
Lecture 1

Closed sets and the Zariski
topology

Let k be an infinite field (e.g. Q,R.,C, or Fq), and let k[x1, . . . xn] be the
polynomial ring in n indeterminants. We will often abbreviate k[x1, . . . , xn]
by k[x].

We call an n-tuple α = (α1, . . . , αn) ∈ Zn+ a multi-index. For any multi-
index α, define the monomial xα by

xα := xα1
1 xα2

2 . . . xαnn .

We also define the degree of xα to be deg(xα) =
∑
αi. The point of assming

k is infinite is the next Proposition.
Proposition 1.1. Let k be an infinite field. Then two elements f, g ∈
k[x1, . . . , xn] coincide if and only if f(a) = g(a) for all a ∈ k.

Exercise 1.1 (30 pushups). Prove Proposition 1.1.

Let An = A
n
k denote affine n-space over k. Thus a point of An is an

n-tuple (a1, a2, . . . , an) with each ai ∈ k.

Definition 1.1. If F ⊂ k[x1, . . . xn], let V (F) ⊂ An denote the common
zeros of the elements of F . That is,

V (F) = {a ∈ An | f(a) = 0 ∀ f ∈ F}.

A subset X of An of the form V (F) is said to be Zariski closed in An. A
Zariski closed subset is also called a closed algebraic set.

The Zariski closed sets in An are in fact the closed sets of a topology on
A
n called the Zariski topology.
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Definition 1.2. A topology on a set X is a family U = {Uα}α∈A of subsets
Uα ⊂ X (called open sets) such that

1. X,∅ ∈ U

2. U is closed under arbitrary unions:

B ⊂ A =⇒
⋃
β∈B

Uβ ∈ U

3. U is closed under finite intersections:

B ⊂ A finite =⇒
⋂
β∈B

Uβ ∈ U .

A subset of X is said to be closed if it is the complement of an open set.

Definition 1.3. Let U be a topology. Then B ⊂ A is a base of U if for all
α ∈ A, there exists a Bα ⊂ B such that

Uα =
⋃
β∈Bα

Uβ.

Example (R): A basis for the standard topology of R is the set of open
intervals.
Example (R

n
): A basis for the classical topology of Rn is the set of open

balls. An important property of the classical topology of Rn is that distinct
points p, q ∈ Rn can be separated by open balls, i.e. there exist open balls
U and V such that p ∈ U and q ∈ V and U ∩ V = ∅. In other words, Rn

is Hausdorff (or T2).
Now we define a topology on Akfn, where k is a field. Recall that if

F ⊂ k[x1, . . . , xn], then V (F) = {x ∈ An | f(x) = 0 for all f ∈ F } is said
to be Zariski closed.

Definition 1.4. The Zariski topology on An is the topology whose closed
sets are the Zariski closed .

To see that the Zariski topology is indeed a topology, we need the fol-
lowing
Proposition 1.2. If F ,G ⊂ k[x1, . . . , xn], then

1. V (F ∪ G) = V (F) ∩ V (G);
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2. V (FG) = V (F) ∪ V (G);

3. V (∅) = A
n; and

4. V (k[x1, . . . , xn]) = ∅.

Proof.Clearly V (F∪G) ⊂ V (F)∩V (G). Let a ∈ V (F)∩V (G), and suppose
h ∈ F ∪ G. If h ∈ F then h(a) = 0 since a ∈ V (F), and similarly if h ∈ G.
Hence a ∈ V (F∪G), so we get 1. For 2., let a ∈ V (FG). If a 6∈ V (F)∪V (G),
there are f ∈ F and g ∈ G such that f(a) 6= 0 and g(a) 6= 0. Thus h(a) 6= 0,
where h = fg. But h ∈ FG, so this is impossible. On the other hand, let
a ∈ V (F) ∪ V (G). Then if h = fg ∈ FG, either f(a) = 0 and g(a) = 0,
h(a) = 0. Hence a ∈ V (FG). The other assertions are clear. �

If f ∈ k[x], put

Uf = {p ∈ An | f(p) 6= 0 } or simply {f 6= 0}.

Proposition 1.3. The collection of principal open sets Uf is a basis for the
open sets of the Zariski topology on An.

Example (A
1
): The closed sets in A1 are the finite subsets of k. Therefore,

if k is infinite, the Zariski topology on k is not Hausdorff.

Definition 1.5. In a topological space X, the closure F of F ⊂ X is the
smallest closed set in X such that F ⊂ F . Clearly F =

⋂
Y closed Y .

Exercise 1.2. Show that the Zariski closure of an arbitrary subset Y ⊂ An
is Y = V ({ f ∈ k[x1, . . . , xn] | f(Y ) = 0 }).

Example: We saw that in C, the Zariski closed sets are the finite sets.
Thus, if Y is infinite, Y = C.

If k = C, we can also consider the classical closure CY .
Theorem 1.4. Let X be an affine variety in Cn. Let U be Zariski open
in Cn. Then the Zariski closure of U ∩X in X coincides with the classical
closure of U ∩X in X.

For the proof, see Complex projective varieties by D. Mumford. Note
that the closure need not equal X.
Example: Let X = V (xy) ⊂ C2, let U = C

2\{x = 0}. Then X ∩ U =
V (y) ∩ {x 6= 0}. Then X ∩ U = V (y) = CX ∩ U .

Exercise 1.3 (15 pushups). Let k = Zp. Is the Zariski topology on An

Hausdorff?
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The Hilbert Basis Theorem, which we will prove below, says that every
ideal in k[x] is finitely generated. It will follow that every Zariski closed
subset of An has the form V (F) where F is finite.

The Zariski topology is a coarse topology in the sense that it does not
have many open sets. In fact, it turns out that An is what is called a
Noetherian space.

Definition 1.6. A topological space X is called Noetherian if whenever
Y1 ⊃ Y2 ⊃ Y2 ⊃ · · · is a sequence of closed subsets of X, there exists an n
such that Yn = Yn+j for all j ≥ 1.

Example: k = A
1is clearly Noetherian, since every closed subset is finite.

Definition 1.7. A closed subset Y of a topological space is said to be
irreducible if whenever Y = Y1 ∪ Y2, with Yi closed, then Y1 6⊂ Y2 implies
Y2 ⊂ Y1. Equivalently, Y is irreducible if and only if Y = Y1 ∪ Y2 implies
either Y = Y1 or Y = Y2.

Theorem 1.5. Let X be a Noetherian topological space. Then every closed
subset Y ⊂ X may be uniquely expressed as a union of closed sets:

Y = Y1 ∪ Y2 ∪ · · · ∪ Yk,

where Yi 6⊂ Yj for all i, j, and each Yi is irreducible.

Proof. Suppose Z is a closed set in X which does not have an irreducible
decomposition. Then whenever we write Z = Z1 ∪ Z2 with Zi closed and
Zi 6⊂ Zj (i 6= j), one of Z1 or Z2, say Z1, does not have an irreducible
decomposition either. Repeating this argument on Z1 and so on, we obtain
a strictly decreasing sequence of closed sets, none of which admits an irre-
ducible decomposition. But this is impossible since X is Noetherian. To put
this another way, consider the set F of all closed subsets Y of X that do not
have such a decomposition. Since X is Noetherian, there exists a minimal
closed set Z in F . Thus Z = Z1 ∪ Z2, with Zi closed and Zi 6⊂ Zj (i 6= j),
as Z cannot be irreducible. But, by definition, Z1, Z2 both have irreducible
decompositions, so Z does too, which is a contradiction. Hence F = ∅.

Now suppose Y = Z1 ∪ · · · ∪ Zl = W1 ∪ · · · ∪Wm give two irreducible
decompositions of Y with Zi 6⊂ Zj , and Wi 6⊂ Wj (i 6= j). Now Z1 =
(Z1 ∩W1) ∪ · · · ∪ (Z1 ∩Wm) = Y1 ∪ · · · ∪ Ym, where Yi = Z1 ∩Wi. We may
assume Yi 6⊂ Yj (discard Yi if Yi ⊂ Yj). Since Z1 is irreducible, Z1 = Z1∩Wi,
for some i. Thus Z1 ⊂Wi. Reversing this argument gives Wi ⊂ Zj for some
j. Thus Z1 ⊂ Zj so j = 1. Hence Z1 = Wi for some i. Since Z1 was
arbitrary, each Zm = Wim for some im. Interchanging the roles of Wi and
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Zi shows that m 7→ im is one-to-one. Hence the above decompositions agree
up to indexing. �

Definition 1.8. The Y1, . . . , Yk, as above, are called the irreducible compo-
nents of Y .

Example (hypersurfaces): Let f ∈ k[x1, . . . , xn] be a nonconstant poly-
nomial and Y = V (f). Since k[x] is a UFD, we can write f =

∏
1≤i≤l fi,

where fi is irreducible. Clearly,

Y = V (f1) ∪ · · · ∪ V (fl).

I claim that V (fi) is irreducible. This is not obvious, and the proof will be
postponed until Lecture 2. If two fi and fj differ by a unit, V (fi) = V (fj).
Thus the distinct V (fm) are the irreducible components of Y .
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Lecture 2

The ideal of a variety

In this Lecture. we will introduce the ideal of a closed set and discuss the
ideal-variety correspondence. We will also classify irreducible closed sets in
A
n.

We begin with the fundamental definition.

Definition 2.1. If X = V (F), let I(X) = { f ∈ k[x] | f(X) = 0 }. We call
I(X) the ideal of X.

The following result is obvious.
Proposition 2.1. I(X) is an ideal in k[x].

Exercise 2.1 (20 pushups). Show that if f1, . . . , fr generate I(X), then
X = V (f1, . . . , fr). Also, show X = V

(
I(X)

)
.

Proposition 2.2. Let X1, X2 be closed. Then if X1 ⊂ X2, we have I(X2) ⊂
I(X1) and conversely.

Proof. One direction is clear. If I(X2) ⊂ I(X1), then V
(
I(X1)

)
⊂

V
(
I(X2)

)
. Since V

(
I(X1)

)
= X1, we get that X1 ⊂ X2. �

Theorem 2.3. X is irreducible if and only if I(X) is prime.

Proof. Recall that I(X) prime means that fg ∈ I(X) implies that either
f ∈ I(X) or g ∈ I(X). Suppose X is irreducible. Let fg ∈ I(X). Now
X ⊂ V (f) ∪ V (g), so X =

(
X ∩ V (f)

)
∪
(
X ∩ V (g)

)
. By irreducibility,

X = X ∩ V (f), say. Then X ⊂ V (f) so f ∈ I(X). Conversely, suppose
that I(X) is prime. Write X = Y ∪ Z, with Y , Z closed, Y \Z and Z\Y
nonempty. Then I(Y ) 6⊂ I(Z) 6⊂ I(Y ). Let f ∈ I(Y )\I(Z), g ∈ I(Z)\I(Y ).
Then fg ∈ I(Y ) ∩ I(Z), so fg ∈ I(X). But I(X) is prime, a contradiction.
�
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Exercise 2.2 (20 pushups). Show that if X has irreducible decomposition
X = X1 ∪X2 ∪ · · · ∪Xn, then I(X) = I(X1) ∩ I(X2) ∩ · · · ∩ I(Xn). Thus
the ideal I(X) of a Zariski closed set is an intersection of prime ideals.

Definition 2.2. A ring R is called Noetherian if either of the following two
equivalent conditions hold.

1. Every ideal I in R is finitely generated as an R-module: I = Rf1 +
Rf2 + · · ·+Rfk for some f1, . . . , fk ∈ I

2. Every ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ . . . eventually
stabilizes.

Exercise 2.3 (10 pushups). Show that the two conditions are equivalent.

Exercise 2.4 (20 push ups). A k-algebra A is a k-vector space which
is also a commutative ring with identity. An example of a k-algebra is
k[f1, f2, . . . , fs], where each fi ∈ k[x]. A k-algebra A is said to be finitely
generated if there exists a surjective ring homomorphism φ : k[x] → A.
Show that a finitely generated k-algebra is Noetherian.

Theorem 2.4 (Hilbert Basissatz). Let k be an arbitrary field (not nec-
essarily infinite). Then the polynomial ring k[x1, . . . , xn] is Noetherian.

A more general version of this is
Theorem 2.5. If R is Noetherian, then so is the polynomial ring R[x] (in
one variable).

We will prove theorem 2.4. For a proof of Theorem 2.5, consult, for
example, Commutative Algebra, by D. Eisenbud. The we will give, which
is taken from Varieties, Ideals and Algorithms by Cox. Little and O’Shea,
is a nice illustration of techniques used in computational algebraic geom-
etry, namely Gröbner bases. Of course, these ideas are very important in
computer science as well. First, let us derive the main consequence.
Corollary 2.6. An is a Noetherian space

Proof. Let Y1 ⊃ Y2 ⊃ · · · ⊃ Ym ⊃ · · · be a descending sequence of Zariski
closed sets. From this we get an ascending chain of ideals

I(Y1) ⊂ I(Y2) ⊂ · · · ⊂ I(Ym) ⊂ · · · .

By the basis theorem, there exists a r > 0 such that I(Yr) = I(Yr+l) if l ≥ 1.
Thus Yr = V

(
I(Yr)

)
= V

(
I(Yr+l)

)
= Yr+l. �
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Remark: We have {
irreducible
X ⊂ An

}
↪→
{

prime ideals
in k[x]

}
However, we don’t know this correspondence is surjective. For example, in
the case k = R, the ideal I = 〈x2 + 1〉 is prime but is not the ideal of any
variety.

Here is an application. Let us define the dimension of an irreducible
Zariski closed set in An.

Definition 2.3. Define dimX to be the maximum l such that there exists
a sequence of irreducible Zariski closed sets Yi (0 ≤ i ≤ l) such that

X = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yl.

Exercise 2.5 (100 pushups). Show that dimAn = n.
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Lecture 3

Hilbert’s Basis Theorem

Hilbert’s Basis Theorem, or Basissatz, says that every ideal in k[x1, . . . , xn]
is finitely generated, that is k[x1, . . . , xn] is a Noetherian ring. This is one
of the first and most fundamental results in commutative algebra. As we
have indicated above, one of the main consequences will be that An is a
Noetherian space, hence every Zariski closed set in An has a (unique) irre-
ducible decomposition. Before giving the proof, we need to introduce some
elementary combinatorial ideas.

Throughout this lecture, k will denote an arbitrary infinite field. Recall
Z+ denotes the nonnegative integers, and note that Zn+ = { (m1, . . . ,mn) |
mi ≥ 0 } is an additive semi-group, that is it is closed under addition. Recall
also that for each multi-index α = (α1, . . . , αn) ∈ Zn+, we have defined a
monomial xα = xα1

1 xα2
2 . . . xαnn ∈ k[x] = k[x1, . . . , xn]. Clearly, xαxβ =

xα+β, so
Proposition 3.1. The assignment α → xα defines an isomorphism of the
additive semigroup Zn+ onto the multiplicative semigroup consisting of all
monomials xα ∈ k[x].
Proof. Easy. �

Lemma 3.2. Let A ⊂ Zn+ and let IA = 〈xα | α ∈ A〉. Then xβ is a monomial
in IA if and only if xβ is divisible by xα for some α ∈ A.

Proof.Suppose xβ ∈ IA. Then

xβ =
∑

fix
αi , αi ∈ A

=
∑
i,γ

cγx
αi+γ , cγ ∈ k.

Since x1, . . . , xn are indeterminates, the monomials are linearly independent,
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so all cγ = 0 except for the cγ where xαi+γ = xβ , and for these
∑
cγ = 1.

Hence there is some γ ∈ Zn+ such that β = α+ γ, and the result follows. �

Exercise 3.1 (10 pushups). Consider Z2
+, and let

A = {(1, 2), (2, 0), (3, 1), (2, 2)}.

Draw a diagram of A and use the picture to find a minimal set of monomials
which generate IA.

Definition 3.1. An ideal in k[x] which is generated by monomials is called
a monomial ideal. If A ⊂ Zn+, then we will call A+ Zn+ an ideal in Zn+.

Clearly, the monomial ideals IA in k[x] correspond bijectively to the
ideals A+ Zn+ in Zn+. Let us call a set a+ Zn+ a corner.
Lemma 3.3. Every ideal A+Zn+ is the union of a finite number of corners.

Exercise 3.2 (30 pushups). Prove Lemma 3.3.

Let e1, . . . , en be the standard basis of Zn. Let us impose (somewhat
arbitrarily) the ordering e1 > e2 > · · · > en, and let us also say

α =
n∑
1

αiei > β =
n∑
1

βiei

if the first nonzero component of α− β is positive. We will call this partial
order the lexicographic order of Zn+, (lex for short). Lex satisfies:

1. If α > β then α+ γ > β + γ for all γ ∈ Zn+

2. > is a total order (ie. either α > β, α = β, or α < β for all α, β ∈ Zn+)

3. Every subset of Zn+ has a least element

Notice that in the lemma, the exposed corners are characterized as a+
Z
n
+, where a is primitive in the sense that a ∈ A, but there is no β ∈ A

and γ ∈ Zn+ such that α = β + γ. Thus Lemma 3.3 says that A + Zn+ has
only finitely many primitives. For example, A+ Zn+ has a least element α0

which is among the elements with least en component. A consequence of
the lemma, called Dickson’s Lemma, is required.
Theorem 3.4 (Dickson’s Lemma). Every monomial ideal is finitely gen-
erated.
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Proof.Let IA be the ideal. Let α1, . . . , αm be the primitives in A + Z
n
+.

Then

A+ Zn+ =
m⋃
i=1

(αi + Zn+).

Thus, every monomial in IA has the form xαi+γ = xαixγ , for some γ ∈ Zn+.
Thus, 〈xα1 , . . . , xαm〉 = IA, by Lemma 3.2. �

We can now obtain a Euclidean algorithm for k[x1, . . . , xn]. Recall that
the Euclidean algorithm for a polynomial ring k[x] in one variable says that
if f, g ∈ k[x] and g 6= 0, then there exist unique q, r ∈ k[x] such that
f = qg+ r, where either r = 0 or the degree of r is less that the degree of g.

First, impose lex order on monomials on xα. Thus, xα > xβ if and only
if α > β in lex order on Zn+.

Definition 3.2. If f ∈ k[x], let LT(f) be the highest monomial that occurs
in f with nonzero coefficient.

Example: If f(x, y, z) = 4x3yz − 2x2y3z + x − 2y then x3yz corresponds
to (3, 1, 1), x2y3z to (2, 3, 1) etc. So (3, 1, 1) > (2, 3, 1) > (1, 0, 0) > (0, 1, 0),
and LT (f) = x3yz.
Theorem 3.5 (Euclidean Algorithm). Given f1, . . . , fs in k[x1, . . . , xn],
then for any F ∈ k[x], there exist polynomials g1, . . . , gs such that

F = g1f1 + · · ·+ gsfs + r

where either r = 0 or r is a linear combination of monomials, none of which
are divisible by any of LT (f1), . . . , LT (fs).
Example: Take F = xy2 + 1, f1 = xy+ 1, and f2 = y+ 1. Then F − yf1 =
1−y = 2− (1−y) = 2−f2, hence F = yf1−f2 + 2. Doing the computation
again gives F −xyf2 = 1−xy = 1−x(y+1)+x, so F = (xy−x)f2 +(x+1).
This demonstrates that g1, . . . , gs and the remainder r are not unique.

The division algorithm is proved just as in the example, so we will skip
the proof. You may consult, for example, VIA for a complete proof.

We can now prove the Basissatz.
Proof of Theorem 2.4. Let I ⊂ k[x] be any ideal, and consider the
monomial ideal

LT(I) = 〈xα | xα = LT(f) for some f ∈ I〉.

By Dickson’s Lemma, there exist α1, . . . , αm ∈ Z
n
+ such that LT (I) =

〈xα1 , . . . , xαm〉. Choose f1, . . . , fm ∈ I such that LT(fi) = xαi . Now let
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F ∈ I and apply the division algorithm:

F =
∑

gifi + r

where no monomial in r is divisible by any xαi . If r 6= 0, then LT(r) ∈ LT (I),
so by Lemma 3.2, LT(r) is divisible by some αi. But this contradicts the
division algorithm, since no monomial in r is divisible by any LT(fi). �

In the proof of the Basissatz, we showed that if f1, . . . , fk ∈ I are such
that LT(f1), . . . ,LT(fn) generate LT(I) (which is a monomial ideal and
therefore finitely generated), then f1, . . . , fk actually generate I. This kind
of basis has a special name.

Definition 3.3 (Gröbner Basis). We say that f1, . . . , fk is a Gröbner
basis of an ideal I ⊂ k[x] if and only if LT(f1), . . . ,LT(fk) generate LT(I).

Here is the nice property of Gröbner bases.
Theorem 3.6. Let f1, . . . , fs be a Gröbner basis of an ideal I ⊂ k[x], and
suppose F ∈ k[x]. Then all expressions

F = g1f1 + · · ·+ gsfs + r

obtained by applying the Euclidean algorithm have the same remainder r.

Proof.Suppose f ′1, . . . , f
′
t is another Gröbner basis of I. Let F ∈ k[x], and

apply the Euclidean algorithm to F for both Gröbner bases getting

F =
∑

gifi + r =
∑

h′jf
′
j + r′.

Subtracting gives ∑
gifi −

∑
hjf

′
j + (r − r′) = 0

Now consider the larger Gröbner basis f1, . . . , fs, f
′
1, . . . , f

′
t. If r 6= r′ then

LT(r − r′) 6= 0. But LT(r − r′) ∈ LT(I), which is impossible. �

Corollary 3.7. If f1, . . . , fs is a Gröbner basis for I, then any F ∈ k[x] has
a unique expression F = f + r, where f ∈ I and no monomial in r is in
LT(I).
Example: Most ideal bases aren’t Gröbner. Let I = 〈x+ y, xy + 1〉. Then

y(x+ y)− (xy + 1) = y2 − 1 ∈ I.

Thus y2 ∈ LT(I), but y2 /∈ 〈x, xy〉.
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Lecture 4

The Nullstellensatz

Now return to geometry. We have shown that for any closed X ⊂ An, I(X)
is finitely generated. In particular, we have
Proposition 4.1. Let I(X) = 〈f1, . . . , fs〉. Then X = V (f1, . . . , fs).

Let’s return to a sticking point. Let f ∈ k[x] be irreducible. Then is
the hypersurface X = V ({f}) an irreducible variety? The answer doesn’t
seem to be clear. Since f is irreducible, the principal ideal (f) generated
by f is prime, but is I(X) = (f)? Of course, if k = R, n = 1, and f(x) =
x2 + 1, then V (f) = ∅, which is irreducible. However, I(∅) = k[x], and
so I

(
V (f)

)
% (f). The property we need is the nontrivial fact that if I is

prime, I = I
(
V (I)). NB: don’t confuse this with the obvious property that

X = V (I(X)). If indeed we have this property, we get a bijection{
irreducible

closed sets in An

}
↔
{

prime ideals
in k[x]

}
.

To obtain this, we have to assume k is algebraically closed. The result which
gives us the key piece of information is Hilbert’s Nullstellensatz.

Exercise 4.1 (20 push ups). Suppose k is finite. Show that the only
irreducible closed sets in XAn are points, and conclude that I = I(V (I))
does not hold in general.

Definition 4.1. The radical of an ideal I in a commutative ring R is the
set

Rad(I) =
√
I = { f ∈ R | fn ∈ I for some n > 0 }.

Example: Let I = (y2 − x + 1, 1 − x). Clearly y2 ∈ I, so y ∈ I
(
V (I)

)
.

However, y /∈ I, so I 6= Rad(I). It is easy to see that Rad(I) = (y, x− 1).
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An ideal I such that I =
√
I is called a radical ideal.

Proposition 4.2. For any ideal I in R, Rad(I) is an ideal. Moreover if I
is prime, then I = Rad(I).
Proof. An exercise. �

Exercise 4.2 (10 push ups). Prove Proposition 4.2.

We have asked what I
(
V (I)

)
is. We also asked when is{

irreducible
closed X ⊂ An

}
↪→
{

prime ideals
in k[x]

}
.

surjective?
We may now answer this question. The principal tool is Hilbert’s Null-

stellensatz. Recall, if I ⊂ k[x] is an ideal, then Rad(I) is defined to be
{ f ∈ k[x] | fm ∈ I for some m ≥ 0 }.
Theorem 4.3 (Hilbert’s Nullstellensatz). Assume k = k (i.e. k is
algebraically closed). If I ⊂ k[x] is any ideal, then I

(
V (I)

)
= Rad(I).

It is clear that Rad(I) ⊂ I
(
V (I)

)
; for if fm

(
V (I)

)
= 0, then f

(
V (I)

)
=

0.
Corollary 4.4. If I is prime, then I

(
V (I)

)
= I.

Proof. Apply Proposition 4.2. �
Thus, if k = k, we have two bijections:{

irreducible
closed X ⊂ An

}
↔
{

prime ideals
in k[x]

}
,

and {
closed sets
X in An

}
↔
{

radical ideals
in k[x]

}
.

The first step in the proof is to establish an apparently weaker form of
the Nullstellensatz , the so-called Weak Nullstellensatz:
Theorem 4.5 (Weak Nullstellensatz). Assume k = k. If I ⊂ k[x] is an
ideal such that V (I) = ∅, then I = k[x].
Proof.Assume I 6= k[x]. Then I is contained in a maximal ideal m. (By
a maximal ideal, we mean a proper ideal m such that, for all f ∈ k[x] \ m,
〈m, f〉 = k[x]. Since any chain I1 ⊂ I2 ⊂ · · · of ideals has the property that⋃
Ij is an ideal, this follows from Zorn’s Lemma. Hence V (m) ⊂ V (I). Now

we want to show V (m) 6= ∅. Let F = k[x]/m. Then F is a field extension
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of k since k ↪→ k[x] → k[x]/m gives an imbedding of k onto a subfield of
F . Since k = k, it will follow that k ∼= F via this quotient map provided
dimk F <∞. Suppose we can show that this is the case. Then choose ai ∈ k
such that ai 7→ xi. Then xi − ai ∈ m. Thus

〈x1 − a1, . . . , xn − an〉 ⊂ m. (4.1)

By the Euclidean algorithm , we can express any f ∈ k[x] as

f =
∑

hi(xi − ai) + r,

where no xi divides any monomial in r. It follows that for any f , the
remaider r ∈ k. Thus 〈f, x1−a1, . . . , xn−an〉 = k[x] if r 6= 0, so the left hand
side of (4.1) is a maximal ideal. Consequently m = 〈x1 − a1, . . . , xn − an〉.
Therefore V (m) = (a1, . . . , an), so V (I) 6= ∅. �

An important corollary of the proof is
Corollary 4.6. Any maximal ideal in k[x1, . . . , xn] is of the form

〈x1 − a1, . . . , xn − an〉

for some (a1, . . . , an) ∈ An.

Definition 4.2. We call m is the maximal ideal of (a1, . . . , an).

We now show how to conclude the Nullstellensatz from the Weak Null-
stellensatz . After that, we will complete the proof of the Weak Nullstellen-
satz by showing dimk F < ∞. The proof uses a trick which goes back to a
1929 paper of Rabinowitsch.

Hilbert’s Nullstellensatz. Let I ⊂ k[x] be an ideal and suppose f ∈
I
(
V (I)

)
. I want to show fm ∈ I for some m > 0. Let J be the ideal in

k[x1, . . . , xn, xn+1] generated by I and xn+1f −1. Clearly V (J) = ∅. Hence
J = k[x1, . . . , xn+1] (this would be trivial if f ∈ I, but we don’t know this).
Thus 1 ∈ J , so

1 =
r∑
s=1

hsgs + h(xn+1f − 1)

=
m∑
t=0

g̃tx
t
n+1 + h(xn+1f − 1),

for some h, hs ∈ k[x1, . . . , xn+1] and gs, g̃t ∈ I. Now R = k[x1, . . . , xn+1] is
a domain, so we can consider its quotient field, R. Setting xn+1 = f−1, we
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get

1 =
m∑
0

g̃tf
−t.

Clearing the denominators gives

fm =
∑

g̃tf
m−t,

so fm ∈ I. �
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Lecture 5

Affine varieties

The first important consequence of the Nullstellensatz is that if I ⊂ k[x] is
a radical ideal, then I = I(V (I)), provided k is algebrically closed. Hence
another consequence is
Theorem 5.1. Let k be algebraically closed. Then every radical ideal I is
the intersection of a finite number of prime ideals. In fact, there exists a
unique expression I = p1 ∩ p2 ∩ · · · ∩ pm where pi 6⊂ pj .

Proof.Let X = V (I) have irreducible decomposition X = X1 ∪ · · · ∪ Xm

where Xi 6⊃ Xj . Then I(X) = I(X1) ∩ . . . I(Xm). But I = I(X) since
I(X) = Rad(I) = I, and each I(Xi) is prime. �

The coordinate ring of a variety X = V (I) ⊂ An is

k[X] = k[x]/I(X) = {restrictions of polynomials to X}.

Example: If I = 〈xy−1〉, and X = V (I) then k[X] = k[x, y]/I ∼= k[x, x−1].
Note that this is not a field; for example, (1− x)−1 /∈ k[x, x−1], as

1/(1− x) = (1 + x+ x2 + · · · ).

Since any monomial xkyj = xk−j , every element of k[X] can be expressed
as p(x, x−1).
Proposition 5.2. Let X be closed in An. Then any maximal ideal in k[X]
is of the form ma = { f ∈ k[X] | f(a) = 0 } for some a ∈ X.

Proof.Let m be maximal. Then if φ : k[x] → k[X] is the quotient map,
φ−1(m) is a maximal ideal. Indeed, φ−1(m) ∼= k. Thus φ−1(m) = ma, for
some a ∈ An. It follows that if f = φ(f) ∈ m ⊂ k[X], then f(a) = 0. But
by definition, ma ⊃ I(X), so a ∈ X. Therefore, m = φ(ma) = { f ∈ k[X] |
f(a) = 0 } for some a ∈ X. �
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Corollary 5.3. Every ring homomorphism φ : k[x]→ k sending 1 to 1 has
the form φ(f) = f(a) for some a ∈ X.

Proof. Let φ be such a morphism. Then I claim ker(φ) is a maximal ideal.
For since φ(1) = 1, it follows that k[x]/ ker(φ) ∼= k. But as k is a field,
ker(φ) must be maximal. Thus there exists a ∈ X for which ker(φ) = {f ∈
k[X] | f(a) = 0}. Writing

f = f(a) + F,

where F ∈ ker(φ), we get that φ(f) = φ(f(a)) = f(a), since φ is k-linear. �
Let X ⊂ An be closed. Then we may write k[X] as k[x1, . . . , xn], where

x = x + I(X). Thus k[X] is a finitely generated k-algebra. In general, we
say that a ring A with identity is a k-algebra if A is a k-vector space such
that r(ab) = (ra)b = a(rb) for all a, b ∈ A and r ∈ k. Put another way,
multiplication defines a k-linear map

A⊗k A→ A.

Hence k[X] is a finitely generated, commutative k-algebra without nilpo-
tents. Conversely,
Proposition 5.4. Suppose k is algebraically closed. Then any finitely gen-
erated commutative k-algebra A without nilpotents is k[X] for some variety
X.

Proof.Let A = k[z1, . . . , zm] be such a k-algebra. Let k[x1, . . . , xm] be a
polynomial ring. Then there exists a ring homomorphism φ : k[x1, . . . , xm]→
A by a 7→ a ∈ k, and xi 7→ zi. This is due to the fact that k[x1, . . . , xm] is
a polynomial ring, so there are no relations between x1, . . . , xn. Clearly φ
is surjective. Let I = kerφ. Then I is a ideal (see the next Lemma), so if
X = V (I), then k[X] = k[x]/Rad(I) ∼= A. �

Lemma 5.5. An ideal I in k[x1, . . . , xm] is radical if and only if k[x]/I has
no nilpotents.

Proof of Lemma. Let fm = 0 (i.e. fm ∈ I). Then f = 0 so f ∈ I;
therefore I is radical. The proof of the converse is identical. �

Example: Let s and t be indeterminates over k. ConsiderA = k[s2t3, s2t, st].
Then I claim A has no nilpotents. Indeed, A ⊂ k[s, t]. Now let u, v, w be
new indeterminates and define a map k[u, v, w]→ A by

u→ s2t3, v → s2t, w → st.

This extends to a surjective homomorphism with kernel (w4−uv). Therefore
A = k[X] where X = V (w4 − uv). (Outline of the proof: the dimension of
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A is two, and moreover, A is a domain. Hence the closed set X guaranteed
by the previous Proposition is an irreducible closed set in A3 of dimension
2. Clearly (w4 − uv) ⊂ I(X). Thus X ⊂ V (w4 − uv). But w4 − uv is
irreducible. Since both varieties have dimension 2, they are equal. Thus
I(X) = (w4 − uv).)

Now to complete this picture, we would like to know the following: “If
two finitely generated k-algebras without nilpotents are isomorphic, then
the closed sets defined in Proposition 5.4 are isomorphic, and conversely.”
In order to have this equivalence, we have to define morphisms. Morphisms
are also called regular maps.

Definition 5.1. Let X, and Y be closed in An, and Am respectively, and
let f : Y → X be a map. Then we say that f is a regular map from Y to X
if there exists a polynomial map F : Am → A

n such that F |Y = f .

Clearly, k[X] is the set of regular maps from X to k.
Proposition 5.6. Let f : Y → X be regular. Then f induces a homomor-
phism f∗ of k-algebras k[X] → k[Y ] by putting f∗(g) = g ◦ f . Conversely,
any k-algebra homomorphism ϕ : k[X] → k[Y ] comes from a regular map
Φ : Y → X.

Example: X = V (x2− y3) ⊂ A2. The map x 7→ (x3, x2) is regular. k[X] =
k[x, y]/(x2 − y3) so

f∗(x)(t) = x(t3, t2) = t3

f∗(y)(t) = t2

In particular, f∗ is not surjective: f∗(z) = x has no solutions. Thus f ,
which is a bijective map, is not an isomorphism in the following sense.

Definition 5.2. Let f : Y → X be regular. Then f is said to be an
isomorphism if and only if there exists a regular map g : X → Y such that
f ◦ g = 1X and g ◦ f = 1Y .

Proof of Proposition. The first assertion is easy to prove. If g ∈ k[x],
then g◦f ∈ k[y]. If h ∈ I(X), then h◦f ∈ I(Y ). For h◦f(y) = h

(
f(y)

)
= 0,

as f(y) ∈ X. Thus f∗ : k[x]→ k[y] induces f∗ : k[x]/I(X)→ k[y]/I(Y ) via
g → f∗g.

Now let φ : k[X] → k[Y ] be given. Note that x1, . . . , xn generate k[X].
Let fi ∈ k[y] be such that f i = φ(xi) in k[Y ]. I claim that Φ : Am → A

n such
that Φ(u1, . . . , um) =

(
f1(u), . . . , fn(u)

)
has the property that Φ(Y ) ⊂ X.
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Let y ∈ Y , and G ∈ I(X). Then

G
(
Φ(y)

)
= G

(
f1(y), . . . , fn(y)

)
= G

(
f1(y), . . . , fn(y)

)
(Since y ∈ Y , f(y) = f(y))

= G
(
φ(x1)(y), . . . , φ(xn)(y)

)
= φ

(
G(x1, . . . , xn)

)
(y)

= φ(0)(y) = 0.

Consequently, Φ(y) ∈ X. �
Note that the map F is not necessarily unique, but Φ is.

Corollary 5.7. Two Zariski closed setsX ⊂ An and Y ⊂ Am are isomorphic
if and only if there is a k-algebra isomorphism k[X] ∼= k[Y ] .

Let us now define an affine variety to be an irreducible closed subset of
some An. We can also define a category whose objects are affine varieties
and whose morphisms are regular maps. Define a k-algebra homomorphism
φ : A → B to be a ring homomorphism which takes the identity to the
identity, hence is linear over k. We then have
Proposition 5.8. The assignment φ → φ∗ is a contravariant functor from
the category of affine varieties and regular maps to the category of finitely
generated k-algebras which are domains and k-algebra homomorphisms which
gives an equivalence of categories.

Exercise 5.1. Prove this proposition.

The fact that the points of an affine varietyX are in a bijective correspon-
dence with the maximal ideals in k[X] also leads to an abstract formulation
of the notion of an affine variety. We can say that an abstract affine variety
consists of a pair (R,X), where R is a finitely generated k-algebra without
zero divisors, and X is defined to be X = specm(R), the set of maximal
ideals in R. We can view R as a set of functions on X as follows: if f ∈ R
and x ∈ X, then f(x) is the element of k ∼= R/x defined by the unique
decomposition f = f(x) + f∗, where f∗ ∈ x.
Lemma 5.9. If f, g ∈ S have the property that f(y) = g(y) for all y ∈
specm(S), then f = g.

Proof. Let h = f − g. Then h(y) = 0 for all y ∈ specm(S). If we appeal
to Proposition 5.4, then we can realize S as k[Z] for a closed irreducible
Z ⊂ Am for some m. It follows that h(z) = 0 for all z ∈ Z. But this implies
there exists an H ∈ k[x1, . . . , xm] such that H = h = 0 on Z. This means
h = 0 in S. �
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If φ∗ : R → S is a homomorphism of k-algebras, where S is another
finitely generated k-algebra without zero divisors and (S, Y ) is the associ-
ated abstract affine variety, then a map φ : Y → X is defined by pulling
back maximal ideals: φ(y) = (φ∗)−1(y). This map induces a k-algebra ho-
momorphism Φ : R → S by Φ(f)(y) = f((φ∗)−1(y)). The fact that Φ(f) is
well defined follows from Lemma 5.9.

Conversely, suppose we are given a map φ : Y = specm(S) → X =
specm(R). We want to define a homomorphism of k-algebras φ∗ : R→ S. If
f ∈ R, let φ∗(f)(y) = f(φ(y)). It follows from Thus φ∗ is well defined. It is
easy to see φ∗ is a homomorphism (check this). This argument gives us the
additional fact that the intersection of all the maximal ideals in S is {0}.
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Lecture 6

Some commutative algebra

The final step in the proof of the Nullstellensatz is to show that dimk F <∞.
This requires we introduce the notion of integrality.
Lemma 6.1. Suppose K is a field and L = K[a1, . . . , an] is a finitely gen-
erated K-algebra. Then if L is a field, each ai is algebraic over K.

That is, each ai satisfies an algebraic equation over K. In particular
there exist r0, . . . , rm(−i)−1 ∈ K such that

a
m(i)
i + rm−1a

m(−i)−1
i + · · ·+ r0 = 0

It follows that the monomials ap1
1 a

p2
2 · · · a

pn
n where 0 ≤ pi ≤ m(i) span L

over K. Thus dimK L <∞. If K is alg closed, it follows that L = K.
We can now prove the Lemma. Let R ⊂ S be rings.

Definition 6.1. We say s ∈ S is integral over R if and only if s satisfies a
monic equation

sm + am−1s
m−1 + · · ·+ a0 = 0

where the ai ∈ R.

Lemma 6.2. The set of elements of S which are integral over R forms a
subring of S containing R (called the integral closure of R in S.)

Exercise 6.1. Prove Lemma 6.2.

The following lemma clarifies why the notion of integral independence is
so important.
Lemma 6.3. Suppose F is a field and every element of F is integral over a
subring R of F containing 1. Then R is a field.
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Proof. Let a ∈ R. Then a has an inverse a−1 in F. Since a−1 is integral
over R, we have an expression

a−m + rm−1a
−m+1 + · · ·+ r0 = 0.

Thus

1 + rm−1a+ · · ·+ r0a
m = 0,

so

a(−rm−1 − · · · − r0a
m−1) = 1

It follows from this that a−1 ∈ R. �

To prove Lemma 6.1, we induct on n starting with n = 1. Thus assume
K[u] is a field, and suppose u transcendental over K. Then (1+u)−1 exists,
say (1 + u)−1 = c0 + c1u+ · · ·+ cru

r. Then

(1 + u)(c0 + c1u+ · · ·+ cru
r) = 1,

so

c0 + (c0 + c1)u+ (c1 + c2)u2 + · · ·+ (cr−1 + cr)ur + cru
r+1 = 1.

By the linear independence of the powers of u over k, c0 = 1 and cr = 0.
Thus c0 = ±c1 = ±c2 = ± · · · = ±cr = 0, which shows the result holds if
n = 1.

Now suppose L = K[a1, . . . , an] is a field and the result is true for n− 1.
Denote an by u. Note K ⊂ K(u) ⊂ L. Applying the induction hypothesis to
L = K(u)[a1, . . . , an−1], we deduce that each a1, . . . , an−1 is algebraic over
K(u). Thus we get expressions

gi1(u)ami + gi2(u)am−1
i + · · ·+ gim(u) = 0

where 1 ≤ i ≤ n− 1 and all gij ∈ K[u]. Putting

g =
∏

g1i,

it follows that each ai is integral over the subring K[u, g−1] = F. Therefore,
by Lemma 6.2, every element of F[a1, . . . , an−1] is integral over F. Clearly
L = F[a1, . . . , an−1], so Lemma 6.3 implies F is a field. We can suppose that

23



u doesn’t divide g, for otherwise we can replace g by an h not divisible by
u so that K[u, h−1] = F. Hence we get an equation

uP (u, g−1) = 1

in F for some P ∈ K[x, y]. clearing the denominators gives

uQ(u, g) = gM

for some Q ∈ K[x, y]. But this is impossible, since gM 6∈ 〈u〉. Hence u
cannot be transcendental, so the proof of the Lemma is finished. �
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Lecture 7

Rational Functions on Affine
Varieties

In this Lecture, we will assume the basic facts about localization ala Eisen-
bud. Let X ⊂ An be an affine variety.

Definition 7.1. The rational function field of X is defined to be the field
k(X) of quotients of k[X]. The elements of k(X) are called rational functions
on X. A rational function f on X is said to be regular at a ∈ X iff f = g/h
where g, h ∈ k[X] and h(a) 6= 0.

We can also localize the concept to an open subset of X.

Definition 7.2. Let X ⊂ An be as above, and let U be open in X. A func-
tion f : U → k is said to be regular at p ∈ U if there exists a neighborhood
V of p such that f = g/h on V , where g, h ∈ k[x] and h 6= 0 everywhere on
V (equivalently h(p) 6= 0). We say f is regular on U if it is regular at each
point of U . We will denote the set of f : U → k which are regular at p ∈ U
by OU,p. The set of f : U → k which are regular at every p ∈ U will be
denoted by O(U).

Recall that the Zariski topology has a basis consisting of the principal
open sets Uφ = {φ 6= 0} ⊂ An, where φ ∈ k[x]. Let k[X, 1/φ] denote the
localization of k[X] at the multiplicative set S = {φm | m ≥ 0}. We will
call k[X, 1/φ] the localization of k[X] at φ.

To obtain the basic result about regular functions, we need a simple
extension of the Nullstellensatz which goes as follows.
Proposition 7.1. Let X be a closed set in An, and let I be an ideal in k[X].
Suppose Y ⊂ X is the variety of I, i.e. Y = {x ∈ X | g(y) = 0 ∀ y ∈ X}.
Then if f ∈ k[X] satisfies f = 0 on Y , there is an m > 0 such that fm ∈ I.
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Proof. Let f = g + I(X), where g ∈ k[x]. Clearly Y is closed in An, and
g vanishes on Y , so for some m > 0, gm ∈ π−1(I), where π : k[x]→ k[X] is
the natural quotient map. This follows from the fact that Y = V (π−1(I)).
Therefore, fm = π(gm) ∈ I. �

Proposition 7.2. Let X be an affine variety in An and U = X ∩ Uφ (φ ∈
k[x]). Suppose f : U → k is regular at each p ∈ U . Then f ∈ k[X, 1/φ̄],
where φ̄ = φ+ I(X). Hence O(U) = k[X, 1/φ].
Proof. Throughout the proof, we will denote the restriction of an element
g ∈ k[x] to k[X] by ḡ, that is, ḡ = g+ I(X). By assumption, for each a ∈ U ,
there exists a principal open set Uα = {hα 6= 0} in X on which f = gα/hα.
Now as ⋃

α∈A
Uα ⊃ U,

where A is an appropriate index set, it follows that

X ∩ V (φ) ⊃ X ∩
⋂
α∈A

V (hα). (7.1)

But the Zariski topology is Noetherian, so in (7.1), we may replace A by a
finite subset B ⊂ A. Hence the Nullstellensatz for X tells us that for some
m > 0, φ̄m =

∑
α rαh̄α for some rα ∈ k[X]. I also claim that by continuity,

h̄αf = ḡα on U . Consequently

fφ̄m =
∑
α∈B

rαh̄αf =
∑
α∈B

rαḡα

on U . But this implies f ∈ k[X, 1/φ̄]. Conversely, every element of k[X, 1/φ]
defines a function f as in the Proposition , so the proof is complete. �

By letting φ = 1, we get the following corollary.
Corollary 7.3. Let X be affine. Then the set of functions that are regular
at every point of X are the elements of k[X] (which is also known as the
set of regular funtions on X). Moreover, the set of globally defined rational
functions is k[X].

Exercise 7.1. Prove Corollary 7.3.

We also get that k[x1, . . . , xn, 1/φ] is the set of regular functions on Uφ.
In fact, let

Xφ ↔ { (x1, . . . , xn+1) ∈ An | xn+1φ(x1, . . . , xn)− 1 = 0}.
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Thus Xφ = V (h, where h = xn+1φ − 1 ∈ k[x1, . . . , xn+1]. Now projection
onto the first n coordinates gives us a regular map Φ : Xφ → A

n with image
Uφ.

Exercise 7.2. Describe the ring of functions that are regular on U = k2 \0.
Conclude that U cannot support an affine variety. (Hint: use the abstract
formulation.)

Exercise 7.3. Repeat the previous Exercise for the functions regular on
k \ {finite number of points}.

Definition 7.3. Two affine varieties X and Y that have isomorphic function
fields k(X) and k(Y ) are said to be birational. A rational variety is one whose
function field is isomorphic to the function field k(x1, . . . , xn) of An.

Exercise 7.4. The purpose of this exercise is to show that two birational
affine varieties X and Y need not themselves be isomorphic. Let X =
V (x2 − y3) ⊂ A2 and let Y = A

1. Show that k(X) = k(t), where

t =
x

y
.

Clearly k(A1) = k(x), where x is an indeterminate. Conclude that k(x) ∼=
k(t). On the other hand, show that the coordinate rings k[X] and k[A1] of X
and A1 are not isomorphic, and hence conclude X and Y are not isomorphic.
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Lecture 8

Projective Varieties

If V is a finite dimensional k-vector space, the projective space P(V ) of V is
defined to be the set of lines through the origin in in V . When V = A

n+1,
we will denote P(V ) by Pn. Let k∗ be the multiplicative group of non zero
elements of k. Then Pn may also be viewed as the set of orbits of the natural
action of k∗ on (An+1 \ 0). (Recall, if a group G acts on a set S, the orbit of
s ∈ S is Gs = {gs | g ∈ G}.) Thus,

P
n = {lines through 0 in An+1} = (An+1 \ 0)/k∗.

We will denote the k∗-orbit of (a0, a1, . . . , an) by [a0, a1, . . . , an]. Thus

[a0, a1, . . . , an] = [ta0, ta1, . . . , tan]

for any t 6= 0. Note that [a0, a1, . . . , an] is undefined when all ai = 0. If
v ∈ An+1 \ 0, then [v] ∈ Pn denotes the line kv spanned by v. If W ⊂ V is
a subspace of dimension k + 1, then

P(W ) = {[w] | w ∈W \ 0} ⊂ P(V )

will be called a k-plane in P(V ).
Example: A line in Pn therefore corresponds to a 2-plane in An+1. A
hyperplane in Pn corresponds to an n-plane in An+1.

It is well known that P2 gives an example of a projective plane geometry:
two points lie on a unique line, and every pair of distinct lines in P2 meet in
a point.

Exercise 8.1. Verify this claim, i.e. show that P2 satisfies the axioms of a
projective plane geometry.
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If V and W are subspaces of An+1, linear algebra tells us that

dim(V +W ) = dimV + dimW − dim(V ∩W ),

so
dim(V ∩W ) ≥ dimV + dimW − (n+ 1).

If dim(V +W ) = n+ 1 then equality holds above; however, unless dimV +
dimW ≥ n+ 1, the above inequality is vacuous. We therefore infer
Lemma 8.1. If V +W = A

n+1, then

• dimP(V ∩W ) = dimP(V ) + dimP(W )− n

• codimP(V ∩W ) = codimP(V ) + codimP(W ).

In other words, codimensions add.

The Zariski topology on Pn is the natural topology induced from the
(relative) Zariski topology on An+1 \ 0. Thus, the closed sets in Pn are the
subsets X such that π−1(X) are closed in An+1 \ 0. By definition, a closed
set in An+1 \ 0 has the form Z ∩ An+1 \ 0 for some closed set in An+1. I
claim that 0 ∈ Z. For if Z is closed and Z ∩ An+1 \ 0 = π−1(X), then for
any v ∈ Z ∩ An+1 \ 0, we have tv ∈ Z ∩ An+1 \ 0 for all t ∈ k∗. But then
kv ⊂ Z since kv and Z are closed. Thus 0 ∈ Z.

More generally, we have the

Exercise 8.2. Let X,Y be closed in An and suppose X is irreducible. Show
that if F ∈ k[x] has the property that F = 0 on X \ Y , then F = 0 on X.
Conclude that every nonempty open set in X is dense.

A subset Z of Am which is closed under k is called a cone. If Z is a cone,
we will denote (Z \ 0)/k∗ by P(Z). Thus the closed sets in Pn have the form
X = P(Z), where Z is a closed cone in An+1. We call Z the cone over X.

We will see that the Zariski toplology on Pn is Noetherian. Hence every
closed set in Pn has a unique irreducible decomposition. We thus have the
following

Definition 8.1. A closed irreducible subset of Pn is called a projective va-
riety.

Let us make some further comments on the topology of Pn. If k = C,
we can use the fact that Pn has a covering U0, U1, . . . , Un with

Ui = {[a0, . . . , an] | ai ∈ C∗}
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to transfer the classical topology of Cn to Ui via the identification

[a0, . . . , an]→ (a0/ai, a1/ai, . . . , an/ai) ∈ An.

Note ai/ai does not appear on the right hand side. In fact, we may define a
set V ⊂ Pn to be open if V ∩ Ui is open for each i.

Exercise 8.3. Show that this is a topology. Moreover, show that it coincides
with the quotient topology on Pn induced by the quotient map π : Cn+1\0→
P
n.

The complement of Ui is the hyperplane ai = 0. Thus Pn is the union
of An and the hyperplane ai = 0. In particular, P1 is the union of A1 and a
point at infinity, P2 is the union of A2 and a line at infinity and so on.
Remark: If X is Zariski closed (in An or Pn), we define a topology on X
by saying W ⊂ X is open if and only if W = X ∩U , where U is open in An

(or Pn). This is the so-called relative topology on X.
Recall that a topological space X is called compact if every open cover

has a finite subcover (ie. if {Uα}α∈B is a collection of open sets satis-
fying ∪α∈BUα = X, then there exists a finite finite F ⊂ B such that
X =

⋃
α∈F Uα).

Proposition 8.2. Pn is a compact Hausdorff space in the classical topology.
In particular, P1 is the one point compactification of C.

Now we can now extend a previously stated result about affine varieties
over C.
Theorem 8.3. Let X be an affine or projective variety over C and suppose
X0 is a Zariski open subset of X. This means X0 = X\Y where Y is
Zariski closed. Then the closures of X0 in the classical and Zariski topologies
coincide.

Exercise 8.4. Prove Theorem 8.3.

In particular, every projective variety in Pn is compact in the classical
topology.
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Lecture 9

The homogeneous coordinate
ring

There are various aspects of projective varieties we need to consider in more
detail. such as what the Nullstellensatz says in the projective setting. Let
us begin by considering the ideal of a closed set in Pn. Note first that
k[x0, x1, . . . , xn] is a graded k-algebra. That is,

k[x0, . . . , xn] =
⊕
m≥0

Am,

where Am denotes the k-vector space of homogeneous polynomials of degree
m, and this decomposition has the property that AjAm ⊂ Aj+m. Clearly, a
polynomial f ∈ k[x0, . . . , xn] is homogeneous of degree d if f(λx) = λdf(x)
for all x ∈ An+1 and all λ ∈ k∗.

Suppose Z ⊂ An+1 is a closed cone and let X = P(Z). Define the ideal
of X to be I(X) = I(Z).
Lemma 9.1. If Z ⊂ An+1 is a closed cone, then

I(Z) =
⊕
m≥0

(
I(Z) ∩Am

)
.

In other words, if g =
∑

i gi, with gi ∈ Ai, and g = 0 on Z, then each gi = 0
on Z. In particular, if X is projective, then I(X) is homogeneous.

Proof. Let g(x) = 0. Then g(λx) = 0 for all λ ∈ k. But

g(λx) = λmgm(x) + λm−1gm−1(x) + · · ·+ λ0g0(x).

This polynomial is identically zero, hence all the coefficients must be zero
since k an algebraically closed field is infinite. �
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The following proposition characterizes the closed cones in A2.
Proposition 9.2. Let f(x, y) be homogeneous of degree d. Then f may be
factored

f =
∏

1≤i≤d
(aix+ biy), ai, bi ∈ k.

Note that this Proposition needs the assumption k = k; for example,
x2 + y2 = (x+ iy)(x− iy) cannot be factored over R.

Exercise 9.1. Prove Proposition 9.2 and conclude that the only closed
cones in A2 are finite unions of lines. Thus describes the closed subsets of
P

1.

In general, an ideal in a graded ring R =
⊕

m≥0Rm which satisfies the
condition

I =
⊕
m≥0

(I ∩Rm)

is called homogeneous. If I is homogeneous, the quotient R/I is also a graded
ring with

R/I =
⊕
m

(R/I)m,

with (R/I)m = Rm/Im. This is due to the fact that RmIn ⊂ Im+n.

Definition 9.1. If X is a projective variety, we will define its homogeneous
coordinate ring to be S(X) = k[x]/I(X).

In particular, S(X) is a graded ring, in fact a graded k-algebra:

S(X) =
⊕
m≥0

Sm(X) =
⊕
m≥0

Am/I(X)m.

Some of the results already proven in the affine setting extend easily to
the projective situation.
Proposition 9.3. Let X = P(Z) as above. Then:

(i) I(X) = I(Z) is generated by finitely many homogeneous polynomials.

(ii) The Zariski topology on Pn is Noetherian.

(iii) X is irreducible iff I(X) is prime.

Exercise 9.2. Prove this Proposition.
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Let us now establish the projective version of the Nullstellensatz. Sup-
pose I ⊂ k[x0, x1, . . . , xn] is a homogenous ideal.
Theorem 9.4 (Projective Weak Nullstellensatz). Suppose P

(
V (I)

)
=

∅. Then I ⊃ mr
0 for some r > 0.

Proof. Since I is homogeneous, I 6= k[x0, x1, . . . , xn]. Thus, V (I) = {0}.
Therefore, by the usual Nullstellensatz, xmi ∈ I for some m > 0. The result
now follows. �

Theorem 9.5 (Projective Nullstellensatz). If I is a homogeneous ideal
in k[x0, x1, . . . , xn] and X = P

(
V (I)

)
is a nonempty projective variety, then

I
(
X
)

= Rad(I).
Proof. Let Z = V (I). Then I(Z) = I(X). Now I(Z) = Rad(I) by the
usual Nullstellensatz. Thus I(X) = Rad(I) too. �

Now let X be a projective variety. The elements of S(X) are not func-
tions on X. They are the functions on the cone CX over X. To get functions
on X, we can consider the elements of degree zero in the quotient field of
S(X). We will return to this later. Another option is to work locally.

Definition 9.2. Let U ⊂ Pn be open in X. A function f : U → k is said
to be regular at p ∈ U if and only if there is an open neighborhood V of p
on which f = g/h, where g and h are homogeneous of the same degree and
h 6= 0 on V .

This definition is very similar to one we gave in the affine case. The
requirement that g and h are homogeneous of the same degree means that
g(λx)/h(λx) = g(x)/h(x), so f(x) is independent of the homogeneous coor-
dinates of x. Just as in the affine case, it is customary to denote the ring of
functions f : U → k such that f is regular at p by OU,p. We will denote the
functions that are regular at every point of U by O(U).

By copying the proof of the corresponding result in the affine case, we
get
Proposition 9.6. Let s ∈ A1 = k[a0, . . . , an]1 be a homogeneous linear
polynomial. Let U = P

n \ V (s). Then O(U) consists of the degree 0 terms
in the localization of k[a0, . . . , an] at the multiplicative set determined by s.

Thus every element of O(U) is of the form f(a0, . . . , an)/sd, where f ∈
Ad.

One of the properties of projective varieties that distinguishes them from
affine varieties is given in the next
Theorem 9.7. If X is projective, then every function f : X → k regular at
every p ∈ X is constant. That is, O(X) ∼= k.
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Proof. We will prove this in the case X = P
n. The general case isn’t much

different. Let f = r/s near p where r, s are homogeneous polynomials of the
same degree and s(p) 6= 0. If there is a point q ∈ Pn with s(q) = 0, then we
can write f = u/v near q, where u and v are homogeneous polynomials of
the same degree and v(q) 6= 0. Now any two open sets in Pn meet. (This is
where the irreducibility is used.) Thus there exists an non empty open set
where rv = us. Since such open sets are dense, rv = us in k[x]. Now we
can assume that r and s have no common factors. Thus s divides v. This
contradicts s(q) = 0 and v(q) 6= 0. It follows that s cannot vanish on Pn,
hence P(V (s)) = ∅. Hence, if s has positive degree, then a power of the
maximal ideal is contained in (s). But there is no non constant function
with this property, so s is constant, hence so is f . �

Let’s next look at what projective varieties are like locally. Recall Pn

has a covering by open sets U0, U1, . . . Un, where

Ui = {[z] | zi 6= 0}.

I claim each Ui carries the structure of an affine variety. Let us demonstrate
this for U0. Consider the map the map φ : U0 → A

n given by

φ([a0, a1, . . . , an]) = (a1/a0, a2/a0, . . . , an/a0).

The inverse is the map φ−1 : An → U0 defined by

φ−1(x1, . . . , xn) = [1, x1, . . . , xn].

Now φ induces a comorphism from k[x1, . . . , xn] to a set of functions on
U0. We have to decide what kind of functions. Let f ∈ k[x] have degree d.
Put

fh(z0, . . . , zn) = zd0 f(z1/z0, z2/z0, . . . , zn/z0).

Then

fh(λz0, . . . , λzn) = λdzd0 f(z1/z0, z2/z0, . . . , zn/z0) = λdfh(z0, . . . , zn).

Hence fh is homogeneous of degree d.

Definition 9.3. We say that fh is the standard homogenization of f ∈ k[x].

Now

φ∗(f)([a0, a1, . . . , an]) = fφ([a0, a1, . . . , an]) = f(a1/a0, a2/a0, . . . , an/a0).
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But

f(a1/a0, a2/a0, . . . , an/a0) = ad0
f(a1/a0, a2/a0, . . . , an/a0)

ad0

=
fh(a0, . . . , an)

ad0
,

This is clearly a regular function on U0. In fact, it’s clear that φ∗ deter-
mines an isomorphism from k[x1, . . . , xn] to O(U0). Therefore U0 carries
the structure of the affine variety An. That is, U0 = Specm O(U0). Any
closed set Y in An maps under φ−1 to Uo ∩X, where X is the set of zeros
of a homogeneous ideal in k[a0, . . . , an].
Proposition 9.8. If X is closed in Pn, then φ(X∩Ui) is closed in An for each
i and conversely. In particular, every closed set in Pn is covered by open
sets, which are isomorphic to closed sets in An. Finally, every projective
variety X has an open cover by affine varieties..

Proof. We showed above that φ(X ∩ Ui) is closed in An+1 iff X ∩ Ui is
closed in Ui. Thus we only need to see that it is irreducible iff X is. But if
X ∩ Ui is irreducible, then so is X. �

To summarize the discussion above, since φ∗ : k[x1, . . . , xn] → O(U0) is
an isomorphism of finitely generated k-algebras, φ : U0 → A

n is an isomor-
phism of affine varieties. Thus any affine variety Y ⊂ An has a projective
completion Y in Pn obtained by embedding Y in U0 (or any other Ui), and
taking the closure. This is a standard way to construct a projective com-
pletion of a given affine variety Y .

This discussion brings us to an important class of varieties. Namely, we
have the

Definition 9.4. A subset X ⊂ P
n is called a quasi-projective variety if

X = Y \ Z, where Y ⊂ Pn is projective and Z is closed in Pn.

In other words, a quasi-projective variety is by definition an open subset
of a projective variety. Note that we are requiring quasi-projective varieties
to be irreducible, although Shafarevich doesn’t require this condition.

Exercise 9.3. Show that every affine variety is quasi-projective.

We can extend Proposition 9.8 to the quasi-projective case. In fact, we
have
Proposition 9.9. Let X ⊂ Pn be a quasi-projective variety and let x ∈ X.
Then x has a neighborhod which is an affine variety.
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Proof. (Also see Shafarevich, p. 49.) Suppose X ⊂ Pn is quasi-projective,
say X = W \ Y , where W is projective and Y is closed. Let x ∈ X and say
for example that x ∈ U0. We need the following Lemma.
Lemma 9.10. Let Y1 and Y2 be disjoint closed subsets of An. Then there
exists a g ∈ k[x1, . . . , xn] such that g(Y1) = 0 and g(Y1) = 1.

Exercise 9.4. Prove Lemma 9.10.

Now apply Lemma 9.10 to Y1 = φ(x) and Y0 = φ(U0 ∩ Y ). We know
Z = A

n \ V (g) is affine and open in An, and, by choice of g, φ(x) ∈ Z.
Therefore, (W ∩ U0) ∩ φ−1(Z) is a open neighborhood of x isomorphic to
a closed subset of An. Now choose an irreducible component containing x
and we are through. �
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Lecture 10

Rational and regular
functions and maps

We now take up the question of what are rational and regular functions on
quasi-projective varieties and what are rational and regular maps between
quasi-projective varieties. We have already defined these concepts in the
affine case, and in fact we saw that a regular function on an affine variety
X is the same thing as an element of the coordinate ring k[X]. Moreover,
we defined the notion of a regular function on a projective variety X and
observed that the only (globally) regular functions are the constants.

Let us begin with the function field of a projective variety X. The
homogeneous coordinate ring S(X) is a graded k-algebra and also a domain.
Thus a candidate for the function field, or field of rational functions on X is

k(X) = {f(x)/g(x) | f, g ∈ Am ∃ m, g 6= 0}.

Since f and g are homogeneous of the same degree, it follows that an element
of f/g of k(X) is a regular function on some open set U ⊂ X, namely where
g 6= 0.
Example: Let X = P

1. Then if f and g in k[x0, x1] are homogeneous of
the same degree d, we have

f(x0, x1)/g(x0, x1) = xd0f(1, z)/xd0g(1, z) = r(z)/s(z),

where z = x1/x0. It follows easily that k(P1) ∼= k(z). Similarly, k(Pn) ∼=
k(z1, . . . zn), the quotient field of k[z1, . . . , zn]. In particular, k(Pn) = k(An).

It isn’t as clear how to proceed in the case X is quasi-projective, so we
will take a slightly round about approach. First of all, we make the following
definition.
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Definition 10.1. If Y is an open subset of a closed set W ⊂ Pn, let k[Y ]
denote the ring of all k-valued functions on Y which are regular at every
point. We call k[Y ] the ring of regular functions on Y .

There are two limiting cases. If Y is affine of the form X \H, where X
is projective and H is a hyperplane, then we know k[Y ] is the coordinate
ring of Y . On the other hand, if Y is projective, then k[Y ] ∼= k.
Remark: When Y is quasi-projective, it isn’t always true that k[Y ] is
finitely generated. This definitely distinguishes the quasi-projective and
affine cases.

We now define the function field of a quasi-projective variety. Let X ⊂
P
n be quasi-projective. Let OX denote the set of rational functions

f(a0, . . . , an)/g(a0, . . . , an),

where f, g ∈ Ad for some d and g 6∈ I(X) := I(X). Thus, OX is the terms
of degree 0 in the localization of k[a0, . . . , an] at the prime ideal I(X). Let
MX denote the ideal of all f/g ∈ OX where f ∈ I(X). Since any element
of the complement of MX is invertible, OX/MX is a field.

Definition 10.2. The field k(X) = OX/MX is by definition the function
field of X.

Exercise 10.1. We now have two definitions of k(X) if X is projective. Do
they coincide? Also, verify that if X is quasi-projective, then k(X) = k(X).

We now take up morphisms of projective varieties. The naive way to
define a “morphism” f : X → Y , where X ⊂ Pm and Y ⊂ Pn are projective
varieties is the following: f is just the restriction of some F : Pm → P

n,
where F = (g0, . . . , gn) and gi ∈ Ad for all d. The problem is what to do if
the gi have a common zero at a point of X?
Example: Let X = {x2 − y2 + z2 = 0} and Y = P

1. Then F : P2 → P
1

given by F ([x, y, z]) = [x, y − z] is undefined at [0, 1, 1]. However, we define
f([0, 1, 1]) = [1, 0]. Note that P1 = U0 ∪ U1 so f−1(U0) = X \ [0, 1,−1] and
f−1(U1) = X \ [0, 1, 1]. Also f : F−1(U0) → U0 is [x, y, z] 7→ (y − z)/x and
f : f−1(U1) → U1 is [x, y, z] 7→ x/(y − z). Finally, p = [0, 1, 1] ∈ f−1(U0).
Now we ask whether f regular at p. We have

y − z
x

=
y2 − z2

x(y + z)
=

x2

x(y + z)
=

x

y + z
.

So f is given on f−1(U0) by x/(y + z) which is regular.
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This example suggests that this preliminary definition of regular maps
needs to be modified.

Definition 10.3. Let X and Y be two quasi-projective varieties. A map
φ : X → Y is called regular if φ is continuous and for every open V ⊂ Y
and regular function f on V , the function φ∗(f) = fφ is regular on φ−1(V ).

Proposition 10.1. Let X be a projective variety, and suppose a map F :
X → ¶m given by an (m + 1)-tuple of elements of Ad has no base points,
that is the components have no common zero in X. Then F is a regular
map.

Of course, if F doesn’t have any base points, then, by the weak Nullstel-
lensatz , the ideal generated by (IX) and the components of F contains a
power of the maximal ideal at 0.

Exercise 10.2. Do regular maps of projective varieties induce homomor-
phisms of the homogeneous coordinate rings?

Let’s now look at a basic example. Consider all the monomials zα, where
α ∈ Zn+1

+ and
∑
αi = d. It’s a basic fact that the number of such monomials

is
(
n+d
d

)
. For a given n, the Veronese variety of degree d is defined to be the

image of the map νd : Pn → P
N , N =

(
n+d
d

)
− 1, sending [z0, z1, . . . , zn] 7→

[zα0 , zα1 , . . . , zαN ], where the αi run through these monomials in some order.
Clearly, the map vd is regular.
Example: Let’s show explicitly that the image of v2 : P1 → P

2 is a projec-
tive variety. Let monomials of degreee two be given the order (2, 0), (1, 1),
and (0, 2). Then

ν2([z0, z1]) = [z2
0 , z0z1, z

2
1 ].

Since 2(1, 1) = (2, 0) + (0, 2), the image of ν2 is contained in the curve
x2

1 = x0x2, where x0, x1, x2 are the homogeneous coordinates on P2. Also,
since x0 = z2

0 and x2 = z2
1 , all possible first an d third components are hit

by ν2. Thus ν2(P1) = {x2
1 = x0x1}. Clearly, ν2(P1) is irreducible. In fact,

it has to be, since otherwise, pulling back the irreducible components would
imply that P1 could not be irreducible.

We will presently show that the image of a projective variety under a
regular map is also a projective variety. this will be our first major result on
projective varieties. Before we can show this however, we need to consider
products of projective varieties. This is the next topic.
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Lecture 11

Product varieties and the
graph of a regular map

The construction of products in the category of affine algebraic varieties is
basically straightforward, since the product of two affine spaces is also an
affine space: Am×An = A

m+n. Let X ⊂ Am and Y ⊂ An be Zariski closed.
The problem is whether X × Y ⊂ Am+n Zariski closed? We know that if
V,W ⊂ Am+n are Zariski closed, then V ∩W is also Zariski closed. In fact,
I(V ∩W ) = Rad(I(V ) + I(W )). To see X × Y is affine notice that

X × Y = (X × An) ∩ (Am × Y ).

But X × An and Am × Y are clearly closed. Indeed, X × An = V (π∗1I(X))
where π1 : Am+n → A

m is the first projection, with a similar expression for
A
m × Y in terms of the second projection π2. (Note: we are not claiming

π∗1I(X) is an ideal.) The
Proposition 11.1. Let X ⊂ A

m and Y ⊂ A
n be Zariski closed. Then

X × Y is Zariski closed in Am+n. Moreover,

(1) if X = V (f1, . . . , fr) and Y = V (g1, . . . , gs), then

X × Y = V (π∗1f1, . . . , π
∗
1fr, π

∗
2g1, . . . , π

∗
2gs),

and
I(X × Y ) = Rad(I(X × An) + I(Am × Y );

(2) X × Y is specm
(
A(X)⊗k A(Y )

)
.
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Exercise 11.1. Give the proof.

The proof of (2) consists in showing that A(X) ⊗k A(Y ) ∼= A(X × Y ).
By the universal property of the tensor product, there exists a map such
that f ⊗ g → f × g ∈ A(X × Y ), where f × g(x, y) = f(x)g(y), and it can
be shown that this map induces the desired isomorphism.

A slightly subtle point is the fact that the product of two irreducible
closed sets is also irreducible. In other words, the product of two affiine
varieties is also an affine variety. One proof of this is to shown that A(X)⊗k
A(Y ) is a domain if A(X) and A(Y ) are. Another proof is to use the result
that if F : W → Z is a regular map whose fibres are equidimensional and
irreducible, then W is irreducible iff Z is. The projection maps X×Y → X
and X×Y → Y are in fact clearly regular and satisfy the hypotheses of this
result.

One of the major differences between affine and projective varieties is
that projection maps are not closed. (Recall that a closed map is one which
sends closed sets to closed sets.) Thus the product topology on Am ×An is
not the Zariski topology. This stifles any attempt to show that the product
of two irreducible closed sets is irreducible from topological considerations
alone. Here is an example.
Example: Let X = Y = A

1. Then the projection of the variety {xy = 1}
in X × Y is not a closed subset of X. Hence the projection is not a closed
map. However, if we adjoin the point at infinity to the second factor, then
π1(X) is closed. The Fundamental Theorem of Elimination Theory says the
the projection Am × Pn → A

m is closed. We will discuss this in more detail
later.

Exercise 11.2. Show that the product of two Noetherian spaces is Noethe-
rian.

We now consider the product of closed setsX, Y in the projective setting.
Suppse X ⊂ Pm and Y ⊂ Pn are Zariski closed. Now X×Y ⊂ Pm×Pn,which
is not a projective space. The way we proceed is to introduce the Segre map
ϕ : Pm × Pn → P

(m+1)(n+1)−1. The Segre map is given by

ϕ([x0, . . . , xm], [y0, . . . , yn]) = [xiyj ].

It’s convenient to view this point as an (m + 1) × (n + 1) matrix [Zij ] in
homogeneous coordinates , where Zij = wizj . For example,

ϕ([x0, x1], [y0, y1]) =
(
x0y0 x0y1

x1y0 x1y1

)
.
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Let ϕ(Pm×Pn) be denoted by S(m,n). Then S(m,n) is the variety of zeros
of the 2× 2 minors of [zij ]. That is,

S(m,n) = V

{
det
(
Zi1j1 Zi1j2
Zi2j1 Zi2j2

) ∣∣ all 0 ≤ ii ≤ i2 ≤ m, 0 ≤ j1 ≤ j2 ≤ n
}
.

In other words, s(Pm × Pn) is projective.
Proposition 11.2. The Segre map ϕ : Pm × Pn → P

(m+1)(n+1)−1 is a
bijection of Pm × Pn onto a Zariski closed set in P(m+1)(n+1)−1.

Proof. See Sharfarevich, pp 55-56.

Exercise 11.3. Give the explicit proof the S(1, 1) is closed in P3.

Example: The image of ϕ : P1 × P1 → P
3 is the locus of points [Zij ] with

Z00Z11 − Z01Z10. S(1, 1) is called a quadric surface. Note that ϕ(P1 × p)
and ϕ(q × P1) are lines in P3. Thus the quadric is a doubly ruled surface.

We now show that ϕ(X × Y ) is Zariski closed. If X ⊂ Pm and Y ⊂ Pn
are closed, X × Y is the subset of Pm×Pn consisting of all points such that
f(x)r(x, y)+g(y)s(x, y) = 0, where f ∈ I(X) and g ∈ I(Y ), and g, g, r, s are
all homogeneous. It follows that X × Y is the locus of zeros of polynomials
of the type

h(x, y) =
∑

|I|=d,|J |=e

aIJx
IyJ .

Such polynomials are called bihomogeneous of bidegree (d, e). If d 6= e, say
d < e, we may replace h by the functions yki h(x, y), |k| = e−d. Thus we can
suppose that all h are of bidegree (d, d). Now notice that the comorphism
ϕ∗ defines an isomorphism k[Zij ]e → k[x, y](e,e), where k[x, y](e,e) denotes
the bihomogeneous polynomials of bidegree (e, e). Thus we may make the
following

Definition 11.1. We say that X × Y ⊂ P
m × Pn is Zariski closed if it

is the locus of a family of bihomogeneous polynomials. The corresponding
topology on Pm × Pn is called the box topology.

We now prove
Proposition 11.3. Let X ⊂ Pm, Y ⊂ Pn be closed. Then X × Y is closed
in Pm × Pn. Moreover, ϕ(X × Y ) is closed in P(m+1)(n+1)−1. Hence, ϕ is a
closed map. Consequently, ϕ(X × Y ) is projective.

Proof. The first claim is already proven. For the second, suppose h is
bihomogeneous of bidegree (e, e) and h(x, y) = 0. Then h = ϕ∗(f) for some
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f ∈ k[Zij ]e, so f(ϕ(x, y)) = 0, and conversely. Hence ϕ(X × Y ) is closed in
P

(m+1)(n+1)−1. �
Therefore X × Y itself can be viewed as a projective variety.

Exercise 11.4. Prove that if X ⊂ Pm and Y ⊂ Pn are quasi-projective ,
then ϕ(X × Y ) is also quasi-projective .
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Lecture 12

Regular and Rational Maps
on Projective Varieties
(Revised)

We now turn to some properties of regular and rational maps of varieties. An
important consideration when we consider rational maps will be the graph
construction. The graph of a map F : X → Y is defined to be

GF = {(x, F (x)) | x ∈ X} ⊂ X × Y.

Note that it is possible that F is continuous, but its graph is not be closed
(in the product topology on X × Y ).

Exercise 12.1. Show that if X ⊂ Am and Y ⊂ An are Zariski closed, then
the graph GF of a regular map F : X → Y is Zariski closed in Am × An.

Here is an exercise on the product topology.

Exercise 12.2. Show that if Y is any Hausdorff topological space, then the
graph of any continuous map F : X → Y is closed. Find an example where
the graph isn’t closed.

Exercise 12.3. Taking the Zariski topology on P
1, is the graph of the

identity map i : P1 → P
1 closed in the product topology?

Proposition 12.1. Let X ⊂ Pm be Zariski closed. Then if F : X → P
n is

regular, the graph GF ⊂ Pm × Pn is also Zariski closed.
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Proof. Write F (x) = [f0(x), . . . , fn(x)] where the fi are some functions,
and let [y0, . . . , yn] be homogeneous coordinates on Pn. Suppose fj(x) 6= 0.
By the definition of a regular map, the function F ∗(yi/yj) is regular on an
open set in X so since F ∗(yi/yj) = yiF/yjF = fi/fj , we may assume all the
fi are homogeneous polynomials and F (x) = [f0(x), . . . , fn(x)] on an open
set in X. Hence, every x ∈ X has a neighbourhood Ux ⊂ X so that

F (x) = [f0(x), . . . , fn(x)]

on Ux, where the fi are homogeneous polynomials of the same degree with
no common zeros on Ux. Hence, in π−1

1 (Ux) ⊂ X × Y , we have

GF =
{(

[x0, . . . , xm], [y0, . . . , yn]
)
| yifj(x) = yjfi(x)

}
.

If we therefore cover X with finitely many Ux’s. we therefore obtain a finite
number of bihomogeneous polynomials which cut out the graph GF in X×Y .
This means the graph GF is Zariski closed. �

The above proof also shows
Proposition 12.2. Let X ⊂ Pm be Zariski closed, and assume F : X → P

n

is regular. Then for each a ∈ X, there exists an open neighborhood Ua
of a on which F (x) = [f0(x), . . . , fn(x)], where the fi are homogeneous
polynomials of the same degree with no common zeros on Ua.

We will consider the quasi-projective case below, when we study rational
maps.

As was mentioned previously, one of the basic results in beginning alge-
braic geometry is
Theorem 12.3. The projection maps Pm × Pn → P

m and Pm × Pn → P
n

are closed.

This implies
Corollary 12.4. The image of a closed set in Pm under a regular map to
P
n is closed.

We now consider rational maps. Intuitively, we think of a rational map
F : Pm 99K Pn is being defined by a sequence of elements (a0, . . . , am)
of the function field k(Pm). More generally, if X is a projective variety,
then we can take a sequence in k(X). By clearing away the denominators,
we can therefore take an arbitrary sequence of homogeneous polynomials
(f0, . . . , fn) all of the same degree. Of course, as we’ve seen already, a
different sequence of homogeneous polynomials (g0, . . . , gn) can define the
same map locally. Thus we have to think of a rational map F : X 99K Pn as
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being an equivalence class of (n+ 1)-tuples. The points of X where all the
fi = 0 for every possible way of representing the map locally will comprise
the indeterminacy locus of F . This represents the set of points where F
cannot be defined. Now let us make the formal definition.

Definition 12.1. Let X be quasi-projective (in particular, irreducible).
Then a rational map F : X 99K Y is an equivalence class of pairs (U, γ),
where U is Zariski open and dense, and γ : U → Y is regular (under the
obvious equivalence relation). If p ∈ U for some pair (U, γ), we say F is
defined at p. The complement of the U ’s is the indeterminancy locus of F .

Clearly the indeterminancy locus is always Zariski closed.
Example: Let X be quasi-projective and irreducible. Then every rational
function f/g ∈ k(X) defines a rational map F : X 99K P1 by F (x) =
[f(x), g(x)]. Since we may suppose that f and g don’t have any common
factors, it follows that the indeterminacy locus, that is the set of points
where f = g = 0 has ”codimension 2” in X. We will treat dimension later,
but for now, we can use the definition dimX = tr.deg.k(X). In particular,
if X is a curve, i.e. dimX = 1, then every rational function F defines a
regular map. If X is a surface (dimX = 2), then F is undefined on a finite
set.
Example: Let [x, y, z] denote homogeneous coordinates on P2. Let p =
[0, 1, 1] and let P1 be the line {z = 0}. The projection πp : P2 \ p → P

1 is
the map sending [x, y, z] to the intersection of the line through [x, y, z] and
p with P1. I claim πp([x, y, z]) = [x, y− z]. The reason is that the two plane
in A3 spanned by (x, y, z) and (0, 1, 1) has basis (x, y − z, 0) and (0, 1, 1).
This two plane meets P1 = {z = 0} in [x, y − z].

In general, suppose p ∈ Pn and let H be a hyperplane in Pn such that
p 6∈ H. Then the map πp,H : Pn \p→ H defined by putting πp,H(a) equal to
the intersection of the line through a and p with H (which by linear algebra
is a unique point of H) is called the projection onto H centred at p. It is
a projection since πp,H(a) = a if a ∈ H. Suppose X ⊂ Pn is Zariski closed
and p 6∈ X. Then restricting the projection πp,H : X → H is a regular map.
Such maps give an explicit way to produce study properties of projective
varieties, since πp,H(X) will be a projective subvariety of a Pn−1. We will see
that X and πp,H(X) have the same dimension. (This is part of the Noether
Normalization Theorem.)

The case where p ∈ X gives another situation entirely. This leads to a
famous map called blowing up which we will soon define.
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Example: Let’s take another look at to Example 10 Let X = V (x2 − y2 +
z2) ⊂ P2, and F = [x, y−z]. Recall F : P2 99K P1 is projection from [0, 1, 1].
But

[x, y − z] =
[
1,
y − z
x

]
=
[
1,
y2 − z2

x(y + z)

]
=
[
1,

x

y + z

]
= [y + z, x].

The upshot is that the indeterminancy locus of F is empty. This gives an
example where p ∈ X, and πp : X 99K P1 is regular.
Remark: Suppose X is a projective (i.e. irrreducible) and F : X 99K Pn

is a rational map. Let Z ⊂ X × Pn denote the closure of the graph of F
(restricted to its regular set). Somewhat surprisingly, Z is not necessarily
irreducible. In fact we will see an explicit example where this happens when
we blow up a point of a nodal curve in P2. The point is that by definition,
Z is Y \W for a pair of Zariski closed sets Y,W ⊂ Pn.

Exercise 12.4. Show that the closure of Z is Y if Y is irreducible. In
particular, Z is irreducible if and only if Z = Y \W (as above), where Y is
projective.

Hence, let
Z = Z1 ∪ Z2 ∪ · · · ∪ Zr

be the irreducible decomposition of Z. The first projection π1 : Z → X
maps each Zi to a closed subset of X. Hence, for at least one i, π1(Zi) = X.
Now F is regular on an open subset of X, so I claim that only one component
of Z projects onto X, for two components that project to X coincide over
a dense open set in X. But two irreducible varieties which meet in an open
set coincide. Let Z1 be that component. Then if i > 1, Zi ⊂ Y × Pn where
Y is a closed subset of X. We will call these Zi the irrelevant components.
We give an example below to show the Zi (i > 1) can be non trivial. We
will now call Z1 the graph of F and denote Z1 by GF .

The image of a rational map is defined to be π2(GF ). We will see later
that π2(GF ) is a closed subset of Pn. If Y := π2(GF ), we will write F : X 99K
Y .

The compositionG◦F of two rational maps F : X 99K Y andG : Y 99K Z
is defined when there exists a p ∈ X such that F is defined at p and G is
defined at F (p).

Definition 12.2. A projective variety X ⊂ Pm is called rational if there
exists a rational map F : X 99K Pn for some n and a rational map G :
P
n 99K X such that:
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(1) G ◦ F and F ◦G are both defined; and

(2) both G ◦ F and F ◦G are the identity (wherever defined).

A rational map F : X 99K Y is said to be birational if there exists a rational
map G : Y 99K X such that (1) and (2) are satisfied.

Proposition 12.5. A rational map F : X 99K Y of quasi-projective varieties
is birational if and only if F ∗ defines an isomorphism k(Y ) ∼= k(X).

Exercise 12.5. Show that if F : X → P
1 is the map πp of Example 12,

then F is a regular bijection. Is the inverse map regular? Is F birational?

One of the main problems in algebraic geometry is to determine when
two varieties are birational. We will mention an important special case of
this question in the next section.

Exercise 12.6. Prove that P1 × P1 is a rational variety, where we think of
P

1 × P1 ↪→ P
3 via the Segre embedding.

Proposition 12.6. A projective variety X ⊂ Pn is rational if and only if
k(X) ∼= k(x1, . . . , xn), where x1, . . . , xn are algebraically independent over
k.

Example: Let C = {ZY 2 = X3 + X2Z} ⊂ P2. Note p = [0, 0, 1] ∈ C,
q = [1, 0, 0] /∈ C. Then πq : C → P

1
Y Z is generically three-to-one, hence

cannot be birational. On the other hand, πp : C 99K P1
XY does define a

birational map.

Exercise 12.7. Consider the rational map F”X → P
1 defined in Example12.6.

Show that F induces an isomorphism F ∗ : k(P1) ∼= k(X), so that X is ra-
tional. Find a formula for F−1 and determine whether or not F−1 regular?

We saw above that if X is irreducible, a rational map F : X 99K Y gives
an irreducible closed subset GF ⊂ X × Y such that π1 is generically one-to-
one. Conversely, given an irreducible subvariety Z ⊂ X × Y such that π1 is
generically one-to-one on Z, then we can show that Z arises from a rational
map. How? Well, π∗1 : k(X) → k(Z) is an imbedding; in fact, it is an
isomorphism so [k(Z) : π∗k(X)] = 1. This is like the case of affine varieties
with A(X) instead of k(X). Thus we get π∗2 : k(Y ) → k∗(Z) = k∗(X).
Hence, using homogeneous coordinates [y0, . . . , ym] on Y we have

π∗2(yi/yj) = fi(x0, . . . , xn)/fj(x0, . . . , xn).

Thus, yifj(x) = yjfi(x). I claim that F = [f0, . . . , fm]!
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We can now say that F is birational if G−1
F = {(y, x) | (x, y) ∈ GF } ⊂

Y ×X is rational! A birational map is generically one-to-one. In the above
example, F is a regular birational map. If p = [0, 0, 1], then πp gives a
birational map {ZY 2 = X3 + ZX2} → P

1. However, if q = [1, 0, 0], then
π1 : X → P

1 is generically three-to-one, and hence is not birational. But πq
is regular.

In the next lecture, we will describe a very important example of a
birational map, namely the canonical blowing up map π : Bp(Pn)→ P

n.
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Lecture 13

Blowing up Pn at a Point

As mentioned in the last lecture, one of the main problems in algebraic
geometry is to determine when two projective varieties are birational. One
of the most important cases of this problem is to determine whether every
projective variety X is birational to a smooth variety. A variety is smooth if
it has no singular points. We will take up the notion of a singularity later.
This problem was solved for k of characteristic zero by Hironaka for which
he won the Fields Medal in 1962. Hironaka showed that given X, there is
a smooth projective variety Y and a regular birational map F : Y → X
which has some other neat properties which I won’t go into. He also proved
this result for analytic varieties over C. The question still remains open,
however, for varieties over a field k of positive characteristic.

Hironaka’s proof uses a rational map called blowing up. We will now
study a special case of blowing up. we will describe blowing up Pn at a
point. For simplicity, we can restrict ourselves to the case n = 2, which
shows the essential features of the general construction. The blowing up
construction doesn’t seem to have any analogues outside of algebraic ge-
ometry. In topology, there is a construction called surgery, which gives a
topological way of describing blowing up, but which lacks the fine aspects
of the algebraic-geometric construction.

Throughout this section, we will assume p = [0, 0, . . . , 0, 1] ∈ Pn. As-
suming q 6= p, let l(q, p) be the line in Pn through p and q. Notice that
the set of lines {l(p, q)} is the same as Pn−1, the set of lines through the
origin in An. In fact an explicit identification is l(p, q) 7→ l(p, q) ∩ Pn−1,
where we are viewing Pn−1 as the locus {zn = 0}. It is clear that if
[x0, x1, . . . , xn] ∈ l(p, q), then l(p, q) ∩ Pn−1 = [x0, x1, . . . , xn−1]. Thus, our
identification is induced by the projection map πp : Pn \ p → P

n−1 sending
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[x0, x1, . . . , xn] 7→ [x0, x1, . . . , xn−1].

Definition 13.1. The blow up of Pn at p = [0, 0, . . . , 0, 1] is defined to be
Zariski closure of the graph of πp ⊂ Pn × Pn−1. We denote the blow up of
P
n at p by Bp(Pn).

More generally, if p ∈ Pn is arbitrary, define Hp to be the hyperplane
{p · x = 0}. Then define Bp(Pn) to be the closure of the graph of the
projection of πp : Pn → Hp.

There are several alternative descriptions of Bp(Pn):

1. Bp(Pn) is the closure of the graph in Pn× Pn−1 of the projection map
πp : Pn \ p→ P

n−1 sending [z0, z1, . . . , zn] 7→ [z0, z1, . . . , zn−1],

2. Bp(Pn) =
{(
q, πp(q)

)
| q 6= p

}
∪
{(
p, l(q, p)

)
| q ∈ Pn \ p

}
,

3. Bp(Pn) = P
n \ p ∪ {l(p, q) | p 6= q} (sewing the lines through p into

P
n),

4. Bp(Pn) is the variety in Pn×Pn−1 defined by the equations ziyj = zjyi,
where 0 ≤ i, j ≤ n− 1

Here we use the fact that the correspondence l(q, p) ↔ πp(q) shows that
lines in Pn through p are in one-to-one correspondence with points of Pn−1.
The map π2 : Bp(Pn) → P

n−1 can be thought of as sending
(
q, l(q, p)

)
to

l(q, p). Moreover, π1 sends
(
q, l(q, p)

)
to q if q 6= p, and sends l(q, p) to p.

Take n = 2 for example. One can picture Bp(P2) as a spiral staircase,
where the central axis is π−1

1 (p) = P
1 and each tread is a set of the form

{r ∈ P2 | r ∈ l(p, q)∃q}.
Now let X ⊂ Pn be closed. If p /∈ X, then define Bp(X) to be the graph

of πp,X = πp|X. It is clear that Bp(X) is closed and irreducible if X is.
Moreover, π1 : Bp(X) → X is regular and the inverse map x 7→

(
x, πp(x)

)
shows that X and Bp(X) are isomorphic projective varieties.

The following remark is needed.
Proposition 13.1. The blow up Bp(Pn) is irreducible.

Proof.The ideal I = 〈ziyj − zjyi | 0 ≤ i, j ≤ n − 1〉 is prime. This follows
from the fact that the quotient of the algebra of bihomogeneous polynomials
of equal bidegrees by I is a domain. I omit the details. �

We can also argue slightly differently. For simplicity, let n = 2. Let Up
be an affine an open set about p. Then π−1

1 (Up), we can view Bp(P2) as
being the union of two dense open sets, one isomorphic to the points of the
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form (a, b, t), where at = b and the other to isomorphic to the points of the
form (a, b, s), where bs = a. But both opens are therefore irreducible, so
their union is irreducible. �

If p ∈ X, the situation is different. First of all, how do we define Bp(X)?
If we put Bp(X) = π−1

1 (X), this means π−1
1 (p) ⊂ Bp(X), which we may not

want.
Example: Suppose that X = V (x2 − y2) ⊂ P

2
xyz. Then X = X1 ∪ X2,

where X1 = V (x− y) and X2 = V (x+ y). Thus X is the union of two lines
through p. Clearly, π−1

1 (X) ⊂ Bp(P2) has three irreducible components,
even though X has two. But suppose we define Bp(X) to be the Zariski
closure of π−1

1 (X \ p) in Bp(P2). Then Bp(X) is the union of two disjoint
lines in P2×P1. Hence, Bp(X) is now smooth, although no longer connected.
Thus, with this provisional definition, Bp(X) is nicer than X because the
singular point has been removed, i.e. resolved.

Suppose k = C. If p, q ∈ X, then l(q, p) is a secant line to X at p,
and limq→p l(q, p) is thus a tangent line. More precisely, it is a point of the
projectivation of the tangent space to X at p, which is the set of tangent
lines to X at p. Thus, in general, the Zariski closure of π−1

1 (X \ p) is a
proper subset of π−1

1 (X). Let us therefore make the following definition:

Definition 13.2. If X is a subvariety of P2 and p ∈ X, define Bp(X) to be
the unique irreducible component in Zariski closure of π−1

1 (X \ p) in Bp(P2)
which projects to X.

Here is another example where when blowing up a variety makes things
may get better.
Example: Consider the nodal curve X = V (zy2 − x3) ⊂ P

2
xyz. Near p,

ie. in X2 = U2 ∩X, we see that X is the curve y2 = x3 with a cusp at (0, 0).
Of course, the cusp is a singular point which we would like to resolve. We
will investigate what Bp(X) looks like near q =

(
[0, 0, 1], [1, 0]

)
. (Note that

q ∈ Bp(X).) Thus we need to find some local coordinates for Bp(P2) about(
[0, 0, 1], [1, 0]

)
. Consider the set of points

(
[x, y, 1], [x, y]

)
, where x 6= 0.

Then the line [x, y] ⊂ A
2 is parameterized by its slope w = y/x. Thus

suppose we choose affine coordinates to be x and w. When the equation
y2 = x3 is expressed in the coordinates (x,w), it becomes w2x2 = x3 since
y = wx. The Zariski closure of the locus w2x2 = x3 is the union of the
parabola x = w2 and its tangent line x = 0 at (0, 0), this illustrates the
problem encountered in Remark 12. There is an irrelevant component in
the closure of π−1

1 (X \ p) in Bp(P2). Hence the variety Bp(X) looks like
w2 = x near z = 1, and so we can say that we have resolved the singularity
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of X at p since the parabola x = w2 is smooth at (0, 0). The mapping
Bp(X)→ X sends (x,w)→ (x, xw) where x = w2.

If we think of the k = C situation again, and think of taking limits, we
can illuminate somewhat why the closure of the graph of a rational map can
be reducible. Suppose p ∈ X. Now Bp(X) is the union of X \ p and the set
of limits of sequences (rn, ln), where rn ∈ X \ p, rn → p and ln = `(rn, p).
Then rn = (xn, yn) = (xn, wnxn) and ln = [xn, xnwn] = [1, wn]. Perhaps the
point is that ln does not explicitly involve xn.
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Lecture 14

Elimination Theory

The Fundamental Theorem of Elimination Theory is the result mentioned
several times above that the projection maps Pm×Pn π1→ P

m and Pm×Pn π2→
P
n are closed. That is, if Y ⊂ Pm × Pn is closed, so is πi(Y ) for i = 1, 2. A

corollary is:
Corollary 14.1. If X is a projective variety and F : X → P

n a regular
map, then F (X) is projective.

Proof.Apply the fact that the graph of F is closed in X × Pn and use the
fundamental theorem. �

A detailed discussion of elimination theory is given in Cox, Little and
O’Shea. We will treat the matter somewhat briefly. The basic concept is
the resultant of two polynomials in one variable. Let f(z), g(z) ∈ k[z] have
degrees degrees m and n respectively. We want to test whether they have
a common root. The condition for this is that there exists a polynomial h
of degree ≤ m + n − 1 which f, g both divide. The polynomial h can be
expressed as h = pf = qg, where deg p ≤ n − 1 and deg q ≤ m − 1. Hence
h exists if and only if the spans of f, zf, . . . , zn−1f and of g, zg, . . . , zm−1g
have a non-zero vector in common. This happens if and only if the (m+n)th
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order determinant

det



a0 a1 a2 . . . am 0 0 . . . 0
0 a0 a1 . . . am−1 am 0 . . . 0
0 0 a0 . . . am−2 am−1 am . . . 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 a0 a1 . . . am
b0 b1 b2 . . . bn 0 0 . . . 0
0 b0 b1 . . . bn−1 bn 0 . . . 0
0 0 b0 . . . bn−2 bn−1 bn . . . 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 b0 b1 . . . bn


= 0

This determinant is called the resultant of f and g, and is denoted R(f, g).
Since k is algebraically closed, we have
Lemma 14.2. Two polynomials f(z), g(z) ∈ k[z] have a common root if
and only if R(f, g) = 0.

More generally, suppose f , and g are polynomials in z with coefficients
in k[x1, . . . , xn]. We can still form R(f, g) ∈ k[x1, . . . , xn]. Then

R(f, g)(y1, . . . , yn) = 0

if and only if f(y, z) = g(y, z) for some z.
Lemma 14.3. If f, g are homogeneous, so is R(f, g).
Proof. This is somewhat messy so we will skip it. �

Let us apply this to projections. Let p = [0, . . . , 0, 1] ∈ Pn, and let
πp : Pn \ p → P

n−1 p=[0,. . . ,0,1] be the projection. Now let X ⊂ Pn \ p be
closed. We first show
Theorem 14.4. πp(X) is closed in Pn−1.

Proof. Let I(X) ⊂ k[z0, . . . , zn] = k[z] be the ideal of X. For f, g ∈ k[z],
let R(f, g) ∈ k[z0, . . . , zn−1] be the resultant with respect to zn.
Claim. πp(X) = V

(
{R(f, g) | f, g ∈ I(X)}

)
Proof of Claim. Let q = [a0, . . . , an−1]. Then π−1

p (q) = p∪{ [a0, . . . , an−1, s] |
s ∈ k. Now q ∈ π(X) if and only if s ∈ k such that [a0, . . . , an−1, s] ∈ X.
This holds if and only if for all f, g ∈ I(X), f(·) = g(·) = 0, which holds
if and only if R(f, g)(q) = 0 for all f, g ∈ I(X). The result of the theorem
follows. �
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What does elimination theory have to do with

π2 : Pm × Pn → P
n

being a closed map?
It suffices (by an argument which will be omitted) to assume m = 1. Let

S ⊂ P1×Pn be closed, say S = V (f1, . . . , fr), where fi ∈ k[z0, z1, x0, . . . , xn]
are homogeneous. Introduce new indeterminants s1, . . . , sr and t1, . . . , tr,
and consider the resultant

R
(∑

sifi(z, 1, x0, . . . , xn),
∑

tifi(z, 1, x0, . . . , xn)
)

with respect to z. Rewrite this equation as
∑
Rα,β(X)tαsβ. Then the claim

is that π2(S) = V (Rα,β). �
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Lecture 15

The Noether Normalization
Lemma

We now consider projections as a way of studying projective varieties. Let’s
begin with an example. Let X = {xy = z2} ⊂ P2. The projection πp : P2 →
P

1 from p = [0, 0, 1] sending [x, y, z] 7→ [x, y] is 2 to 1 at almost all points
of X; the points [−x,−y, z] and [x, y, z] project to [x, y]. However, π−1

p [1, 0]
and π−1

p [0, 1] contain only one point, so [1, 0] and [0, 1] are exceptional.
They are so called double points. Near these points, πp behaves like t 7→ t2.
Indeed, π−1

p [1, 0] = [1, 0, 0] and near this point, X looks like y = z2 and
πp(z2, z) = z2. This map is two to one except at (0, 0). We (tentatively) say
that πp : X → P

1 has degree 2. Note that the image πp(X) = P
1.

Proposition 15.1. Let X ⊂ Pn be closed and assume p /∈ X. Then all
fibres of πp : X → P

n−1 are finite.

Proof.We will show that there exists a d such that every fibre has less than
or equal to d elements. Suppose X = V (f1, . . . , fr). Let d be the maximum
degree of f1, . . . , fr. Then if x ∈ X, fi | l(p, πp(x)) has degree less than or
equal to d, and hence at most d zeros. Thus |π−1

p (x)| ≤ d. �
A basic result, which we will soon prove, is that if X is irreducible and

char k = 0, then there exists a d ≥ 1 such that |π−1(x)| = d for all x in a
Zariski open (hence dense) subset of πp(X). The following two lemma will
be used below.
Lemma 15.2. Assume Y ⊂ P

n is closed, p /∈ Y and Y = πp(Y ) is ir-
reducible. Then there exists an irreducible component W of Y such that
π(W ) = Y . Moreover, if Y is irreducible, so is Y .

Exercise 15.1. Prove the Lemma.
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We now want to prove the Noether Normalization Lemma. Suppose first
that X ⊂ Pn is closed and irreducible, p = [0, . . . , 0, 1] /∈ X, and X = πp(X).
Now πp induces a k-algebra homomorphism π∗p : S(X) → S(X). Indeed, if
f ∈ k[z0, . . . , zn−1], then π∗pf(z0, . . . , zn) = f(z0, . . . , zn−1). Clearly if f is
homogeneous, so is π∗pf (of the same degree). We must show that π∗pI(X) ⊂
I(X). Let f ∈ I(X), and let y ∈ X. Then π∗pf(y) = f

(
πp(y)

)
= 0. Thus π∗p

induces a homomorphism of graded rings

π∗ : S(X)→ S(X).

Claim. π∗p is injective.

Proof. If π∗p(f) = 0, then π∗pf ∈ I(X) so π∗pf(y) = 0 = f
(
π(y)

)
. But

πp(X) = X, so f ∈ I(X). �

Thus we can assume S(X) ⊂ S(X).
Proposition 15.3. Let X ⊂ P

n be closed and irreducible, and suppose
p /∈ X. Then S(X) is a module of finite type over S(X).
Proof.Since p /∈ X, there exists an element of I(X) of the form

f = Zdn + a1(Z0, . . . , Zn−1)Zd−1
n + · · ·+ ad(Z0, . . . , Zn−1). (15.1)

We may assume f is homogeneous, so Eq. (15.1) says that 1, zn, z2
n, . . . , z

d−1
n

generate S(X) as an S(X) module. Thus S(X) is a module of finite type
over S(X) with generators 1, zn, z2

n, . . . , z
d−1
n , where zi = Zi. �

We can dispense with the requirement that p = [0, . . . , 0, 1] as follows.
Let T : An+1 → A

n+1 be an isomorphism such that T (p) = [0, . . . , 0, 1].
Clearly, T induces an isomorphism T : Pn → P

n. Thus, if p /∈ X, we replace
X by Y = T (X) and p by T (p) and hence deduce results about S(X) from
results about S(Y ) since T ∗ : S(Y )→ S(X) is an isomorphism too.

The following result is called the Noether Normalization Lemma.
Theorem 15.4. Let X ⊂ Pn be a projective variety such that X 6= P

n.
Then there is a sequence of projective varieties and regular maps

X = X0 → X1 → · · · → Xr−1 → Xr
∼= P

n−r

such that

(1) for all i, if πi : Xi → Xi+1 is the associated regular map, then πi is
surjective and has finite fibres,

(2) every S(Xi) is finite over S(Xi+1).
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In particular, S(X) is a module of finite type over k[x0, . . . , xn−r].
Proof. In Proposition 15.3, we were able to construct πp : X → P

n−1

provided X 6= P
n. Thus we can apply Proposition 15.3 until eventually Xr =

P
n−r. The rest of the Theorem is an immediate application of Proposition

15.3. �

The sequence of projections

X = X0 → X1 → · · · → Xr−1 → Xr
∼= P

n−r

in Theorem 15.4 is in fact a projection in a more general sense. Let σ0, . . . , σj
be linearly independent elements of the dual space (An+1)∗ = Hom(An+1, k),
and put W = V (σ0, . . . , σj). Then W is a linear subspace of Pn of dimension
n− j − 1, and the projection πW : Pn \W → P

j is defined by

πW ([Z0, . . . , Zn]) = ([σ0(Z0, . . . , Zn), . . . , σj(Z0, . . . , Zn)]).

Note that πp : Pn \ p→ P
n−1 is defined by letting σi = dZi if 0 ≤ i ≤ n− 1,

so that p = V (σ0, . . . , σn−1). By examing the construction of the map
π = π1π2 · · ·πr in Theorem 15.4, we see that π = πW , where W is spanned
by p1, . . . , pr. Hence, we
Theorem 15.5. Given a projective variety X ⊂ Pn, there exists a subspace
W ⊂ Pn of dimension n − j − 1 such that W ∩ X = ∅ and πW : X → P

j

is a surjective regular map. Moreover, S(X) is a module of finite type over
π∗W (k[x0, . . . , xj ]) ∼= k[x0, . . . , xj ].

In the next chapter, we will show that if the field k has characteristic 0,
then we may assume d has been chosen so that over a Zariski open set U in
P
j , every fibre has exactly d points.

We can use the observation that the map in Theorem 15.4 is a projection
to derive an affine version of the Noether Normalization Lemma.
Theorem 15.6. Let Y ⊂ An+1 be an affine variety. Then there exists a
regular surjective map F : Y → A

m with finite fibres such that k[Y ] is a
module of finite type over F ∗(k[Am]) ∼= k[w1, . . . , wm].

Exercise 15.2. Prove Theorem 15.6.

In the next chapter, we will show that if the field k has characteristic 0,
then we may assume d has been chosen so that over a Zariski open set U in
P
j , every fibre has exactly d points.

Let πp : X → X be the usual projection. We’ve shown that S(X) ⊂
S(X) via π∗p and that S(X) is a module of finite type over S(X). To clarify
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the significance of this, let us state some algebraic results about integrality.
Complete proofs can be found in Dummit and Foote (pp. 665 ff) or in
Eisenbud. Let S be a commutative ring with identity 1, and let R be a
subring of S such that 1 ∈ R. Recall the definition

Definition 15.1. An element s ∈ S is integral over R is there is a monic
polynomial in f ∈ R[x] such that f(s) = 0. The set of elements in S that
are integral over R is called the integral closure of R in S. We say that R
is integrally closed in S if every every element of S integral over R is in R,
i.e. R is its own integral closure in S. Finally, a domain is called integrally
closed or normal if R is integrally closed in its field of quotients.

Example: The integers are integrally closed in the rationals: every rational
root of an integral polynomial is integral. You probably learned this in high
school under the name rational root test.
Proposition 15.7. Let S,R be as above and let s ∈ S. Then the following
are equivalent:

(1) s is integral over R;

(2) R[s] is a finitely generated R-module;

(3) there exists a subring T ⊂ S containing R[s] such that T is a finitely
generated R-module.

The implications (1) implies (2) implies (3) are obvious. To prove (3)
implies (1), let T ⊂ S be a subring which contains s, and suppose t1, . . . , tr
generate T over R. Since sti ∈ T , there are aij ∈ R such that

sti =
∑
j

aijtj .

Now let A = (aij) and Ir be the r × r identity matrix. By Cramer’s Rule,
these equations imply that

det(A− sIr)ti = 0

for each i. But as 1 ∈ T is a linear combination of the ti, it follows that
det(A − sIr) = 0 as well. Thus there exists a monic polynomial over R
having s as a root.
Corollary 15.8. Let S and R be as above. Then:

(1) s, t ∈ S are integral over R, then so are s± t and st;

60



(2) the integral closure of R in S is a subring of S;

(3) if S is a finitely generated R-module, then S is integral over R; and

(4) integrality is transitive, that is, if T is a subring of S which is integral
over R and if S is integral over T , then S is integral over R.

Let’s again consider the usual setup where πp : X → X is the projection
centred at p. We have seen that S(X) is a finitely generated S(X)-module,
so every element of S(X) is integral over S(X). It follows without much
difficulty that [k(X) : k(X)] < ∞ (why?). More precisely, [k(X) : k(X)] =
d. Therefore,

tr deg k(X) = tr deg k(X), (15.2)

which is a fact that will be useful in the next section where we define the
dimension of a variety.
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Lecture 16

The dimension of a variety

Let X ⊂ Pn be an arbitrary quasi-projective variety such that X is irre-
ducible. We now make an important definition:

Definition 16.1. The dimension dim(X) of X is defined to be dim(X) =
tr deg k(X).

By definition, the transcendence degree tr degk k(X) of k(X) over k is the
largest n such that there exists a subring of k(X) isomorphic to a polynomial
ring k[x1, . . . , xn].

By the Noether Normalization Lemma, when X is projective, we can find
a subspace P(W ) ⊂ Pn such that X(c)apP(W ) is empty and the projection
πW : X → P

r, r = codimW − 1, is a surjective regular maps with finite
fibres. By (15.2), it follows that dimX = r. Stating this a little more
generally, we have
Proposition 16.1. The dimension of an irreducible projective variety is r
if and only if there exists a surjective regular map F : X → P

r so that each
fibre is finite.

Exercise 16.1. Prove Proposition 16.1. (Note that you have to first show
that k(Pr) ⊂ k(X).)

Example: The dimension of Pn = n.
Example: Let X be an irreducible curve in P2, that is X = V (f), where
f ∈ k[x, y, z] is homogeneous and irreducible. Then for any p ∈ P2 \ X,
πp(X) is a closed subset of P1 Since πp(X) is irreducible, either πp(X) = P

1

or πp(X) is a point q. But in this case, X ⊂ π−1(q). Since p /∈ X, it follows
that X is a point, which is contrary to the assumption that X is a curve.
Indeed, if X is a point, then the cone in A3 over X is a line. But a line
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cannot be cut out by a single equation f = 0 (why?). Thus πp(X) = P
1, so

dimX = 1. It follows that dim(X) = n− 1
Example: Now let X be a hypersurface in Pn, say X = V (f) where f is
homogeneous and irreducible. The if p /∈ X, the projection map πp : X →
P
n−1 is surjective. Indeed, if q ∈ Pn−1, then the polynomial f has a zero on

the line `(p, q), hence πp(X) = P
n−1.

Similarly, Theorem 15.6 says that an irreducible affine variety X admits
a regular surjective map onto Am so that k[X] is finite. Hence dim(X) =
m. Another way to proceed is to compute the dimension of the projective
completion X of Y . In other words, dimY = tr degk k(Y ) = tr degk k(X).

There is an alternate definition of dim(Y ) which was proposed when we
defined Noetherian spaces. This was the

Definition 16.2. The dimension of an irreducible affine variety Y is the
largest k such that there exists a sequence of irreducible closed subsets
Y0, . . . , Yk of Y such that

Y = Y0 ) Y1 ) · · · ) Yk.

Turning the definition into a statement about ideals using the variety
ideal correspondence, we obtain
Proposition 16.2. If Y is irreducible and affine, then dim(Y ) is the largest
k such that there exists an ascending chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pk = k[Y ].

One can easily formulate a corresponding definition for the quasi-projective
case. Both definitions give the same result, but we will skip the proof.

We begin by proving an important property of dimension.
Theorem 16.3. If X and Y are irreducible and both are projective or affine,
and if

(1) X ⊂ Y , and

(2) dim(X) = dim(Y ),

then
X = Y.

Proof. It suffices to do the case where X and Y are both affine. Then
the restriction morphism k[Y ] → k[X] is surjective. Let dimX = r. Then

63



there are u1, . . . , ur ∈ k[X] such that k[u1, . . . , ur] ⊂ k[X] is a polynomial
ring. Let k[v1, . . . , vr] ⊂ k[Y ] be a subring which surjects to k[u1, . . . , ur].
Then v1, . . . , vr are algebraically independent. Hence every element t ∈ k(Y )
satisfies an equation

a0(v)tm + a1(v)tm−1 + · · ·+ am−1(v)t+ am(v) = 0,

where can also assume that all ai ∈ k[v], m is minimal and a0 6= 0. If
X 6= Y , we can choose a t ∈ k[Y ] such that t = 0 on X, i.e. t = 0 in k[X].
This implies am(u1, . . . , ur) = 0. But then am = 0 because u1, . . . , ur are
algebraically independent. As we have contradicted the minimality of m,
the proof is finished. �

As an application of Theorem 16.3, we will now show that if char(k) = 0,
then a general fibre of the projection πp : X → P

n−1 has d distinct elements,
where d is the integer defined in (15.1). In other words, a projection is
generically d to 1. The integer d is called the degree of the map πp : X →
P
n−1. We will denote this degree by deg(πp).

Theorem 16.4. Assume char k = 0, and let X ⊂ P
n be closed and ir-

reducible, and assume p /∈ X. Let d = deg(πp), where πp : X → P
n−1

is the projection centred at p. Then there exists a Zariski open subset
U ⊂ X = πp(X) such that if q ∈ U , then |π−1

p (q)| = d.

Proof. Without loss of generality, we may suppose p = [0, . . . , 0, 1], so
πp([Z0, . . . , Zn−1, Zn]) = [Z0, . . . , Zn−1]. Let f ∈ I(X) denote the homoge-
neous polynomial in (15.1). Note that by the choice of f and the fact that
char(k) = 0, the polynomial

∂f

∂Zn
= dZd−1

n + (d− 1)a1(Z0, . . . , Zn−1)Zd−2
n + . . . ,

does not vanish on X. Thus Y = V ( ∂f
∂Zn

) ∩X is a proper subvariety of X.
Since X is irreducible, every irreducible component Yi of Y has dimension
less than dim(X). By the above discussion,

dim(X) = dim(X) > dim(Yi) = dim
(
πp(Yi)

)
.

Since X is irreducible, each πp(Yi) is a proper subvariety of X. Now let U be
the complement of πp(Y ) in X. Then if q ∈ U , the polynomial f restricted
to π−1

p (q) only has simple roots.
Now let CX ⊂ Pn denote the cone in Pn over X. That is,

CX =
⋃
q∈X

`(p, q).
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Then CX is closed, and I claim that

V = CX ∩ V (f)

is X. Suppose V 6= X, and let Z denote any component of V containing X.
Then dim(Z) = dim(X) = dim(X), so X = Z. Thus it suffices to show V is
irreducible. So assume V is not irreducible. Suppose S(V ) has zero divisors
a and b. Thus ab = 0 but neither a nor b are zero. By a previous argument,
S(V ) is an S(X) module generated by 1, Zn, . . . , Zd−1

n , so we may write
a =

∑
αiZ

i
n and b =

∑
βjZ

j
n, where 0 ≤ i, j ≤ d − 1. The relation ab = 0

gives the same relation in S(X) via S(V ) ι∗−→ S(X), where ι : X → V is
the inclusion. Hence in S(X), ι∗(ab) = 0. But ι∗(ab) = ι∗(a)ι∗(b), so the
fact that S(X) is a domain says either ι∗(a) = 0 or ι∗(b) = 0, say ι∗(a) = 0.
Assuming αm 6= 0 is the highest non vanishing coefficient of a, we thus get
a relation

Zmn + (αm−1/αm)Zm−1
n + · · ·+ α0/αm = 0,

where m ≤ d − 1. Since k(X) is obtained from k(X) by adjoining a single
element (say for example Zn/Z0, it follows from this that [k(X) : k(X)] ≤ d−
1. On the other hand, by the definition of d, k(X) is a vector space over k(X)
of dimension d(Math 422!), i.e. [k(X); k(X)] = d. This is a contradiction,
so it follows that V is irreducible, and so X = V . Consequently, |π−1

p (q)| =
|`(p, q) ∩X| for q ∈ U , and the theorem is proved. �

Since the regular maps are closed, the the composition of two or more
projections

F = π1π2 · · ·πr : X → X ⊂ Pm

also has the property that over a Zariski open U ⊂ X, every fibre has the
same dimension. Thus, using the notation of Theorem 15.5, if we define

deg(πW ) = deg(π1) deg(π2) · · ·deg(πr), (16.1)

where πi = πpi and W is the r − 1 plane spanned by p1, . . . , pr, then over a
Zariski open subset of X, we have that every fibre of πW has deg πW points.

Exercise 16.2. Verify the claim in this sentence.

It turns out that the integer deg(πW ) depends only on X and not on the
choice of a subspace W of dimension n− dim(X).

Definition 16.3. The degree of the projective variety X ⊂ Pn is this integer
deg(πW ).
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We also obtain from (16.1) and the definition of degree the formula

deg(X) = deg(πp) deg(X). (16.2)

For example, it isn’t hard to see that the degree of a linear subspace of
P
n is one.

Example: Let X = {xy2 = z3} and p = [0, 0, 1]. Now π−1
p ([1, 0]) = [1, 0, 0].

But π−1
p ([1, u]) = [1, u, u2/3], which consists of three points if u 6= 0. Thus

the degree of X is 3.

The Riemann-Hurwitz Formula Let’s bring in a well known formula
from Riemann surface theory, which relates the local behavior of a non
constant regular map between compact Riemann surfaces to global topo-
logical invariants. Here we need to suppose the field k = C. We will re-
strict ourselves to Riemann surfaces which are smooth algeraic curves in
P

2. Let X ⊂ P2 be Zariski closed, irreducible, and of dimension one. Then
X = V (f), where f(Z0, Z1, Z2) is an irreducible homogeneous polynomial.
If we also suppose dfq 6= 0 at each q ∈ X, then X is called a smooth pro-
jective algebraic curve. In analytic terms, X is a compact Riemann surface.
Thus, X has a topological genus g(X), that is X is topologically equivalent
to a sphere with g(X) handles attached. For example, g(P1) = g(S2) = 0.
Example: Consider the elliptic curve

E = {[x, y, t] | ty2 = ax3 + bxt2 + ct3 } ⊂ P2,

where a, b, and c are chosen such that the roots of ax3 + bx + c = 0 are
distinct. This assumption implies E is smooth. Note E = E ∪ [0, 1, 0],
where E = E ∩ {t 6= 0}. Let p = [1, 0, 0] and note also that p /∈ E. Then
πp : E → P

1
y,t is regular. Note that π−1[0, 1] = {[ζ1, 0, 1], [ζ2, 0, 1], [ζ3, 0, 1]},

a triple point, and π−1[1, 0] = [0, 1, 0]. The elliptic curve E of this example
has g(E) = 1: topologically it is a torus.

Let X and Y be irreducible projective algebraic curves as above, and
let φ : X → Y be a non constant regular map, eg a projection. Then it
can be shown that φ is surjective and finite to one. Moreover, there exists
a positive integer n such that |φ−1(x)| = n on a dense Zariski open set in
Y . In fact we just proved this for πp : X → P

1. The integer n is called the
degree of φ and denoted deg(φ). Consequently, there are only finitely many
points p1, . . . , pr ∈ X where |φ−1

(
φ(pi)

)
| 6= n, and for these points, we have

|φ−1
(
φ(pi)

)
| < n.
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Exercise 16.3. Let X and Y be irreducible projective curves, and suppose
f : X → Y is a regular map.

(i) Show that if f is non-constant, then it is surjective.

(ii) Show that in fact, f is finite to one. That is, for each y ∈ Y , f−1(y)
is finite.

(iii) Show that [k(X); f∗(k(Y ))] <∞.

(iv) If f is one to one, is it necessarily an isomorphism?

Exercise 16.4. Show that deg(φ) = [k(X) : φ∗
(
k(Y )

)
].

The ramification index ρi of φ at pi is defined as follows: in a deleted
neighbourhood of pi, it turns out that φ is a µi to 1 covering for some µi > 1.
Thus put ρi = µi − 1. Then the positive integer ρ(φ) =

∑
ρi is called the

ramification index of φ
The Euler characteristic of a smooth projective curve X satisfies χ(X) =

2−2g(X). The Euler characteristic of a topological space Y with only finitely
many non trivial singular homology groups Hj(Y,Q) over the rationals Q is
defined to be

χ(Y ) =
∑
i

(−1)ibi(Y ),

where bj(Y ) = dimHj(Y,Q) is the jth Betti number of Y . If Y is a compact
connected Riemann surface, then b0(Y ) = b2(Y ) = 1 and b1(Y ) = 2g(Y ),
hence χ(Y ) = 2− 2g(Y ). In particular, this gives the formula for the Euler
characteristic of a smooth projective curve.
Theorem 16.5 (Riemann-Hurwitz Formula). Let X and Y be smooth,
irreducible projective curves and φ : X → Y a regular map of degree n. Then

χ(X) + ρ(φ) = nχ(Y ).

In particular, if Y = P
1, then

ρ(φ) = 2
(
n+ g(X)− 1

)
In the case where φ : P1 → P

1 is the identity map, we have n = 1,
g = 0, and

∑
ρi = 0. In fact, the Riemann-Hurwitz Formula implies that if

g(X) > 0, there aren’t any regular maps φ : X → P
1 with φ−1(x) = n > 0

for all x ∈ P1. Indeed, then ρ(φ) = 0, so the left hand side of the formula
is 0. But n > 0, so the only way the right hand side can be zero is if n = 1
and g(X) = 0. This also follows from algebraic topology using the fact that
S2 is simply connected and such a φ has to be a covering map.
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Exercise 16.5. Let E denote the elliptic curve of the previous example.
Use the Riemann-Hurwitz formula to show g(E) = 1.

Exercise 16.6. Let X and Y be smooth irreducible projective curves. Show
that if g(X) > ng(Y ), then there are no non constant unramified regular
maps φ : X → Y of degree n.

Exercise 16.7. Let X be the Fermat curve {xn + yn + zn = 0}. Use the
Riemann-Hurwitz Formula to calculate g(X).

Using the Riemann-Hurwitz Formula to calculate g(X) is usually not
necessary due to the fact that there is a simple genus formula. Namely, if
X is a smooth projective curve, then

g(X) =
1
2

(d− 1)(d− 2).
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