Lecture 1

Closed sets and the Zariski
topology

Let k be an infinite field (e.g. Q,R.,C, or F,), and let k[z1,...x,] be the

polynomial ring in n indeterminants. We will often abbreviate k[x1, ..., ;]
by k[z].
We call an n-tuple o = (o, ..., a,) € Z'} a multi-index. For any multi-

index «, define the monomial % by

(0% aq 02

— Qn
T =T Ty" ... T

o,
We also define the degree of  to be deg(z®) = > ;. The point of assming
k is infinite is the next Proposition.
Proposition 1.1. Let k be an infinite field. Then two elements f,g €
klx1,...,zy] coincide if and only if f(a) = g(a) for all a € k.
Exercise 1.1 (30 pushups). Prove Proposition 1.1.

Let A" = A} denote affine n-space over k. Thus a point of A" is an
n-tuple (a1, ag,...,a,) with each a; € k.
Definition 1.1. If F C k[z1,...xy], let V(F) C A" denote the common
zeros of the elements of F. That is,

V(F)={a€ A" | f(a) =0V f e F}.

A subset X of A™ of the form V(F) is said to be Zariski closed in A™. A
Zariski closed subset is also called a closed algebraic set.

The Zariski closed sets in A" are in fact the closed sets of a topology on
A" called the Zariski topology.



Definition 1.2. A topology on a set X is a family U = {Uy }aeca of subsets
Uy C X (called open sets) such that

1. X, oelU

2. U is closed under arbitrary unions:

BCcA = |JUseu
BeB

3. U is closed under finite intersections:

B C Afinite = (| Usell.
BeB

A subset of X is said to be closed if it is the complement of an open set.

Definition 1.3. Let U be a topology. Then B C A is a base of U if for all
a € A, there exists a B, C B such that

Uu= | Us.
BEBa

ExAMPLE (R): A basis for the standard topology of R is the set of open
intervals.

ExXAMPLE (R™): A basis for the classical topology of R™ is the set of open
balls. An important property of the classical topology of R™ is that distinct
points p,q € R™ can be separated by open balls, i.e. there exist open balls
U and V such that p € U and ¢ € V and U NV = &. In other words, R"
is Hausdorff (or Tb).

Now we define a topology on Ay f", where k is a field. Recall that if
F C klz1,...,zp], then V(F) = {z € A" | f(x) =0 for all f € F} is said
to be Zariski closed.

Definition 1.4. The Zariski topology on A™ is the topology whose closed
sets are the Zariski closed .

To see that the Zariski topology is indeed a topology, we need the fol-
lowing
Proposition 1.2. If F,G C k[z1,...,x,|, then

1. V(FUG) =V(F)nV(G);



2. V(FG)=V(F)uV(9);
3. V(@) =A"; and
4. V(kl[z1,...,2z5]) = @.

PROOF.Clearly V(FUG) C V(F)NV(G). Let a € V(F)NV(G), and suppose
he FUG. If h € F then h(a) = 0 since a € V(F), and similarly if h € G.
Hence a € V(FUG), so we get 1. For 2., let a € V(FG). Ifa & V(F)UV(G),
there are f € F and g € G such that f(a) # 0 and g(a) # 0. Thus h(a) # 0,
where h = fg. But h € FG, so this is impossible. On the other hand, let
a € V(F)UV(G). Then if h = fg € FG, either f(a) = 0 and g(a) = 0,
h(a) = 0. Hence a € V(FG). The other assertions are clear. O

If f € k[z], put

Up={peA"[f(p)#0}  orsimply  {f#0}.

Proposition 1.3. The collection of principal open sets Uy is a basis for the
open sets of the Zariski topology on A",

EXAMPLE (A!): The closed sets in Al are the finite subsets of k. Therefore,
if k is infinite, the Zariski topology on k is not Hausdorff.

Definition 1.5. In a topological space X, the closure F of F C X is the
smallest closed set in X such that F' C F. Clearly F' =)y joseq Y -

Exercise 1.2. Show that the Zariski closure of an arbitrary subset Y C A"
isY=V{[fe€klr,....,zn) | f(Y)=0}).

ExAMPLE: We saw that in C, the Zariski closed sets are the finite sets.
Thus, if Y is infinite, Y = C.

If k = C, we can also consider the classical closure ¢Y.
Theorem 1.4. Let X be an affine variety in C". Let U be Zariski open
in C™. Then the Zariski closure of U N X in X coincides with the classical
closure of UN X in X.

For the proof, see Complex projective varieties by D. Mumford. Note
that the closure need not equal X.
EXAMPLE: Let X = V(ay) € C?, let U = C?\{z = 0}. Then X NU =
V(y)n{z #0}. Then X NU =V (y) =“XNU.

Exercise 1.3 (15 pushups). Let k = Z,. Is the Zariski topology on A"
Hausdorft?



The Hilbert Basis Theorem, which we will prove below, says that every
ideal in k[z] is finitely generated. It will follow that every Zariski closed
subset of A™ has the form V(F) where F is finite.

The Zariski topology is a coarse topology in the sense that it does not
have many open sets. In fact, it turns out that A™ is what is called a
Noetherian space.

Definition 1.6. A topological space X is called Noetherian if whenever
Y1 DYy DYy D .- is a sequence of closed subsets of X, there exists an n
such that Y,, =Y, for all j > 1.

EXAMPLE: k = Alis clearly Noetherian, since every closed subset is finite.

Definition 1.7. A closed subset Y of a topological space is said to be
irreducible if whenever Y = Y7 U Ys, with Y; closed, then Y7 ¢ Y5 implies
Y, C V7. Equivalently, Y is irreducible if and only if Y = Y7 U Y5 implies
either Y =Y or Y =Ys.

Theorem 1.5. Let X be a Noetherian topological space. Then every closed
subset Y C X may be uniquely expressed as a union of closed sets:

Y=Y1UYU- - UYy,

where Y; ¢ Y; for all i, j, and each Y; is irreducible.

PROOF. Suppose Z is a closed set in X which does not have an irreducible
decomposition. Then whenever we write Z = Zy U Zy with Z; closed and
Zi ¢ Zj (i # j), one of Zy or Zy, say Zi, does not have an irreducible
decomposition either. Repeating this argument on Z; and so on, we obtain
a strictly decreasing sequence of closed sets, none of which admits an irre-
ducible decomposition. But this is impossible since X is Noetherian. To put
this another way, consider the set F of all closed subsets Y of X that do not
have such a decomposition. Since X is Noetherian, there exists a minimal
closed set Z in F. Thus Z = Z1 U Zy, with Z; closed and Z; ¢ Z; (i # j),
as Z cannot be irreducible. But, by definition, Z7, Z5 both have irreducible
decompositions, so Z does too, which is a contradiction. Hence F = @.
Now suppose ¥ = Z1U---U Z; = Wi U---UW, give two irreducible
decompositions of Y with Z; ¢ Z;, and W; ¢ W; (i # j). Now Z; =
(ZinW)U---U(Z1NWy) =Y1U---UY,,, where Y; = Z; N W,;. We may
assume Y; ¢ Y; (discard Y; if Y; C Y}). Since Z; is irreducible, Z; = Z1NW;,
for some ¢. Thus Z; C W;. Reversing this argument gives W; C Z; for some
j. Thus Z1 C Zj so j = 1. Hence Z; = W; for some i. Since Z; was
arbitrary, each Z,, = W, for some i,,. Interchanging the roles of W; and
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Z; shows that m — i,, is one-to-one. Hence the above decompositions agree
up to indexing. O

Definition 1.8. The Y7,...,Y}, as above, are called the irreducible compo-
nents of Y.

EXAMPLE (HYPERSURFACES): Let f € k[z1,...,x,] be a nonconstant poly-
nomial and Y = V(f). Since k[z] is a UFD, we can write f = [[,;,<; fi,
where f; is irreducible. Clearly,

Y=V(fi)u---UV(fi).

I claim that V(f;) is irreducible. This is not obvious, and the proof will be
postponed until Lecture 2. If two f; and f; differ by a unit, V(f;) = V(f;).
Thus the distinct V(f,,) are the irreducible components of Y.



Lecture 2

The ideal of a variety

In this Lecture. we will introduce the ideal of a closed set and discuss the
ideal-variety correspondence. We will also classify irreducible closed sets in
A",

We begin with the fundamental definition.

Definition 2.1. If X = V(F), let I(X) ={f € k[z] | f(X) =0}. We call
I(X) the ideal of X.

The following result is obvious.
Proposition 2.1. I(X) is an ideal in k[x].

Exercise 2.1 (20 pushups). Show that if fi,..., f, generate I(X), then
X =V(f1,..., fr). Also, show X = V(I(X)),

Proposition 2.2. Let X1, Xy be closed. Then if X; C X9, we have I(X3) C
I(X1) and conversely.

PROOF. One direction is clear. If I(X3) C I(X1), then V(I(X;y)) C
V(I(X2)). Since V(I(X1)) = X1, we get that X; C Xo. O

Theorem 2.3. X is irreducible if and only if I(X) is prime.

PROOF. Recall that I(X) prime means that fg € I(X) implies that either
felI(X)orge I(X). Suppose X is irreducible. Let fg € I(X). Now
X CV(f)uV(g),so X = (XNV(f))U(XNV(g). By irreducibility,
X =XnV(f), say. Then X C V(f) so f € I(X). Conversely, suppose
that I(X) is prime. Write X =Y U Z, with Y, Z closed, Y\Z and Z\Y
nonempty. Then I(Y) ¢ I(Z) ¢ I(Y). Let f € I(Y)\I(Z), g € I(Z)\I(Y).
Then fge I(Y)NI(Z), so fg € I(X). But I(X) is prime, a contradiction.
(]



Exercise 2.2 (20 pushups). Show that if X has irreducible decomposition
X=X1UXoU---UX,, then I(X) = I(X;)NI(X2)N---NI(Xy). Thus
the ideal I(X) of a Zariski closed set is an intersection of prime ideals.

Definition 2.2. A ring R is called Noetherian if either of the following two
equivalent conditions hold.

1. Every ideal I in R is finitely generated as an R-module: I = Rf; +
Rfo+---+ Rfy for some f1,...,fr €1

2. Every ascending chain of ideals Iy C Io C --- C I, C ... eventually
stabilizes.

Exercise 2.3 (10 pushups). Show that the two conditions are equivalent.

Exercise 2.4 (20 push ups). A k-algebra A is a k-vector space which
is also a commutative ring with identity. An example of a k-algebra is
k(f1, f2,--., fs], where each f; € k[x]. A k-algebra A is said to be finitely
generated if there exists a surjective ring homomorphism ¢ : k[z] — A.
Show that a finitely generated k-algebra is Noetherian.

Theorem 2.4 (Hilbert Basissatz). Let k be an arbitrary field (not nec-
essarily infinite). Then the polynomial ring k[z1,...,x,| is Noetherian.

A more general version of this is
Theorem 2.5. If R is Noetherian, then so is the polynomial ring R[x| (in
one variable).

We will prove theorem 2.4. For a proof of Theorem 2.5, consult, for
example, Commutative Algebra, by D. Eisenbud. The we will give, which
is taken from Varieties, Ideals and Algorithms by Cox. Little and O’Shea,
is a nice illustration of techniques used in computational algebraic geom-
etry, namely Grobner bases. Of course, these ideas are very important in
computer science as well. First, let us derive the main consequence.

Corollary 2.6. A™ is a Noetherian space

PROOF. Let Y1 D Y2 D --- DY, D--- be a descending sequence of Zariski
closed sets. From this we get an ascending chain of ideals

IV) CI(Yo)C---CI(Yp)C -

By the basis theorem, there exists a » > 0 such that I(Y;) = I(Y,4;) if { > 1.
Thus Y, = V(I(Y;)) = V(I (Yry1)) = Yiqu O



REMARK: We have
irreducible o prime ideals
X C A" in k[x]
However, we don’t know this correspondence is surjective. For example, in

the case k = R, the ideal I = (22 + 1) is prime but is not the ideal of any
variety.

Here is an application. Let us define the dimension of an irreducible
Zariski closed set in A”.

Definition 2.3. Define dim X to be the maximum [ such that there exists
a sequence of irreducible Zariski closed sets Y; (0 < i <) such that

X=Y%>Y1D0Y,D>---DY,

Exercise 2.5 (100 pushups). Show that dim A" = n.



Lecture 3

Hilbert’s Basis Theorem

Hilbert’s Basis Theorem, or Basissatz, says that every ideal in k[x1, ..., ;]
is finitely generated, that is k[xy,...,z,] is a Noetherian ring. This is one
of the first and most fundamental results in commutative algebra. As we
have indicated above, one of the main consequences will be that A™ is a
Noetherian space, hence every Zariski closed set in A™ has a (unique) irre-
ducible decomposition. Before giving the proof, we need to introduce some
elementary combinatorial ideas.

Throughout this lecture, k will denote an arbitrary infinite field. Recall
Z+ denotes the nonnegative integers, and note that Z" = {(mq,...,my,) |
m; > 0} is an additive semi-group, that is it is closed under addition. Recall
also that for each multi-index o = (ay,...,ap) € Z7, we have defined a
monomial 2 = z{'x3? ... 2% € k[z] = k[r1,...,z,]. Clearly, 2927 =
2B 5o
Proposition 3.1. The assignment o — x® defines an isomorphism of the
additive semigroup Z'! onto the multiplicative semigroup consisting of all
monomials z* € klx].

Proor. Easy. O

Lemma 3.2. Let A C Z" and let Iy = (2| o € A). Then 2P is a monomial
in I if and only if % is divisible by x® for some o € A.

PROOF.Suppose 2 € I4. Then

2’ = Zfi:ca", a; €A

— o+
= E cyx™ Y, cy € k.
iy

Since 1, ..., x, are indeterminates, the monomials are linearly independent,
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so all ¢, = 0 except for the ¢, where z®%7 = 2 and for these cy = 1.
Hence there is some v € Z} such that 8 = a + v, and the result follows. [

Exercise 3.1 (10 pushups). Consider Zi, and let

A={(1,2),(2,0),(3,1),(2,2)}.

Draw a diagram of A and use the picture to find a minimal set of monomials
which generate 4.

Definition 3.1. An ideal in k[z] which is generated by monomials is called
a monomial ideal. If A C 77, then we will call A+ Z" an ideal in Z}.

Clearly, the monomial ideals I4 in k[z] correspond bijectively to the
ideals A+ Z" in Z'. Let us call a set a + Z'} a corner.

Lemma 3.3. Every ideal A+ Z'} is the union of a finite number of corners.
Exercise 3.2 (30 pushups). Prove Lemma 3.3.

Let eq,...,e, be the standard basis of Z™. Let us impose (somewhat
arbitrarily) the ordering e; > eg > -+ > e, and let us also say

n n
a=> ae>B=) B
1 1

if the first nonzero component of o — 3 is positive. We will call this partial
order the lexicographic order of Z%, (lex for short). Lex satisfies:

1. If a > B then o+~ > 3+ for all v € Z7}
2. > is a total order (ie. either a« > 3, a« = 3, or a < B for all o, 3 € Z})
3. Every subset of Z! has a least element

Notice that in the lemma, the exposed corners are characterized as a +
7%, where a is primitive in the sense that a € A, but there isno f € A
and v € Z such that o = § + . Thus Lemma 3.3 says that A + Z"! has
only finitely many primitives. For example, A + Z" has a least element g
which is among the elements with least e, component. A consequence of
the lemma, called Dickson’s Lemma, is required.

Theorem 3.4 (Dickson’s Lemma). Every monomial ideal is finitely gen-
erated.
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PRrROOF.Let I4 be the ideal. Let aq,...,a, be the primitives in A + Z7}.
Then

A+t = J(ai +2Z).
=1

Thus, every monomial in T4 has the form z*+Y = 227, for some v € Z".

Thus, (z®, ..., x%m) = I4, by Lemma 3.2. O
We can now obtain a Euclidean algorithm for k[z1,...,z,]. Recall that
the Euclidean algorithm for a polynomial ring k[z] in one variable says that
if f,g € k[z] and g # 0, then there exist unique ¢, € k[z] such that
f = qg +r, where either r = 0 or the degree of r is less that the degree of g.
First, impose lex order on monomials on ®. Thus, 2® > 2 if and only
if @ > 3 in lex order on Z.

Definition 3.2. If f € k[z], let LT(f) be the highest monomial that occurs
in f with nonzero coefficient.

EXAMPLE: If f(z,y,2) = 423yz — 222932 + o — 2y then z3yz corresponds
to (3,1,1), 2%z to (2,3,1) etc. So (3,1,1) > (2,3,1) > (1,0,0) > (0,1,0),
and LT(f) = 23yz.

Theorem 3.5 (Euclidean Algorithm). Given fi,..., fs in k[x1,...,2z,],
then for any F' € k[z], there exist polynomials g1, ..., gs such that

F:glfl"""'"i‘gsfs“"r

where either r = 0 or r is a linear combination of monomials, none of which
are divisible by any of LT(f1), ..., LT(fs).
ExaMPLE: Take F = 2y?+1, fi =xzy+1,and fo =y+1. Then F —yf, =
1—y=2—(1—y) =2— f2, hence F = yf1 — fo+2. Doing the computation
again gives F'—xyfo =1—azy=1—2(y+1)+x,s0 F = (zy—x) fo+ (x+1).
This demonstrates that g1, ..., gs and the remainder r are not unique.

The division algorithm is proved just as in the example, so we will skip
the proof. You may consult, for example, VIA for a complete proof.

We can now prove the Basissatz.
PROOF OF THEOREM 2.4. Let I C k[x] be any ideal, and consider the
monomial ideal

LT(I) = (= | z* = LT(f) for some f € I).

By Dickson’s Lemma, there exist aq,...,a, € Z%} such that LT(I) =
(1, ..., z%m). Choose fi,...,fm € I such that LT(f;) = z®. Now let
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F € I and apply the division algorithm:
F=Y gifitr

where no monomial in r is divisible by any z®:. If r # 0, then LT(r) € LT(I),
so by Lemma 3.2, LT(r) is divisible by some «;. But this contradicts the
division algorithm, since no monomial in r is divisible by any LT(f;). O

In the proof of the Basissatz, we showed that if fi,..., fi € I are such
that LT(f1),...,LT(f,) generate LT(I) (which is a monomial ideal and
therefore finitely generated), then fi,..., fx actually generate I. This kind
of basis has a special name.

Definition 3.3 (Grobner Basis). We say that fi,..., fx is a Grébner
basis of an ideal I C k[z] if and only if LT(f1),...,LT(fx) generate LT([).

Here is the nice property of Grobner bases.

Theorem 3.6. Let f1,..., fs be a Grobner basis of an ideal I C k[z], and
suppose F' € k[z]. Then all expressions

F=gfi+ - +gsfs+r

obtained by applying the Fuclidean algorithm have the same remainder r.

PROOF.Suppose fi,..., f{ is another Grobner basis of I. Let F' € k[z], and
apply the Euclidean algorithm to F' for both Grobner bases getting

F:Zgifz'—l—r:Zh;fj’v—i—r’.

Subtracting gives

Zgifi—Zhjf]/--i-(T—T’/):O

Now consider the larger Grébuer basis fi,..., fs, f1,..., f{. If r # 7’ then
LT(r — ") # 0. But LT(r —7’) € LT(I), which is impossible. O

Corollary 3.7. If f1,..., fs is a Grobner basis for I, then any F € k[z]| has
a unique expression F' = f + r, where f € I and no monomial in r is in
LT(I).

ExXAMPLE: Most ideal bases aren’t Grobner. Let I = (x 4+ y,zy + 1). Then

yr+y)—(ry+1)=y*—1€l.
Thus y? € LT(I), but 32 ¢ (z, zy).
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Lecture 4

The Nullstellensatz

Now return to geometry. We have shown that for any closed X C A", I(X)
is finitely generated. In particular, we have

Proposition 4.1. Let I(X) = (f1,...,fs). Then X =V (f1,..., fs).

Let’s return to a sticking point. Let f € k[z] be irreducible. Then is
the hypersurface X = V({f}) an irreducible variety? The answer doesn’t
seem to be clear. Since f is irreducible, the principal ideal (f) generated
by f is prime, but is I(X) = (f)? Of course, if k =R, n =1, and f(z) =
22 + 1, then V(f) = @, which is irreducible. However, I(9) = k[z], and
so I(V(f)) 2 ( f) The property we need is the nontrivial fact that if I is
prlme I1=1 (V . NB: don’t confuse this with the obvious property that

V(I(X)). If 1ndeed we have this property, we get a bijection

irreducible prime ideals
> .
closed sets in A” in k[z]

To obtain this, we have to assume k is algebraically closed. The result which
gives us the key piece of information is Hilbert’s Nullstellensatz.

Exercise 4.1 (20 push ups). Suppose k is finite. Show that the only
irreducible closed sets in XA"™ are points, and conclude that I = I(V(I))
does not hold in general.

Definition 4.1. The radical of an ideal I in a commutative ring R is the
set

Rad(l)=VI={feR| f* el forsomen>0}

EXAMPLE: Let I = (y?> —z + 1,1 — z). Clearly y* € I, so y € I(V(])).
However, y ¢ I, so I # Rad(I). It is easy to see that Rad(I) = (y,z — 1).
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An ideal T such that I = /T is called a radical ideal.

Proposition 4.2. For any ideal I in R, Rad([) is an ideal. Moreover if I
is prime, then I = Rad(I).
PROOF. An exercise. O

Exercise 4.2 (10 push ups). Prove Proposition 4.2.
We have asked what [ (V(I )) is. We also asked when is

irreducible o prime ideals
closed X C A in k[z] '
surjective?

We may now answer this question. The principal tool is Hilbert’s Null-
stellensatz. Recall, if I C k[z] is an ideal, then Rad(I) is defined to be
{f€klz]| f™elfor some m=>0}.

Theorem 4.3 (Hilbert’s Nullstellensatz). Assume k = k (i.e. k is
algebraically closed). If I C k[z] is any ideal, then I(V(I)) = Rad(I).

It is clear that Rad(I) C I(V/(I)); for if f™(V(I)) =0, then f(V(I)) =

0.
Corollary 4.4. If I is prime, then I(V(I)) = I.
PRrROOF. Apply Proposition 4.2. O
Thus, if £ = k, we have two bijections:
irreducible prime ideals
>
closed X C An in k[x] ’
and

closed sets radical ideals
— .
X in A" in k[x]
The first step in the proof is to establish an apparently weaker form of
the Nullstellensatz , the so-called Weak Nullstellensatz:

Theorem 4.5 (Weak Nullstellensatz). Assume k = k. If I C k[z] is an
ideal such that V(I) = &, then I = k[z].

PROOF.Assume [ # k[z]. Then [ is contained in a maximal ideal m. (By
a maximal ideal, we mean a proper ideal m such that, for all f € k[z] \ m,
(m, f) = k[x]. Since any chain I} C Iy C --- of ideals has the property that
(U Z; is an ideal, this follows from Zorn’s Lemma. Hence V(m) C V(I). Now
we want to show V(m) # @. Let F' = k[z]/m. Then F is a field extension
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of k since k — k[z] — k[z]/m gives an imbedding of k onto a subfield of
F. Since k = k, it will follow that k = F via this quotient map provided
dimj F' < oo. Suppose we can show that this is the case. Then choose a; € k
such that a; — T;. Then z; — a; € m. Thus

(x1 —ay,...,xy — ay) C m. (4.1)
By the Euclidean algorithm , we can express any f € k[z] as
f= th(% —a;) +,

where no z; divides any monomial in r. It follows that for any f, the
remaider r € k. Thus (f,z1—ay,...,xp—ay) = klx] if r # 0, so the left hand

side of (4.1) is a maximal ideal. Consequently m = (x; —a1,..., %, — apn).
Therefore V(m) = (ay,...,a,), so V(I) # @. O
An important corollary of the proof is
Corollary 4.6. Any maximal ideal in k[x1,...,x,] is of the form
(1 —a1,..., o — an)
for some (ay,...,a,) € A"
Definition 4.2. We call m is the mazimal ideal of (ay,...,ay).

We now show how to conclude the Nullstellensatz from the Weak Null-
stellensatz . After that, we will complete the proof of the Weak Nullstellen-
satz by showing dimy F' < oo. The proof uses a trick which goes back to a
1929 paper of Rabinowitsch.

HILBERT’S NULLSTELLENSATZ. Let I C k[z] be an ideal and suppose f €
I(V(I)). 1 want to show f™ € I for some m > 0. Let J be the ideal in
klx1,..., @y, Tni1] generated by I and zp,41f — 1. Clearly V(J) = @. Hence
J = k[z1,...,2n41] (this would be trivial if f € I, but we don’t know this).
Thus 1 € J, so

1 = Zhsgs + h(anrlf - 1)

s=1
m
= thx;_t,_l + h(xn+1f - 1)5
t=0
for some h,hs € k[z1,...,2441] and g5, g € I. Now R = k[x1,...,Tp41] is

a domain, so we can consider its quotient field, R. Setting z, 11 = f~!, we
15



get

so f™el.
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Lecture 5

Affine varieties

The first important consequence of the Nullstellensatz is that if I C k[x] is

a radical ideal, then I = I(V(I)), provided k is algebrically closed. Hence

another consequence is

Theorem 5.1. Let k be algebraically closed. Then every radical ideal I is

the intersection of a finite number of prime ideals. In fact, there exists a

unique expression I = py Npa N --- NP, where p; ¢ p;.

PRrOOF.Let X = V(I) have irreducible decomposition X = X; U---U X,

where X; 2 X;. Then I(X) = I(X1) N ...I(X,,). But I = I(X) since

I(X) =Rad([) = I, and each I(X;) is prime. O
The coordinate ring of a variety X = V(I) C A" is

k[X] = k[z]/I(X) = {restrictions of polynomials to X}.

EXAMPLE: If I = (zy—1), and X = V(I) then k[X] = k[x,y]/I = k[z, 2z~ 1].
Note that this is not a field; for example, (1 — 2)~! ¢ k[z, 27!, as

1/l—2)=(0+z+2>+--).

Since any monomial 2%y = 2#77 every element of k[X] can be expressed
as p(x,z71).

Proposition 5.2. Let X be closed in A™. Then any maximal ideal in k[X]
is of the form m, = { f € k[X] | f(a) =0} for some a € X.

PROOF.Let m be maximal. Then if ¢ : k[z] — k[X] is the quotient map,
¢~ 1(m) is a maximal ideal. Indeed, ¢~'(m) = k. Thus ¢~ !(m) = m,, for
some a € A™. Tt follows that if f = ¢(f) € m C k[X], then f(a) = 0. But
by definition, m, D I(X), so a € X. Therefore, m = ¢(m,) = { f € k[X] |
f(a) =0} for some a € X. O
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Corollary 5.3. Every ring homomorphism ¢ : klz| — k sending 1 to 1 has
the form ¢(f) = f(a) for some a € X.

PROOF. Let ¢ be such a morphism. Then I claim ker(¢) is a maximal ideal.
For since ¢(1) = 1, it follows that k[x]/ker(¢) = k. But as k is a field,
ker(¢) must be maximal. Thus there exists a € X for which ker(¢) = {f €
E[X] | f(a) = 0}. Writing

f=fa)+F,

where F' € ker(¢), we get that ¢(f) = ¢(f(a)) = f(a), since ¢ is k-linear. [

Let X C A™ be closed. Then we may write k[X] as k[Z1,...,T,], where
T =z + I(X). Thus k[X] is a finitely generated k-algebra. In general, we
say that a ring A with identity is a k-algebra if A is a k-vector space such
that r(ab) = (ra)b = a(rb) for all a,b € A and r € k. Put another way,
multiplication defines a k-linear map

A®kA—>A.

Hence k[X] is a finitely generated, commutative k-algebra without nilpo-
tents. Conversely,

Proposition 5.4. Suppose k is algebraically closed. Then any finitely gen-

erated commutative k-algebra A without nilpotents is k[X] for some variety
X.

ProoF.Let A = k|z1,..., 2] be such a k-algebra. Let k[z1,...,z,] be a
polynomial ring. Then there exists a ring homomorphism ¢ : k[z1, ..., zy] —
A by aw a €k, and z; — z. This is due to the fact that k[xi,...,x,] is
a polynomial ring, so there are no relations between x1,...,x,. Clearly ¢
is surjective. Let I = ker ¢. Then I is a ideal (see the next Lemma), so if
X =V(I), then k[X] = k[z]/ Rad(I) = A. O

Lemma 5.5. An ideal I in k[x1,...,x,,] is radical if and only if k[x]/I has
no nilpotents.

PROOF OF LEMMA. Let f =0 (ie. f™ e I). Then f = 0so f € I;
therefore I is radical. The proof of the converse is identical. O
EXAMPLE: Let s and ¢ be indeterminates over k. Consider A = k[s*t3, s%t, st].
Then I claim A has no nilpotents. Indeed, A C k[s,t]. Now let w,v,w be
new indeterminates and define a map kfu,v,w] — A by

243

uU— S ,v—>82t,w—>st.

This extends to a surjective homomorphism with kernel (w* —uv). Therefore
A = k[X] where X = V(w* — uv). (Outline of the proof: the dimension of
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A is two, and moreover, A is a domain. Hence the closed set X guaranteed
by the previous Proposition is an irreducible closed set in A% of dimension
2. Clearly (w* —uwv) C I(X). Thus X C V(w*— w). But w* — uv is
irreducible. Since both varieties have dimension 2, they are equal. Thus
I(X) = (w* —w).)

Now to complete this picture, we would like to know the following: “If
two finitely generated k-algebras without nilpotents are isomorphic, then
the closed sets defined in Proposition 5.4 are isomorphic, and conversely.”
In order to have this equivalence, we have to define morphisms. Morphisms
are also called regular maps.

Definition 5.1. Let X, and Y be closed in A™, and A™ respectively, and
let f:Y — X be a map. Then we say that f is a reqular map from Y to X
if there exists a polynomial map F' : A”™ — A" such that F|Y = f.

Clearly, k[X] is the set of regular maps from X to k.
Proposition 5.6. Let f : Y — X be regular. Then f induces a homomor-
phism f* of k-algebras k[X| — k[Y| by putting f*(g) = g o f. Conversely,
any k-algebra homomorphism ¢ : k[X| — k[Y]| comes from a regular map
d:Y — X.
EXAMPLE: X = V(2% —y?) C A%, The map x — (23, 2?) is regular. k[X] =
klz,y]/(a? — y?) so

F@ = ae) =
o =

In particular, f* is not surjective: f*(z) = x has no solutions. Thus f,
which is a bijective map, is not an isomorphism in the following sense.

Definition 5.2. Let f : ¥ — X be regular. Then f is said to be an
isomorphism if and only if there exists a regular map g : X — Y such that

Jog=lxandgo f=1ly.

PROOF OF PROPOSITION. The first assertion is easy to prove. If g € klz],
then go f € k[y]. If h € I(X), then ho f € I(Y). For ho f(y) = h(f( ):0
as f(y) € X. Thus f*: k[z] — k[y] induces f*: k[z]/I(X) — kly ]/I(Y)
g— g

Now let ¢ : k[X] — k[Y] be given. Note that Zi,...,T, generate k[X].
Let f; € k[y] be such that f, = ¢(7;) in k[Y]. I claim that ® : A™ — A" such
that ®(u1,...,Uy) = (fl(u), .. ,fn(u)) has the property that ®(Y) C X.
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G(B(y) = G(fl(y)7---,{n(y))

Consequently, ®(y) € X. O
Note that the map F' is not necessarily unique, but & is.

Corollary 5.7. Two Zariski closed sets X C A™ andY C A™ are isomorphic
if and only if there is a k-algebra isomorphism k[X] = k[Y] .

Let us now define an affine variety to be an irreducible closed subset of
some A™. We can also define a category whose objects are affine varieties
and whose morphisms are regular maps. Define a k-algebra homomorphism
¢ : A — B to be a ring homomorphism which takes the identity to the
identity, hence is linear over k. We then have

Proposition 5.8. The assignment ¢ — ¢* is a contravariant functor from
the category of affine varieties and regular maps to the category of finitely
generated k-algebras which are domains and k-algebra homomorphisms which
gives an equivalence of categories.

Exercise 5.1. Prove this proposition.

The fact that the points of an affine variety X are in a bijective correspon-
dence with the maximal ideals in k[X] also leads to an abstract formulation
of the notion of an affine variety. We can say that an abstract affine variety
consists of a pair (R, X ), where R is a finitely generated k-algebra without
zero divisors, and X is defined to be X = specm(R), the set of maximal
ideals in R. We can view R as a set of functions on X as follows: if f € R
and z € X, then f(z) is the element of k¥ = R/x defined by the unique
decomposition f = f(x) + f*, where f* € x.

Lemma 5.9. If f,g € S have the property that f(y) = g(y) for all y €
specm(S), then f = g.

PROOF. Let h = f —g. Then h(y) = 0 for all y € specm(S). If we appeal
to Proposition 5.4, then we can realize S as k[Z] for a closed irreducible
Z c A™ for some m. It follows that h(z) = 0 for all z € Z. But this implies
there exists an H € k[xy,..., o] such that H = h = 0 on Z. This means
h=0inS. O
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If ¢* : R — S is a homomorphism of k-algebras, where S is another
finitely generated k-algebra without zero divisors and (S,Y) is the associ-
ated abstract affine variety, then a map ¢ : ¥ — X is defined by pulling
back maximal ideals: ¢(y) = (¢*)"!(y). This map induces a k-algebra ho-
momorphism ® : R — S by ®(f)(y) = £((¢*)"1()). The fact that ®(f) is
well defined follows from Lemma 5.9.

Conversely, suppose we are given a map ¢ : Y = specm(S) — X =
specm(R). We want to define a homomorphism of k-algebras ¢* : R — S. If
feR,let ¢*(f)(y) = f(é(y)). It follows from Thus ¢* is well defined. It is
easy to see ¢* is a homomorphism (check this). This argument gives us the
additional fact that the intersection of all the maximal ideals in S is {0}.
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Lecture 6

Some commutative algebra

The final step in the proof of the Nullstellensatz is to show that dimy F' < co.
This requires we introduce the notion of integrality.

Lemma 6.1. Suppose K is a field and L = K|ay,...,ay] is a finitely gen-
erated K-algebra. Then if L is a field, each a; is algebraic over K.

That is, each a; satisfies an algebraic equation over K. In particular
there exist o, ..., 7p(—s—1 € K such that

m(—i)—l

a;n(i)—i-rm_la +o+1r9=0

It follows that the monomials ai'ab?---aly" where 0 < p; < m(i) span L
over K. Thus dimg L < oo. If K is alg closed, it follows that L = K.

We can now prove the Lemma. Let R C S be rings.

Definition 6.1. We say s € S is integral over R if and only if s satisfies a
monic equation

S+ a1 4+ ag=0
where the a; € R.

Lemma 6.2. The set of elements of S which are integral over R forms a
subring of S containing R (called the integral closure of R in S.)

Exercise 6.1. Prove Lemma 6.2.
The following lemma, clarifies why the notion of integral independence is

so important.

Lemma 6.3. Suppose F is a field and every element of F is integral over a
subring R of F containing 1. Then R is a field.
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PROOF. Let a € R. Then a has an inverse ¢! in F. Since a1

over R, we have an expression

is integral

a " a4 g = 0.

Thus
1+7rp_1a+---+rea™ =0,
SO
(=1 — - —7roa™ ) =1
It follows from this that a=! € R. O

To prove Lemma 6.1, we induct on n starting with n = 1. Thus assume
K[u] is a field, and suppose u transcendental over K. Then (1+u)~! exists,
say (14+u)" ' =co+cru+---+cu”. Then

(1+u)(co+ciu+---+eu') =1,
S0
co+ (co+e)u+ (er+e)u® + -+ (cro1 + e )u” +eu =1,

By the linear independence of the powers of u over k, ¢cg = 1 and ¢, = 0.

Thus ¢y = +¢1 = +c9 = £ --- = £¢,. = 0, which shows the result holds if
n = 1.

Now suppose L = KJaq,...,ay] is a field and the result is true for n — 1.
Denote a,, by u. Note K C K(u) C L. Applying the induction hypothesis to
L = K(u)[ay,...,an—1], we deduce that each ai,...,a,_; is algebraic over

K (u). Thus we get expressions
gin(waj" + gia(w)ai ™" + -+ gim(u) = 0

where 1 <i <n—1 and all g;; € K[u]. Putting

9= ng,

it follows that each a; is integral over the subring K[u, g~!] = F. Therefore,
by Lemma 6.2, every element of Flay,...,a,_1] is integral over F. Clearly
L =Flay,...,an—1], so Lemma 6.3 implies F is a field. We can suppose that
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u doesn’t divide g, for otherwise we can replace g by an h not divisible by
u so that K[u,h~!] =F. Hence we get an equation

uP(u,g7 ') =1
in F for some P € K[z,y|. clearing the denominators gives
uQ(u, g) = g™

for some Q € Klr,y]. But this is impossible, since g™ ¢ (u). Hence u
cannot be transcendental, so the proof of the Lemma is finished. O
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Lecture 7

Rational Functions on Affine
Varieties

In this Lecture, we will assume the basic facts about localization ala Eisen-
bud. Let X C A™ be an affine variety.

Definition 7.1. The rational function field of X is defined to be the field
E(X) of quotients of k[ X]. The elements of k(X) are called rational functions
on X. A rational function f on X is said to be reqular at a € X iff f = g/h
where g, h € k[X] and h(a) # 0.

We can also localize the concept to an open subset of X.

Definition 7.2. Let X C A" be as above, and let U be open in X. A func-
tion f : U — k is said to be reqular at p € U if there exists a neighborhood
V of p such that f = g/h on V| where g, h € k[x] and h # 0 everywhere on
V' (equivalently h(p) # 0). We say f is reqular on U if it is regular at each
point of U. We will denote the set of f: U — k which are regular at p € U
by Opp. The set of f : U — k which are regular at every p € U will be
denoted by O(U).

Recall that the Zariski topology has a basis consisting of the principal
open sets Uy = {¢ # 0} C A", where ¢ € k[z]. Let k[X,1/¢] denote the
localization of k[X] at the multiplicative set S = {¢" | m > 0}. We will
call k[ X, 1/¢] the localization of k[X] at ¢.

To obtain the basic result about regular functions, we need a simple
extension of the Nullstellensatz which goes as follows.

Proposition 7.1. Let X be a closed set in A", and let I be an ideal in k[X].
Suppose Y C X is the variety of I, i.e. Y ={zx € X | g(y) =0V y € X}.
Then if f € k[X] satisfies f =0 on Y, there is an m > 0 such that f™ € I.
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PROOF. Let f =g+ I(X), where g € k[x]. Clearly Y is closed in A", and
g vanishes on Y, so for some m > 0, g™ € 7~ 1(I), where 7 : k[z] — k[X] is
the natural quotient map. This follows from the fact that Y = V(7 ~1(I)).
Therefore, f™ = w(g™) € I. O

Proposition 7.2. Let X be an affine variety in A" and U = X NUy (¢ €
k[z]). Suppose f : U — k is regular at each p € U. Then f € k[X,1/4],
where ¢ = ¢ + I(X). Hence O(U) = k[X,1/¢).

Proor. Throughout the proof, we will denote the restriction of an element
g € k[x] to k[X] by g, that is, g = g+ I(X). By assumption, for each a € U,
there exists a principal open set U, = {hy # 0} in X on which f = go/ha.
Now as

UJt.oT,

acA

where A is an appropriate index set, it follows that

XNV(g) D XN () Vihe). (7.1)
acA

But the Zariski topology is Noetherian, so in (7.1), we may replace A by a
finite subset B C A. Hence the Nullstellensatz for X tells us that for some
m >0, g™ =", raha for some 7, € k[X]. T also claim that by continuity,
haf = Go on U. Consequently

f(l_sm = Z raﬁaf = Z TaJo

aeB aeB
on U. But this implies f € k[X,1/¢]. Conversely, every element of k[X,1/¢)
defines a function f as in the Proposition , so the proof is complete. O

By letting ¢ = 1, we get the following corollary.

Corollary 7.3. Let X be affine. Then the set of functions that are regular
at every point of X are the elements of k[X] (which is also known as the
set of regular funtions on X ). Moreover, the set of globally defined rational
functions is k[X].

Exercise 7.1. Prove Corollary 7.3.

We also get that k[z1,...,2,,1/¢] is the set of regular functions on Usy.
In fact, let

Xo = {(x1,...,2n41) € A" | 2pp10(21,...,2,) — 1 = 0}.
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Thus X4 = V(h, where h = 2,416 — 1 € k[z1,...,2p41]. Now projection
onto the first n coordinates gives us a regular map ® : X4 — A" with image
Usg.

Exercise 7.2. Describe the ring of functions that are regular on U = k2 \ 0.
Conclude that U cannot support an affine variety. (Hint: use the abstract
formulation.)

Exercise 7.3. Repeat the previous Exercise for the functions regular on
k \ {finite number of points}.

Definition 7.3. Two affine varieties X and Y that have isomorphic function
fields k(X)) and k(Y') are said to be birational. A rational variety is one whose
function field is isomorphic to the function field k(z1,...,x,) of A™.

Exercise 7.4. The purpose of this exercise is to show that two birational
affine varieties X and Y need not themselves be isomorphic. Let X =
V(z? —y?) c A2 and let Y = A'. Show that k(X) = k(t), where

t =

<Y | 8l

Clearly k(A') = k(z), where x is an indeterminate. Conclude that k(x) =
k(t). On the other hand, show that the coordinate rings k[X] and k[A!] of X
and A! are not isomorphic, and hence conclude X and Y are not isomorphic.
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Lecture 8

Projective Varieties

If V is a finite dimensional k-vector space, the projective space P(V') of V is
defined to be the set of lines through the origin in in V. When V = A"+!,
we will denote P(V') by P™. Let k* be the multiplicative group of non zero
elements of k. Then P™ may also be viewed as the set of orbits of the natural
action of k* on (A"*1\ 0). (Recall, if a group G acts on a set S, the orbit of
se€ Sis Gs={gs|ge G}.) Thus,

P" = {lines through 0 in A" ™'} = (A"T1\ 0)/k*.
We will denote the k*-orbit of (ag,ai,...,an) by [ao,a1,...,a,]. Thus
[ag, a1, ..., an) = [tag,ta,. .., tay]

for any ¢ # 0. Note that [ag, a1, ...,a,] is undefined when all a; = 0. If
v € A"\ 0, then [v] € P denotes the line kv spanned by v. If W C V is
a subspace of dimension k + 1, then

P(W) = {[w] [ we W\0} CP(V)

will be called a k-plane in P(V).

EXAMPLE: A line in P therefore corresponds to a 2-plane in A"t A
hyperplane in P" corresponds to an n-plane in A"+1,

It is well known that P? gives an example of a projective plane geometry:
two points lie on a unique line, and every pair of distinct lines in P? meet in
a point.

Exercise 8.1. Verify this claim, i.e. show that P? satisfies the axioms of a
projective plane geometry.
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If V and W are subspaces of A"*! linear algebra tells us that
dim(V + W) =dimV + dim W — dim(V N W),

SO
dim(VNW)>dimV +dimW — (n+ 1).

If dim(V + W) = n+ 1 then equality holds above; however, unless dim V' +
dimW > n + 1, the above inequality is vacuous. We therefore infer

Lemma 8.1. If V + W = A"! then
o dimP(VNW)=dimP(V)+ dimP(W) —n
o codimP(V NW) = codimP(V') + codim P(W).

In other words, codimensions add.

The Zariski topology on P™ is the natural topology induced from the
(relative) Zariski topology on A"*1\ 0. Thus, the closed sets in P" are the
subsets X such that 7=1(X) are closed in A"*!\ 0. By definition, a closed
set in A"*1\ 0 has the form Z N A"\ 0 for some closed set in A"*!. 1
claim that 0 € Z. For if Z is closed and Z N A"\ 0 = 771(X), then for
any v € Z N A"\ 0, we have tv € Z N A"\ 0 for all t € k*. But then
kv C Z since kv and Z are closed. Thus 0 € Z.

More generally, we have the

Exercise 8.2. Let X, Y be closed in A™ and suppose X is irreducible. Show
that if F' € k[z]| has the property that FF =0 on X \ Y, then FF =0 on X.
Conclude that every nonempty open set in X is dense.

A subset Z of A™ which is closed under k is called a cone. If Z is a cone,
we will denote (Z\ 0)/k* by P(Z). Thus the closed sets in P™ have the form
X =P(Z), where Z is a closed cone in A""!. We call Z the cone over X.

We will see that the Zariski toplology on P™ is Noetherian. Hence every
closed set in P" has a unique irreducible decomposition. We thus have the
following

Definition 8.1. A closed irreducible subset of P" is called a projective va-
riety.

Let us make some further comments on the topology of P". If k£ = C,
we can use the fact that P" has a covering Uy, Uy, ..., U, with

Ui = {[ao,...,an] |ai S (C*}
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to transfer the classical topology of C" to U; via the identification
[ag,...,an] — (ag/ai,a1/a;, ... an/a;) € A™.

Note a;/a; does not appear on the right hand side. In fact, we may define a
set V' C P" to be open if V N U; is open for each 1.

Exercise 8.3. Show that this is a topology. Moreover, show that it coincides
with the quotient topology on P" induced by the quotient map 7 : C**1\0 —
P,

The complement of U; is the hyperplane a; = 0. Thus P” is the union
of A” and the hyperplane a; = 0. In particular, P! is the union of A' and a
point at infinity, P? is the union of A? and a line at infinity and so on.
REMARK: If X is Zariski closed (in A™ or P"), we define a topology on X
by saying W C X is open if and only if W = X NU, where U is open in A"
(or P™). This is the so-called relative topology on X.

Recall that a topological space X is called compact if every open cover
has a finite subcover (ie. if {Us}aep is a collection of open sets satis-
fying UpepUy = X, then there exists a finite finite /' C B such that
X =Uner Ua).

Proposition 8.2. P" is a compact Hausdorff space in the classical topology.
In particular, P! is the one point compactification of C.

Now we can now extend a previously stated result about affine varieties

over C.
Theorem 8.3. Let X be an affine or projective variety over C and suppose
Xy is a Zariski open subset of X. This means Xo = X\Y where Y is
Zariski closed. Then the closures of Xg in the classical and Zariski topologies
coincide.

Exercise 8.4. Prove Theorem 8.3.

In particular, every projective variety in P" is compact in the classical
topology.
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Lecture 9

The homogeneous coordinate
ring

There are various aspects of projective varieties we need to consider in more
detail. such as what the Nullstellensatz says in the projective setting. Let
us begin by considering the ideal of a closed set in P"™. Note first that
klxo,x1,...,2,] is a graded k-algebra. That is,

klzo, ..., xp) = @Am,

m>0

where A,, denotes the k-vector space of homogeneous polynomials of degree
m, and this decomposition has the property that A;A,, C A;4,,. Clearly, a
polynomial f € k[zo,...,z,] is homogeneous of degree d if f(\z) = \f(x)
for all z € A"+ and all A € k*.

Suppose Z C A" is a closed cone and let X = P(Z). Define the ideal
of X to be I(X) =1(Z).
Lemma 9.1. If Z C A" is a closed cone, then

1(Z)=EPI(Z)N An).
m>0

In other words, if g =, g;, with g; € A;, and g =0 on Z, then each g; =0
on Z. In particular, if X is projective, then I(X) is homogeneous.

PROOF. Let g(x) = 0. Then g(Azx) =0 for all A € k. But
gAL) = A" g () + X" Ly 1 (@) + -+ Ngo().

This polynomial is identically zero, hence all the coefficients must be zero
since k an algebraically closed field is infinite. (|
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The following proposition characterizes the closed cones in AZ.

Proposition 9.2. Let f(z,y) be homogeneous of degree d. Then f may be
factored

f= H (aix + biy), ai, b; € k.
1<i<d

Note that this Proposition needs the assumption k& = k; for example,
22 +y? = (z +iy)(x — iy) cannot be factored over R.

Exercise 9.1. Prove Proposition 9.2 and conclude that the only closed
cones in A? are finite unions of lines. Thus describes the closed subsets of
Pl

In general, an ideal in a graded ring R = ®m20 R,, which satisfies the

condition
I=@UINR)

m>0

is called homogeneous. If I is homogeneous, the quotient R/ is also a graded
ring with

R/T = (R/I)m,

m

with (R/I)y, = Ry, /I, This is due to the fact that Ry, I, C Ipyyn.

Definition 9.1. If X is a projective variety, we will define its homogeneous
coordinate ring to be S(X) = klz]/I(X).

In particular, S(X) is a graded ring, in fact a graded k-algebra:

m>0 m2>0

Some of the results already proven in the affine setting extend easily to
the projective situation.

Proposition 9.3. Let X = P(Z) as above. Then:
(i) I(X) = I(Z) is generated by finitely many homogeneous polynomials.
(ii) The Zariski topology on P™ is Noetherian.
(iii) X is irreducible iff 1(X) is prime.
Exercise 9.2. Prove this Proposition.

32



Let us now establish the projective version of the Nullstellensatz. Sup-
pose I C k[xg,z1,...,%,] is a homogenous ideal.

Theorem 9.4 (Projective Weak Nullstellensatz). Suppose P(V(I)) =
@. Then I D my for some r > 0.

PROOF. Since I is homogeneous, I # k[xg,z1,...,2z,]. Thus, V(I) = {0}.
Therefore, by the usual Nullstellensatz, zi* € I for some m > 0. The result
now follows. U

Theorem 9.5 (Projective Nullstellensatz). If I is a homogeneous ideal
in k[xg, x1,...,2,] and X = P(V(I)) is a nonempty projective variety, then
1(X) = Rad(I).

PrROOF. Let Z = V(I). Then I(Z) = I(X). Now I(Z) = Rad(I) by the
usual Nullstellensatz. Thus I(X) = Rad([) too. O

Now let X be a projective variety. The elements of S(X) are not func-
tions on X. They are the functions on the cone Cx over X. To get functions
on X, we can consider the elements of degree zero in the quotient field of
S(X). We will return to this later. Another option is to work locally.

Definition 9.2. Let U C P" be open in X. A function f : U — k is said
to be regular at p € U if and only if there is an open neighborhood V of p

on which f = g/h, where g and h are homogeneous of the same degree and
h#0on V.

This definition is very similar to one we gave in the affine case. The
requirement that g and h are homogeneous of the same degree means that
g(Az)/h(A\x) = g(x)/h(x), so f(z) is independent of the homogeneous coor-
dinates of x. Just as in the affine case, it is customary to denote the ring of
functions f : U — k such that f is regular at p by Op,,. We will denote the
functions that are regular at every point of U by O(U).

By copying the proof of the corresponding result in the affine case, we
get

Proposition 9.6. Let s € A; = klag,...,ay]1 be a homogeneous linear
polynomial. Let U = P™ \ V(s). Then O(U) consists of the degree 0 terms
in the localization of klag, . .., ay] at the multiplicative set determined by s.

Thus every element of O(U) is of the form f(aq,...,a,)/s?, where f €
Aq.

One of the properties of projective varieties that distinguishes them from
affine varieties is given in the next
Theorem 9.7. If X is projective, then every function f : X — k regular at
every p € X is constant. That is, O(X) = k.
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Proor. We will prove this in the case X = P". The general case isn’t much
different. Let f = r/s near p where r, s are homogeneous polynomials of the
same degree and s(p) # 0. If there is a point ¢ € P™ with s(q) = 0, then we
can write f = u/v near ¢, where u and v are homogeneous polynomials of
the same degree and v(q) # 0. Now any two open sets in P” meet. (This is
where the irreducibility is used.) Thus there exists an non empty open set
where v = us. Since such open sets are dense, rv = us in k[z]. Now we
can assume that r and s have no common factors. Thus s divides v. This
contradicts s(q) = 0 and v(q) # 0. It follows that s cannot vanish on P",
hence P(V(s)) = (. Hence, if s has positive degree, then a power of the
maximal ideal is contained in (s). But there is no non constant function
with this property, so s is constant, hence so is f. O

Let’s next look at what projective varieties are like locally. Recall P™
has a covering by open sets Uy, Uy, ... U,, where

Ui ={ld] | = #0}.

I claim each Uj; carries the structure of an affine variety. Let us demonstrate
this for Uy. Consider the map the map ¢ : Uy — A" given by

o([ag, a1, ..., an]) = (a1/ag,az/ag, .. .,an/ap).

The inverse is the map ¢~ : A® — Uy defined by

¢ Ny, .. xn) =[1,21,..., 2]

Now ¢ induces a comorphism from k[x1,...,z,] to a set of functions on
Up. We have to decide what kind of functions. Let f € k[z]| have degree d.
Put

(z0,... ) = zg f(z1/20,22/20, - - 2n/20)-
Then
fAz20, ..., Azn) = A28 f21/20, 22/ 20, - - -, 2n)20) = Af"(20, ..., 2n).
Hence f" is homogeneous of degree d.
Definition 9.3. We say that f” is the standard homogenization of f € k[z].
Now

o*(f)([ag, a1, ... ,an]) = fo([ag, a1, ... ,an]) = f(a1/ao,az/ao, ..., an/ap).
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But

fa1 ap,ag/ag,...,an/ag
fla1/ag,az/ag, ... ,an/ag) = ag (a1/ao, /ag’ 2/ 00)
B M (ag, ..., an)
S —
0

This is clearly a regular function on Uy. In fact, it’s clear that ¢* deter-
mines an isomorphism from k[z1,...,x,] to O(Uy). Therefore Uy carries
the structure of the affine variety A™. That is, Uy = Specm O(Up). Any
closed set Y in A" maps under ¢! to U, N X, where X is the set of zeros
of a homogeneous ideal in klag, ..., ay).

Proposition 9.8. If X is closed in P", then ¢(X NUj;) is closed in A™ for each
1 and conversely. In particular, every closed set in P" is covered by open
sets, which are isomorphic to closed sets in A". Finally, every projective
variety X has an open cover by affine varieties..

PROOF. We showed above that ¢(X N U;) is closed in A" iff X N U; is
closed in U;. Thus we only need to see that it is irreducible iff X is. But if
X NU; is irreducible, then so is X. O

To summarize the discussion above, since ¢* : k[z1,...,z,] — O(U)) is
an isomorphism of finitely generated k-algebras, ¢ : Uy — A" is an isomor-
phism of affine varieties. Thus any affine variety Y C A™ has a projective
completion Y in P obtained by embedding Y in Uy (or any other U;), and
taking the closure. This is a standard way to construct a projective com-
pletion of a given affine variety Y.

This discussion brings us to an important class of varieties. Namely, we
have the

Definition 9.4. A subset X C P" is called a quasi-projective variety if
X =Y\ Z, where Y C P" is projective and Z is closed in P".

In other words, a quasi-projective variety is by definition an open subset
of a projective variety. Note that we are requiring quasi-projective varieties
to be irreducible, although Shafarevich doesn’t require this condition.

Exercise 9.3. Show that every affine variety is quasi-projective.
We can extend Proposition 9.8 to the quasi-projective case. In fact, we

have

Proposition 9.9. Let X C P" be a quasi-projective variety and let x € X.
Then x has a neighborhod which is an affine variety.
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PROOF. (Also see Shafarevich, p. 49.) Suppose X C P" is quasi-projective,
say X = W\ Y, where W is projective and Y is closed. Let x € X and say
for example that x € Uy. We need the following Lemma.

Lemma 9.10. Let Y7 and Y3 be disjoint closed subsets of A"™. Then there
exists a g € k[z1,...,xy,] such that g(Y1) =0 and g(Y7) = 1.

Exercise 9.4. Prove Lemma 9.10.

Now apply Lemma 9.10 to Y7 = ¢(x) and Yo = ¢(Up NY). We know
Z = A"\ V(g) is affine and open in A", and, by choice of g, ¢(z) € Z.
Therefore, (W N Up) N ¢~ (Z) is a open neighborhood of x isomorphic to
a closed subset of A™. Now choose an irreducible component containing x
and we are through. O
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Lecture 10

Rational and regular
functions and maps

We now take up the question of what are rational and regular functions on
quasi-projective varieties and what are rational and regular maps between
quasi-projective varieties. We have already defined these concepts in the
affine case, and in fact we saw that a regular function on an affine variety
X is the same thing as an element of the coordinate ring k[X]. Moreover,
we defined the notion of a regular function on a projective variety X and
observed that the only (globally) regular functions are the constants.

Let us begin with the function field of a projective variety X. The
homogeneous coordinate ring S(X) is a graded k-algebra and also a domain.
Thus a candidate for the function field, or field of rational functions on X is

k(X) ={f(x)/g9(x) | f,9 € Am I m, g #0}.

Since f and g are homogeneous of the same degree, it follows that an element
of f/g of k(X) is a regular function on some open set U C X, namely where
g #0.

EXAMPLE: Let X = P!. Then if f and g in k[xo, 2] are homogeneous of
the same degree d, we have

f(@o,x1)/9(wo, 21) = 2§ f(1,2) /2fg(1, 2) = r(2)/5(2),
where z = x1/z9. It follows easily that k(P') = k(z). Similarly, k(P") =
k(z1,...2,), the quotient field of k[z1, ..., z,]. In particular, k(P™) = k(A"™).
It isn’t as clear how to proceed in the case X is quasi-projective, so we

will take a slightly round about approach. First of all, we make the following
definition.
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Definition 10.1. If Y is an open subset of a closed set W C P, let k[Y]
denote the ring of all k-valued functions on Y which are regular at every
point. We call k[Y] the ring of reqular functions on'Y.

There are two limiting cases. If Y is affine of the form X \ H, where X
is projective and H is a hyperplane, then we know k[Y] is the coordinate
ring of Y. On the other hand, if Y is projective, then k[Y] = k.

REMARK: When Y is quasi-projective, it isn’t always true that k[Y] is
finitely generated. This definitely distinguishes the quasi-projective and
affine cases.

We now define the function field of a quasi-projective variety. Let X C
P™ be quasi-projective. Let Ox denote the set of rational functions

flag,...,an)/g(ag, ... an),

where f,g € Ay for some d and g ¢ I(X) := I(X). Thus, Ox is the terms
of degree 0 in the localization of klag,...,a,| at the prime ideal I(X). Let
My denote the ideal of all f/g € Ox where f € I(X). Since any element
of the complement of Mx is invertible, Ox /My is a field.

Definition 10.2. The field k&(X) = Ox/Mx is by definition the function
field of X.

Exercise 10.1. We now have two definitions of k(X) if X is projective. Do
they coincide? Also, verify that if X is quasi-projective, then k(X) = k(X).

We now take up morphisms of projective varieties. The naive way to
define a “morphism” f: X — Y, where X C P" and Y C P" are projective
varieties is the following: f is just the restriction of some F : P™ — P,
where F' = (go,...,9n) and g; € Ay for all d. The problem is what to do if
the g; have a common zero at a point of X7
ExampLE: Let X = {22 —y?> + 22 =0} and Y = P!. Then F : P? — P!
given by F([x,y,z]) = [z,y — 2] is undefined at [0,1, 1]. However, we define
f([0,1,1]) = [1,0]. Note that P! = Uy U Uy so f~1(Ug) = X \ [0,1, —1] and
1) = X\ [0,1,1]. Also f: F~1(Uy) — Uy is [x,y,2] — (y — 2)/x and
f:fYUh) — Uy is [z,y,2] — x/(y — 2). Finally, p = [0,1,1] € f~1(Up).
Now we ask whether f regular at p. We have

Yy—z y? — 22 x? x

v aly+tz) wly+z) y+z

So f is given on f~1(Up) by x/(y + z) which is regular.
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This example suggests that this preliminary definition of regular maps
needs to be modified.

Definition 10.3. Let X and Y be two quasi-projective varieties. A map
¢ : X — Y is called regular if ¢ is continuous and for every open V C Y
and regular function f on V, the function ¢*(f) = f¢ is regular on ¢~ (V).

Proposition 10.1. Let X be a projective variety, and suppose a map F' :
X — ™ given by an (m + 1)-tuple of elements of A; has no base points,
that is the components have no common zero in X. Then F' is a regular
map.

Of course, if F' doesn’t have any base points, then, by the weak Nullstel-
lensatz , the ideal generated by (IX) and the components of F' contains a
power of the maximal ideal at 0.

Exercise 10.2. Do regular maps of projective varieties induce homomor-
phisms of the homogeneous coordinate rings?

Let’s now look at a basic example. Consider all the monomials 2%, where
o€ Z?fl and > a; = d. It’s a basic fact that the number of such monomials
is (";rd). For a given n, the Veronese variety of degree d is defined to be the
image of the map vy : P* — PN, N = ("zd) — 1, sending (29, 21, ..., 2n] —
[270, 221 ..., 2*N], where the «; run through these monomials in some order.
Clearly, the map vy is regular.

EXAMPLE: Let’s show explicitly that the image of vy : P — P? is a projec-
tive variety. Let monomials of degreee two be given the order (2,0), (1,1),
and (0,2). Then

va([20, 21]) = [28, 2021, 22].

Since 2(1,1) = (2,0) + (0,2), the image of v» is contained in the curve
1?2 = x0w2, Wwhere xg, 1,72 are the homogeneous coordinates on P2. Also,
since xg = 2(2) and xy = 22, all possible first an d third components are hit
by ve. Thus vo(P!) = {2? = zox1}. Clearly, vo(P!) is irreducible. In fact,
it has to be, since otherwise, pulling back the irreducible components would
imply that P! could not be irreducible.

We will presently show that the image of a projective variety under a
regular map is also a projective variety. this will be our first major result on
projective varieties. Before we can show this however, we need to consider
products of projective varieties. This is the next topic.
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Lecture 11

Product varieties and the
graph of a regular map

The construction of products in the category of affine algebraic varieties is
basically straightforward, since the product of two affine spaces is also an
affine space: A™ x A" = AT TLet X C A™ and Y C A" be Zariski closed.
The problem is whether X x Y C A™*" Zariski closed? We know that if
V,W C A™™™ are Zariski closed, then V N W is also Zariski closed. In fact,
I(VNnW)=Rad(I(V)+ I(W)). To see X x Y is affine notice that

XXxY=(XxA")N(A™xY).

But X x A" and A™ x Y are clearly closed. Indeed, X x A" = V(7n7I(X))
where 1 : A™T" — A™ is the first projection, with a similar expression for
A™ XY in terms of the second projection me. (Note: we are not claiming
7m11(X) is an ideal.) The

Proposition 11.1. Let X C A™ and Y C A" be Zariski closed. Then
X x Y is Zariski closed in A™*™. Moreover,

(1) it X =V(f1,...,fr) and Y =V (g1,...,9s), then
X XY =V(nfi,...,7 fry 591, ..., T59s),

and
I(X xY)=Rad(I(X x A") + (A" x Y);

(2) X xY is specm(A(X) @k A(Y)).
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Exercise 11.1. Give the proof.

The proof of (2) consists in showing that A(X) @, A(Y) = A(X xY).
By the universal property of the tensor product, there exists a map such
that f®g — f x g€ AX xY), where f x g(z,y) = f(x)g(y), and it can
be shown that this map induces the desired isomorphism.

A slightly subtle point is the fact that the product of two irreducible
closed sets is also irreducible. In other words, the product of two affiine
varieties is also an affine variety. One proof of this is to shown that A(X)®y
A(Y) is a domain if A(X) and A(Y') are. Another proof is to use the result
that if £/ : W — Z is a regular map whose fibres are equidimensional and
irreducible, then W is irreducible iff Z is. The projection maps X x Y — X
and X xY — Y are in fact clearly regular and satisfy the hypotheses of this
result.

One of the major differences between affine and projective varieties is
that projection maps are not closed. (Recall that a closed map is one which
sends closed sets to closed sets.) Thus the product topology on A™ x A" is
not the Zariski topology. This stifles any attempt to show that the product
of two irreducible closed sets is irreducible from topological considerations
alone. Here is an example.

EXAMPLE: Let X =Y = Al. Then the projection of the variety {zy = 1}
in X x Y is not a closed subset of X. Hence the projection is not a closed
map. However, if we adjoin the point at infinity to the second factor, then
m1(X) is closed. The Fundamental Theorem of Elimination Theory says the
the projection A" x P™ — A™ is closed. We will discuss this in more detail
later.

Exercise 11.2. Show that the product of two Noetherian spaces is Noethe-
rian.

We now consider the product of closed sets X, Y in the projective setting.
Suppse X C P"™ and Y C P" are Zariski closed. Now X xY C P™ x P which
is not a projective space. The way we proceed is to introduce the Segre map
@ : P ox P — PN+ =1 The Segre map is given by

e[z, s xmls [yo, -, yn]) = [ziy;]-

It’s convenient to view this point as an (m + 1) X (n + 1) matrix [Z;;] in
homogeneous coordinates , where Z;; = w;z;. For example,

ZoYo Sﬂoyl)

o([zo, z1], [yo, y1]) = (myo T1y1
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Let o(P™ x P™) be denoted by S(m,n). Then S(m,n) is the variety of zeros
of the 2 x 2 minors of [2;]. That is,

S(m,n) =V {det <Zm'1 Z"m) |all 0 <4 <ip <m,0<j; <jp < n} .
Zizjl 1272

In other words, s(P™ x P™) is projective.
Proposition 11.2. The Segre map ¢ : P™ x P* — Pm+D0+D-1 jg 4
bijection of P™ x P™ onto a Zariski closed set in P(m+1(n+1)-1

PROOF. See Sharfarevich, pp 55-56.
Exercise 11.3. Give the explicit proof the S(1,1) is closed in P3.

EXAMPLE: The image of ¢ : P! x P! — P2 is the locus of points [Z;;] with
Z00Z11 — Zo1Z10- S(1,1) is called a quadric surface. Note that ¢(P! x p)
and (g x P!) are lines in P3. Thus the quadric is a doubly ruled surface.

We now show that (X x Y') is Zariski closed. If X C P and Y C P"
are closed, X x Y is the subset of P"" x P" consisting of all points such that
f@)r(z,y)+g(y)s(z,y) =0, where f € I(X) and g € I(Y), and g, g, 7, s are
all homogeneous. It follows that X x Y is the locus of zeros of polynomials
of the type

h(z,y) = Z aryz’y’.
||=d,|J|=e

Such polynomials are called bihomogeneous of bidegree (d,e). If d # e, say
d < e, we may replace h by the functions y*h(z,y), |k| = e—d. Thus we can
suppose that all h are of bidegree (d,d). Now notice that the comorphism
¢* defines an isomorphism k[Zjle — k[z,y](c,e), Where k[z,y] () denotes
the bihomogeneous polynomials of bidegree (e, e). Thus we may make the
following

Definition 11.1. We say that X x Y C P™ x P" is Zariski closed if it
is the locus of a family of bihomogeneous polynomials. The corresponding
topology on P™ x P™ is called the box topology.

We now prove

Proposition 11.3. Let X C P™, Y C P" be closed. Then X x Y is closed
in P™ x P". Moreover, ¢(X x Y) is closed in PU"*D(+D)=1 " Hence, o is a
closed map. Consequently, (X x Y') is projective.

PRrROOF. The first claim is already proven. For the second, suppose h is
bihomogeneous of bidegree (e, e) and h(z,y) = 0. Then h = ¢*(f) for some
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f € klZijle, so f(¢(z,y)) =0, and conversely. Hence ¢(X x Y) is closed in
pim+1)(n+1)—1 0

Therefore X x Y itself can be viewed as a projective variety.

Exercise 11.4. Prove that if X C P™ and Y C P" are quasi-projective ,
then (X x Y) is also quasi-projective .
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Lecture 12

Regular and Rational Maps
on Projective Varieties

(Revised)

We now turn to some properties of regular and rational maps of varieties. An
important consideration when we consider rational maps will be the graph
construction. The graph of a map F': X — Y is defined to be

Gr={(z,F(x)) |ze X} C X xY.

Note that it is possible that F' is continuous, but its graph is not be closed
(in the product topology on X x Y').

Exercise 12.1. Show that if X C A™ and Y C A" are Zariski closed, then
the graph Gr of a regular map F': X — Y is Zariski closed in A™ x A",

Here is an exercise on the product topology.

Exercise 12.2. Show that if Y is any Hausdorff topological space, then the
graph of any continuous map F': X — Y is closed. Find an example where
the graph isn’t closed.

Exercise 12.3. Taking the Zariski topology on P!, is the graph of the
identity map i : P* — P! closed in the product topology?

Proposition 12.1. Let X C P™ be Zariski closed. Then if F: X — P™ is
regular, the graph Gr C P™ x P" is also Zariski closed.
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ProOOF. Write F(x) = [fo(x),..., fn(z)] where the f; are some functions,
and let [yo,...,yn] be homogeneous coordinates on P". Suppose f;(z) # 0.
By the definition of a regular map, the function F*(y;/y;) is regular on an
open set in X so since F*(y;/y;) = viF'/y; F = fi/ f;, we may assume all the
fi are homogeneous polynomials and F(x) = [fo(z),..., fn(z)] on an open
set in X. Hence, every x € X has a neighbourhood U, C X so that

F(l‘) = [fO(x)7 .- ’fn(x)]

on U,, where the f; are homogeneous polynomials of the same degree with
no common zeros on U,. Hence, in ﬁfl(Uz) C X x Y, we have

Gr = { ([0, -, Zmls Yo, - - -, ynl) | 4ifi(2) = y;fix)}.

If we therefore cover X with finitely many U,’s. we therefore obtain a finite

number of bihomogeneous polynomials which cut out the graph Gg in X xY.

This means the graph Gp is Zariski closed. O
The above proof also shows

Proposition 12.2. Let X C P™ be Zariski closed, and assume F' : X — P"
is regular. Then for each a € X, there exists an open neighborhood U,
of a on which F(z) = [fo(z),..., fn(x)], where the f; are homogeneous
polynomials of the same degree with no common zeros on U,.

We will consider the quasi-projective case below, when we study rational
maps.

As was mentioned previously, one of the basic results in beginning alge-
braic geometry is

Theorem 12.3. The projection maps P™ x P* — P™ and P™ x P* — P"
are closed.

This implies

Corollary 12.4. The image of a closed set in P under a regular map to
P™ is closed.

We now consider rational maps. Intuitively, we think of a rational map
F : P™ --5» P" is being defined by a sequence of elements (ag,...,an)
of the function field k(P™). More generally, if X is a projective variety,
then we can take a sequence in k(X). By clearing away the denominators,
we can therefore take an arbitrary sequence of homogeneous polynomials
(fo,---, fn) all of the same degree. Of course, as we've seen already, a
different sequence of homogeneous polynomials (go, ..., gn) can define the
same map locally. Thus we have to think of a rational map F': X --+ P" as
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being an equivalence class of (n + 1)-tuples. The points of X where all the
fi = 0 for every possible way of representing the map locally will comprise
the indeterminacy locus of F. This represents the set of points where F
cannot be defined. Now let us make the formal definition.

Definition 12.1. Let X be quasi-projective (in particular, irreducible).
Then a rational map F : X --» Y is an equivalence class of pairs (U, ),
where U is Zariski open and dense, and v : U — Y is regular (under the
obvious equivalence relation). If p € U for some pair (U,~), we say F is
defined at p. The complement of the U’s is the indeterminancy locus of F'.

Clearly the indeterminancy locus is always Zariski closed.

ExAMPLE: Let X be quasi-projective and irreducible. Then every rational
function f/g € k(X) defines a rational map F : X --» P! by F(z) =
[f(x),g(x)]. Since we may suppose that f and g don’t have any common
factors, it follows that the indeterminacy locus, that is the set of points
where f = g = 0 has ”codimension 2” in X. We will treat dimension later,
but for now, we can use the definition dim X = tr.deg.k(X). In particular,
if X is a curve, i.e. dim X = 1, then every rational function F' defines a
regular map. If X is a surface (dim X = 2), then F' is undefined on a finite
set.

EXAMPLE: Let [z,%, 2] denote homogeneous coordinates on P2. Let p =
[0,1,1] and let P! be the line {z = 0}. The projection m, : P*\ p — P! is
the map sending [x,y, z] to the intersection of the line through [z,y, z] and
p with PL. I claim 7p([z,y, z]) = [#,y — 2]. The reason is that the two plane
in A% spanned by (z,y,2) and (0,1,1) has basis (z,y — 2,0) and (0,1, 1).
This two plane meets P! = {z = 0} in [z,y — z].

In general, suppose p € P" and let H be a hyperplane in P such that
p ¢ H. Then the map m, i : P"\ p — H defined by putting 7, g (a) equal to
the intersection of the line through a and p with H (which by linear algebra
is a unique point of H) is called the projection onto H centred at p. It is
a projection since m, y(a) = a if a € H. Suppose X C P" is Zariski closed
and p € X. Then restricting the projection 7, 7 : X — H is a regular map.
Such maps give an explicit way to produce study properties of projective
varieties, since 7, i (X) will be a projective subvariety of a P!, We will see
that X and 7, g (X) have the same dimension. (This is part of the Noether
Normalization Theorem.)

The case where p € X gives another situation entirely. This leads to a
famous map called blowing up which we will soon define.
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EXAMPLE: Let’s take another look at to Example 10 Let X = V(22 — 3% +
22) C P? and F = [z,y —2]. Recall F : P2 ——s P! is projection from [0, 1, 1].
But

2

-z 2—2 Xz
== 1] = L) = s s e e

The upshot is that the indeterminancy locus of F' is empty. This gives an
example where p € X, and 7, : X --» P! is regular.

REMARK: Suppose X is a projective (i.e. irrreducible) and F' : X --» P"
is a rational map. Let Z C X x P" denote the closure of the graph of F'
(restricted to its regular set). Somewhat surprisingly, Z is not necessarily
irreducible. In fact we will see an explicit example where this happens when
we blow up a point of a nodal curve in P2. The point is that by definition,
Z is Y \ W for a pair of Zariski closed sets Y, W C P".

EXERCISE 12.4. Show that the closure of Z is Y if Y is irreducible. In
particular, Z is irreducible if and only if Z =Y \ W (as above), where Y is
projective.

Hence, let
Z=7Z1UZyU---UZ,

be the irreducible decomposition of Z. The first projection 7 : Z — X
maps each Z; to a closed subset of X. Hence, for at least one i, m1(Z;) = X.
Now F' is regular on an open subset of X, so I claim that only one component
of Z projects onto X, for two components that project to X coincide over
a dense open set in X. But two irreducible varieties which meet in an open
set coincide. Let Z; be that component. Then if ¢ > 1, Z; C Y x P™ where
Y is a closed subset of X. We will call these Z; the irrelevant components.
We give an example below to show the Z; (i > 1) can be non trivial. We
will now call Z; the graph of F' and denote Z; by Gp.

The image of a rational map is defined to be mo(Gr). We will see later
that mo(Gr) is a closed subset of P™. If Y := my(Gr), we will write F': X --»
Y.

The composition GoF' of two rational maps F': X --» Yand G:Y --» Z
is defined when there exists a p € X such that F' is defined at p and G is
defined at F(p).

Definition 12.2. A projective variety X C P is called rational if there
exists a rational map F : X --» P” for some n and a rational map G :
P" --» X such that:
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(1) Go F and F o G are both defined; and
(2) both Go F and F o G are the identity (wherever defined).

A rational map F': X --» Y is said to be birational if there exists a rational
map G : Y --» X such that (1) and (2) are satisfied.

Proposition 12.5. A rational map F' : X --» Y of quasi-projective varieties
is birational if and only if F** defines an isomorphism k(Y) = k(X).

Exercise 12.5. Show that if F/ : X — P! is the map mp of Example 12,
then F' is a regular bijection. Is the inverse map regular? Is F' birational?

One of the main problems in algebraic geometry is to determine when
two varieties are birational. We will mention an important special case of
this question in the next section.

Exercise 12.6. Prove that P! x P! is a rational variety, where we think of
P! x P! < P3 via the Segre embedding.

Proposition 12.6. A projective variety X C P™ is rational if and only if
k(X) = k(x1,...,2,), where x1,...,x, are algebraically independent over
k.

EXAMPLE: Let C = {ZY? = X3 + X2Z} c P2, Note p = [0,0,1] € C,
q = [1,0,0] ¢ C. Then 7, : C — Pi, is generically three-to-one, hence
cannot be birational. On the other hand, m, : C' --» ]P’}(Y does define a
birational map.

Exercise 12.7. Consider the rational map F” X — P! defined in Example12.6.
Show that F' induces an isomorphism F* : k(P') = k(X), so that X is ra-
tional. Find a formula for F~! and determine whether or not F'~! regular?

We saw above that if X is irreducible, a rational map F': X --» Y gives
an irreducible closed subset G C X X Y such that 7y is generically one-to-
one. Conversely, given an irreducible subvariety Z C X x Y such that m is
generically one-to-one on Z, then we can show that Z arises from a rational
map. How? Well, 7] : k(X) — k(Z) is an imbedding; in fact, it is an
isomorphism so [k(Z) : 7*k(X)] = 1. This is like the case of affine varieties
with A(X) instead of k(X). Thus we get 75 : k(YY) — k*(Z) = k*(X).
Hence, using homogeneous coordinates [y, . .., ym] on Y we have

Wi(yi/yj) = fi(x(), Ce ,J}n)/fj(xo, Ce ,xn).

Thus, y;fj(z) = y;j fi(x). I claim that F' = [fo,..., fm]!
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We can now say that F' is birational if Go' = {(y,2) | (z,y) € Gr} C
Y x X is rational! A birational map is generically one-to-one. In the above
example, F' is a regular birational map. If p = [0,0,1], then m, gives a
birational map {ZY? = X3 + ZX?} — P!. However, if ¢ = [1,0,0], then
7 : X — P! is generically three-to-one, and hence is not birational. But u
is regular.

In the next lecture, we will describe a very important example of a
birational map, namely the canonical blowing up map = : B,(P") — P™.
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Lecture 13

Blowing up P" at a Point

As mentioned in the last lecture, one of the main problems in algebraic
geometry is to determine when two projective varieties are birational. One
of the most important cases of this problem is to determine whether every
projective variety X is birational to a smooth variety. A variety is smooth if
it has no singular points. We will take up the notion of a singularity later.
This problem was solved for k of characteristic zero by Hironaka for which
he won the Fields Medal in 1962. Hironaka showed that given X, there is
a smooth projective variety Y and a regular birational map F : ¥ — X
which has some other neat properties which I won’t go into. He also proved
this result for analytic varieties over C. The question still remains open,
however, for varieties over a field k of positive characteristic.

Hironaka’s proof uses a rational map called blowing up. We will now
study a special case of blowing up. we will describe blowing up P” at a
point. For simplicity, we can restrict ourselves to the case n = 2, which
shows the essential features of the general construction. The blowing up
construction doesn’t seem to have any analogues outside of algebraic ge-
ometry. In topology, there is a construction called surgery, which gives a
topological way of describing blowing up, but which lacks the fine aspects
of the algebraic-geometric construction.

Throughout this section, we will assume p = [0,0,...,0,1] € P". As-
suming ¢ # p, let [(g,p) be the line in P through p and ¢. Notice that
the set of lines {I(p,q)} is the same as P"~! the set of lines through the
origin in A”. In fact an explicit identification is I(p,q) — I(p,q) N P"~ 1,
where we are viewing P"~1 as the locus {z, = 0}. It is clear that if
[T0,21,...,%5] € l(p,q), then I(p,q) NP"! = [zg,21,...,7,_1]. Thus, our
identification is induced by the projection map m, : P \ p — P! sending
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['TO)$17 .- .,$n] = [IO)xlw . wxn—l]‘

Definition 13.1. The blow up of P™ at p = [0,0,...,0,1] is defined to be
Zariski closure of the graph of m, C P" x P"~1. We denote the blow up of
P at p by B, (P").

More generally, if p € P" is arbitrary, define H, to be the hyperplane
{p -z = 0}. Then define B,(P") to be the closure of the graph of the
projection of 7, : P" — H,,.

There are several alternative descriptions of B, (P"):

1. B,(P") is the closure of the graph in P" x P"~! of the projection map
mp : P\ p — P sending [20, 21, - - -, 2n] = [20,21,- - Zn—1];

By(P*) = {(¢,mp(a)) la# p} U {(p.U(a.p)) | €P*\p},
3. Bp)(IP’”) =P"\pU{l(p,q) | p # q} (sewing the lines through p into
]P)n

)

4. B,(P") is the variety in P" x P"~! defined by the equations z;y; = 2y,
where 0 <¢,7<n-—1

Here we use the fact that the correspondence I(g,p) < mp(g) shows that
lines in P through p are in one-to-one correspondence with points of P*1.
The map 72 : Bp(P") — P! can be thought of as sending (q,l(q,p)) to
l(q,p). Moreover, 71 sends (q,l(q,p)) to ¢ if ¢ # p, and sends I(q,p) to p.

Take n = 2 for example. One can picture B,(P?) as a spiral staircase,
where the central axis is 7 L(p) = P! and each tread is a set of the form
{reP?|relilp,q)3a}

Now let X C P" be closed. If p ¢ X, then define B,(X) to be the graph
of m, x = mp|X. It is clear that B,(X) is closed and irreducible if X is.
Moreover, 71 : B,(X) — X is regular and the inverse map z — (z,m,(z))
shows that X and B,(X) are isomorphic projective varieties.

The following remark is needed.

Proposition 13.1. The blow up B, (P") is irreducible.

PRrROOF.The ideal I = (z;y; — zjy; | 0 < i,j < n —1) is prime. This follows
from the fact that the quotient of the algebra of bihomogeneous polynomials
of equal bidegrees by I is a domain. I omit the details. O

We can also argue slightly differently. For simplicity, let n = 2. Let U,
be an affine an open set about p. Then 7, '(U,), we can view B,(P?) as
being the union of two dense open sets, one isomorphic to the points of the
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form (a,b,t), where at = b and the other to isomorphic to the points of the
form (a,b,s), where bs = a. But both opens are therefore irreducible, so
their union is irreducible. (]

If p € X, the situation is different. First of all, how do we define B, (X)?
If we put B,(X) = 7, ' (X), this means 7, *(p) C B,(X), which we may not
want.
EXAMPLE: Suppose that X = V(2* —y®) C P%,.. Then X = X; U X,
where X7 =V (z —y) and Xo = V(2 4+ y). Thus X is the union of two lines
through p. Clearly, 77 1(X) C B,(P?) has three irreducible components,
even though X has two. But suppose we define B,(X) to be the Zariski
closure of 7, 1(X \ p) in B,(P?). Then B,(X) is the union of two disjoint
lines in P2 x P*. Hence, B,(X) is now smooth, although no longer connected.
Thus, with this provisional definition, By(X) is nicer than X because the
singular point has been removed, i.e. resolved.

Suppose k = C. If p,q € X, then I(q,p) is a secant line to X at p,
and limg_., (g, p) is thus a tangent line. More precisely, it is a point of the
projectivation of the tangent space to X at p, which is the set of tangent
lines to X at p. Thus, in general, the Zariski closure of 771 (X \ p) is a
proper subset of 7,1 (X). Let us therefore make the following definition:

Definition 13.2. If X is a subvariety of P? and p € X, define B,(X) to be
the unique irreducible component in Zariski closure of 7, (X \ p) in B,(P?)
which projects to X.

Here is another example where when blowing up a variety makes things
may get better.

ExampLE: Consider the nodal curve X = V(zy* — z%) C P%,,. Near p,
ie. in Xo = Us N X, we see that X is the curve y? = 2% with a cusp at (0,0).
Of course, the cusp is a singular point which we would like to resolve. We
will investigate what Bp(X) looks like near ¢ = ([0,0,1],[1,0]). (Note that
q € B,(X).) Thus we need to find some local coordinates for B,(P?) about
([0,0, 1], [1,0]). Consider the set of points ([:c,y, 1], [x,y]), where = # 0.
Then the line [z,y] C A? is parameterized by its slope w = y/z. Thus
suppose we choose affine coordinates to be x and w. When the equation
y? = 27 is expressed in the coordinates (x,w), it becomes w?z? = 23 since
y = wz. The Zariski closure of the locus w?z? = 23 is the union of the
parabola z = w? and its tangent line = 0 at (0,0), this illustrates the
problem encountered in Remark 12. There is an irrelevant component in
the closure of 7, 1(X \ p) in B,(P?). Hence the variety B,(X) looks like

w? =z near z = 1, and so we can say that we have resolved the singularity
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2 is smooth at (0,0). The mapping

of X at p since the parabola z = w
By(X) — X sends (z,w) — (z,zw) where z = w?.
If we think of the k£ = C situation again, and think of taking limits, we
can illuminate somewhat why the closure of the graph of a rational map can
be reducible. Suppose p € X. Now B,(X) is the union of X \ p and the set
of limits of sequences (ry,l,), where r, € X \ p, r, — p and l,, = l(ry, p).
Then r,, = (Tn, Yn) = (Tn, Wpxy) and I, = [xn, xywy] = [1,w,]. Perhaps the
point is that [,, does not explicitly involve x,.

93



Lecture 14

Elimination Theory

The Fundamental Theorem of Elimination Theory is the result mentioned
several times above that the projection maps P x P* I P™ and P™ x P* 53
P™ are closed. That is, if Y C P™ x P™ is closed, so is (V) for i = 1,2. A

corollary is:

Corollary 14.1. If X is a projective variety and F : X — P" a regular
map, then F(X) is projective.
PROOF.Apply the fact that the graph of F' is closed in X x P™ and use the
fundamental theorem. OJ
A detailed discussion of elimination theory is given in Cox, Little and
O’Shea. We will treat the matter somewhat briefly. The basic concept is
the resultant of two polynomials in one variable. Let f(2), g(z) € k[z] have
degrees degrees m and n respectively. We want to test whether they have
a common root. The condition for this is that there exists a polynomial h
of degree < m 4+ n — 1 which f,g both divide. The polynomial h can be
expressed as h = pf = qg, where degp < n — 1 and degq < m — 1. Hence
h exists if and only if the spans of f,zf,...,2" ' f and of ¢, zg,...,2" g
have a non-zero vector in common. This happens if and only if the (m+n)th
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order determinant

apg ai as ... Am 0 o ... 0
0 ay a1 ... Gm—1 am 0O ... O
0 0 a ... Gm—2 aGm-1 Gm ... O
0O 0 O 0 agp al am |
detl by by ... by 00 o =Y
0 by b1 ... by b, 0 0
0 0 b() bn—2 bn—l bn 0
0O 0 0 ... 0 bo by ... by,

This determinant is called the resultant of f and g, and is denoted R(f, g).
Since k is algebraically closed, we have

Lemma 14.2. Two polynomials f(z),g(z) € k[z] have a common root if
and only if R(f,g) = 0.

More generally, suppose f, and g are polynomials in z with coefficients
in k[z1,...,z,]. We can still form R(f,g) € k[z1,...,z,]. Then

R(f,9)(y1,...,yn) =0

if and only if f(y, z) = g(y, z) for some z.

Lemma 14.3. If f,g are homogeneous, so is R(f,g).

PRrROOF. This is somewhat messy so we will skip it. O
Let us apply this to projections. Let p = [0,...,0,1] € P", and let

7, P\ p — P! p=[0,...,0,1] be the projection. Now let X C P\ p be

closed. We first show

Theorem 14.4. 7,(X) is closed in P" 1.

PROOF. Let I(X) C k[zo,...,2,] = k[z] be the ideal of X. For f,g € k[z],

let R(f,g) € k[z0,...,2n—1] be the resultant with respect to z,.

Claim. m,(X) =V ({R(f.9) | f.g € I(X)})

PROOF OF CLAIM. Let ¢ = [ag,...,an—1]. Then szl(q) = pU{ [ag,...,an—1,s] |

s € k. Now ¢ € m(X) if and only if s € k such that [ao,...,an—1,5] € X.

This holds if and only if for all f,g € I(X), f(-) = g(-) = 0, which holds

if and only if R(f,g)(q) = 0 for all f,g € I(X). The result of the theorem

follows. O
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What does elimination theory have to do with
me : P x P — P"

being a closed map?

It suffices (by an argument which will be omitted) to assume m = 1. Let
S C P! x P" be closed, say S = V(f1,..., fr), where f; € k[z0, 21, %0, .. ., 2p]
are homogeneous. Introduce new indeterminants si,...,s, and t1,...,¢t.,
and consider the resultant

R(Z Sifi(za ]-71‘07 ce. 7-73n)a Ztlfl(za ]-5'1"07 cee ,fl?n))

with respect to z. Rewrite this equation as 3 R4 5(X)t*s”. Then the claim
is that 7T2(S) = V(Ra,ﬁ). O
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Lecture 15

The Noether Normalization
Lemma

We now consider projections as a way of studying projective varieties. Let’s
begin with an example. Let X = {zy = 22} C P2. The projection 7, : P? —
P! from p = [0,0, 1] sending [z,y, 2] — [z,y] is 2 to 1 at almost all points
of X; the points [—x, —y, z] and [z, y, z| project to [z, y]. However, 7rp_1[1, 0]
and 7, 110,1] contain only one point, so [1,0] and [0,1] are exceptional.
They are so called double points. Near these points, m, behaves like ¢ — 2.
Indeed, lel[l,O] = [1,0,0] and near this point, X looks like y = 2% and
mp(22,2) = 22, This map is two to one except at (0,0). We (tentatively) say
that 7, : X — P! has degree 2. Note that the image m,(X) = P’
Proposition 15.1. Let X C P" be closed and assume p ¢ X. Then all
fibres of mp : X — P"~1 are finite.

PRrROOF.We will show that there exists a d such that every fibre has less than
or equal to d elements. Suppose X = V(f1,..., fr). Let d be the maximum
degree of fi,..., fr. Thenif v € X, f; | I(p, mp(x)) has degree less than or
equal to d, and hence at most d zeros. Thus \7rp_1(x)| <d. O

A basic result, which we will soon prove, is that if X is irreducible and
char k = 0, then there exists a d > 1 such that |[7~!(z)| = d for all x in a
Zariski open (hence dense) subset of m,(X). The following two lemma will
be used below.

Lemma 15.2. Assume Y C P" is closed, p ¢ Y and Y = mp(Y) is ir-
reducible. Then there exists an irreducible component W of Y such that
(W) =Y. Moreover, if Y is irreducible, so is Y.

Exercise 15.1. Prove the Lemma.
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We now want to prove the Noether Normalization Lemma. Suppose first
that X C P" is closed and irreducible, p = [0,...,0,1] ¢ X, and X = m,(X).
Now m, induces a k-algebra homomorphism 7 : S(X) — S(X). Indeed, if
[ € klz0,...,2n-1], then 7, f(20,...,2n) = f(20,...,2n-1). Clearly if f is
homogeneous, so is 7, f (of the same degree). We must show that 7,1 (X) C
I(X). Let f € I(X), and let y € X. Then 7 f(y) = f(mp(y)) = 0. Thus =

induces a homomorphism of graded rings
7 8(X) — S(X).
Claim. 7, is injective.
PROOF.If_W;(T) = 0,_then mf € I(X) so myf(y) = 0 = f(7(y)). But
m(X) =X, so f € I(X). O

Thus we can assume S(X) C S(X).

Proposition 15.3. Let X C P"™ be closed and irre_ducib]e, and suppose
p ¢ X. Then S(X) is a module of finite type over S(X).

PROOF.Since p ¢ X, there exists an element of I(X) of the form

f=23+va1(Zo,..., 20 )25+ ag(Zo, ..., Zn ). (15.1)

We may assume f is homogeneous, so Eq. (15.1) says that 1, z,,, 22, . .. ,zﬁfl

generate S(X) as an S(X) module. Thus S(X) is a module of finite type

over S(X) with generators 1, z,,, 22,..., 2471, where z; = Z;. O

We can dispense with the requirement that p = [0,...,0,1] as follows.
Let T : A"*! — A"*! be an isomorphism such that T'(p) = [0,...,0,1].
Clearly, T induces an isomorphism 7" : P* — P™. Thus, if p ¢ X, we replace
X by Y =T(X) and p by T'(p) and hence deduce results about S(X) from
results about S(Y') since T* : S(Y) — S(X) is an isomorphism too.

The following result is called the Noether Normalization Lemma.

Theorem 15.4. Let X C P" be a projective variety such that X # P™.
Then there is a sequence of projective varieties and regular maps

X:X0—>X1—>'--—> TflﬁXran_r
such that

(1) for all i, if m; : X; — X;41 is the associated regular map, then m; is
surjective and has finite fibres,

(2) every S(X;) is finite over S(X;11).
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In particular, S(X) is a module of finite type over k[xo, ..., ZTp_y].

Proor. In Proposition 15.3, we were able to construct m, : X — pr—t
provided X # P". Thus we can apply Proposition 15.3 until eventually X, =
P™*~". The rest of the Theorem is an immediate application of Proposition
15.3. a

The sequence of projections
X=X X1—-- =X, 1> X, 2P

in Theorem 15.4 is in fact a projection in a more general sense. Let oy, ..., 0;
be linearly independent elements of the dual space (A"+1)* = Hom(A"*1, k),
and put W = V(0g,...,0;). Then W is a linear subspace of P" of dimension
n —j — 1, and the projection 7y : P \ W — P7 is defined by

7TV[/([Z0, .. ,Zn]) = ([0‘0(Z0, .. .,Zn), ce ,O'j(Zo, .. ,Zn)])

Note that 7, : P"\ p — P"! is defined by letting o; = dZ; if 0 <i <n — 1,
so that p = V(oo,...,0n-1). By examing the construction of the map
m = mymy - -+, in Theorem 15.4, we see that m = 7y, where W is spanned
by p1,...,p,. Hence, we

Theorem 15.5. Given a projective variety X C P™, there exists a subspace
W C P" of dimension n — j — 1 such that WNX = () and myy : X — PJ
is a surjective regular map. Moreover, S(X) is a module of finite type over
Ty (klxo, ..., x5]) = klzo, ..., xj].

In the next chapter, we will show that if the field k£ has characteristic 0,
then we may assume d has been chosen so that over a Zariski open set U in
IPJ | every fibre has exactly d points.

We can use the observation that the map in Theorem 15.4 is a projection
to derive an affine version of the Noether Normalization Lemma.

Theorem 15.6. Let Y C A" be an affine variety. Then there exists a
regular surjective map F :' Y — A™ with finite fibres such that k[Y] is a
module of finite type over F*(k[A™]) = kw1, ..., wp].

Exercise 15.2. Prove Theorem 15.6.

In the next chapter, we will show that if the field k£ has characteristic 0,
then we may assume d has been chosen so that over a Zariski open set U in
IPJ | every fibre has exactly d points.

Let m, : X — X be the usual projection. We’ve shown that S(X) C
S(X) via 7 and that S(X) is a module of finite type over S(X). To clarify
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the significance of this, let us state some algebraic results about integrality.
Complete proofs can be found in Dummit and Foote (pp. 665 ff) or in
Eisenbud. Let S be a commutative ring with identity 1, and let R be a
subring of S such that 1 € R. Recall the definition

Definition 15.1. An element s € S is integral over R is there is a monic
polynomial in f € R[z] such that f(s) = 0. The set of elements in S that
are integral over R is called the integral closure of R in S. We say that R
is integrally closed in S if every every element of S integral over R is in R,
i.e. R is its own integral closure in S. Finally, a domain is called integrally
closed or normal if R is integrally closed in its field of quotients.

ExAMPLE: The integers are integrally closed in the rationals: every rational
root of an integral polynomial is integral. You probably learned this in high
school under the name rational root test.

Proposition 15.7. Let S, R be as above and let s € S. Then the following
are equivalent:

(1) s is integral over R;
(2) R|[s] is a finitely generated R-module;

(3) there exists a subring T' C S containing R|[s| such that T is a finitely
generated R-module.

The implications (1) implies (2) implies (3) are obvious. To prove (3)
implies (1), let ' C S be a subring which contains s, and suppose t1,...,t,
generate 1" over R. Since st; € T, there are a;; € R such that

st; = Z a,-jtj.
J

Now let A = (a;j) and I, be the r x r identity matrix. By Cramer’s Rule,
these equations imply that

det(A - SIr)ti =0

for each ¢. But as 1 € T is a linear combination of the ¢;, it follows that
det(A — sI,) = 0 as well. Thus there exists a monic polynomial over R
having s as a root.

Corollary 15.8. Let S and R be as above. Then:

(1) s,t € S are integral over R, then so are s +t and st;
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(2) the integral closure of R in S is a subring of S;
(3) if S is a finitely generated R-module, then S is integral over R; and

(4) integrality is transitive, that is, if T is a subring of S which is integral
over R and if S is integral over T, then S is integral over R.

Let’s again consider the usual setup where 7, : X — X is the projection
centred at p. We have seen that S(X) is a finitely generated S(X)-module,
so every element of S(X) is integral over S(X). It follows without much
difficulty that [k(X) : k(X)] < oo (why?). More precisely, [k(X) : k(X)] =
d. Therefore,

trdeg k(X) = trdeg k(X), (15.2)

which is a fact that will be useful in the next section where we define the
dimension of a variety.
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Lecture 16

The dimension of a variety

Let X C P” be an arbitrary quasi-projective variety such that X is irre-
ducible. We now make an important definition:

Definition 16.1. The dimension dim(X) of X is defined to be dim(X) =
trdeg k(X).

By definition, the transcendence degree tr degy, k(X)) of k(X) over k is the
largest n such that there exists a subring of k(X ') isomorphic to a polynomial
ring k[z1,...,zp].

By the Noether Normalization Lemma, when X is projective, we can find
a subspace P(W) C P such that X (c)apP(W) is empty and the projection
mw : X — P, r = codimW — 1, is a surjective regular maps with finite
fibres. By (15.2), it follows that dim X = r. Stating this a little more
generally, we have
Proposition 16.1. The dimension of an irreducible projective variety is r

if and only if there exists a surjective regular map F : X — P" so that each
fibre is finite.

Exercise 16.1. Prove Proposition 16.1. (Note that you have to first show
that k(P") C k(X).)

ExXAMPLE: The dimension of P* = n.

EXAMPLE: Let X be an irreducible curve in P2, that is X = V(f), where
f € k[z,y, 2] is homogeneous and irreducible. Then for any p € P?\ X,
7,(X) is a closed subset of P! Since 7,(X) is irreducible, either 7,(X) = P*
or m,(X) is a point ¢. But in this case, X C 771(g). Since p ¢ X, it follows
that X is a point, which is contrary to the assumption that X is a curve.
Indeed, if X is a point, then the cone in A3 over X is a line. But a line
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cannot be cut out by a single equation f =0 (why?). Thus 7,(X) = P!, so
dim X = 1. Tt follows that dim(X)=n—1
ExAaMPLE: Now let X be a hypersurface in P", say X = V(f) where f is
homogeneous and irreducible. The if p ¢ X, the projection map m, : X —
P! is surjective. Indeed, if ¢ € P*~!, then the polynomial f has a zero on
the line £(p, ), hence my(X) = P"~1.
Similarly, Theorem 15.6 says that an irreducible affine variety X admits
a regular surjective map onto A™ so that k[X] is finite. Hence dim(X) =
m. Another way to proceed is to compute the dimension of the projective
completion X of Y. In other words, dimY = trdeg k(YY) = trdeg,, k(X).
There is an alternate definition of dim(Y") which was proposed when we
defined Noetherian spaces. This was the

Definition 16.2. The dimension of an irreducible affine variety Y is the
largest k such that there exists a sequence of irreducible closed subsets
Yo, ..., Y, of Y such that

Y=Y2V12 -2

Turning the definition into a statement about ideals using the variety
ideal correspondence, we obtain

Proposition 16.2. If'Y is irreducible and affine, then dim(Y") is the largest
k such that there exists an ascending chain of prime ideals

po Cp1 C -+ Cpp = Kk[Y].

One can easily formulate a corresponding definition for the quasi-projective
case. Both definitions give the same result, but we will skip the proof.
We begin by proving an important property of dimension.

Theorem 16.3. If X and Y are irreducible and both are projective or affine,
and if

(1) X CY, and
(2) dim(X) = dim(Y),

then
X=Y.

ProoF. It suffices to do the case where X and Y are both affine. Then
the restriction morphism k[Y] — k[X] is surjective. Let dim X = r. Then
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there are uy,...,u, € k[X]| such that k[ui,...,u,] C k[X] is a polynomial
ring. Let k[v1,...,v,] C k[Y] be a subring which surjects to k[ug, ..., u,].
Then vy, ..., v, are algebraically independent. Hence every element ¢t € k(Y)
satisfies an equation

ap(V)t™ 4+ ar (V)" + - 4 a1 (V)E+ a(v) =0,

where can also assume that all a; € k[v], m is minimal and a9 # 0. If
X #Y, we can choose a t € k[Y] such that ¢t =0 on X, i.e. ¢ =0 in k[X].

This implies a,,(u1,...,u,) = 0. But then a,, = 0 because u,...,u, are
algebraically independent. As we have contradicted the minimality of m,
the proof is finished. O

As an application of Theorem 16.3, we will now show that if char(k) = 0,
then a general fibre of the projection 7, : X — P"~! has d distinct elements,
where d is the integer defined in (15.1). In other words, a projection is
generically d to 1. The integer d is called the degree of the map m, : X —
P!, We will denote this degree by deg ().

Theorem 16.4. Assume chark = 0, and let X C P" be closed and ir-
reducible, and assume p ¢ X. Let d = deg(wp), where m, : X — P!
is the projection centred at p. Then there exists a Zariski open subset
U C X = mp(X) such that if g € U, then |m, ' (¢)| = d.

PrOOF. Without loss of generality, we may suppose p = [0,...,0,1], so
([ Zo,. ..  Zn-1,2y)) = [Zo, ..., Zpn-1]. Let f € I(X) denote the homoge-
neous polynomial in (15.1). Note that by the choice of f and the fact that
char(k) = 0, the polynomial

of
02y,

=dZ 4 (d—1)a1(Zo, ..., Zn1)Z072 + ...,

does not vanish on X. Thus Y = V(%) N X is a proper subvariety of X.
Since X is irreducible, every irreducible component Y; of Y has dimension
less than dim(X). By the above discussion,

dim(X) = dim(X) > dim(Y;) = dim (mp(¥7)).

Since X is irreducible, each m,(Y;) is a proper subvariety of X. Now let U be
the complement of 7,(Y) in X. Then if ¢ € U, the polynomial f restricted
to 7r;1(q) only has simple roots.

Now let 5y C P™ denote the cone in P" over X. That is,

Cx = . 9).
qEY
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Then C+ is closed, and I claim that
V=CxnV(f)

is X. Suppose V # X, and let Z denote any component of V' containing X .
Then dim(Z) = dim(X) = dim(X), so X = Z. Thus it suffices to show V is
irreducible. So assume V' is not irreducible. Suppose S(V') has zero divisors
a and b. Thus ab = 0 but neither a nor b are zero. By a previous argument,
S(V) is an S(X) module generated by 1,Z,,...,Z%71, so we may write
a=> o;Z and b = Z@-Zﬂl, where 0 < i,j < d — 1. The relation ab = 0
gives the same relation in S(X) via S(V) N S(X), where ¢ : X — V' is
the inclusion. Hence in S(X), ¢*(ab) = 0. But ¢*(ab) = ¢*(a)*(b), so the
fact that S(X) is a domain says either 1*(a) = 0 or t*(b) = 0, say ¢*(a) = 0.
Assuming «, # 0 is the highest non vanishing coefficient of a, we thus get
a relation

Z" 4+ (m—1/am) Z0 7 + -+ g /o = 0,
where m < d — 1. Since k(X) is obtained from k(X) by adjoining a single
element (say for example Z,,/Zy, it follows from this that [k(X) : k(X)] < d—
1. On the other hand, by the definition of d, k(X)) is a vector space over k(X)
of dimension d(Math 422!), i.e. [k(X);k(X)] = d. This is a contradiction,
so it follows that V' is irreducible, and so X = V. Consequently, |7, (q)| =
|¢(p,q) N X| for ¢ € U, and the theorem is proved. O

Since the regular maps are closed, the the composition of two or more
projections
F=mm - - m : X—=XCDP"

also has the property that over a Zariski open U C X, every fibre has the
same dimension. Thus, using the notation of Theorem 15.5, if we define

deg(mw) = deg(m) deg(ms) - - - deg(m,), (16.1)

where m; = mp, and W is the r — 1 plane spanned by p1,...,p,, then over a
Zariski open subset of X, we have that every fibre of 7wy has deg myy points.

Exercise 16.2. Verify the claim in this sentence.

It turns out that the integer deg(my ) depends only on X and not on the
choice of a subspace W of dimension n — dim(X).

Definition 16.3. The degree of the projective variety X C P" is this integer
deg(mw).
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We also obtain from (16.1) and the definition of degree the formula
deg(X) = deg(mp) deg(X). (16.2)

For example, it isn’t hard to see that the degree of a linear subspace of
P™ is one.
ExAMPLE: Let X = {ay? = 2%} and p = [0,0,1]. Now m,!([1,0]) = [1,0,0].
But 7, *([1,u]) = [1,u, u?/3], which consists of three points if u # 0. Thus
the degree of X is 3.

The Riemann-Hurwitz Formula Let’s bring in a well known formula
from Riemann surface theory, which relates the local behavior of a non
constant regular map between compact Riemann surfaces to global topo-
logical invariants. Here we need to suppose the field ¥ = C. We will re-
strict ourselves to Riemann surfaces which are smooth algeraic curves in
P2. Let X C P? be Zariski closed, irreducible, and of dimension one. Then
X = V(f), where f(Zy,Z1,Z2) is an irreducible homogeneous polynomial.
If we also suppose df; # 0 at each ¢ € X, then X is called a smooth pro-
jective algebraic curve. In analytic terms, X is a compact Riemann surface.
Thus, X has a topological genus ¢g(X), that is X is topologically equivalent
to a sphere with g(X) handles attached. For example, g(P!) = g(S?) = 0.

ExAMPLE: Consider the elliptic curve
E = {[z,y. 1] | ty* = aa® + bat® + ct> } C P2,

where a, b, and ¢ are chosen such that the roots of az® + bx + ¢ = 0 are
distinct. This assumption implies E is smooth. Note E = E U [0,1,0],
where E = EN{t # 0}. Let p = [1,0,0] and note also that p ¢ E. Then
B — Pgl/,t is regular. Note that 71[0,1] = {[¢,0,1],[(2,0,1],[¢3,0,1]},
a triple point, and 7~ [1,0] = [0, 1, 0]. The elliptic curve E of this example
has g(E) = 1: topologically it is a torus.

Let X and Y be irreducible projective algebraic curves as above, and
let ¢ : X — Y be a non constant regular map, eg a projection. Then it
can be shown that ¢ is surjective and finite to one. Moreover, there exists
a positive integer n such that [¢~!(x)| = n on a dense Zariski open set in
Y. In fact we just proved this for 7, : X — PL. The integer n is called the
degree of ¢ and denoted deg(¢). Consequently, there are only finitely many
points p1,...,pr € X where [¢~! (¢(pz))| # n, and for these points, we have

lo~(d(ps))| < n.
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Exercise 16.3. Let X and Y be irreducible projective curves, and suppose
f: X — Y is a regular map.

(i) Show that if f is non-constant, then it is surjective.

(ii) Show that in fact, f is finite to one. That is, for each y € Y, f~1(y)
is finite.

(iii) Show that [k(X); f*(k(Y))] < oc.
(iv) If f is one to one, is it necessarily an isomorphism?

Exercise 16.4. Show that deg(¢) = [k(X) : ¢* (k(Y))].

The ramification index p; of ¢ at p; is defined as follows: in a deleted
neighbourhood of p;, it turns out that ¢ is a u; to 1 covering for some p; > 1.
Thus put p; = u; — 1. Then the positive integer p(¢) = >_ p; is called the
ramification index of ¢

The Euler characteristic of a smooth projective curve X satisfies x(X) =
2—2g(X). The Euler characteristic of a topological space Y with only finitely
many non trivial singular homology groups H7 (Y, Q) over the rationals Q is
defined to be

where b;(Y) = dim H’(Y, Q) is the jth Betti number of Y. If Y is a compact
connected Riemann surface, then bo(Y) = ba(Y) = 1 and b1(Y) = 2¢(Y),
hence x(Y) =2 — 2¢(Y). In particular, this gives the formula for the Euler
characteristic of a smooth projective curve.

Theorem 16.5 (Riemann-Hurwitz Formula). Let X and Y be smooth,
irreducible projective curves and ¢ : X — Y aregular map of degree n. Then

X(X) + p(¢) = nx(Y).
In particular, if Y = P!, then

p(¢) =2(n+g(X) — 1)

In the case where ¢ : P! — P! is the identity map, we have n = 1,
g =0, and ) p; = 0. In fact, the Riemann-Hurwitz Formula implies that if
g(X) > 0, there aren’t any regular maps ¢ : X — P! with ¢~!(2) =n >0
for all z € P, Indeed, then p(¢) = 0, so the left hand side of the formula
is 0. But n > 0, so the only way the right hand side can be zero is if n =1
and g(X) = 0. This also follows from algebraic topology using the fact that
5?2 is simply connected and such a ¢ has to be a covering map.
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Exercise 16.5. Let E denote the elliptic curve of the previous example.

Use the Riemann-Hurwitz formula to show g(E) = 1.

Exercise 16.6. Let X and Y be smooth irreducible projective curves. Show
that if g(X) > ng(Y), then there are no non constant unramified regular
maps ¢ : X — Y of degree n.

Exercise 16.7. Let X be the Fermat curve {z" + y" + 2" = 0}. Use the
Riemann-Hurwitz Formula to calculate g(X).

Using the Riemann-Hurwitz Formula to calculate g(X) is usually not
necessary due to the fact that there is a simple genus formula. Namely, if
X is a smooth projective curve, then

§(X) = 5(d—1)(d - 2)
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