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2,b)

For systems of partial differential equations (PDEs) with n=3 independent vari-
ables, construction of nonlocally related PDE systems is substantially more com-
plicated than is the situation for PDE systems with two independent variables. In
particular, in the multidimensional situation, nonlocally related PDE systems can
arise as nonlocally related subsystems as well as potential systems that follow from
divergence-type or lower-degree conservation laws. The theory and a systematic
procedure for the construction of such nonlocally related PDE systems is presented
in Part I [A. F. Cheviakov and G. W. Bluman, J. Math. Phys. 51, 103521 (2010)].
This paper provides many new examples of applications of nonlocally related sys-
tems in three and more dimensions, including new nonlocal symmetries, new non-
local conservation laws, and exact solutions for various nonlinear PDE systems of
physical interest. © 2010 American Institute of Physics. [doi:10.1063/1.3496383]

I. INTRODUCTION

In the situation of two independent variables, nonlocally related systems of partial differential
equations (PDEs) have proven to be useful for many given nonlinear and linear PDE systems of
physical interest. For a given PDE system, one can systematically construct nonlocally related
potential systems and subsystemsz’3 having the same solution set as the given system. Due to
nonlocal relations between solution sets, analysis of such nonlocally related systems can yield new
results for the given system.

Examples include results for nonlinear wave and diffusion equations, gas dynamics equations,
continuum mechanics, electromagnetism, plasma equilibria, as well as other nonlinear and linear
PDE systems.z_13 New results for such physical systems include systematic computations of non-
local symmetries and nonlocal conservation laws, systematic constructions of further invariant and
nonclassical solutions, and the systematic construction of noninvertible linearizations.

This paper follows from Ref. 1 and is concerned with the construction and use of nonlocally
related PDE systems with three or more independent variables for specific examples. As shown in
Ref. 1, the situation for obtaining and using nonlocally related PDE systems is considerably more
complex than in the two-dimensional case. In particular, the usual (divergence-type) conservation
laws give rise to vector potential variables subject to gauge freedom, i.e., defined to within
arbitrary functions of the independent variables, making the corresponding potential system un-
derdetermined.

Another important difference between two-dimensional and multidimensional PDE systems is
that in higher dimensions, there can exist several types of conservation laws (divergence-type and
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lower-degree conservation laws). For example, in the case of n=3 independent variables, one can
have a vanishing divergence or a vanishing curl; for n>3, n—1 types of conservation laws exist.
[It is important to note that in many physical examples, the most commonly arising conservation
laws are of divergence-type (degree r=n—1) conservation laws, which yield underdetermined
potential systems. ]

Due to such complexity and, furthermore, the difficulty of performing computations for PDE
systems involving many dependent and independent variables, very few results have been ob-
tained so far for multidimensional systems. In this paper, building on the framework presented in
Ref. 1, we present new results for important examples as well as discuss and synthesize some
previously known results. The symbolic software package GeM for MAPLE (Ref. 14) was used for
the symbolic computations.

An important use of nonlocally related systems is the computation of nonlocal symmetries of
a given PDE system. A nonlocal symmetry is a symmetry for which the components of its
infinitesimal generator, corresponding to the variables of the given system, have an essential
dependence on nonlocal variables. Only determined nonlocally related systems can yield nonlocal
symmetries of a given system.11 Consequently, one seeks nonlocal symmetries of a given PDE
system (with n=3 independent variables) through seeking local symmetries of the following types
of nonlocally related PDE systems.'

 Nonlocally related subsystems (always determined).

* Potential systems of degree one (always determined). (In R3, such potential systems arise
from curl-type conservation laws.)

 Potential systems of degree r:1<r=n-1, appended with an appropriate number of gauge
constraints.

Examples of nonlocal symmetries arising from all three of the above types are given in this
paper.

Another important use of nonlocally related systems is the computation of nonlocal conser-
vation laws of a given PDE system. A nonlocal conservation law is a conservation law whose
fluxes depend on nonlocal variables, and which is not equivalent to any local conservation law of
the given system.l’15 Unlike nonlocal symmetries, nonlocal conservation laws can arise from both
determined and underdetermined potential systems, as illustrated by examples in this paper.

The sections of the paper below pertain to particular examples of nonlocally related PDE
systems and their applications to construction of nonlocal symmetries, nonlocal conservation laws,
and exact solutions of PDE systems in n =3 dimensions. Examples of results for multidimensional
PDE systems in this paper include the following (new results are marked by an asterisk).

e A nonlocal symmetry” arising from a nonlocally related subsystem of a nonlinear PDE
system in (2+1) dimensions (Sec. II).

e Nonlocal symmetries® and nonlocal conservation laws™ of a nonlinear “generalized plasma
equilibrium” PDE system in three space dimensions (Sec. IIT). [These nonlocal symmetries
and nonlocal conservation laws arise from local symmetries and local conservation laws of a
potential system following from a lower-degree (curl-type) conservation law.]

» Nonlocal symmetries of the linear wave equation in (2+1) dimensions, "' arising from local
symmetries of an underdetermined potential system of degree of 2, appended with a Lorentz
gauge (Sec. IV). (Nonlocal conservation laws of this equation were also obtained in Ref. 11.)

* Nonlocal symmetries” of dynamic Euler equations of incompressible fluid dynamics arising
from axially and helically symmetric reductions (Sec. V).

e Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations in
(2+1)-dimensional Minkowski space, arising from local symmetries and local conservation
laws of a determined potential system of degree 1 and an underdetermined potential system
of degree of 2, appended with a Lorentz gauge.11 Additional nonlocal conservation laws arise
from local conservation laws of a potential system appended with algebraic™ and divergence”
gauges (Sec. VI).

e Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations in
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(3+1)-dimensional Minkowski space, arising from local symmetries and local conservation
laws of an underdetermined potential system of degree 2, appended with a Lorentz gauge.'2
Additional nonlocal conservation laws arise from local conservation laws of a potential
system appended with algebraic* and divergence™ gauges. (Sec. VII).

* Nonlocal symmetries (following from a curl-type conservation law) and exact solutions of
the nonlinear three-dimensional magnetohydrodynamics (MHD) equilibrium equations16’17
(Sec. VIII).

Finally, in Sec. IX, some open problems are discussed.

Il. ANONLOCAL SYMMETRY ARISING FROM A NONLOCALLY RELATED SUBSYSTEM
IN THREE DIMENSIONS

The first example illustrates the use of nonlocally related subsystems to obtain nonlocal
symmetries of PDE systems in higher dimensions.

Consider the PDE system UV{z,x, y;u,vl ,vz} in one time and two space dimensions, given
by

v,=grad u,

u, = K(|v|)div v. (2.1)

In (2.1), v=(v',v?) is a vector function and K(|v|) is a constitutive function of the indicated scalar
argument. In (2.1) and throughout this paper, subscripts are used to denote the corresponding
partial derivatives.

PDE system (2.1) has the nonlocally related subsystem V{t,x,y;v',v?}, given by

v, = grad[K(|v|)div v]. (2.2)

Consider the one-parameter class of constitutive functions given by

K(v) = v = ((0")* + (0»)H)™. (2.3)

It is interesting to compare the symmetry classifications of systems (2.1) and (2.2) with respect to
the constitutive parameter m # 0.

For arbitrary m in (2.3), one can show that the point symmetries of given PDE system (2.1)
are given by the seven infinitesimal generators,

d
Xi=—, Xpo=—, Xz=—, Xy=—,
oo TP o oy YT ou
d d d
Xs=t—+x—+y—,
Jat  ox dy
d d , 0 9
Xe=—y—+x——-v'——+v

J 9 g L0, 4
Xo=m\x—+y—|+(m+Du—+v —F+v"—. (2.4)
ox dy du dv dv

In contrast, subsystem (2.2) has the point symmetries given by the six infinitesimal generators,

Y1=X1, Y2=X2, Y3=X3’ Y4=X5’ Y5=X6’
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g\ 4  , 0
Ye=m\x—+y_—|+v —7+0 5. (2.5)
ox " dy dv Jdv

Additional point symmetries arise for (2.1) if and only if m=-1 and for (2.2) if and only if m=
—1,-2. In the case m=-1, one can show that both systems have an infinite number of point
symmetries. In the case m=-2, subsystem (2.2) has an additional point symmetry,

d d d
Y7=125 +lvl(9_vl +tvzc7_v2’ (2.6)

whereas given PDE system (2.1) still has same point symmetries (2.4). It follows that (2.6) yields
a nonlocal symmetry of given PDE system UV{t,x,y;u,v',v?} (2.1).

lll. NONLOCAL SYMMETRIES AND NONLOCAL CONSERVATION LAWS OF A
NONLINEAR PDE SYSTEM IN THREE DIMENSIONS

As a second example, consider the time-independent “generalized plasma equilibrium” PDE
system H{x,y,z;h',h% i’} in three space dimensions, given by

curl(K(h|)(curl h) X h)=0, div h=0. (3.1)
In (3.1), h=(h',h?,h%) is a vector of dependent variables. The first equation in PDE system (3.1)
is a conservation law of degree one (curl-type conservation law). The corresponding potential
system HW{x,y,z:h',h?,h*,w} is given by

K(|h|)(curl h) X h=grad w, div h=0, (3.2)
where w(x,y,z) is a scalar potential variable. Potential system (3.2) is determined and hence needs
no gauge constraints.
A. Nonlocal symmetries of PDE system (3.1)

First, a comparison is made of the classifications of point symmetries of the PDE systems
H{x,y,z;h',h* h*} and HW{x,y,z;h',h>,h3,w} for the one-parameter family of constitutive
functions K(|h|) given by

K(Ih)) = [h[*" = (B + () + ())", 3.3)

where m is a parameter.
For an arbitrary m, given system H{x,y,z;h',h?,h*} (3.1) has eight point symmetries, given

by
X X el x990
:_3 :_a __a _-x_+ - _’
o 2Ty T T TR Y
X 0 0 5 09,0
=—7 —_ - — N — - X —_— - -,
ST T T an T any e  a Tey T an T an?
a9 3 d 3 d d
Xg=z——y_—+h—-h—s, Xg=h'—F+h*—+h’— (3.4)

dy oz ah? on’ ah! Ih? on*’

corresponding to invariance, respectively, under three spatial translations, one dilation, three ro-
tations, and one scaling.

For m # —1, potential system HW{x,y,z;h',h> ,h* w} (3.2) has nine point symmetries, eight
of them corresponding to symmetries (3.4), plus an extra translational symmetry in the potential
variable,
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) J
Y, =X, i=1,...,7; Y8=X8+2(m+1)w07—, Y= (3.5)
w

9
aw’
For m=-1, the point symmetries of H{x,y,z;h1 ,hz,h3} remain the same, whereas the potential
system HW{x,y,z;h1 ,hz,h3,w} has an additional infinite number of point symmetries given by

_ KPS
YOC_F(w)<aW+h P +h ah2+h &h3>’ (3.6)
depending on an arbitrary smooth function F(w). Symmetries (3.6) are nonlocal symmetries of
given PDE system H{x,y,z;h',h%,h’} (3.1).

Note that symmetries (3.6) cannot be used for the construction of invariant solutions since
they do not involve spatial components. However, one can use symmetries (3.6) to map any
known solution of PDE system (3.1) (with a corresponding potential variable w) to an infinite
family of solutions of (3.1).

B. Nonlocal conservation laws arising from potential system (3.2)

We now seek divergence-type conservation laws of PDE system H{x,y,z:h',h?,h%} (3.1),
using the direct method, applied first to given system (3.1) itself, and then to potential system
HW{x,y,z;h',h?,h* ,w} (3.2) for the one-parameter family of constitutive functions K(|h|) given
by (3.3) for an arbitrary m. (For the details on the direct method of construction of conservation
laws, see Ref. 1.)

First, we seek local divergence-type conservation laws of PDE system H{x,y,z;h',h* i’}
(3.1), using multipliers of the form A, =A,(x,y,z,H' ,H*,H?), o=1,...,4. [Here and below, to
underline the fact that multipliers are sought off of the solution space of a given PDE system, the
arbitrary functions corresponding to dependent variables are denoted by capitals. Then if a linear
combination of equations of the system with a set of multipliers gives a divergence expression,
one obtains a conservation law on solutions of the system. (For details and notation, see Ref. 1 or
Ref. 15, Chap. 1.)]

From solving the corresponding set of multiplier determining equations, one finds the non-
trivial conservation law multipliers given by

A =AH', A,=AH?, Ay=AH’, A,=B,

where A, B are arbitrary constants. (In particular, the conservation law corresponding to the
constant B is simply the fourth PDE div h=0.)

Second, we apply the direct method to potential system HW{x,y,z;h',h%, h*,w} (3.2), to seek
additional conservation laws of given PDE system H{x,y,z;h',h*,h*} (3.1). As shown in Theo-
rem 6.3 of Ref. 1 (see also Ref. 15, Chap. 3), in order to obtain nonlocal divergence-type conser-
vation laws, one must seek multipliers that essentially depend on potential variables. For four
equations (3.2), we seek multipliers of the form A=A (H',H* H?>,W), o=1,...,4. In terms of
an arbitrary function G(W), one finds an infinite family of such multipliers, given by

A=HG'(W), i=1,2,3, A,=G(W),
with the corresponding divergence-type conservation laws given by
3
14 .
> ;[(G(w) +2(m+ 1)wG' (w))h']=0. (3.7)
i=1 OX

In (3.7), (x',x*,x*)=(x,y,z). Conservation laws (3.7) have an evident geometrical meaning. From
the vector equation in (3.2), it follows that grad w is orthogonal to h, i.e., the vector field h is
tangent to level surfaces w=const. Expression (3.7) can be rewritten as div(M(w)h)

Downloaded 08 Jul 2011 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



103522-6 A. F. Cheviakov and G. W. Bluman J. Math. Phys. 51, 103522 (2010)

=M'(w)grad(w)-h+M(w)div h=0, where M(w)=G(w)+2(m+1)wG’(w), and hence is equiva-
lent to grad(w)-h=0, provided that M’ (w) # 0.

By a similar argument, it follows that PDE system H{x,y,z;h',h>,h%} (3.1) has another
family of nonlocal conservation laws given by

div[Q(w)curl h] =0 (3.8)
for an arbitrary Q(w).

IV. NONLOCAL SYMMETRIES OF THE TWO-DIMENSIONAL LINEAR WAVE EQUATION

Consider the linear wave equation U{z,x,y;u} given by

Uy = Uy F Uy, (4.1)

Equation (4.1) is a divergence-type conservation law as it stands. Following Ref. 11, we introduce
a vector potential v=(v’,v',v?). The resulting potential equations are underdetermined, therefore
in order to seek nonlocal symmetries, a gauge constraint is needed. A Lorentz gauge is chosen
since it complies with the geometrical symmetries of given PDE (4.1)."" The resulting determined
potential system UV{z,x,y;u,v} is given by

1

_ .2
u;=v y?

y—U

2

0
—u,=v,-0j,

y

0

X

_ 1
—uy=v,-0v

v?—v;—v§=0. (4.2)

A comparison is now made of the point symmetries of PDE systems U{z,x,y;u} (4.1) and
UV{z,x,y;u,v} (4.2). Modulo the infinite number of point symmetries of any linear PDE system,
linear wave equation (4.1) has ten point symmetries:

e three translations X;,X,, X5 given by

Xi=—, Xo=—, X3=—;
' ot 27 ox 3 dy
* one dilation given by
X tﬁ J J
=t—+x—+y—;
T ax T gy

* one rotation and two space-time rotations (boosts) given by

N N AN A AN
=X—-y_, =t—+x_, =t—+y_;
STy Yo T e T Ty T

* three additional conformal transformations given by

229 9 i_ i
Xg=(r"+x"+y°)— +2tx— + 21y tu—,
at ox dy du

I, 50 i d
Xo=2tx—+ (" +x "=y )— +2xy— —xu—,
ot ox dy du
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X2 2652 + 20y 2 4 (P =2 4y L — gl
=2ty —4+2xy—+(t"=x"+y ) — —yu—.
0= 0 T Yoy T ou
Potential system UV{t,x,y;u,v’,v',v?} (4.2) has seven point symmetries Y ,...,Y that
project onto the point symmetries X, ...,X; of wave equation (4.1). However, the three addi-

tional conformal symmetries of potential system (4.2) given by
1 2 J 0 1 25 9
Yg=Xg+ (yv' —xv —tu)a—— Q2 +xv' +yv )(9_
u

UO

J J
— (w0 + 200" - yu)— - (v + 200% + xu)—,
Jdv Jv

J J
Yo=Xo— (yv° + 0? +xu)— - 2x0° + ' - yu) 5
du Jdv

Jd Jd
— (0% + 2xv! +yv2)—l +(yv' = 2xv% - tu)—,
Jv Jv

J J
Yi0=Xj0+ (0’ + 10" = yu)— — 20" + 107 + xu)—;
du dv
1 2 J 0 1 29
- (2yv' —xv —tu)&—vl—(tv +xv' +2yv )5_112 (4.3)

clearly yield nonlocal symmetries of wave equation (4.1). Moreover, potential system (4.2) has
three duality-type point symmetries given by

N R AP
= —-u—-v"—+0v —5,
U ou o T ot T v
d Jd d
Y=v'—+vP—+u— +0"—,
277 aw® ' g
J d Jd Jd
Yi=vi—-v'—=0v"—+u s 4.4
13 Ju v® dv' v* “4)

that also yield nonlocal symmetries of wave equation U{z,x,y;u} (4.1). In summary, potential
system UV{t,x,y;u,vO,v',vz} (4.2) with the Lorentz gauge yields six nonlocal symmetries of
linear wave equation (4.1).1

One can show that no nonlocal symmetries of the wave equation arise from the potential
system UV{z,x, y;u,vo,v1 ,vz} if the Lorentz gauge is replaced by any one of the algebraic gauges
v*=0 for k €{0, 1,2}, the divergence gauge, the Poincaré gauge, or the Cronstrom gauge.

In Ref. 11, potential system UV{t,x,y;u,v’,v',v%} (4.2) was used to obtain additional (non-
local) conservation laws of wave equation U{z,x,y;u} (4.1).

V. NONLOCAL SYMMETRIES OF THE EULER EQUATIONS

Consider the Euler equations describing the motion for an incompressible inviscid fluid in R?,
which in Cartesian coordinates are given by

div u=0, (5.1a)
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u,+(u-V)u+grad p=0, (5.1b)

where the fluid velocity vector u=u'e,+u’e,+u’e, and fluid pressure p are functions of x,y,z,1.
The fluid vorticity is a local vector variable defined by

w=curl u. (5.2)
Using the vector calculus identity
lul?

u
(u-Viu= grad7| + (curl u) X u,

vector momentum equation (5.1b) can be rewritten as

ul?
u,+ o X u+grad(p+%):0. (5.3)

One can construct a vorticity subsystem of PDE system (5.1) by taking the curl of Eq. (5.3),

div u=0, (5.4a)
o, +curl(w X u)=0, (5.4b)
w=curl u. (5.4¢)

PDE system (5.4) is nonlocally related to Euler equations (5.1). By definition, Euler system (5.1)
is a potential system of PDE system (5.4) following from curl-type (degree one) conservation law
(5.4b).

Below we compare point symmetries of Euler equations and the vorticity subsystem in two
symmetric settings.26

A. Axially symmetric case

Rewriting Euler equations (5.1) in cylindrical coordinates (r,z,¢) with

u=ue,+ve,+we,

we restrict the dependence of each of u,v,w,p to the coordinates #,r,z only due to the invariance
of the Euler equations under (azimuthal) rotations in ¢. Consequently, one obtains the reduced
axially symmetric Euler system AE{z,r,z;u,v,w,p} given by

1 1
U+ ~u+-v,+w,=0, (5.5a)
roor
1,
ut+uu,+wuz—;v +p,=0, (5.5b)
1
v+ uv, +wu, +—uv =0, (5.5¢)
r
1
w,+uw,+ww_+ —p.=0. (5.5d)
r

In terms of cylindrical coordinates, the vorticity is represented in the form
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w=me,+ne,+qe,.

Using the invariance of (5.2) under the same azimuthal rotations, we again assume axial symmetry
and rewrite three scalar equations (5.2) as

10
m+v,=0, n-u+w,=0, q_;;(rv)=0, (5.6)

where m,n,q are functions of 7,r,z.

Combining PDE systems (5.5) and (5.6), we obtain the PDE system
AEW{z,r,z;u,v,w,p,m,n,q}, which is obviously locally related to the axially symmetric Euler
system AE{z,r,z;u,v,w,p} (5.5), since vorticity components are local variables in terms of
U,v,w.

The point symmetries of the system AEW{¢,r,z;u,v,w,p,m,n,q} are given by

17 d d d J 17
Xo=t—+r—+z__-m__—-n_—q_,
at  dr Iz am on dq

1% 1% 1% 1% 1%
Xys=r—+z—+u—+v—+w—+2p—,
i Jr  Jz du Jv aw dp

d Jd Jd
Xy=F({t)—+F (t)— —-zF"(t)—,
d=FO P =20

J
Xs=G()—,
dp

1 i ,4 9 3
Xe= 55|~ v—+v*—+q—+m—|, (5.7)
rv Jdv ap dq am
in terms of arbitrary functions F(z) and G(¢). Point symmetries (5.7) correspond to the invariance
of reduced system AE{¢,r,z;u,v,w,p} (5.5) under time translations, two scalings, Galilean in-
variance in z, pressure invariance, and the additional symmetry X which corresponds to the an
introduction of a vortex at the origin given by

C
—, C=const.
r

2C
W)=v’+—, p'=p-
r
Now consider vorticity subsystem (5.4). Under the assumption of axial symmetry, it is denoted by
AW{t,r,z;u,v,w,m,n,q} and given by

1 1
U+ ~u+-v,+w,=0, (5.8a)
roor
Jd
m,+ —(wm-uq)=0, (5.8b)
0z
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Jd J
n,+ —(un—vm) + —(nw-vq) =0, (5.8¢)
ar Jz
140
g+ ——(r(ug —wm)) =0, (5.8d)
ror
19
m+v, =0, n—u+w,=0, q_;;‘(rv)=0- (5.8¢)

PDE system AW{t,r,z;u,v,w,m,n,q} (5.8) is a nonlocally related subsystem of the Euler re-
duced system with vorticity AEW{z,r,z;u,v,w,p,m,n,q} (5.5) and (5.6), and hence is nonlo-
cally related to Euler reduced system AE{t,r,z;u,v,w,p} (5.5).

One can show that the point symmetries of system AW{z,r,z;u,v,w,m,n,q} (5.8) are given
by

Y, =X Y,=X Y J J J J J X
=X, =X, =r—+z—+4+u—+v—+w— ~ Xj,
! ! 2 2 3 ar 0z Jdu Jv aw 3

d d
Y4=F(t)_+F,(t)_~X4, (59)
0z aw

in terms of an arbitrary function F(z). It follows that the symmetry X, in (5.7), which is a point
symmetry of PDE systems AE{¢,r,z;u,v,w,p} and AEW{¢,r,z;u,v,w,p,m,n,q}, yields a non-
local symmetry of the vorticity subsystem AW{¢,r,z;u,v,w,m,n,q}..

B. Helically symmetric case

Now consider helical coordinates (r, 7, £) in R3,

E=az+bo, 77=aqo—bz/r2, a,b=const, a>+b>>0.

In helical coordinates, r is the cylindrical radius; each helix is defined by r=const, {&=const; 7 is
a variable along a helix.
In a helically symmetric setting, the velocity and vorticity vectors are given by

u=u'e,+u’e,+ue, w=owe +o’,+oke,

where the vector components as well as the pressure p are functions of 7,r,& (Note that in the
limit a=1, b=0, helical coordinates become cylindrical coordinates with 7=¢, £=z.)

Rewriting Euler equations (5.1) in helical coordinates and imposing helical symmetry (inde-
pendence of 17),18 one obtains the reduced helically symmetric PDE system
HE{t,r,&;u",u”, ut,p}, given by

u" ou” 1 out

7+ r +%(9—§=0, (5.10a)
2 2
(") +u" (), + ﬁlﬁ(u’)g— 5 r(r) <€u§+ au”) +p,=0, (5.10b)
2np2
W+ ), + o D (5.10¢)

B(r)
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2abB? b*B* 1
B i VB e L0, (s.100)

! B

(), +u'(ud), + Iﬁug(ug)g +

In (5.10),
B(r) = ———
7)== —.
Va?r? + b?

The helically symmetric version of (5.2) is given by the three scalar equations,

wr=—%, (5.11a)
2 2np2
e %%(ru‘f) —2asz(r)u77+ a“B(r) £ %(“r)g, (5.11b)
2p2
wf= B ), (5.110)

One can consider the system HEW{t,r,g;ur,u”,ug, o, w7, w§}, given by the combination of PDE
systems (5.10) and (5.11). This PDE system is locally related to helically symmetric Euler system
HE{t,r,&;u",u”,u,p} (5.10), since vorticity components are local functions of velocity compo-
nents, their derivatives, and independent variables.

The point symmetries of system HEW{z, 7, &;u”, u”,ué, ", 0", 0%} (5.10) and (5.11) are given
by

d bB(r) 9 J
PR L R YA
9 ar ou” Jut
J
Xs=F()—, (5.12)
dp

in terms of an arbitrary function F(z). Due to the local relation, point symmetries of helically
symmetric Euler system HE{r,r,&;u",u”, ut,p} (5.10) are given by projections of symmetries
(5.12) onto the space of variables t,7,& u”,u”,ué,p.

The corresponding helically symmetric version of vorticity subsystem (5.4), where pressure
has been excluded through the application of a curl, is denoted by HW{z,r, &;u",u”, ué, 0", w", wé}
and given by

u" ou” 1 out

7+ ar +B(r)&_§:0’ (.132)
("), + Li(u’fwr—urw'f) =0 (5.13b)
" B(r) 0¢ ’ ‘
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14 ’B? 1
(07,4 ——(r(W0"—u"w")) - a B (U@ u"0") + —(ubw” — u"w?)
rar B(r)
2abB?
N a . (r)(ugw’—u’w§)=0, (5.13¢)
r
d ’B?
(%), + O_'—(u’wg— ute) + @B () (o - utw) =0, (5.13d)
r r
r_ _ @g 5.13
w B’ (5.13e)

14 abB?(r) a’B*(r) |
wnz—;g(rug)—z r2 u+ p M§+ %(M )g, (513f)

2np2
WL AU (5.132)

Its point symmetries are given by

d
Y =X, Y,=X3-0"— -w'— - o' —,
! ! S w&wr w&w” w(?w§

v, = G(t)i ~ bB(r)

Py: 7 (5.14)

’ 0 ! a
G'(1) P +B(r)G'(1) Pars
in terms of an arbitrary function G(r). [Note that symmetries X,,X, (5.12) are special cases of the
infinite family of symmetries Y3.]

Comparing symmetry classifications (5.12) and (5.14), one observes that the full Galilei group
in the direction of ¢ only occurs as a point symmetry of reduced vorticity subsystem
HW{t,r,&u",u”, ué, 0", ", 0 (5.13), and thus yields a nonlocal symmetry of helically symme-
try reduced Euler system HE{z,r,&;u”",u”,u,p} (5.10).

VI. NONLOCAL SYMMETRIES AND NONLOCAL CONSERVATION LAWS OF MAXWELL'S
EQUATIONS IN (2+1) DIMENSIONS

The linear system of Maxwell’s equations in a vacuum in three space dimensions is given by

div B=0, div E=0,

E,=curl B, B,=-curl E, (6.1)

where B=B'e +B% +B’, is a magnetic field, E=E'e +E%, +Ee_ is an electric field, (x,y,z)
are Cartesian coordinates, and ¢ is time.

Following Ref. 11, we consider PDE system (6.1) in three-dimensional Minkowski space
(t,x,y). It is assumed that B=B(x,y)e,, E=E'(x,y)e,+E*(x,y)e,. Then Maxwell’s equations (6.1)
can be written as the PDE system M{z,x,y;B,E ! ,Ez} in terms of the four equations given by

R'[e!,e*b]= e)lC + ei =0, R’e',e%b]= et1 -b,=0,
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Rie'.e®b]=¢; +b,=0, R'[e'.e’.b]=b,+e;—e,=0. (6.2)

We now seek nonlocal symmetries and nonlocal conservation laws of PDE system (6.2). Follow-
ing the systematic procedure described in Ref. 1, we first construct potential systems for PDE
system (6.2). Note that each of the four equations in (6.2) is a divergence expression as it stands.
Hence for each equation in (6.2), one can introduce a three-component vector potential. This
yields 12 potential variables. From Theorem 6.1 in Ref. 1, it follows that in order to obtain
nonlocal symmetries of Maxwell’s equations (6.2), gauge constraints are required. Since the form
of gauge constraints that could yield nonlocal symmetries is not known a priori, a different
approach is chosen. In particular, the system of Maxwell’s equations (6.2) is equivalent to the
union of a divergence-type conservation law and a curl-type lower-degree conservation law, with
the latter requiring no gauge constraints.""" In particular, considering the electromagnetic field

tensors,
0 —e' —¢&? 0 € &
Fy=|e' 0 b |, Fi=|-¢'" 0 b |, (6.3)
e —-b 0 -2 =b 0

and the dual tensor of Fj;, given by *F k:%aiijij, where g is the Levi-Civita symbol, one can
rewrite Maxwell’s equations (6.2) as

dF=0, d*xF=0, (6.4)
where the differential forms are given, respectively, by
F=-e'dt ndx—e*dt ady + bdx andy, * F=bdt—e’dx+e'dy.

If the three-dimensional Minkowski space (¢,x,y) is treated as R3, Eqs. (6.4) can be written in the
conserved form M{t,x,y;e',e?,b},

div(,, [b.e®,—e'1=0, curl, )[b,—e*e']=0. (6.5)
Using the curl-type conservation law in (6.5), one obtains a determined singlet potential system
MW/{z,x,y:b,e' e, w} given by

b=w, —ezzwx,

elzwy, b,+e)2c—e;=0. (6.6)

Using the divergence-type conservation law in (6.5), one introduces a vector potential variable
a=(a’,a',a?) to obtain the underdetermined singlet potential system MA{z,x,y :b,e! ,ez,a} given
by

21 2_ 0 2
b=ax—ay, e =a,—a,

1_ 1 0 1, 2_
-e =a,—a,, ex+ey—0,

e, —b,=0, e +b,=0,

a?—a}c—a§=0, (6.7)

appended by a Lorentz gauge for determinedness.
From singlet potential systems (6.6) and (6.7), one obtains the couplet potential system
MAW({t,x,y;a,w} given by
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_ 21 _0_ 2
w,=a,-a,, -w.,=a,-a,
_1_ 0  0_ 1_ 2_
-wy=a,-a,, a,-a,—a,=0, (6.8)

where the components of the electric and magnetic fields have been excluded through appropriate
substitutions.

The corresponding tree of nonlocally related PDE systems for given PDE system
M{t,x,y;e',e?,b} (6.5) was presented in Fig. 1 in Ref. 1.

A. Nonlocal symmetries of Maxwell’s equations (6.2)

Maxwell’s equations (6.2) have eight point symmetries: three translations, one rotation, two
space-time rotations (boosts), one dilation, and one scaling, given by the infinitesimal generators,

i 9,9 |9
Xi=—, Xy=—, Xz=—, Xy=-y—+x——e—+e'—,
ot ox dy ax dy de de
X t Xo=ye +1——b X
=XT" 4t +b—S+e—, =y _—+t——-b—-¢—,
> g S T o ax T Taet b
i 9 4 A .
Xo=t—+x—+y—, Xg=e —G+e—S+b_—. (6.9)
at  dx T dy de de b

We now seek nonlocal symmetries of PDE system (6.2) that arise as point symmetries of its
potential systems. As discussed in Ref. 1, nonlocal symmetries can only arise from a potential
system if the latter is determined. The point symmetries of determined singlet potential systems
MW{t,x,y:b,e',e*, w} (6.6), MA{t,x,y:b,e',e*,a} (6.7), and determined couplet potential sys-
tem MAW/{¢,x,y;a,w} (6.8) are as follows.

Potential system MW{t,x,y;b,e',e?,w} (6.6) has eight point symmetries that project onto
point symmetries (6.9) of PDE system (6.2), plus three additional conformal-type point symme-
tries given by

J J J J
W, =(+x*+y?)— + 2tx— + 2ty— — (3te' + 2yb)—
1= y)(% ax P2 ( y )ael

Jd Jd J
— (3te? = 2xb)— — (2ye' = 2xe* +3th + w)— — tw—,
( V32~ Var "
Jd J J J
W, =2tx— + (2 + x> = y))— 4+ 2xy— — (3xe! + 2ye?)—
2 Py ( y)ax oy ( y )[k1
d Jd Jd
+ (2ye' = 3xe* + 2th + w)— + (2te® = 3xb)— — xw—,
@y )r?ez ( )ab w

J J J J
Wi =2ty— +2xy— + (2 = x> + y?)— = (3ye' = 2xe? + 2tb + w)—
3= 2y o+ 2xy ( y)ay (3y )ae'

d J J
— (2xe' +3ye?)— - (2te' +3yb)— — yw—, 6.10
(er’ye)aez (e+y)ab e (6.10)

that yield nonlocal symmetries of Maxwell’s equations (6.2).
Potential system MA{z,x,y;b,e',e* a} (6.7) has five point symmetries. They project onto
point symmetries X,, i=1,2,3,7,8 (6.9) of Maxwell’s equations (6.2).
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Couplet potential system MAW{z,x,y;a,w} (6.8) is potential system (4.2) for the wave
equation (with w=u, a’=v’). Hence it has duality-type symmetries (4.4). In particular, one can
write them as first-order symmetries,

9 P 9 P d P P
Z =a’— +a°— a0—+a0——w——a2—+al—,
%000 T el 02T gw  0d® T gal T daP

9 P 9 P 9 P P
Z =al—+a1,——al—+a1—+a2—+w—+a0—,
27%0p T ael TR0 T aw  C 9a® T da' T 9a®

P P P P P P P
Z =a2—+a2.——a2—+a2——al——a°—+w—. 6.11
3TNob T T aet 0t T T aw  ad®  da' T dd® ©6.11)

Symmetries (6.11) yield three additional nonlocal symmetries of Maxwell’s equations (6.2)."

B. Nonlocal conservation laws of Maxwell’s equations (6.2)

(A) The potential system MAW{t,x,y;a,w} with the Lorentz gauge. Potential system
MAW{z,x,y;a,w} (6.8) with the Lorentz gauge was used in Ref. 11 to obtain additional conser-
vation laws with explicit dependence of the multipliers on potential variables. As an example,
consider a linear combination of the equations of (6.8) with multipliers depending only on poten-
tial variables and their derivatives: A (A, W,dA,dW), o=1,...,4. The solution of the correspond-
ing determining equations1 yields eight sets of nontrivial multipliers given by

Ay =C W+ CA" + CA* + C,AY + Cs,
Ay=CiA%+ CAY + C3 W+ CAA] + Cg,
Ay=—CA' =W+ CAY + C,A7 + G,

Ay=C A+ CLA% - CA = C,W, + g,

where Cy,...,Cy are arbitrary constants. The constants Cs,...,Cg simply yield four divergence
expressions (6.8), whereas the constants Cy,...,C, yield conservation laws,
14

J J
W2+ (a)* + (@")? + (@®)?) + — (- a%a' = a*w) + —(a'w - a’a®) =0,
2 0t ox dy

d 19 d
2 0.1 2 0)2 12 2)2 1.2_ 0
aw-aa)+-—(=w+(@)+(@) -(@a))+—(aa —-aw)=0,
P )+ 37! (@) +(a’) = (@)) ay( )

J Jd 190
—(a'w+d’a®) + —(-a'a* - a"w) + =— (- w? = ()% + (a")* + (¢®)?) =0,
t ox 209y

d
a—t(wa? -a

d
Ow,—a'a; +d%a}) + ﬁ—(alw,— wa, +a’a’ — a*a))
X

1%
+ a—(azw,—wa?+a1a?—a0a}) =0. (6.12)
y

Since the fluxes in conservation laws (6.12) explicitly involve potential variables (and not the
combinations of derivatives of potential variables which are identified with the given dependent
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variables b,e',e? through potential equations), conservation laws (6.12) yield four nonlocal con-
servation laws of Maxwell’s equations (6.2).

(B) The potential system MAW{t,x,y;a,w} with an algebraic gauge. Now consider the
potential system MAW{z,x,y;a,w},

1 0_ 2

2
W=y —dy,

—wy=atl—a2, a’=0, (6.13)

which has the algebraic (spatial) gauge a®=0 instead of the Lorentz gauge. One can show that
choosing multipliers

A1:Al, A2:AO, A3:—W, A4:0,

one obtains an additional nonlocal conservation law of Maxwell’s equations (6.2) given by

J J 14

1 0 2 0y2 12

—(aw)+—(@w)+-—w -(a)" +(a)’)=0. 6.14

S @w+—( )2ay( (@) +(a’)?) (6.14)
Using respectively the algebraic gauges a’=0 and a'=0, one obtains two further nonlocal conser-
vation laws of Maxwell’s equations (6.2).

(C) The potential system MAW{t,x,y;a,w} with the divergence gauge. Now consider the

potential system MAW({z,x,y;a,w} with the divergence gauge, given by

1 0 2

2
Wi=ay—ay, —W,=d,—d,

%

_1_ 0 0, 1, 2_
y=a,—a,, a,+a,+a;=0. (6.15)

We again seek conservation law multipliers depending only on potential variables and their de-

rivatives: A (A,W,0A,0W), o=1,...,4. One can obtain an additional divergence-type conserva-
tion law
1o, , 0\2 12 2\2 J 2 0,1 9. 0.2
——w = (@) +(@) +@))+—(-aw-a’a)+ —(a'w-a"a”)=0 (6.16)
2 0t ox ady

following from the set of multipliers
A]:W, A2:A2, A3=—Al, A4:A0,

which yields a nonlocal conservation law of Maxwell’s equations (6.2).

(D) Other gauges. One can directly show that for conservation law multipliers depending on
potential variables and their first derivatives, no additional conservation laws arise for the potential
system MAW/{z,x,y;a,w} with Cronstrom or Poincaré gauges. Other gauges have not been ex-
amined.

VIl. NONLOCAL SYMMETRIES AND NONLOCAL CONSERVATION LAWS OF
MAXWELL’S EQUATIONS IN (3+1) DIMENSIONS

Now consider Maxwell’s equations M{z,x,y,z;e,b} (6.1) in four-dimensional Minkowski
space-time (x,x',x%,x%)=(t,x,y,2).

As it is written, each of the eight equations in (6.1) is a divergence-type conservation law. As
per Table II in Ref. 1 in n=4 dimensions, each divergence-type conservation law gives rise to
n(n—1)/2=6 potential variables, i.e, if one directly uses all equations of (6.1) to introduce poten-
tials, one obtains 48 scalar potential variables, and a highly underdetermined potential system.
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Instead of using divergence-type conservation laws, lower-degree conservation laws can be
effectively used, as follows."?

In four-dimensional Minkowski space-time, the 4 X4 metric tensor is given by 7*'=17,,
=diag(-1,1,1,1); m,»=0,1,2,3. The electromagnetic field tensor F, and its dual *F,, are
given by the matrices

0 —-¢' -¢* -¢° 0o b ¥ b
el 0 b b -b' 0 & -

Fuslp Zpp ot | w2 0 o |
e -b' 0 - e e

where the dual is defined by *FM,,z%suvaﬁFaﬁzésﬂmﬁn‘”nwFﬁ and €,,,s is the four-
dimensional Levi-Civita symbol. (In this section, Greek indices are assumed to take on the values
0,1,2,3, whereas Latin indices take on the values 1,2,3 and correspond to spatial coordinates.)

Through use of the differential 2-forms F=F, dx* ndx", *F'=*F, dx* ndx”, Maxwell’s equa-
tions (6.1) can be written as two conservation laws of degree 2,

dF=0, d*F=0. (7.1)

In particular, the equation dF=0 is equivalent to the four scalar equations div B=0, B,=
—curl E, and the equation d*F=0 is equivalent to the remaining four equations of (6.1).
Using Poincaré’s lemma, one introduces the magnetic potential a and the electric potential c,

F=da, #*F=dc, (7.2)

where a and ¢ are four-component one-forms a=a,dx*, c=c,dx* (a total of eight scalar potential
variables).
The corresponding determined singlet potential system MA{z,x,y,z;e,b,a} is given by

div E=0, E,=curl B,

1_ 0 1 2.0 2
e =a,-a, e =a,-a,
3_0_ 3 1_ 3 2
e'=a,—a;, b =ay-a,
3
b2=a;—ax, b3=ai—a;, (7.3)

the determined singlet potential system MC{z,x,y,z;e,b,c} is given by
div B=0, B,=-curl E,

1_3 2 2_ 1 3
e =cy—c;, e =c —cy,

3_ 2 1 I_1 0
e =cy—cy, b

Pr=ci-c b=c-c, (7.4)

v

and the determined couplet potential system AC{¢,x,y,z;a,c} is given by
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3.2 1 0 1 3_2 0
ay—a;=c,—c,, a;—a,=c;—cy,

2 1_3 0 0 1_3 2
—ay,=c¢;—C, a,—a,=¢,—C;

0_2_1_3 0_ 3_2_ 1
ay—a;=c,—c,, a,—a,=c;=c, (7.5)

where electric and magnetic field components have been excluded through substitutions.

The above potential systems are underdetermined. In particular, both a and ¢ are defined to
within arbitrary four-dimensional gradients. It is natural to use Lorentz gauges for these potentials
due to the Minkowski geometry, as well as the symmetry and linearity of Maxwell’s equations
(6.2). In Sec. VII B, we will show that other gauges are also useful for finding nonlocal conser-
vation laws.

A. Nonlocal symmetries
Consider the determined potential system which consists of six PDEs (7.5) appended by

Lorentz gauges,

0_ 1_ 2 3_ 0_ 1_ 2 3_
a,—a,—ay-a;=0, ¢, —c,—c;—c,=0. (7.6)

This appended potential system has 23 point symmetries including four space-time translations,
one dilation, six rotations/boosts, six internal rotations/boosts, one scaling, one duality-rotation,
and four conformal symmetries. In particular, the conformal symmetries,

J J J Jd
Xi== (P +x>+y?+ ) — - 2tx— = 2ty— = 27—
ot ox dy 0z

J J
+ (3ta® + xa' + ya® + za3)—0 + (xa® + 3ta" + z¢? - yc3)—l
da da

J J
+ (ya® + 3ta® — zc! +xc3)—2 +(za" + 3ta® + yc' - xcz)—3
da da’

J
+ Bt + xc' +ye? + 2 — + (- za2+ya3+xc0+3tcl)F
c

ac®

J J
+(za' —xa’ + yc® + 3tc2)@ +(—ya' +xa® + 2" + 3tc3);, (7.7)

J J J J
Xy =2tx— + (P + x> = y? = 22)— + 2xy— + 2xz—
2= 2007+ ( P T
0 1 2 3y_9 0 1 2 39
+(=3xa’+ta +zc"+yc’)—5—(ta” + 3xa’ +ya”+za’) —
da da
1 2 0_ . 3.9 1 3 0, .29
+(ya' +3xa”-zc" = tc’) — + (za’ = 3xa’ + yc’ + tc”)—
da da

J J
+(za® — ya® = 3xc° - tcl)ﬁ — (tc® + 3xc! + v + ZCS)F

J J
+(zd’ +ta® + yc' - 3xc2)(9—c2 +(—yad—ta® +z¢' - 3xc3)a—c3, (7.8)
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Jd J 9 J
Xy=2ty— 4+ 2xy— + (P = x> +y* = 22)— + 2yz—
3 yé’t y&x ( y )&y y %

J J
+(=3ya® —ta* + z¢' - )cc3)—0 +(=3ya' +xa® + zc° + tc3)—1
da da

J J
— (ta® + xa' + 3ta® + za3)—2 + (za® - 3ya® — xc° - tcl)—3
da da

J J
+(—za' +xa® - 3yc® - tc2)—O +(—za"—ta® - 3yc' + )ccz)—1
dc dc

J J
— (1t + xc' +3yc* + zc3)ﬂ + (xa® + ta' + zc? - 3yc3)$, (7.9)

J J J J
X =2iz— +2xz— +2yz2— + (P = x> = y? + ) —
4= UG w2 2y o Yo

J J
+(=3za’ +ta® + ye' + xc2)—0 +(=3za' +xa® -y - tcz)—1
da da
2 3 0, .19 0 1 2 39
+(=3za” +ya’ +xc’ +tc')— — (ta” + xa' +ya~ +3za’) —
da da’
1 2 0o_ .39 0, .2 1 39
+(ya —xa”—=3zc" —tc”) —5 + (va’ + ta” = 3zc + x¢°)—
dc dc

J
+(—xa’—ta' = 3z¢* + yc3)ﬁ —(tc® + xc' + ye? + 3z¢?) (7.10)
c

ac®’
can be shown to correspond to four nonlocal symmetries of Maxwell system M{z,x,y,z;e,b}
(6.1). In particular, one can show that the symmetry components corresponding to the electric and
magnetic fields e, b essentially depend on symmetric combinations of derivatives of the potential
variables and are not expressible through local variables via potential equations (7.3) and (7.4).

Additional nonlocal symmetries of Maxwell’s equations (6.1) in four-dimensional space-time
were obtained in Ref. 12 which arise as local (first-order) symmetries of determined potential
system AC{t,x,y,z;a,c} (7.5) appended by Lorentz gauges.

B. Nonlocal divergence-type conservation laws

Consider system AC{t,x,y,z;a,c} (7.5). We seek nonlocal conservation laws of Maxwell’s
equations (6.1) arising as local conservation laws of its potential system (7.5), using the direct
method, with multipliers depending only on potential variables and their derivatives:
A (A,C,0A,dC). (In each subsequent case, only first derivatives that are not dependent through
the equations of the system are included in the dependence of the multipliers, in order to exclude
trivial conservation laws.)

(A) Gauge-invariant nonlocal conservation laws. First, consider conservation laws arising
from underdetermined potential system (7.5). It follows that such conservation laws will hold for
any gauge. Following the direct method, one obtains 2090 linear PDEs for the six unknown
multipliers. Its complete solution yields seven independent sets of multipliers. Six of these sets
correspond to conservation laws that are PDEs (7.5) themselves. The other set is given by

A=C-CI=E', A=C!-Cl=E, A=C,-C)=E°,
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Ay=A}-AI=B', A=Al-A}=B’, A¢=A,-A =B (7.11)

The corresponding conservation law given by the divergence expression (exterior derivative),
dV =0, V'=gAF+ch *F, (7.12)
was found in Ref. 12 and is a gauge-invariant nonlocal conservation law of Maxwell’s equations

(6.1).

(B) Nonlocal conservation laws arising from algebraic gauges. As a specific example, con-
sider potential system (7.5) with the algebraic gauge a’=c’=0. Here we seek local conservation
laws arising from multipliers of the form

Ay=A,A,C,0A,0C), o=1,....6, A=(A"A"A%, C=(c',C',.

The complete solution of the corresponding determining equations yields seven sets of multipliers.
Six of these sets of multipliers correspond to PDEs (7.5) as before, and the other set of multipliers

given by
A=C, A=A i=1,2,3, (7.13)
yields the conservation law
14 a ..
Ea(amam + CpC) — g{sk’/(a’c/) =0, (7.14)

which is a nonlocal conservation law of Maxwell’s equations (6.1).

(C) Nonlocal conservation laws for the divergence gauge. Now, consider potential system
(7.5) appended with two divergence gauges

a’+val+al+a =0, c?+c;+c§+c§=0. (7.15)

We seek local conservation laws of the resulting determined potential system arising from multi-
pliers of the form

ALJA,C,0A,0C), o=1,...,8.
The solution of the determining equations yields 11 sets of multipliers, corresponding to

* the eight obvious conservation laws [PDEs (7.5) and (7.15)];
* gauge-invariant conservation law (7.12);
 two additional sets of multipliers,

A=C A=A i=1,2,3, A=A Ag=C°, (7.16)

A=Al Apy=—C, =123, A=-C" Ag=A". (7.17)
The additional conservation law corresponding to multipliers (7.16) is given by

10 d o
——(np a*a’) — —(aa* + Ok + eMigicl) = 0. (7.18)
20t " axk

X

The conservation law corresponding to multipliers (7.17) is given by

d Jd Jd Jd ,..[ .0 . d
vl 0_ u 0l _ kij| i 0 i 0 _
(%77" (a obc"c c &x”a ) &xks (a &xja +c o7xjc )—O. (7.19)

Conservation laws (7.18) and (7.19) are nonlocal conservation laws of Maxwell’s equations (6.1).
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(D) Nonlocal conservation laws for the Lorentz gauge. As a last example, for determined
potential system (7.5) and (7.6) with the Lorentz gauges, we obtain all local conservation laws
arising from zeroth-order multipliers,

A=A, AC), o=1,....8.

[First-order conservation laws of potential system (7.5) and (7.6) are given in Ref. 12.]
The solution of the multiplier determining equations yields 12 sets of multipliers. Eight of
them correspond to eight equations (7.5) and (7.6) which are divergence expressions as they stand.
The additional four sets of multipliers,

Ay ==poC' = p C°+pA° = p3A%,  Ay=—poC? = pA° = p,C° + psA,
A3==poC?+pA> = prA' = psC°  Ay=—poA' = p,A® = p,C? + p3C2,
As==ppA’+p C’ = p,A°=p3C', Ag=—ppA®—pC*+p,C' = p3A°,

Ay= POAO + PlAl +P2A2 +P3A3, Ag= POCO '*'PICl +P2C2 +P3C3, (7.20)

involving arbitrary constants py, ..., ps, respectively, yield four conservation laws which are non-
local conservation laws of Maxwell’s equations (6.1). In particular, the conservation law corre-
sponding to p;=1, py=p3=p4=0, is given by

149 Jd L
E&—t(|a|2+|c|2)—ﬁ(aoak+c0ck+8k”a’c’):0, (7.21)
X

and the other three are obtained from corresponding permutations of the indices.

Viil. NONLOCAL SYMMETRIES AND EXACT SOLUTIONS OF THE THREE-DIMENSIONAL
MHD EQUILIBRIUM EQUATIONS

Consider the PDE system of ideal MHD equilibrium equations in three space dimensions

given by
div(py) =0, div b=0, (8.1a)
! 2
pv X curl v—b X curl b - grad p=5p grad|v|*=0, (8.1b)
curl vXb=0. (8.1c)

In (8.1), the dependent variables are the plasma density p, the plasma velocity v=(v',v%,v?), the
pressure p, and the magnetic field b=(b" ,b2,b3); the independent variables are the spatial coor-
dinates (x,y,z). For closure, one must add an appropriate equation of state that relates pressure
and density to MHD equations (8.1).

It has been shown'®'"? that an infinite number of nonlocal symmetries exist for MHD
equations (8.1) for two different equations of state. These symmetries have been used in the
literature for the construction of physical plasma equilibrium solutions. Moreover, the symmetries
for incompressible equilibria (Sec. VIIT A) preserve solution stability, i.e., map stable magnetohy-
drodynamic equilibria into stable magnetohydrodynamic equilibria. For additional details and
examples, see Refs. 16, 19, 21, and 22.
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A. Nonlocal symmetries for incompressible MHD equilibria

As a first simplified example, consider the incompressible MHD equilibrium system
{x,y,z;b,v,p} with constant density (without loss of generality, p=1), given by

div v=0, div b=0, (8.2a)

1 2
v X curl v—b X curl b-grad p— Egrad|v| =0, (8.2b)
curl(v X b) =0. (8.2¢)

Using lower-degree conservation law (8.2c), one introduces a potential variable i,

v X b=grad . (8.3)

(Note that # has the direct physical meaning of a function enumerating magnetic surfaces, i.e.,
two-dimensional surfaces to which streamlines and magnetic field lines are tangent. In general,
every three-dimensional plasma domain is spanned by such surfaces.)

The resulting determined potential system IW{x,y,z;b,v,p,} is given by

div v=0, div b=0, vXb=grad ¢, (8.4a)

1
vXcurl v—b X curl b-grad p- 5grad|v|2 =0. (8.4b)

Now a comparison is made between the point symmetries of PDE systems (8.2) and (8.4). Incom-
pressible MHD equilibrium system (8.2) has ten point symmetries: translations in pressure and
two scalings, given, respectively, by

the interchange symmetry given by
.0 . d d
Xi=v'—+b'——-(b-v)—,
ab' ' ap

and the Euclidean group (three space translations and three rotations) given by

J J
Xp={o—+(b-grad){ 1 —,
p=fa+(b-grad)l. -

where the hook symbol denotes summation over vector components, Xx=(x,y,z), {=a+ (b Xx),
and a, b are arbitrary constant vectors in R3.

The first nine symmetries of MHD system (8.2) directly yield point symmetries of potential
system (8.4). In addition, potential system (8.4) has the obvious potential shift symmetry given by

)
l/’_aw’

as well as an infinite number of point symmetries given by
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. d . d J
Xo=M '—4+bl——=(b-v)—|, 8.5
(lﬂ)(v Pl ( )&p) (8.5)
where M (i) is an arbitrary smooth function of its argument. Point symmetries (8.5) yield nonlocal
symmetries of incompressible MHD equilibrium system (8.2). One can show that globally sym-
metries (8.5) transform a given solution (b,v,p) to a family of solutions (b’,v’,p’) given by](”23

x'=x, y' =y, z'=z,

b’ =b cosh M(i)) + v sinh M (i),
v’ =v cosh M() +b sinh M()),

p'=p+(b}=p'H2. (8.6)

Since transformations (8.6) depend on an arbitrary function M (i), that is, constant on magnetic
surfaces, they can be used to obtain families of physically interesting solutions from a known
MHD equilibrium solution. Transformations (8.6) preserve magnetic surfaces: b’ X v’ is parallel
to b Xv.

As a simple example, consider the well-known simple “transverse flow” solution of MHD
equilibrium system (8.2) given by

b=H(r)e,, v=o(r)(-ye +xe),

p(r)=F(r)-H*(r)/2, F(r)= f qw*(q)dq (8.7)
0

depending on two arbitrary functions H(r), w(r). This solution describes the differential rotation of
a constant-density ideal gas plasma around the z-axis, for the vertical magnetic field; r=vx~+y~ is
a cylindrical radius. The magnetic surfaces ¢/=const are cylinders r=const around the z-axis. In
Fig. 1(a), field lines of solution (8.7) tangent to the cylinder r=1 are shown for H(r)=¢™", w(r)
=2¢7%". Using transformations (8.6) with an arbitrary function M(i)=£(r), one obtains an infinite
family of solutions (8.7) for a noncollinear magnetic field and velocity given by

b = H(r)cosh(f(r))e, + v sinh(f(r)),

v =cosh(f(r))v + H(r)sinh(f(r))e,. (8.8)

Here the magnetic field lines and plasma streamlines are helices that are tangent to cylindrical

magnetic surfaces r=const, with slopes depending on r. For f(r):e"z, original and transformed
magnetic field lines and streamlines tangent to the cylinder =1 are shown in Fig. 1.

One can show'®? that for incompressible plasma equilibria with nonconstant plasma density,
there exist infinite sets of transformations that generalize (8.6), as follows. If the density p is
constant on magnetic surfaces, i.e.,

grad p-B=grad p- V=0,
then the infinite set of transformations,

x'=x, y' =y, z'=z,
c(P) b(W¥)

B' =b(V)B+c\pV, V'= + :
aWnp  a(P)
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FIG. 1. Magnetic field lines and streamlines of “transverse flow” MHD equilibrium solution (8.7) (a) and its transformed
version (8.8) (b). Magnetic field lines are shown with thick lines and plasma streamlines with thin lines.

1
p' =a*(V)p, P’ =CP+E(C|B|2—|B’|2), (8.9)
maps a given solution (B,V,P,p) of PDE system (8.1) into a family of solutions (B’,V’,P’,p")
with the same set of magnetic field lines. In (8.9), a(¥) and b(W) are arbitrary functions constant

on magnetic surfaces W=const and h*(¥)—c*(¥)=C=const.

B. Nonlocal symmetries for compressible adiabatic MHD equilibria

Now consider the system of compressible MHD equilibrium equations C{x,y,z;b,v,p,p}
given by

div(pv) =0, div b=0, (8.10a)

v-grad p+yp div v=0, (8.10b)
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1
pv X curl v—b X curl b-grad p- 2P grad|v|* =0, (8.10¢c)

curl(v X b) =0. (8.10d)

PDE system (8.10) describes plasmas corresponding to the ideal gas equation of state and under-
going an adiabatic process. Here the entropy S=p/p? is constant throughout the plasma domain.

A determined potential system CW{x,y,z;b,v,p,p, } is obtained, as before, through replac-
ing conservation law (8.10d) by potential equations (8.3). The resulting potential system
CW{x,y,z;b,v,p,p, ¥} has an infinite number of point symmetries given by the infinitesimal
generator,

a
iy’
where N(¢) is an arbitrary smooth function.'” Point symmetries (8.11) yield nonlocal symmetries

of compressible MHD equilibrium system (8.10). The finite form of the transformations of physi-
cal variables is readily found to be given by

xc=N<w>(v% —2pi) + ( f Nw)dw) (8.11)
v dap

!

x'=x, y'=y, 7=z, b'=b, p'=p,

v =f(pv, p =plf(y). (8.12)

Some generalizations of symmetry transformations (8.12) are considered in Refs. 16 and 20.

IX. DISCUSSION AND OPEN PROBLEMS

In this paper, the systematic framework for obtaining nonlocally related PDE systems in
multidimensions (7=3 independent variables), including procedures for obtaining determined
nonlocally related PDE systems, as presented in Ref. 1 has been illustrated with examples. Non-
local symmetries and nonlocal conservation laws have been used as a measure of “usefulness” of
nonlocally related PDE systems due to their straightforward computation and, often, transparent
physical meaning. In particular, new examples of nonlocal symmetries and nonlocal conservation
laws have been found for the following situations.

* A nonlocal symmetry arising from a nonlocally related subsystem in (2+ 1) dimensions (Sec.
II).

e Nonlocal symmetries and nonlocal conservation laws of a nonlinear “generalized plasma
equilibrium” PDE system in three space dimensions. [These nonlocal symmetries and non-
local conservation laws arise as local symmetries and conservation laws of a potential system
following from a lower-degree (curl-type) conservation law (Sec. III).]

* Nonlocal symmetries of dynamic Euler equations of incompressible fluid dynamics arising
from reduced systems for axial as well as helical symmetries (Sec. V).

* Nonlocal conservation laws of Maxwell’s equations in (2+ 1)-dimensional Minkowski space,
arising from a potential system appended with algebraic and divergence gauges (Sec. VI).

e Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations in
(3+1)-dimensional Minkowski space, arising from a potential system of degree 2, appended
with algebraic and divergence gauges (Sec. VII).

Moreover, known examples from the existing literature were discussed and synthesized within the
framework presented in Ref. 1.

The well-known Geroch group of nonlocal (potential) symmetries of Einstein’s equations
with a metric that admits a Killing vector has not been considered in this paper. This example is
a natural generalization of ideas discussed above on the calculus on manifolds. It uses a conser-
vation law of degree 1 to introduce a scalar potential variable. The symmetries are used in Refs.
24 and 25 to generate new exact solutions of Einstein’s equations. The Geroch group example

24,25
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reinforces the understanding that a given PDE system has to have an internal geometric structure
(in this case, a Killing vector) in order to have lower-degree conservation laws.

Although this paper has substantially synthesized and extended known results for multidimen-
sional nonlocally related PDE systems, many more examples are needed to arrive at a better
understanding of interconnections between nonlocally related PDE systems with n=3 indepen-
dent variables. The principal difficulty in performing computations lies in the complexity in
solving determining equations for symmetries and conservation laws in multidimensions. Open
problems include the following.

(1) Find examples of nonlinear PDE systems with n=3 independent variables, for which non-
local symmetries arise as local symmetries of a potential system following from a
divergence-type conservation law(s), appended with some gauge constraint(s).

(2) Find efficient procedures to obtain “useful” gauge constraints (e.g., yielding nonlocal sym-
metries and/or nonlocal conservation laws) for potential systems arising from divergence-
type conservation laws (as well as for underdetermined potential systems arising from lower-
degree conservation laws). In particular, do there exist further refinements of Theorems 6.1
and 6.3 of Ref. 1 that can rule out consideration of specific families of gauges for particular
classes of potential systems?

(3) Find further examples of lower-degree conservation laws for PDE systems of physical im-
portance. [Conservation laws of degree one (curl-type in R3) would be of particular interest,
since corresponding potential systems are determined.| Examples suggest that lower-degree
conservation laws are rather rare and are only expected to exist when a given PDE system
has a special geometrical structure. On the other hand, divergence-type conservation laws are
rather common.
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