions of the
initial PDE system �3.14�. Importantly, in the case when P�
� is a quadratic function and I�
� is
a linear function �up to equivalence transformations�, the Bragg–Hawthorne equation �3.16� be-
comes linear, whereas the PDE system �3.14� is not explicitly linear.

Finally, it was of interest to classify and compare solutions arising from point symmetry
reductions of the axially symmetric MHD equilibrium system �3.14� with those arising from point
symmetry reductions of the Bragg–Hawthorne equation �3.16�. It was shown that all symmetry-
invariant solutions of the PDE system �3.14� arose as symmetry-invariant solutions of the Bragg–
Hawthorne equation �3.16�. However, the converse was not true. In particular, it was shown that
there exist symmetry-invariant solutions of the Bragg–Hawthorne equation �3.16� that do not arise
as symmetry-invariant solutions of the axially symmetric MHD equilibrium system �3.14�. These
include a wide class of solutions with interesting physical behavior21 that arise for the linear
Bragg–Hawthorne equation.

The principal results of this paper can be summarized as follows.

�1� Local potential systems can arise in practical situations.
�2� Local potential variables can be useful for the computation of further solutions of a given

PDE system. In particular, point symmetries of such local potential systems can correspond
to restricted symmetries of a given PDE system in the sense that only a submanifold of
solutions of the given PDE system is invariant.

There exist other approaches for obtaining solutions of PDEs from symmetry-related Ansätze.
These include the nonclassical method34,35 where one seeks solutions of a given PDE system that
arise from restricted �“nonclassical”� symmetries that leave invariant a PDE system that includes
the given PDE system and the invariant surface condition satisfied by the invariant solution. Here,
the invariant submanifold is the invariant solution itself. For many PDEs, this method has been
fruitful in obtaining solutions that do not arise as symmetry-invariant solutions.
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APPENDIX: INVARIANT SOLUTIONS OF THE AXIALLY SYMMETRIC PLASMA
EQUILIBRIUM SYSTEM Aˆr ,z ;B1 ,B2 ,B3 ,P‰ „3.14… WITH RESPECT TO ITS POINT
SYMMETRIES

Due to the local relationship between the PDE system �3.14� and its potential system �3.15�,
it follows that all local symmetries of the potential system �3.15� are local symmetries of the PDE
system �3.14�. At the same time, in terms of finding solutions, it is preferable to use the original
PDE system to obtain larger families of solutions if one seeks solutions through an extension
based on the invariant solution Ansatz.36

As is well known, to obtain symmetry-invariant solutions of a PDE system, it is essential that
the symmetry generator have nonzero components corresponding to independent variables. There-
fore, in seeking symmetry-invariant solutions of the PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�, one
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should only consider linear combinations of symmetries �4.2� involving generator Y1 or Y4. �It is
not necessary to consider linear combinations aY1+bY4, ab�0, since they differ from invariant
solutions with respect to Y4 only by a z-translation.�

We now consider nontrivial combinations of symmetry generator Y1 or Y4 with other gen-
erators in �4.2� and study whether the corresponding invariant solutions can be obtained as invari-
ant solutions of the Bragg-Hawthorne equation ��r ,z ;
� �3.16� with respect to its point symme-
tries listed in Table I.

1. Solutions invariant with respect to Y1

Here, the symmetry invariants are r, B1, B2, B3, and P, and the invariant solution is sought in
the form Bi=Bi�r� , i=1,2 ,3 , P= P�r�. Consequently, this yields two families of solutions

B1�r� =
B0

1

r
, B2�r� =

B0
2

r
, B3�r� = B0

3, P�r� = P0, �A1a�

B1�r� = 0, B2 = A�r�, B3 = C�r�, P = P0 −
1

2
�A2�r� + C2�r�� +� A2�r�

r
dr , �A1b�

where B0
i , P0=const, and A�r� and C�r� are arbitrary functions. We now check whether the invari-

ant solutions �A1� arises as invariant solutions of the Bragg–Hawthorne equation �3.16�.
For the solution family �A1a�, from �3.17�, one identifies 
z=B0

1, 
r=−B0
3r, I�
�=B0

2, and
P�
�= P0. Hence, one has


�r,z� = − 1
2r2B0

3 + B0
1z + const, I�
�I��
� = P�
� = 0,

which corresponds to a basic solution of the PDE grr− �1 /r�gr+gzz=0 arising in case 5d in Table
I, i.e., an invariant solution of the Bragg–Hawthorne equation �3.16� with respect to the symmetry
Z�.

For the solution family �A1b�, one has 
z=0. Instead of A�r� and C�r�, in �A1b� one may
equivalently treat P= P�r� and I= I�r� as arbitrary functions. Then one finds


�r� = C0 + C1r2 +� ��r � I��s�
s

+ sP��s��ds�dr ,

which arises as an invariant solution of the Bragg–Hawthorne equation �3.16� �with arbitrary
P�
�= P�r� and I�
�= I�r�� with respect to Z1=� /�z.

2. Solutions invariant with respect to Y1+�Y2+�Y3, �2+�2>0

Here, the similarity variable is also the radius r, and one obtains

B1�r,z� =
1

C1r
, B2�r,z� =

1

r
�2�z + C2 −

1

4
��C1

2r4 + r2��2C1
2�1

2
− log r� − �C1C3� ,

B3�r,z� = 1
2�C1r2 + �C1 log r + C3,

P�r,z� = �z − 1
8 ��2C1

2r4 + 4�C1C3r2� + 1
4��C1

2r2�1 − 2 log r� + C4,

C1, . . . ,C4 = const. �A2�

Using �3.17�, it is straightforward to show that the solution �A2� corresponds to the solution
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�r,z� =
z

C1
−

1

8
�C1r4 −

1

2
C3r2 + C5 +

1

4
�C1r2�1 − 2 log r�, C5 = const �A3�

of the Bragg–Hawthorne equation �3.16�. From �3.17�, one identifies I�
�=�2�C1
+const,
P�
�=�C1
. This corresponds to case 5 in Table I, i.e., a linear Bragg–Hawthorne equation �3.16�
with I�
�I��
�=2�, P��
�=�C1. It is easy to see that the solution �A3� can be represented as

�r ,z�=
eq�r ,z�+
hom�r ,z�, where


hom�r,z� =
z

C1
−

1

2
C3r2 + C5

is an obvious solution of the homogeneous Bragg–Hawthorne equation, and the part


eq�r,z� = − 1
8�C1r4 − 1

4�C1r2�1 − 2 log r� ,

arises from the equivalence transformation �4.3� of the homogeneous Bragg–Hawthorne equation
into one with I�
�I��
�=2�, P��
�=�C1.

3. Solutions invariant with respect to Y1+�Y2+�Y3+�Y5, �Å0

Here, the similarity variable is again the cylindrical radius r, and one readily finds the fol-
lowing form of the invariant solutions

B1�r,z� = Q1�r�e�z, B2�r,z� =
1

r
�Q2�r�e2�z −

�

�
,

B3�r,z� = Q3�r�e�z, P�r,z� = P0 + Q4�r�e2�z, P0 = const. �A4�

After substitution of the Ansatz �A4� into the PDE system A�r ,z ;B1 ,B2 ,B3 , P� �3.14�, one obtains
a system of four first-order ODEs in terms of the four unknown functions Qi�r�, which, in turn,
can be reduced to a fourth-order nonlinear ODE for Q1�r�. Furthermore, using two obvious first
integrals and the substitution x=r2, A�x�=Q1�r�, one can show that this fourth-order ODE can be
reduced to the second-order linear ODE

�4x2 − 1�A��x� + 4xA��x� + �4a2x2 + 4a1x − 1�A�x� = 0, a1,a2 = const. �A5�

The remaining part of solution �A4� is given by

Q3�r� = −
1

�r
�r�Q1���r� + Q1�r�� ,

Q2�r� = �4a1 − �2��2�r�, Q4�r� = 2a2�2�r� ,

��r� =
r

�
Q1�r� . �A6�

Correspondingly, the flux function is given by


�r,z� = ��r�e�z,

and hence for such invariant solutions, one has the relations
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P�r,z� = P0 + 2a2�
�r,z��2, I�r,z� � rB2�r,z� =��4a1 − �2��
�r,z��2 −
�

�
,

which corresponds to the linear dependence P��
�=4a2
 and I�
�I��
�= �4a1−�2�
. In Sec. V B,
it is seen that the invariant solutions �A4� are a subset of the solution set of the linear Bragg–
Hawthorne equation �Table I, case 5� obtained by separation of variables. In particular, for specific
relations between constants a1 ,a2, solution �A4� is expressible in terms of elementary �exponen-
tial, Gaussian, and polynomial� functions.

To solve the ODE �A5�, we let S�x�=A�x��x and obtain the ODE

xS��x� + �a2x + a1�S�x� = 0. �A7�

�1� When a1 ,a2�0, Eq. �A7� is related to Whittaker’s linear ODE, and thus one obtains its
general solution

Q1�r� = r−1�C1M−�1/2�ia1a2,1/2�2ia2
−1r2� + C2W−�1/2�ia1a2,1/2�2ia2

−1r2�� , �A8�

where M�,��z� and W�,��z� are Whittaker functions.
�2� When a2=0, Eq. �A7� can be transformed into Bessel’s equation, and one has

Q1�r� = C1J1�2�a1r� + C2Y1�2�a1r�, C1,C2 = const, �A9�

where J1�z� and Y1�z� are Bessel functions of order one.
�3� When a1=0, Eq. �A7� has the general solution

Q1�r� =
1

r
C1 sin��a2r2� + C2 cos��a2r2�, C1,C2 = const. �A10�

�4� When a1=a2=0, the general solution of ODE �A7� is given by

Q1�r� = C1r +
C2

r
, C1,C2 = const. �A11�

Note that solutions �A10� and �A11� correspond to constant pressure: Q�r�=0, P�
�=const.

4. Solutions invariant with respect to Y4

The similarity variable following from the scaling symmetry Y4 is �=z /r, and one readily
finds the invariant solution

B1��� = − C1� + C2
�1 + �2,

B2��� = � �C1�C2 arcsinh � − C1�2 + C2��1 + �2 − C3� ,

B3��� = − C2 arcsinh � + C3, P��� = C4, C1, . . . ,C4 = const. �A12�

It is straightforward to show that solution �A12� corresponds to the solution


�r,z� =
1

2
�C2�r2 arcsinh

z

r
+ z�z2 + r2� − C1z2 − C3r2� �A13�

of the Bragg–Hawthorne equation �3.16� with I�
�=�2C1
, P�
�=C4=const. This corresponds to
case 5c in Table I: P��
�=0, I��
�I�
�=const and, indeed, solution �A13� is an invariant solution
of the Bragg–Hawthorne equation with respect to its point symmetry Z7.
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5. Solutions invariant with respect to Y4+�Y2+�Y3, �2+�2>0

Again, equivalently, one can consider the symmetry X4+�X5 of the potential system �3.15�.
Since B2�r ,z�= I��� /r, P�r ,z�= P���, the form of the corresponding invariant solutions is given
by

� = z/r, 
�r,z� = r2���� ,

Bi�r,z� = Qi���, i = 1,3, B2�r,z� =
1

r
�R���r2 − �, A = const,

P�r,z� = � log r + Q��� . �A14�

After substitution of the Ansatz �A14� into the PDE system �3.15�, one finds that ���� satisfies the
nonlinear second-order ODE

��2 + 1������ − ������ +
1

2
� �

����
+ K� = 0, K = const. �A15�

Each solution ���� of the ODE �A15� yields a corresponding invariant solution �A14� of the
axially symmetric PDE system �3.14� through the formulas

Q1�r,z� = ���z/r�, Q2�r,z� =
1

r
�K��z/r� − �, Q3�r,z� = ����z/r� − 2��z/r� ,

P�r,z� = P0 +
�

2
log�r2��z/r�� . �A16�

It follows that in this case, I�
�I��
�=K /2, P��
�=�
−1 /2, which corresponds to case 3 in Table
I ��=−1, �1=A /2, �2=� /2�. Indeed, as shown in Sec. V A, solution �A16� corresponds to an
invariant solution of the Bragg–Hawthorne equation �3.16� with respect to the scaling symmetry
Z3 with �=−1, and the ODE �A15� is the respective reduction of the Bragg–Hawthorne equation
�3.16�.

6. Solutions invariant with respect to Y4+�Y2+�Y3+�Y5, �Å0

Here, one may again equivalently consider invariant solutions with respect to the symmetry
X4+�X2+�X3+�X5 of the potential system �3.15�. Solving the corresponding characteristic
ODEs, one finds the invariant solution form

� = z/r, 
�r,z� = r2+����� ,

Bi�r,z� = r�Qi���, i = 1,3, B2�r,z� =
1

r
�K���r2�+2 −

�

� + 1
,

P�r,z� = Q���r2� −
�

2�
. �A17�

After substitution of the Ansatz �A17� into the PDE system �3.15�, one finds

Qi��� = �����, Q3��� = ������ − �� + 2����� ,

B2�r,z� =
1

r
�K�������2�+2�/��+2� −

�

� + 1
,

073502-22 A. F. Cheviakov and G. W. Bluman J. Math. Phys. 51, 073502 �2010�

Downloaded 08 Jul 2011 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



P�r,z� = P0 + Q�������2��/��+2�, P0,K,Q = const, �A18�

where ���� satisfies the ODE

�1 + �2������ − �2� + 1������� + ��� + 2����� + R̃������1−2/��+2� + Q̃������1−4/��+2� = 0,

R̃,Q̃ = const. �A19�

Using B2�r ,z�= I�
� /r, P�r ,z�= P�
� in �A17�, one obtains I�
�=�K
�2�+2�/��+2�−� / ��+1�,
P�
�=Q
2�/��+2�−� /2�, K ,Q=const, and hence

I�
�I��
� = K̃
1−2/��+2�, P��
� = Q̃
1−4/��+2�, K̃,Q̃ = const.

Thus, the invariant solution �A17� corresponds to invariant solution of the Bragg–Hawthorne
equation �3.16� with respect to the scaling symmetry Z3 �Table I, case 3, �=−��+2� /2�. In
particular, the projection of the symmetry X4+�X2+�X3+�X5 on the space of variables �r ,z ,
�
of the Bragg–Hawthorne equation directly yields symmetry Z3. Moreover, as shown in Sec. V A,
Eq. �A19� is the corresponding reduction of the Bragg–Hawthorne equation �3.16�.
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