
Chapter 9

The Diagonalization
Theorems

Let V be a finite dimensional vector space and T : V → V be a linear
transformation. One of the most basic questions one can ask about T is
whether it is semi-simple, that is, whether T admits an eigenbasis. In matrix
terms, this is equivalent to asking if T can be represented by a diagonal
matrix. The purpose of this chapter is to study this question. Our main
goal is to prove the Principal Axis (or Spectral) Theorem. After that, we will
classify the unitarily diagonalizable matrices, that is the complex matrices
of the form UDU−1, where U is unitary and D is diagonal.

We will begin by considering the Principal Axis Theorem in the real
case. This is the fundamental result that says every symmetric matrix ad-
mits an orthonormal eigenbasis. The complex version of this fact says that
every Hermitian matrix admits a Hermitian orthonormal eigenbasis. This
result is indispensable in the study of quantum theory. In fact, many of the
basic problems in mathematics and the physical sciences involve symmetric
or Hermitian matrices. As we will also point out, the Principal Axis Theo-
rem can be stated in general terms by saying that every self adjoint linear
transformation T : V → V on a finite dimensional inner product space V
over R or C admits an orthonormal or Hermitian orthonormal eigenbasis.
In particular, self adjoint maps are semi-simple.
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9.1 The Real Case

We will now prove
Theorem 9.1. Let A ∈ Rn×n be symmetric. Then all eigenvalues of A are
real, and there exists an orthonormal basis of Rn consisting of eigenvectors
of A. Consequently, there exists an orthogonal matrix Q such that

A = QDQ−1 = QDQT ,

where D ∈ Rn×n is diagonal.

There is an obvious conversely of the Principal Axis Theorem. If A =
QDQ−1, where Q is orthogonal and D is diagonal, then A is symmetric.
This is rather obvious since any matrix of the form CDCT is symmetric,
and Q−1 = QT for all Q ∈ O(n,R).

9.1.1 Basic Properties of Symmetric Matrices

The first problem is to understand the geometric significance of the condition
aij = aji which defines a symmetric matrix. It turns out that this property
implies several key geometric facts. The first is that every eigenvalue of
a symmetric matrix is real, and the second is that two eigenvectors which
correspond to different eigenvalues are orthogonal. In fact, these two facts
are all that are needed for our first proof of the Principal Axis Theorem.
We will give a second proof which gives a more complete understanding of
the geometric principles behind the result.

We will begin by formulating the condition aij = aji in a more useful
form.
Proposition 9.2. A matrix A ∈ Rn×n is symmetric if and only if

vTAw = wTAv

for all v,w ∈ Rn.

Proof. To see this, notice that since vTAw is a scalar, it equals its own
transpose. Thus

vTAw = (vTAw)T = wTATv.

So if A = AT , then
vTAw = wTAv.

For the converse, use the fact that

aij = eTi Aej ,
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so if eTi Aej = eTj Aei, then aij = aji.

The linear transformation TA defined by a symmetric matrix A ∈ Rn×n
is called self adjoint. Thus TA : Rn → Rn is self adjoint if and only if
TA(v) ·w = v · TA(w) for all v,w ∈ Rn.

We now establish the two basic properties mentioned above. We first
show
Proposition 9.3. Eigenvectors of a real symmetric A ∈ Rn×n correspond-
ing to different eigenvalues are orthogonal.

Proof. Let (λ,u) and (µ,v) be eigenpairs such that λ 6= µ. Then

uTAv = uTµv = µuTv

while
vTAu = vTλu = λvTu.

Since A is symmetric, Proposition 9.2 says that uTAv = vTAu. Hence
λuTv = µvTu. But uTv = vTu, so (λ − µ)uTv = 0. Since λ 6= µ, we infer
uTv = 0, which finishes the proof.

We next show that the second property.
Proposition 9.4. All eigenvalues of a real symmetric matrix are real.

We will first establish a general fact that will also be used in the Hermi-
tian case.
Lemma 9.5. Suppose A ∈ Rn×n is symmetric. Then

vTAv ∈ R

for all v ∈ Cn.

Proof. Since α + β = α+β and αβ = αβ for all α, β ∈ C, we easily see that

vTAv = vTAv

= vTAv

=
(
vTAv

)T
= vTATv,

As α ∈ C is real if and only if α = α, we have the result.

To prove the Proposition, let A ∈ Rn×n be symmetric. Since the charac-
teristic polynomial of A is a real polynomial of degree n, the Fundamental
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Theorem of Algebra implies it has n roots in C. Suppose that λ ∈ C is a
root. It follows that there exists a v 6= 0 in Cn so that Av = λv. Hence

vTAv = vTλv = λvTv.

We may obviously assume λ 6= 0, so the right hand side is nonzero. Indeed,
if v = (v1, v2, . . . vn)T 6= 0, then

vTv =
n∑
i=1

vivi =
n∑
i=1

|vi|2 > 0.

Since vTAv ∈ R, λ is a quotient of two real numbers, so λ ∈ R. Thus all
eigenvaluesof A are real, which completes the proof of the Proposition.

9.1.2 Some Examples

Example 9.1. Let H denote a 2×2 reflection matrix. Then H has eigenval-
ues ±1. Either unit vector u on the reflecting line together with either unit
vector v orthogonal to the reflecting line form an orthonormal eigenbasis of
R2 for H. Thus Q = (u v) is orthogonal and

H = Q

(
1 0
0 −1

)
Q−1 = Q

(
1 0
0 −1

)
QT .

Note that there are only four possible choices for Q. All 2 × 2 reflection
matrices are similar to diag[1,−1]. The only thing that can vary is Q.

Here is another example.

Example 9.2. Let B be 4 × 4 the all ones matrix. The rank of B is
one, so 0 is an eigenvalue and N (B) = E0 has dimension three. In fact
E0 = (R(1, 1, 1, 1)T )⊥. Another eigenvalue is 4. Indeed, (1, 1, 1, 1)T ∈ E4, so
we know there exists an eigenbasissince dimE0 + dim E4 = 4. To pro-
duce an orthonormal basis, we simply need to find an orthonormal ba-
sis of (R(1, 1, 1, 1)T )⊥. We will do this by inspection rather than Gram-
Schmidt, since it is easy to find vectors orthogonal to (1, 1, 1, 1)T . In fact,
v1 = (1,−1, 0, 0)T , v2 = (0, 0, 1,−1)T , and v3 = (1, 1,−1,−1)T give an or-
thonormal basis after we normalize. We know that our fourth eigenvector,
v4 = (1, 1, 1, 1)T , is orthogonal to E0, so we can for example express B as
QDQT where Q =

(
v1√

2
v2√

2
v3
2

v4
2

)
and

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4

 .
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9.1.3 The First Proof

Since a symmetric matrix A ∈ Rn×n has n real eigenvalues and eigenvectors
corresponding to different eigenvalues are orthogonal, there is nothing to
prove when all the eigenvalues are distinct. The difficulty is that if A has
repeated eigenvalues, say λ1, . . . λm, then one has to show

m∑
i=1

dim Eλi = n.

In our first proof, we avoid this difficulty completely. The only facts we need
are the Gram-Schmidt property and the group theoretic property that the
product of any two orthogonal matrices is orthogonal.

To keep the notation simple and since we will also give a second proof,
we will only do the 3 × 3 case. In fact, this case actually involves all the
essential ideas. Let A be real 3 × 3 symmetric, and begin by choosing an
eigenpair (λ1,u1) where u1 ∈ R3 is a unit vector. By the Gram-Schmidt
process, we can include u1 in an orthonormal basis u1, u2, u3 of R3. Let
Q1 = (u1 u2 u3). Then Q1 is orthogonal and

AQ1 = (Au1 Au2 Au3) = (λ1u1 Au2 Au3).

Now

QT
1 AQ1 =

uT1
uT2
uT3

 (λ1u1 Au2 Au3) =

λ1uT1 u1 ∗ ∗
λ1uT2 u1 ∗ ∗
λ1uT3 u1 ∗ ∗

 .

But since QT
1 AQ1 is symmetric (since A is), and since u1, u2, u3 are or-

thonormal, we see that

QT
1 AQ1 =

λ1 0 0
0 ∗ ∗
0 ∗ ∗

 .

Obviously the 2×2 matrix in the lower right hand corner of A is symmetric.
Calling this matrix B, we can find, by repeating the construction just given,
a 2× 2 orthogonal matrix Q′ so that

Q
′TBQ′ =

(
λ2 0
0 λ3

)
.
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Putting Q′ =
(

r s
t u

)
, it follows that

Q2 =

1 0 0
0 r s
0 t u


is orthogonal, and in addition

QT
2 QT

1 AQ1Q2 = QT
2

λ1 0 0
0 ∗ ∗
0 ∗ ∗

Q2 =

λ1 0 0
0 λ2 0
0 0 λ3

 .

But Q1Q2 is orthogonal, and so (Q1Q2)−1 = Q−1
2 Q−1

1 = QT
2 QT

1 . Therefore,
putting Q = Q1Q2 and D = diag(λ1, λ2, λ3), we get A = QDQ−1 = QAQT .
Therefore A has been orthogonally diagonalized and the first proof is done.

Note that by using mathematical induction, we can extend the above
proof to the general case. The drawback of the above technique is that it
requires a repeated application of the Gram-Schmidt process, which is not
very illuminating. In the next section, we will give the second proof.

9.1.4 A Geometric Proof

Let A ∈ Rn×n be symmetric. We first prove the following geometric property
of symmetric matrices:
Proposition 9.6. If A ∈ Rn×n is symmetric and W is a subspace of Rn
such that TA(W ) ⊂W , then TA(W⊥) ⊂W⊥ too.

Proof. Let x ∈ W and y ∈ W⊥. Since xTAy = yTAx, it follows that if
Ax · y = 0, then x ·Ay = 0. It follows that Ay ∈W⊥, so the Proposition is
proved.

We also need
Proposition 9.7. If A ∈ Rn×n is symmetric and W is a nonzero subspace
of Rn with the property that TA(W ) ⊂W , then W contains an eigenvector
of A.

Proof. Pick an orthonormal basis Q = {u1, . . . ,um} of W . As TA(W ) ⊂W ,
there exist scalars rij (1 ≤ i, j ≤ m), such that

TA(uj) = Auj =
m∑
i=1

rijui.
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This defines an m×m matrix R, which I claim is symmetric. Indeed, since
TA is self adjoint,

rij = ui ·Auj = Aui · uj = rji.

Let (λ, (x1, . . . , xm)T ) be an eigenpair for R. Putting w :=
∑m

j=1 xjuj , I
claim that (λ,w) is an eigenpair for A. In fact,

TA(w) =
m∑
j=1

xjTA(uj)

=
m∑
j=1

xj(
m∑
i=1

rijui)

=
m∑
i=1

(
m∑
j=1

rijxj)ui

=
m∑
i=1

λxiui

= λw.

This finishes the proof of the Proposition.
The proof of the Principal Axis Theorem now goes as follows. Start-

ing with an eigenpair (λ1,w1), put W1 = (Rw1). Then TA(W1) ⊂ W1, so
TA(W⊥

1 ) ⊂ W⊥
1 . Now either W⊥

1 contains an eigenvector or n = 1 and
there is nothing to show. Suppose W⊥

1 contains an eigenvector w2. Then
either (Rw1 + Rw2)⊥ contains an eigenvector w3, or we are through. Con-
tinuing in this manner, we obtain a sequence of orthogonal eigenvectors
w1,w2, . . . ,wn. This implies there exists an orthonormal eigenbasisfor A,
so the proof is completed.

9.1.5 A Projection Formula for Symmetric Matrices

Sometimes it’s useful to express the Principal Axis Theorem as a projection
formula for symmetric matrices. Let A be symmetric, let u1, . . . ,un be an
orthonormal eigenbasis of Rn for A, and suppose (λi,ui) is an eigenpair.
Suppose x ∈ Rn. By the projection formula of Chapter 8,

x = (uT1 x)u1 + · · ·+ (uTnx)un,

hence
Ax = λ1(uT1 x)u1 + · · · + λn(uTnx)un.
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This amounts to writing

A = λ1u1uT1 + · · ·+ λnunuTn . (9.1)

Recall that uiuTi is the matrix of the projection of Rn onto the line Rui, so
(9.1) expresses A as a sum of orthogonal projections.
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Exercises

Exercise 9.1. Orthogonally diagonalize the following matrices:

1 0 1
0 1 0
1 0 1

 ,

1 1 3
1 3 1
3 1 1

 ,


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

I claim that you can diagonalize the first and second matrices, and a good
deal (if not all) of the third, without pencil and paper.

Exercise 9.2. Prove the Principal Axis Theoremfor and 2 × 2 real matrix(
a b
b c

)
directly.

Exercise 9.3. Prove Proposition9.6.

Exercise 9.4. Answer either T or F. If T, give a brief reason. If F, give a
counter example.

(a) The sum and product of two symmetric matrices is symmetric.

(b) For any real matrix A, the eigenvalues of ATA are all real.

(c) For A as in (b), the eigenvalues of ATA are all non negative.

(d) If two symmetric matrices A and B have the same eigenvalues, counting
multiplicities, then A and B are orthogonally similar (that is, A = QBQT

where Q is orthogonal).

Exercise 9.5. Recall that two matrices A and B which have a common
eigenbasis commute. Conclude that if A and B have a common eigenbasis
and are symmetric, then AB is symmetric.

Exercise 9.6. Describe the orthogonal diagonalization of a reflection ma-
trix.

Exercise 9.7. Let W be a hyperplane in Rn, and let H be the reflection
through W .

(a) Express H in terms of PW and PW⊥ .

(b) Show that PWPW⊥ = PW⊥PW .

(c) Simultaneously orthogonally diagonalize PW and PW⊥ .
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Exercise 9.8. * Diagonalize a b c
b c a
c a b

 ,

where a, b, c are all real. (Note that the second matrix in Problem 1 is of
this type. What does the fact that the trace is an eigenvalue say?)

Exercise 9.9. * Diagonalize

A =


aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd

 ,

where a, b, c, d are arbitrary real numbers. (Note: thimk!)

Exercise 9.10. Prove that a real symmetric matrix A whose only eigenval-
ues are ±1 is orthogonal.

Exercise 9.11. Suppose A ∈ Rn×n is symmetric. Show the following.

(i) N (A)⊥ = Im(A).

(ii) Im(A)⊥ = N (A).

(iii) col(A) ∩ N (A) = {0}.
(iv) Conclude form (iii) that if Ak = O for some k > 0, then A = O.

Exercise 9.12. Give a proof of the Principal Axis Theorem from first prin-
ciples in the 2× 2 case.

Exercise 9.13. Show that two symmetric matrices A and B that have
the same characteristic polynomial are orthogonally similar. That is, A =
QBQ−1 for some orthogonal matrix Q.

Exercise 9.14. Let A ∈ Rn×n be symmetric, and let λm and λM be its
minimum and maximum eigenvalues respectively.

(a) Show that for every x ∈ Rn, we have

λmxTx ≤ xTAx ≤ λMxTx.

(b) Use this inequality to find the maximum and minimum values of |Ax|
on the ball |x| ≤ 1.

Exercise 9.15. Prove that an element Q ∈ Rn×n is a reflection if and only
if Q is symmetric and det(Q) = −1.



269

9.2 The Principal Axis Theorem for Hermitian Ma-

trices

The purpose of this section is to extend the Principal Axis Theorem to the
complex case.

9.2.1 Hermitian Matrices

A linear map T : Cn → Cn is self adjoint if and only if

T (w) · z = w · T (z)

for all w, z ∈ Cn. Recall that in the Cn setting, the inner productis the
Hermitianinner product

w · z := w1z1 + w2z2 + · · · + wnzn.

Thus T is self adjoint if and only if its matrix A satisfies wTA
Tz = wTAz.

This is equivalent to saying that

A
T = A.

Definition 9.1. Let A = (αij) ∈ Cm×n. Then the Hermitian transpose of
A = (αij) is the matrix

AH := A
T
,

where A is the matrix (αij) obtained by conjugating the entries of A. We
say that A is Hermitian if and only if AH = A.

Thus the linear transformation associated to A ∈ Cn×n is self adjoint A
is Hermitian.

Example 9.3. For example, 1 1 + i −i
1− i 3 2

i 2 0


is Hermitian.

Clearly, the real Hermitian matrices are exactly the symmetric matri-
ces. By repeating the proof of Proposition 9.4, we get the fact that all
eigenvaluesof a Hermitian matrix are real.
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9.2.2 The Main Result

Recall that a basis of Cn which is orthonormal for the Hermitian inner
product is called a Hermitian basis. If u1,u2, . . . ,un is Hermitian, the matrix
U = (u1 u2 . . . un) is unitary, that is U−1 = UH .

Recall that eigenvaluesof Hermitian matrices are real.
Theorem 9.8. Every self adjoint linear map T : Cn → Cn admits a Hermi-
tian eigenbasis. Equivalently, if K ∈ Cn×n is Hermitian, then there exists a
unitary matrix U and a real diagonal matrix D such that K = UDU−1 =
UDUH .

The proof is a carbon copy of the proof in the real symmetric case, so
we won’t need to repeat it. Note however that in the complex case, the so
called principal axes are actually one dimensional complex subspaces of Cn.
Hence the principal axes are actually real two planes (an R2) instead of lines
as in the real case.
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Exercises

Exercise 9.16. Find the eigen-values of K =
(

2 3+4i
3−4i −2

)
and diagonalize

K.

Exercise 9.17. Unitarily diagonalize Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Exercise 9.18. Show that the trace and determinant of a Hermitian matrix
are real. In fact, show that the characteristic polynomial of a Hermitian
matrix has real coefficients.

Exercise 9.19. Prove that the Hermitian matrices are exactly the complex
matrices with real eigen-values that can be diagonalized using a unitary
matrix.

Exercise 9.20. Show that U(n,C) is a matrix group. Can you find a general
description for U(2,C)?

Exercise 9.21. Show that two unit vectors in Cn coincide if and only if
their dot product is 1.

Exercise 9.22. Give a description of the set of all 1 × 1 unitary matrices.
That is, describe U(1,C).

Exercise 9.23. Consider a 2 × 2 unitary matrix U such that one of U ’s
columns is in R2. Is U orthogonal?

Exercise 9.24. Prove assertions (i)-(iii) in Proposition??.

Exercise 9.25. Supppose W is a complex subspace of Cn. Show that the
projection PW is Hermitian.

Exercise 9.26. How does one adjust the formula PW = A(AAT )−1AT to
get the formula for the projection of a complex subspace W of Cn?

Exercise 9.27. Give a direct proof of the Principal Axis Theorem in the
2× 2 Hermitian case.
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9.3 Self Adjoint Operators

The purpose of this section is to formulate the Principal Axis Theorem for
an arbitrary finite dimensional inner product space V . In order to do this,
we have to make some preliminary comments about this class of spaces.

9.3.1 The Definition

In the previous section, we defined the notion of a self adjoint linear map
T : Rn → Rn. The notion of a self adjoint operator on an arbitrary inner
product space is exactly the same. We will treat this in a slightly more
general way, however. First we make the following definition.

Definition 9.2. Let V be a real inner product space and suppose T : V → V
is linear. Define the adjoint of T to be the map T ∗ : V → V determined by
the condition that

(T ∗(x),y) = (x, T (y))

for all x,y ∈ V . Then we say that T is self adjoint if and only if T = T ∗.

Proposition 9.9. Let V be a real inner product space and suppose T :
V → V is linear. Then the adjoint T ∗ : V → V is also a well defined linear
transformation. If V is finite dimensional, then T is self adjoint if and only if
for every orthonormal basis Q of V , the matrixMQQ(T ) is symmetric. More

generally, the matrix MQQ(T ∗) is MQQ(T )T .

Proof. The proof is left as an exercise.

Hence a symmetric matrix is a self adjoint linear transformation from
Rn to itself and conversely. Therefore the eigenvalue problem for self adjoint
maps on a finite dimensional inner product space reduces to the eigenvalue
problem for symmetric matrices on Rn.

Here is a familiar example.

Example 9.4. Let W be a subspace of Rn. Then the projection PW is
self adjoint. In fact, we know that its matrix with respect to the standard
basis has the form C(CCT )−1CT , which is clearly symmetric. Another way
to see the self adjointness is to choose an orthonormal basis u1, . . . ,un of
Rn so that u1, . . . ,um span W . Then, by the projection formula, PW (x) =∑k

i=1(x ·ui)ui. It follows easily that PW (ui) ·uj = ui ·PW (uj) for all indices
i and j. Hence PW is self adjoint.

To summarize the Principal Axis Theorem for self adjoint operators, we
state
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Theorem 9.10. Let V be a finite dimensional inner product space, and let
T : V → V be self adjoint. Then there exists an orthonormal eigenbasis Q
of V consisting of eigenvectors of T . Thus T is semi-simple, and the matrix
MQQ(T ) is diagonal.

Proof. Let B = {u1, . . . ,un} denote an orthonormal basis of V . The map
Φ : V → Rn defined by Φ(ui) = ei is an isometry (see Proposition8.14). Now
S = ΦTΦ−1 is a self adjoint map of Rn (check), hence S has an orthonormal
eigenbasis x1, . . . ,xn ∈ Rn. Since Φ is an isometry, v1 = Φ−1(x1), . . . ,vn =
Φ−1(xn) form an orthonormal basis of V . Moreover, the vi are eigenvectors
of T . For, if S(xi) = λixi, then

T (vi) = Φ−1SΦ(vi) = Φ−1S(xi) = Φ−1(λixi) = λiΦ−1(xi) = λivi.

Thus T admits an orthonormal eigenbasis, as claimed.

9.3.2 An Infinite Dimensional Self Adjoint Operator

We now give an example of a self adjoint operator (or linear transformation)
in the infinite dimensional setting. As mentioned in the introduction, self
adjoint operators are frequently encountered in mathematical, as well as
physical, problems.

We will consider a certain subspace of function space C[a, b] of all con-
tinuous functions f : [a, b]→ R with the usual inner product

(f, g) =
∫ b

a
f(x)g(x)dx.

The condition for a linear transformation T : C[a, b] → C[a, b] to be self
adjoint is that satisfies the condition (Tf, g) = (f, Tg) for all f, g, that is∫ b

a
T (f)(x)g(x)dx =

∫ b

a
f(x)T (g)(x)dx.

Now let [a, b] = [0, 2π], and let P (for periodic) denote the subspace of
C[0, 2π] consisting of all functions f which have derivatives of all orders on
[0, 2π] and satisfy the further condition that

f (i)(0) = f (i)(2π) if i = 0, 1, 2, . . . ,

where f (i) denotes the ith derivative of f . Among the functions in P are the
trigonometric functions cos λx and sin λx for all λ ∈ R. We will show below
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that these functions are linearly independent if λ > 0, so P is an infinite
dimensional space.

We next give an example of a self adjoint operator on P. Thus symmetric
matrices can have infinite dimensional analogues. By the definition of P,
it is clear that if f ∈ P, then f (i) ∈ P for all i ≥ 1. Hence the derivative
operator D(f) = f ′ defines a linear transformation D : P → P. I claim the
second derivative D2(f) = f ′′ is self adjoint. To prove this, we have to show
(D2(f), g) = (f,D2(g)) for all f, g ∈ P. This follows from integration by
parts. For we have

(D2(f), g) =
∫ 2π

0
f ′′(t)g(t)dt

= f ′(2π)g(2π) − f ′(0)g(0) −
∫ 2π

0
f ′(t)g′(t)dt.

But by the definition of P, f ′(2π)g(2π) − f ′(0)g(0) = 0, so

(D2(f), g) = −
∫ 2π

0
f ′(t)g′(t)dt.

Since this expression for (D2(f), g) is symmetric in f and g, it follows that

(D2(f), g) = (f,D2(g)),

so D2 is self adjoint, as claimed.
We can now ask for the eigenvalues and corresponding eigenfunctions

of D2. There is no general method for finding the eigenvalues of a linear
operator on an infinite dimensional space, but one can easily see that the
trig functions cos λx and sin λx are eigenfunctions for −λ2 if λ 6= 0. Now
there is a general theorem in differential equations that asserts that if µ > 0,
then any solution of the equation

D2(f) + µf = 0

has the form f = a cos
√

µx + b sin
√

µx for some a, b ∈ R. Moreover, λ = 0
is an eigenvalue for eigenfunction 1 ∈ P. Note that although D2(x) = 0, x
is not an eigenfunction since x 6∈ P.

To summarize, D2 is a self adjoint operator on P such that every non
positive real number is an ev. The corresponding eigenspaces are E0 = R
and E−λ = R cos

√
λx + R sin

√
λx if λ > 0. We can also draw some other

consequences. For any positive λ1, . . . λk and any fi ∈ E−λi , f1, . . . , fk are
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linearly independent. Therefore, the dimension of P cannot be finite, i.e. P
is infinite dimensional.

Recall that distinct eigenvalues of a symmetric matrix have orthogonal
eigenspaces. Thus distinct eigenvalues of a self adjoint linear transformation
T : Rn → Rn have orthogonal eigenspaces. The proof of this goes over
unchanged to P, so if λ, µ > 0 and λ 6= µ, then∫ 2π

0
fλ(t)fµ(t)dt = 0,

where fλ and fµ are any eigenfunctions for −λ and −µ respectively. In
particular, ∫ 2π

0
sin
√

λt sin
√

µtdt = 0,

with corresponding identities for the other pairs of eigenfunctions fλ and fµ.
In addition, cos

√
λx and sin

√
λx are also orthogonal.

The next step is to normalize the eigenfunctions to obtain an orthonor-
mal set. Clearly if λ 6= 0, |fλ|2 = (fλ, fλ) = π, while |f0|2 = 2π. Hence the
functions

1√
2π

,
1√
π

cos
√

λx,
1
π

sin
√

λx,

where λ > 0 are a family of ON functions in P. It turns out that one usually
considers only the eigenfunctions where λ is a positive integer. The Fourier
series of a function f ∈ C[0, 2π] such that f(0) = f(2π) is the infinite series
development

f(x) ≈ 1
π

∞∑
m=1

am cos mx +
1
π

∞∑
m=1

bm sin mx,

where am and bm are the Fourier coefficients encountered in §33. In partic-
ular,

am =
1√
π

∫ 2π

0
f(t) cos mtdt

and

bm =
1√
π

∫ 2π

0
f(t) sin mtdt.

For a precise interpretation of the meaning ≈, we refer to a text on Fourier
series. The upshot of this example is that Fourier series are an important
tool in partial differential equations, mathematical physics and many other
areas.
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Exercises

Exercise 9.28. Show that if V is a finite dimensional inner product space,
then T ∈ L(V ) is self adjoint if and only if for every orthonormal basis
u1, . . . ,un OF V , (T (ui),uj) = (ui, T (uj)) for all indices i and j.

Exercise 9.29. Let U and V be inner product spaces of the same dimension.
Show that a linear transformation Φ : U → V is an isometry if and only if
Φ carries every orthonormal basis of U onto an orthonormal basis of V .

Exercise 9.30. Give an example of a linear transformationΦ : R2 → R2

that isn’t an isometry.

Exercise 9.31. Show that the matrix of an isometry Φ : U → U with
respect to and orthonormal basis is orthogonal. Conversely show that given
an orthonormal basis, any orthogonal matrix defines an isometry form U to
itself.

Exercise 9.32. Give the proof of Proposition9.9 .

Exercise 9.33. Describe all isometries Φ : R2 → R2.

Exercise 9.34. Prove Proposition9.9.
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9.4 Normal Matrices and Schur’s Theorem

The result that any Hermitian matrix K can be expressed in the form K =
UDUH , where D is real diagonal and U unitary, suggests that we can ask
which other matrices A ∈ Cn×n can be unitarily diagonalized. To answer
leads us to a beautiful class of matrices.

9.4.1 Normal matrices

Theorem 9.11. An n×n matrix A over C is unitarily diagonalizable if and
only if

AAH = AHA. (9.2)

Definition 9.3. A matrix A ∈ Cn×n for which (9.2) holds is said to be
normal.

The only if part of the above theorem is straightforward, so we’ll omit
the proof. The if statement will follow from Schur’s Theorem, proved below.

Clearly Hermitian matrices are normal. We also obtain more classes
of normal matrices by putting various conditions on D. One of the most
interesting is given in the following

Example 9.5. Suppose the diagonal of D is pure imaginary. Then N =
UDUH satisfies NH = UDHUH = −UDUH = −N . A matrix S such that
SH = −S is called skew Hermitian. Skew Hermitian matrices are clearly
normal, and writing N = UDUH , the condition NH = −N obviously implies
DH = −D, i.e. the diagonal of D to be pure imaginary. Therefore, a matrix
N is skew Hermitian if and only if iN is Hermitian.

Example 9.6. A real skew Hermitian matrix is called skew symmetric. In
other words, a real matrix S is skew symmetric if ST = −S. For example,
let

S =

 0 1 2
−1 0 2
−2 −2 0

 .

The determinant of a skew symmetric matrix of odd order is 0 (see Exercise
9.35 below). The trace is obviously also 0, since all diagonal entries of a skew
symmetric matrix are 0. Since S is 3 × 3, t its characteristic polynomial is
determined by the sum σ2(S) of the principal 2 × 2 minors of S. Here,
σ2(S) = 9, so the characteristic polynomial of S up to sign is λ3− 9λ. Thus
the eigenvalues of S are 0,±3i.
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Since the characteristic polynomial of a skew symmetric matrix S is real,
the nonzero eigenvalues of S are pure imaginary and they occur in conjugate
pairs. Hence the only possible real eigenvalue is 0. Recall that a polynomial
p(x) is called even if p(−x) = p(x) and odd if p(−x) = −p(x). Only even
powers of x occur in an even polynomial, and only odd powers occur in an
odd one.

Proposition 9.12. Let A be n× n and skew symmetric. Then the charac-
teristic polynomial is of A is even or odd according to whether n is even or
odd.

Proof. Since the characteristic polynomial is real, if n is even, the eigenvalues
occur in pairs µ 6= µ. Thus the characteristic polynomial pA(λ) factors into
products of the form λ2−|µ|2, pA(λ) involves only even powers. If n is odd,
then the characteristic polynomial has a real root µ, which has to be 0 since
0 is the only pure imaginary real number. Hence pA(λ) = λqA(λ), where qA
is even, which proves the result.

Example 9.7. Let A = UDUH , where every diagonal entry of D is a unit
complex number. Then D is unitary, hence so is A. Conversely, every uni-
tary matrix is normal and the eigenvalues of a unitary matrix have modulus
one (see Exercise 9.37), so every unitary matrix has this form. For example,
the skew symmetric matrix

U =
(

0 −1
1 0

)
is orthogonal. U has eigenvalues ±i, and we can easily compute that Ei =
C(1,−i)T and E−i = C(1, i)T . Thus

U = U1DUH
1 =

1√
2

(
1 1
i −i

)(
−i 0
0 i

)
1√
2

(
1 −i
1 i

)
.

As a complex linear transformation of C2, the way U acts can be inter-
preted geometrically as follows. U rotates vectors on the principal axis
C(1, i)T spanned by (1, i)T through π

2 and rotates vectors on the orthogonal
principal axis spanned by (1,−i)T by −π

2 . Note, U = Rπ/2 considered as a
transformation on C2.

The abstract formulation of the notion of a normal matrix of course uses
the notion of the adjoint of a linear transformation.
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Definition 9.4. Let V be a Hermitian inner product space with inner prod-
uct ( , ), and let T : V → V be C-linear. Then T is said to be normal if
and only if TT ∗ = T ∗T , where T ∗ is the adjoint of T .

We leave it to the reader to formulate the appropriate statement of
Theorem 9.11 for a normal operator T .

9.4.2 Schur’s Theorem

The Theorem on normal matrices, Theorem 9.11, is a consequence of a very
useful general result known as Schur’s Theorem.
Theorem 9.13. Let A be any n× n complex matrix. Then there exists an
n× n unitary matrix U and an upper triangular T so that A = UTU−1.

Schur’s Theorem can also be formulated abstractly as follows:
Theorem 9.14. If V is a finite dimensional C-vector space and T : V → V
is linear over C, then there exists a Hermitian orthonormal basis U of V for
which the matrix MUU (T ) of T is upper triangular.

We will leave the proof Theorem 9.13 as an exercise. The idea is to apply
the same method used in the first proof of the Principal Axis Theorem. The
only essential facts are that A has an eigenpair (λ1,u1), where u1 can be
included in a Hermitian orthonormal basis of Cn, and the product of two
unitary matrices is unitary. The reader is encouraged to write out a complete
proof using induction on n.

9.4.3 Proof of Theorem 9.11

We will now finish this section by proving Theorem 9.11. Let A be normal.
By Schur’s Theorem, we may write A = UTUH , where U is unitary and
T is upper triangular. We claim that T is in fact diagonal. To see this,
note that since AHA = AAH , it follows that TTH = THT (why?). Hence
we need to show that an upper triangular normal matrix is diagonal. The
key is to compare the diagonal entries of TTH and TTH . Let tii be the ith
diagonal entry of T , and let ai denote its ith row. Now the diagonal entries
of TTH are |a1|2, |a2|2, . . . |an|2. On the other hand, the diagonal entries of
THT are |t11|2, |t22|2, . . . , |tnn|2. It follows that |ai|2 = |tii|2 for each i, and
consequently T has to be diagonal. Therefore A is unitarily diagonalizable,
and the proof is complete.
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Exercises

Exercise 9.35. Unitarily diagonalize the skew symmetric matrix of Exam-
ple 9.6.

Exercise 9.36. Let S be a skew Hermitian n×n matrix. Show the following:

(a) Every diagonal entry of S is pure imaginary.

(b) All eigenvalues of S are pure imaginary.

(c) If n is odd, then |S| is pure imaginary, and if n is even, then |S| is real.

(d) If S is skew symmetric, then |S| = 0 if n is odd, and |S| ≥ 0 if n is even.

Exercise 9.37. Let U be any unitary matrix. Show that

(a) |U | has modulus 1.

(b) Every eigenvalue of U also has modulus 1.

(c) Show that U is normal.

Exercise 9.38. Are all complex matrices normal? (Sorry)

Exercise 9.39. Formulate the appropriate statement of Theorem 9.11 for
a normal operator T .

Exercise 9.40. The Principle of Mathematical Induction says that if a S(n)
is statement about every positive integer n, then S(n) is true for all positive
integers n provided:

(a) S(1) is true, and
(b) the truth of S(n− 1) implies the truth of S(n).

Give another proof of Schur’s Theorem using induction. That is, if the
theorem is true for B when B is (n− 1)× (n− 1), show that it immediately
follows for A. (Don’t forget the 1× 1 case.)
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9.5 Summary

The goal of this chapter was to prove the basic diagonalization theorems for
real and complex matrices. This result, which is called the Principal Axis
Theorem, is one of the most celebrated results in matrix theory. To be spe-
cific, we showed that every symmetric matrix A over R admits an orthonor-
mal basis which consists of eigenvectors. More generally, every complex
Hermitian matrix H admits a Hermitian orthonormal basisof eigenvectors.
In particular, there is an orthogonal matrix Q and a unitary matrix U such
that A = ADQT and H = UDU

T . In both cases, D is a real diagonal
matrix, which implies that the eigenvalues of a Hermitian matrix are always
real. In the real case, the general formulation of the Principal Axis Theo-
rem says that every self adjoint linear operator on a finite dimensional inner
product space V is semi-simple and, in fact, admits an orthonormal basisof
eigenvectors.

The condition H = UDU
T with U unitary characterizes Hermitian ma-

trices. More generally, we showed that the condition N = UDUU
T charac-

terizes the class of complex matrices which are said to be normal. (A matrix
N ∈ Cn×n is normal if NN

T
N
T
N.) Among the normal matrices are skew

symmetric real matrices and skew Hermitian complex matrices.


