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Chapter 1

Euclidean Spaces and Their
Geometry

By Euclidean n-space, we mean the space Rn of all (ordered) n-tuples of real
numbers. This is the domain where much, if not most, of the mathematics
taught in university courses such as linear algebra, vector analysis, differen-
tial equations etc. takes place. And although the main topic of this book
is algebra, the fact is that algebra and geometry can hardly be seperated:
we need a strong foundation in both. The purpose of this chapter is thus
to provide a succinct introduction to Euclidean space, with the emphasis on
its geometry.

1.1 Rn and the Inner Product.

1.1.1 Vectors and n-tuples

Throughout this text, R will stand for the real numbers. Euclidean n-space,
Rn, is by definition the set of all (ordered) n-tuples of real numbers. An
n-tuple is just a sequence consisting of n real numbers written in a column
like

r =


r1

r2
...
rn

 .

Sometimes the term sequence is replaced by the term or string or word. The
entries r1, . . . , rn are called the components of the n-tuple, ri being the ith
component. It’s important to note that the order of the components matters:
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e.g. 1
2
3

 6=
2

3
1

 .

Definition 1.1. The elements of Rn will be called vectors, and Rn itself will
be called a Euclidean n-space.

Vectors will be denoted by a bold faced lower case letters a,b, c . . . and
so forth. To simplify our notation a bit, we will often express a vector as a
row expression by putting

r1

r2
...
rn

 = (r1, r2, . . . , rn)T .

A word of explanation about the term vector is in order. In physics
books and in some calculus books, a vector refers any directed line segment
in R2 or R3. Of course, a vector r in Rn is a directed line segment starting
at the origin 0 = (0, 0, . . . , 0)T of Rn. This line segment is simply the set of
points of the form tr = (tr1, tr2, . . . trn)T , where 0 ≤ t ≤ 1. More generally,
the term vector may refer to the set of all directed line segments parallel
to a given segment with the same length. But in linear algebra, the term
vector is used to denote an element of a vector space. The vector space we
are dealing with here, as will presently be explained, is Rn, and its vectors
are therefore real n-tuples.

1.1.2 Coordinates

The Euclidean spaces R1, R2 and R3 are especially relevant since they phys-
ically represent a line, plane and a three space respectively. It’s a familiar
assumption that the points on a line L can be put into a one to one cor-
respondence with the real numbers R. If a ∈ R (that is, if a is an element
of R), then the point on L corresponding to a has distance |a| from the
origin, which is defined as the point corresponding to 0. Such a one to one
correspondence puts a coordinate system on L.

Next, we put a coordinate system called xy-coordinates on a plane by
selecting two (usually orthogonal) lines called an x-axis and a y-axis, each
having a coordinate system, and identifying a point P in the plane with the
element (p1, p2)T of R2, where p1 is the projection of P parallel to the y-axis
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onto the x-axis, and p2 is the projection of P parallel to the x-axis onto the
y-axis. This is diagrammed in the following figure.

FIGURE (Euclidean PLANE)

In the same manner, the points of Euclidean 3-space are parameterized
by the ordered 3-tuples of real numbers, i.e. R3; that is, that is, every point
is uniquely identified by assigning it xyz-coordinates. Thus we can also put
a coordinate system on R3.

FIGURE (Euclidean 3-space)

But just as almost everyone eventually needs more storage space, we
may also need more coordinates to store important data. For example, if
we are considering a linear equation such as

3x+ 4y + 5z + 6w = 0,

where the solutions are 4-tuples, we need R4 to store them. While extra
coordinates give more degrees of freedom, our geometric intuition doesn’t
work very well in dimensions bigger than three. This is where the algebra
comes in.

1.1.3 The Vector Space Rn

Vector addition in R2 or R3 is probably already very familiar to you. Two
vectors are added by a rule called the Parallelogram Law, which we will
review below. Since n may well be bigger than 3, we define vector addition
in a different, in fact much simpler, way by putting

a + b =


a1

a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 . (1.1)

Thus addition consists of adding the corresponding components of the two
vectors being added.
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There is a second operation called scalar multiplication, where a vector
a is dilated by a real number r. This is defined (in a rather obvious way) by

ra = r


a1

a2
...
an

 =


ra1

ra2
...
ran

 . (1.2)

These two operations satisfy the axioms which define a vector space.
They will be stated explicitly in Chapter 4. Scalar multiplication has an
obvious geometric interpretation. Multiplying a by r stretches or shrinks a
along itself by the factor |r|, changing its direction if r < 0. The geometric
interpretation of addition is the Parallelogram Law.
Parallelogram Law: The sum a+b is the vector along the diagonal of the
parallelogram with vertices at 0, a and b.

FIGURE
(PARALLELOGRAM LAW)

Thus vector addition (1.1) agrees with the classical way of defining ad-
dition. The Parallelogram Law in R2 by showing that the line through
(a, b)T parallel to (c, d)T meets the line through (c, d)T parallel to (a, b) at
(a+ c, b+ d)T . Note that lines in R2 can be written in the form rx+ sy = t,
where r, s, t ∈ R, so this is an exercise in writing the equation of a line and
computing where two lines meet. (See Exercise 1.29.)

Checking the Parallelogram Law in R3 requires that we first discuss how
to represent a line in R3. The Parallelogram Law in Rn, will follow in exactly
the same way. We will treat this matter below.

1.1.4 The dot product

We now take up measurements in Rn. The way we measure things such as
length and angles is to use an important operation called either the inner
product or the dot product.

Definition 1.2. The inner product of two vectors a = (a1, a2, . . . , an)T and
b = (b1, b2, . . . , bn)T in Rn is defined to be

a · b :=
n∑
i=1

aibi. (1.3)
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Note that if n = 1, a · b is the usual product. The inner product has
several important properties. Let a, b and c be arbitrary vectors and r any
scalar (i.e., r ∈ R). Then

(1) a · b = b · a,

(2) (a + b) · c = a · c + b · c,

(3) (ra) · b = a · (rb) = r(a · b), and

(4) a · a > 0 unless a = 0, in which case a · a = 0.

These properties are all easy to prove, so we will leave them as exercises.
The length |a| of a ∈ Rn is defined in terms of the dot product by putting

|a| =
√

a · a

= (
n∑
i=1

a2
i )

1/2.

This definition generalizes the usual square root of the sum of squares defi-
nition of length for vectors in R2 and R3. Notice that

|ra| = |r||a| .

The distance between two vectors a and b is defined as the length of
their difference a− b. Denoting this distance by d(a,b), we see that

d(a,b) = |a− b|
=

(
(a− b) · (a− b)

)1/2
=

( n∑
i=1

(ai − bi)2
)1/2

.

1.1.5 Orthogonality and projections

Next we come to an important notion which involves both measurement and
geometry. Two vectors a and b in Rn are said to be orthogonal (a fancy word
for perpendicular) if a · b = 0. Note that the zero vector 0 is orthogonal to
every vector, and by property (4) of the dot product, 0 is the only vector
orthogonal to itself. Two vectors in R2, say a = (a1, a2)T and b = (b1, b2)T ,
are orthogonal if and only if and only if a1b1 + a2b2 = 0. Thus if a1, b2 6= 0,
then a and b are orthogonal if and only if a2/a1 = −b1/b2. Thus, the slopes
of orthogonal vectors in R2 are negative reciprocals.
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For vectors in Rn, the meaning of orthogonality follows from the following
property.

Proposition 1.1. Two vectors a and b in Rn are orthogonal if and only if
|a + b| = |a− b|.

Let’s prove this geometrically, at least for R2. Consider the triangle with
vertices at 0,a,b. The hypotenuse of this triangle is a segment of length
|a−b|, which follows from the Parallelogram Law. Next consider the triangle
with vertices at 0,a,−b. The hypotenuse of this triangle is a segment of
length |a+b|, which also follows from the Parallelogram Law. Now suppose
|a + b| = |a−b|. Then by the side side side criterion for congruence, which
says that two triangles are congruent if and only if they have corresponding
sides of equal length, the two triangles are congruent. It follows that a and b
are orthogonal. For the converse direction, suppose a and b are orthogonal.
Then the side angle side criterion for congruence applies, so our triangles
are congruent. Thus |a + b| = |a− b|.

DIAGRAM FOR PROOF

In fact, it is much easier to use algebra (namely the dot product). The
point is that a ·b = 0 if and only if |a + b| = |a−b|. The details are left as
an exercise.

One of the most fundamental applications of the dot product is the
orthogonal decomposition of a vector into two or more mutually orthogonal
components.

Proposition 1.2. Let a,b ∈ Rn be given, and suppose that b 6= 0. Then
there exists a unique scalar r such that a = rb + c where b and c are
orthogonal. In fact,

r = (
a · b
b · b),

and

c = a− (
a · b
b · b)b.

Proof. We see this as follows: since we want rb = a − c, where c has the
property that b · c = 0, then

rb · b = (a− c) · b = a · b− c · b = a · b.
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As b · b 6= 0, it follows that r = a · b/b · b. The reader should check that

c = a − (
a · b
b · b)b is orthogonal to b. Thus we get the desired orthogonal

decomposition

a = (
a · b
b · b)b + c.

FIGURE 3
ORTHOGONAL DECOMPOSITION

Definition 1.3. The vector

Pb(a) = (
a · b
b · b)b

will be called the orthogonal projection of a on b.

By the previous Proposition, another way to express the orthogonal de-
composition of a into the sum of a component parallel to b and a component
orthogonal to b is

a = Pb(a) + (a− Pb(a)). (1.4)

Now suppose b and c are any two nonzero orthogonal vectors in R2, so
that b · c = 0. I claim that any vector a orthogonal to b is a multiple of c.
Reason: if b = (b1, b2)T and a = (a1, a2)T , then a1b1 + a2b2 = 0. Assuming,
for example, that b1 6= 0, then

a1 = −b2
b1
a2 =

c1
c2
a2,

and the claim follows.
It follows that for any a ∈ R2, there are scalars r and s so that a =

rb + sc. We can solve for r and s by using the dot product as before. For
example, a · b = rb · b. Hence we can conclude that if b 6= 0, then

rb = Pb(a),

and similarly, if c 6= 0, then

sc = Pc(a).

Therefore, we have now proved a fundamental fact which we call the pro-
jection formula for R2.
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Proposition 1.3. If b and c are two non zero mutually orthogonal vectors
in R2, then any vector a in R2 can be uniquely expressed as the sum of its
projections. In other words,

a = Pb(a) + Pc(a) = (
a · b
b · b)b + (

a · c
c · c )c. (1.5)

Projections can be written much more simply if we bring in the notion
of a unit vector. When b 6= 0, the unit vector along b is defined to be the
vector of length one given by the formula

b̂ =
b

(b · b)1/2
=

b
|b| .

(Check that b̂ is indeed of length one,) Unit vectors are also called directions.
Keep in mind that the direction â exists only when a 6= 0. It is obviously
impossible to assigne a direction to the zero vector. If b̂ and ĉ are unit
vectors, then the projection formula (1.5) takes the simpler form

a = (a · b̂)b̂ + (a · ĉ)ĉ. (1.6)

Example 1.1. Let b = (3, 4)T and c = (4,−3)T . Then b̂ =
1
5

(3, 4)T and

ĉ =
1
5

(4,−3)T . Let a = (1, 1). Thus, for example, Pb(a) =
7
5

(3, 4)T , and

a =
7
5

(3, 4)T +
1
5

(4,−3)T .

1.1.6 The Cauchy-Schwartz Inequality and Cosines

If a = b + c is an orthogonal decomposition in Rn (which just means that
b · c = 0), then

|a|2 = |b|2 + |c|2.

This is known as Pythagoras’s Theorem (see Exercise 4).
If we apply Pythagoras’ Theorem to (1.4), for example, we get

|a|2 = |Pb(a)|2 + |a− Pb(a)|2.

Hence,

|a|2 ≥ |Pb(a)|2 = (
a · b
b · b)2|b|2 =

(a · b)2

|b|2 .

Cross multiplying and taking square roots, we get a famous fact known as
the Cauchy-Schwartz inequality.
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Proposition 1.4. For any a, b ∈ Rn, we have

|a · b| ≤ |a||b|.

Moreover, if b 6= 0, then equality holds if and only if a and b are collinear.

Note that two vectors a and b are said to be collinear whenever one of
them is a scalar multiple of the other. If either a and b is zero, then auto-
matically they are collinear. If b 6= 0 and the Cauchy-Schwartz inequality is
an equality, then working backwards, one sees that |a− Pb(a)|2 = 0, hence
the validity of the second claim. You are asked to supply the complete proof
in Exercise 6.

Cauchy-Schwartz says that for any two unit vectors â and b̂, we have
the inequality

−1 ≤ â · b̂ ≤ 1.

We can therefore define the angle θ between any two non zero vectors a and
b in Rn by putting

θ := cos−1(â · b̂).

Note that we don’t try to define the angle when either a or b is 0. (Recall
that if −1 ≤ x ≤ 1, then cos−1 x is the unique angle θ such that 0 ≤ θ ≤ π
with cos θ = x.) With this definition, we have

a · b = |a||b| cos θ (1.7)

provided a and b are any two non-zero vectors in Rn. Hence if |a| = |b| = 1,
then the projection of a on b is

Pb(a) = (cos θ)b.

Thus another way of expressing the projection formula is

â = (cos β)b̂ + (cos γ)ĉ.

Here β and γ are the angles between a and b and c respectively, and cos β
and cos γ are the corresponding direction cosines.

In the case of R2, there is already a notion of the angle between two
vectors, defined in terms of arclength on a unit circle. Hence the expression
a · b = |a||b| cos θ is often (especially in physics) taken as definition for the
dot product, rather than as definition of angle, as we did here. However,
defining a · b in this way has the disadvantage that it is not at all obvious
that elementary properties such as the identity (a+b) ·c = a ·c+b ·c hold.
Moreover, using this as a definition in Rn has the problem that the angle
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between two vectors must also be defined. The way to solve this is to use
arclength, but this requires bringing in an unnecessary amount of machinery.
On the other hand, the algebraic definition is easy to state and remember,
and it works for any dimension. The Cauchy-Schwartz inequality, which is
valid in Rn, tells us that it possible two define the angle θ between a and b
via (1.7) to be θ := cos−1(â · b̂).

1.1.7 Examples

Let us now consider a couple of typical applications of the ideas we just
discussed.

Example 1.2. A film crew wants to shoot a car moving along a straight
road with constant speed x km/hr. The camera will be moving along a
straight track at y km/hr. The desired effect is that the car should appear
to have exactly half the speed of the camera. At what angle to the road
should the track be built?

Solution: Let θ be the angle between the road and the track. We need
to find θ so that the projection of the velocity vector vR of the car on the
track is exactly half of the velocity vector vT of the camera. Thus(vR · vT

vT · vT
)
vT =

1
2
vT

and vR · vT = |vR||vT | cos θ. Now |vR| = x and |vT | = y since speed is by
definition the magnitude of velocity. Thus

xy

y2
cos θ =

1
2

Consequently, cos θ = y/2x. In particular the camera’s speed cannot exceed
twice the car’s speed.

Example 1.3. What we have seen so far can be applied to finding a formula
for the distance from a point v = (v1, v2)T in R2 to a line ax + by =
c. Of course this problem can be solved algebraically by considering the
line through (v1, v2)T orthogonal to our line. A more illuminating way to
proceed, however, is to use projections since they will give a method which
can be used in any Rn, whereas it isn’t immediately clear how to extend
the first method. The way to proceed, then, is to begin by converting the
line into a more convenient form. The way we will do this is to choose two
points (x0, y0)T = a and (x1, y1)T = b on the line. Then the line can also be
represented as the set of all points of the form a+ tc, where c = b−a. Since
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distance is invariant under translation, we can replace our original problem
with the problem of finding the distance d from w = v − a to the line tc.
Since this distance is the length of the component of w orthogonal to c, we
get the formula

d = |w − Pc(w)|
=

∣∣∣w − (w · c
c · c

)
c
∣∣∣

We will give another way to express this distance below.

Example 1.4. Suppose ` is the line through (1, 2)T and (4,−1)T . Let us
find the distance d from (0, 6)T to `. Since (4,−1)T − (1, 2)T = (3,−3)T , we
may as well take

c = 1/
√

2(1,−1)T .

We can also take w = (0, 6)T − (1, 2)T , although we could also use (0, 6)T −
(4,−1)T . The formula then gives

d =
∣∣∣∣(−1, 4)T −

(
(−1, 4)T · (1,−1)T√

2

)
(1,−1)T√

2

∣∣∣∣
=

∣∣∣∣(−1, 4)T −
(
−5
2

)
(1,−1)T

∣∣∣∣
=

∣∣∣∣∣
(

3
2
,
3
2

)T ∣∣∣∣∣
=

3
√

2
2
.
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Exercises

Exercise 1.1. Verify the four properties of the dot product on Rn.

Exercise 1.2. Verify the assertion that b·c = 0 in the proof of Theorem 1.2.

Exercise 1.3. Prove the second statement in the Cauchy-Schwartz inequal-
ity that a and b are collinear if and only if |a · b| = |a||b|.

Exercise 1.4. A nice application of Cauchy-Schwartz is that if a and b are
unit vectors in Rn such that a · b = 1, then a = b. Prove this.

Exercise 1.5. Show that Pb(rx + sy) = rPb(x) + sPb(y) for all x,y ∈ Rn
and r, s ∈ R. Also show that Pb(x) · y = x · Pb(y).

Exercise 1.6. Prove the vector version of Pythagoras’s Theorem. If c =
a + b and a · b = 0, then |c|2 = |a|2 + |b|2.

Exercise 1.7. Show that for any a and b in Rn,

|a + b|2 − |a− b|2 = 4a · b.

Exercise 1.8. Use the formula of the previous problem to prove Proposition
2.1, that is to show that |a + b| = |a− b| if and only if a · b = 0.

Exercise 1.9. Prove the law of cosines: If a triangle has sides with lengths
a, b, c and θ is the angle between the sides of lengths a and b, then c2 =
a2 + b2 − 2ab cos θ. (Hint: Consider c = b− a.)

Exercise 1.10. Another way to motivate the definition of the projection
Pb(a) is to find the minimum of |a− tb|2. Find the minimum using calculus
and interpret the result.

Exercise 1.11. Orthogonally decompose the vector (1, 2, 2) in R3 as p + q
where p is required to be a multiple of (3, 1, 2).

Exercise 1.12. Use orthogonal projection to find the vector on the line
3x+ y = 0 which is nearest to (1, 2). Also, find the nearest point.

Exercise 1.13. How can you modify the method of orthogonal projection
to find the vector on the line 3x+ y = 2 which is nearest to (1,−2)?
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1.2 Lines and planes.

1.2.1 Lines in Rn

Let’s consider the question of representing a line in Rn. First of all, a line in
R2 is cut out by a singlle linear equation ax+ by = c. But a single equation
ax+ by+ cz = d cuts out a plane in R3, so a line in R3 requires at least two
equations, since it is the intersection of two planes. For the general case, Rn,
we need a better approach. The point is that every line is determined two
points. Suppose we want to express the line through a and b Rn. Notice
that the space curve

x(t) = a + t(b− a) = (1− t)a + tb, (1.8)

where t varies through R, has the property that x(0) = a, and x(1) = b.
As you can see from the Parallelogram Law, this curve traces out the line
through a parallel to b− a as in the diagram below.

Equation (1.8) lets us define a line in any dimension. Hence suppose a
and c are any two vectors in Rn such that c 6= 0.

Definition 1.4. The line through a parallel to c is defined to be the path
traced out by the curve x(t) = a + tc as t takes on all real values. We will
refer to x(t) = a + tc as the vector form of the line.

In this form, we are defining x(t) as a vector-valued function of t. The
vector form x(t) = a + tc leads directly to parametric form of the line. In
the parametric form, the components x1, . . . , xn of x are expressed as linear
functions of t as follows:

x1 = a1 + tc1, x2 = a2 + tc2, . . . , xn = an + tcn. (1.9)

Letting a vary while b is kept fixed, we get the family of all lines of the
form x = a + tc. Every point of Rn is on one of these lines, and two lines
either coincide or don’t meet at all. (The proof of this is an exercise.) We
will say that two lines a+ tc and a′+ tc′ are parallel if c and c′ are collinear.
We will also say that the line a + tc is parallel to c.

Example 1.5. Let’s find an expression for the line in R4 passing through
(3, 4,−1, 0) and (1, 0, 9, 2). We apply the trick in (1.8). Consider

x = (1− t)(3, 4,−1, 0) + t(1, 0, 9, 2).
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Clearly, when t = 0, x = (3, 4,−1, 0), and when t = 1, then x = (1, 0, 9, 2).
We can also express x in the vector form x = a + t(b − a) where a =
(3, 4,−1, 0) and b = (1, 0, 9, 2). The parametric form is

x1 = −2t+ 1, x2 = −4t+ 4, x3 = 10t + 1, x4 = 2t.

Example 1.6. The intersection of two planes in R3 is a line. Let’s show this
in a specific example, say the planes are x+y+z = 1 and 2x−y+2z = 2. By
inspection, (1, 0, 0) and (0, 0, 1) lie on both planes, hence on the intersection.
The line through these two points is (1− t)(1, 0, 0) + t(0, 0, 1) = (1− t, 0, t).
Setting x = 1 − t, y = 0 and z = t and substituting this into both plane
equations, we see that this line does indeed lie on both planes, hence is in
the intersection. But by staring at the equations of the planes (actually by
subtracting twice the first equation from the second), we see that every point
(x, y, z) on the intersection has y = 0. Thus all points on the intersection
satisfy y = 0 and x+ z = 1. But any point of this form is on our line, so we
have shown that the intersection of the two planes is the line.

Before passing to planes, let us make a remark about the Parallelogram
Law for Rn, namely that a + b is the vector along the diagonal of the
parallelogram with vertices at 0, a and b. This is valid in any Rn, and can
be seen by observing (just as we noted for n = 2) that the line through a
parallel to b meets the line through b parallel to a at a + b. We leave this
as an exercise.

1.2.2 Planes in R3

The solution set of a linear equation

ax+ by + cz = d (1.10)

in three variables x, y and z is called a plane in R3. The linear equation
(1.10) expresses that the dot product of the vector a = (a, b, c)T and the
variable vector x = (x, y, z)T is the constant d:

a · x = d.

If d = 0, the plane passes through the origin, and its equation is said to
be homogeneous. In this case it is easy to see how to interpret the plane
equation. The plane ax+ by + cz = 0 consists of all (r, s, t)T orthogonal to
a = (a, b, c)T . For this reason, we call (a, b, c)T a normal to the plane. (On
a good day, we are normal to the plane of the floor.)



15

Example 1.7. Find the plane through (1, 2, 3)T with nomal (2, 3, 5)T . Now
a = (2, 3, 5)T , so in the equation (1.10) we have d = (2, 3, 5)T ·(1, 2, 3)T = 23.
Hence the plane is 2x+ 3y + 5z = 23.

Holding a 6= 0 constant and varying d gives a family of planes filling up
R3 such that no two distinct planes have any points in common. Hence the
family of planes ax+by+cz = d (a, b, c fixed and d arbitrary) are all parallel.
By drawing a picture, one can see from the Parallelogram Law that every
vector (r, s, t)T on ax+ by+ cz = d is the sum of a fixed vector (x0, y0, z0)T

on ax+ by + cz = d and an arbitrary vector (x, y, z)T on the parallel plane
ax+ by + cz = 0 through the origin.

FIGURE

1.2.3 The distance from a point to a plane

A nice application of our projection techniques is to be able to write down a
simple formula for the distance from a point to a plane P in R3. The problem
becomes quite simple if we break it up into two cases. First, consider the
case of a plane P through the origin, say with equation ax + by + cz = 0.
Suppose v is an arbitrary vector in R3 whose distance to P is what we
seek. Now we can decompose v into orthogonal components where one of
the components is along the normal n = (a, b, c)T , say

v = Pn(v) + (v − Pn(v)), (1.11)

where
Pn(v) =

(v · n
n · n

)
n.

It’s intuitively clear that the distance we’re looking for is

d = |Pn(v)| = |v · n|/
√

n · n,

but we need to check this carefully. First of all, we need to say that the
distance from v to P means the minimum value of |v− r|, where r is on P .
To simplify notation, put p = Pn(v) and q = v − p. Since v = p + q,

v − r = p + q− r.

Since P contains the origin, q − r lies on P since both q and r do, so by
Pythagoras,

|v − r|2 = |p|2 + |q− r|2.
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But p is fixed, so |v−r|2 is minimized by taking |q−r|2 = 0. Thus |v−r|2 =
|p|2, and the distance D(v, P ) from v to P is indeed

D(v, P ) = |p| = |v · n|
(n · n)

1
2

= |v · n̂|.

Also, the point on P nearest v is q. If v = (r, s, t)T , the distance is

D(v, P ) =
|ar + bs+ ct|√
a2 + b2 + c2

.

We now attack the general problem by reducing it to the first case. We
want to find the distance D(v, Q) from v to an arbitrary plane Q in R3.
Suppose the equation of Q is ax+ by+ cz = d, and let c be a vector on Q. I
claim that the distance from v to Q is the same as the distance from v−c to
the plane P parallel to Q through the origin, i.e. the plane ax+ by+ cz = 0.
Indeed, we already showed that every vector on Q has the form w+c where
w is on P . Thus let r be the vector on Q nearest v. Since d(v, r) = |v−r|, it
follows easily from r = w + c that d(v, r) = d(v− c,w). Hence the problem
amounts to minimizing d(v − c,w) for w ∈ P , which we already solved.
Thus

D(v, Q) = |(v − c) · n̂|,

which reduces to the formula

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
,

since
c · n̂ =

c · n
(n · n)

1
2

=
d√

a2 + b2 + c2
.

In summary, we have

Proposition 1.5. Let Q be the plane in R3 defined by ax+by+cz = d, and
let v be any vector in R3, possibly lying on Q. Let D(v, Q) be the distance
from v to Q. Then

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
.

In fact, the problem we just solved has a far more general version known
as the least squares problem. We will come back to this topic in a later
chapter.
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Ii is as an exercises to find a formula for the distance from a point to a
line. A more challenging exercise is to find the distance between two lines.
If one of the lines is parallel to a and the other is parallel to b, then it turns
out that what is needed is a vector orthogonal to both a and b. This is the
same problem encountered if one wants to find the plane through three non
collinear points. What is needed is a vector orthogonal to q− p and r− p.
Both of these problems are solved by using the cross product, which we take
up in the next section.
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Exercises

Exercise 1.14. Express the line ax+ by = c in R2 in parametric form.

Exercise 1.15. Express the line with vector form (x, y)T = (1,−1)T +
t(2, 3)T in the form ax+ by = c.

Exercise 1.16. Find the line through the points a and b in the following
cases:

(i) a = (1, 1,−3)T and b = (6, 0, 2)T , and

(ii) a = (1, 1,−3, 4)T and b = (6, 0, 2,−3)T .

Exercise 1.17. Prove the Parallelogram Law in Rn for any n.

Exercise 1.18. Find the line of intersection of the planes 3x − y + z = 0
and x− y − z = 1 in parametric form.

Exercise 1.19. Do the following:

(a) Find the equation in vector form of the line through (1,−2, 0)T parallel
to (3, 1, 9)T .

(b) Find the plane perpendicular to the line of part (a) passing through
(0, 0, 0)T .

(c) At what point does the line of part (a) meet the plane of part (b)?

Exercise 1.20. Determine whether or not the lines (x, y, z)T = (1, 2, 1)T +
t(1, 0, 2)T and (x, y, z)T = (2, 2,−1)T + t(1, 1, 0)T intersect.

Exercise 1.21. Consider any two lines in R3. Suppose I offer to bet you
they don’t intersect. Do you take the bet or refuse it? What would you do
if you knew the lines were in a plane?

Exercise 1.22. Use the method of § 1.2.2 to find an equation for the plane
in R3 through the points (6, 1, 0)T , (1, 0, 1)T and (3, 1, 1)T

Exercise 1.23. Compute the intersection of the line through (3,−1, 1)T

and (1, 0, 2)T with the plane ax+ by + cz = d when

(i) a = b = c = 1, d = 2,

(ii) a = b = c = 1 and d = 3.

Exercise 1.24. Find the distance from the point (1, 1, 1)T to

(i) the plane x+ y + z = 1, and

(ii) the plane x− 2y + z = 0.
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Exercise 1.25. Find the orthogonal decomposition (1, 1, 1)T = a+b, where
a lies on the plane P with equation 2x+ y + 2z = 0 and a · b = 0. What is
the orthogonal projection of (1, 1, 1)T on P?

Exercise 1.26. Here’s another bet. Suppose you have two planes in R3 and
I have one. Furthermore, your planes meet in a line. I’ll bet that all three
of our planes meet. Do you take this bet or refuse it. How would you bet if
the planes were all in R4 instead of R3?

Exercise 1.27. Show that two lines in Rn (any n) which meet in two points
coincide.

Exercise 1.28. Verify that the union of the lines x = a + tb, where b is
fixed but a is arbitrary is Rn. Also show that two of these lines are the same
or have no points in common.

Exercise 1.29. Verify the Parallelogram Law (in Rn) by computing where
the line through a parallel to b meets the line through b parallel to a.
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1.3 The Cross Product

1.3.1 The Basic Definition

The cross product of two non parallel vectors a and b in R3 is a vector
in R3 orthogonal to both a and b defined geometrically as follows. Let P
denote the unique plane through the origin containing both a and b, and
let n be the choice of unit vector normal to P so that the thumb, index
finger and middle finger of your right hand can be lined up with the three
vectors a,b and n without breaking any bones. In this case we call (a,b,n)
a right handed triple. (Otherwise, it’s a left handed triple.) Let θ be the
angle between a and b, so 0 < θ < π. Then we put

a× b = |a||b| sin θn. (1.12)

If a and b are collinear, then we set a × b = 0. While this definition
is very pretty, and is useful because it reveals the geometric properties of
the cross product, the problem is that, as presented, it isn’t computable
unless a · b = 0 (since sin θ = 0). For example, one sees immediately that
|a× b| = |a||b| sin θ.

To see a couple of examples, note that (i, j,k) and (i,−j,−k) both are
right handed triples, but (i,−j,k) and (j, i,k) are left handed. Thus i×j = k,
while j× i = −k. Similarly, j×k = i and k× j = −i. In fact, these examples
point out two of the general properties of the cross product:

a× b = −b× a,

and
(−a)× b = −(a× b).

The question is whether or not the cross product is computable. In fact, the
answer to this is yes. First, let us make a temporary definition. If a,b ∈ Rn,
put

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

We call a ∧ b the wedge product of a and b. Notice that a ∧ b is defined
without any restrictions on a and b. It is not hard to verify by direct
computation that a ∧ b is orthogonal to both a and b, so a ∧ b = r(a× b)
for some r ∈ R.

The key fact is the following
Proposition 1.6. For all a and b in R3,

a× b = a ∧ b.
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This takes care of the computability problem since a ∧ b is easily com-
puted. An outline the proof goes as follows. The wedge product and the
dot product are related by the following identity:

|a ∧ b|2 + (a · b)2 = (|a||b|)2. (1.13)

The proof is just a calculation, and we will omit it. Since a ·b = |a||b| cos θ,
and since sin θ ≥ 0, we deduce that

|a ∧ b| = |a||b| sin θ. (1.14)

It follows that a∧b = ±|a||b| sin θn. The fact that the sign is + proven by
showing that

(a ∧ b) · n > 0.

The proof of this step is a little tedious so we will omit it.

1.3.2 Some further properties

Before giving applications, we let us give some of the algebraic properties of
the cross product.
Proposition 1.7. Suppose a,b, c ∈ R3. Then :

(i) a× b = −b× a,

(ii) (a + b)× c = a× c + b× c, and

(iii) for any r ∈ R,
(ra)× b = a× (rb) = r(a× b).

Proof. The first and third identities are obvious from the original definition.
The second identity, which says that the cross product is distributive, is not
at all obvious from the definition. On the other hand, it is easy to check
directly that

(a + b) ∧ c = a ∧ c + b ∧ c,

so (ii) has to hold also since ⊗ = ∧.

Recalling that R2 can be viewed as the complex numbers, it follows that
vectors in R1 = R and R2 can be multiplied, where the multiplication is both
associative and commutative. Proposition 1.7 says that the cross product
gives a multiplication on R3 which is distributive, but not commutative. It is
in fact anti-commutative. Also, the cross product isn’t associative: (a×b)×c
and a × (b × c) are not in general equal. Instead of the usual associative
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law for multiplication, the cross product satisfies a famous identity known
as the Jacobi identity:

a× (b× c) + b× (c× a) + c× (a× b) = 0.

The Jacobi Identity and the anti-commutativity a×b = −b×a are the basic
axioms for what is called a Lie algebra, which is an important structure in
abstract algebra with many applications in mathematics and physics. The
next step in this progression of algebras (that is, a product on R4 is given by
the the quaternions, which are fundamental, but won’t be considered here.

1.3.3 Examples and applications

The first application is to use the cross product to find a normal n to the
plane P through p,q, r, assuming they don’t all lie on a line. Once we have
n, it is easy to find the equation of P . We begin by considering the plane
Q through the origin parallel to P . First put a = q − p and b = r − p.
Then a,b ∈ Q, so we can put n = a × b. Suppose n = (a, b, c)T and
p = (p1, p2, p3)T . Then the equation of Q is ax + by + cz = 0, and the
equation of P is obtained by noting that

n · ((x, y, z)T − (p1, p2, p3)T ) = 0,

or, equivalently,
n · (x, y, z)T = n · (p1, p2, p3)T .

Thus the equation of P is

ax+ by + cz = ap1 + bp2 + cp3.

Example 1.8. Let’s find an equation for the plane in R3 through (1, 2, 1)T ,
(0, 3,−1)T and (2, 0, 0)T . Using the cross product, we find that a normal
is (−1, 2, 1)T × (−2, 3,−1)T = (−5,−3, 1)T . Thus the plane has equation
−5x − 3y + z = (−5,−3, 1)T · (1, 2, 1)T = −10. One could also have used
(0, 3,−1)T or (2, 0, 0)T on the right hand side with the same result, of course.

The next application is the area formula for a parallelogram.

Proposition 1.8. Let a and b be two noncollinear vectors in R3. Then the
area of the parallelogram spanned by a and b is |a× b|.

We can extend the area formula to 3-dimensional (i.e. solid) parallelo-
grams. Any three noncoplanar vectors a, b and c in R3 determine a solid
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parallelogram called a parallelepiped. This parallelepiped P can be explic-
itly defined as

P = {ra + sb + tc | 0 ≤ r, s, t ≤ 1}.

For example, the parallelepiped spanned by i, j and k is the unit cube in R3

with vertices at 0, i, j, k, i + j, i + k, j + k and i + j + k. A parallelepiped
has 8 vertices and 6 sides which are pairwise parallel.

To get the volume formula, we introduce the triple product a · (b× c) of
a, b and c.

Proposition 1.9. Let a, b and c be three noncoplanar vectors in R3. Then
the volume of the parallelepiped they span is |a · (b× c)|.

Proof. We leave this as a worthwhile exercise.

By the definition of the triple product,

a · (b× c) = a1(b2c3 − b3c2)− a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

The right hand side of this equation is a 3× 3 determinant which is written

det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

We’ll see somewhat later how the volume of n-dimensional parallelepiped is
expressed as the absolute value of a certain n × n determinant, which is a
natural generalization of the triple product.

Example 1.9. We next find the formula for the distance between two lines.
Consider two lines `1 and `2 in R3 parameterized as a1 + tb1 and a2 + tb2

respectively. We want to show that the distance between `1 and `2 is

d = |(a1 − a2) · (b1 × b2)|/|b1 × b2|.

This formula is somewhat surprising because it says that one can choose
any two initial points a1 and a2 to compute d. First, let’s see why b1 × b2

is involved. This is in fact intuitively clear, since b1 × b2 is orthogonal to
the directions of both lines. But one way to see this concretely is to take
a tube of radius r centred along `1 and expand r until the tube touches
`2. The point v2 of tangency on `2 and the center v1 on `1 of the disc
(orthogonal to `1) touching `2 give the two points so that d = d(v1,v2),
and, by construction, v1 − v2 is parallel to b1 × b2. Now let vi = ai + tibi
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for i = 1, 2, and denote the unit vector in the direction of b1 × b2 by û.
Then

d = |v1 − v2|

= (v1 − v2) · (v1 − v2)
|v1 − v2|

= |(v1 − v2) · û|
= |(a1 − a2 + t1b1 − t2b2) · û|
= |(a1 − a2) · û|.

The last equality is due to the fact that b1×b2 is orthogonal to t1b1− t2b2

plus the fact that the dot product is distributive. This is the formula we
sought.

For other applications of the cross product, consult Vector Calculus by
Marsden and Tromba.
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Exercises

Exercise 1.30. Using the cross product, find the plane through the origin
that contains the line through (1,−2, 0)T parallel to (3, 1, 9)T .

Exercise 1.31. Using the cross product, find
(a) the line of intersection of the planes 3x+2y−z = 0 and 4x+5y+z = 0,

and
(b) the line of intersection of the planes 3x+2y−z = 2 and 4x+5y+z = 1.

Exercise 1.32. Is x× y orthogonal to 2x− 3y? Generalize this property.

Exercise 1.33. Find the distance from (1, 2, 1)T to the plane containing
1, 3, 4)T , (2,−2,−2)T , and (7, 0, 1)T . Be sure to use the cross product.

Exercise 1.34. Formulate a definition for the angle between two planes in
R3. (Suggestion: consider their normals.)

Exercise 1.35. Find the distance from the line x = (1, 2, 3)T + t(2, 3,−1)T

to the origin in two ways:
(i) using projections, and
(ii) using calculus, by setting up a minimization problem.

Exercise 1.36. Find the distance from the point (1, 1, 1)T to the line x =
2 + t, y = 1− t, z = 3 + 2t,

Exercise 1.37. Show that in R3, the distance from a point p to a line
x = a + tb can be expressed in the form

d =
|(p− a)× b|

|b| .

Exercise 1.38. Prove the identity

|a× b|2 + (a · b)2 = (|a||b|)2.

Deduce that if a and b are unit vectors, then

|a× b|2 + (a · b)2 = 1.

Exercise 1.39. Show that

a× (b× c) = (a · c)b− (a · b)c.

Deduce from this a× (b× c) is not necessarily equal to (a×b)× c. In fact,
can you say when they are equal?


