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This seminar has two purposes: To expound the work of Arthur

systematically and with any luck to extend it to the twisted case.



Lecture 1

INTRODUCTION

R. Langlands

Basic notation

G: reductive group over Q.
P: parabolic subgroup of G with unipotent radical N and Levi factor

PO: fixed minimal over Q parabolic subgroup of G. If P 2P, then

0
P is called standard.

ge: automorphism of G of finite order £ which fixes PO.

E: group of order & generated by e.

G': G =qE,.

For simplicity I will also usually denote G(Q), P(Q) and so on by

G, P, ... while designating G(A), PA), ... by G, P,

Z: connected center of G,

ZO: closed ¢-invariant subgroup of Z with ZOG closed. We fix
once and for all a unitary character & of Z0 trivial on
ZO = ZO N G. It will always be there but will ultimately disappear
from the notation. The group Z0 is in manv applications {1}
and we urge the reader to fix his attention on this case.

L: space of measurable functions y on G\G satisfying the following

two conditions

(i) p(zg) = £(2)¥(g) VzelZ

(ii) f lw(g) lzdg <
Z,G\G



We define a unitary representation R of G on L by
R(g)y : h —> w(hg)
Let w be a unitary character of G trivial on G and satisfying
o M2 E(eH2) = &(2)
Then the operator R(e) defined by
R(e)y : h —> ol H(h))p(e  (h))

acts on L. This definition does not necessarily yield a representation

of the group G'. The relations satisfied are:

R(e)R(g) = u L(g)R(e(g))R(e)

and

R(eMuh) = w(e Xh)e %) ... € “(h))u(h)

If ¢ 1is a continuous compactly supported function on G then

R(4) is the operator defined by
R(¢)¥(h) = [ ¢(g)u(hg)dg
G
The operator of interest is however R(¢)R(e) and this is given by

R(¢)R(e)y(h)

jGw<e'1<hg>)¢<g>w<e"1(hg>)dg

i {Z S w(g)E(Z)ﬁ(h_les(g))dZ} ¥(g)dg .
ZOG\G YEZO\Gﬁ ZO -



Thus it is an integral operator with kernel

K(h, g) = ] [ w(@)E(eh tyzelg))dz .
Y€ZO\G ZO

In order to simplify the formulas it is convenient to denote the

function

g —> [ &£(2)¢(zg)dz
ZO

by ¢, the original function playing no further role. Then the kernel

may be written

K(h, g) = u(g) § _ o(h Tye(g))
ZO\G
Recall: If the quotient ZOG \G is not compact then R(¢)R(g) is

usuaily not of trace class even for smooth ¢.

Truncation

This is a process for transforming sufficiently smooth slowly
increasing functions on ZOG \G into rapidly decreasing functions.
Composition of the truncation operator with K vields an operator of
trace class. For now I contenf myself with a formal description of the
operator, postponing proofs and a precise description of its properties

until later.

If P gPO let 0L be X, (P) ® R, X,(P) being the lattice

*
dual to the lattice X (P) of rational characters of P.

* *
We have — P, thus X (P) — X (P.) X*(PO) — X, (P),

P
-0 0’



and so 010 —> 0. On the other hand if A0 is a maximal split torus

over Q in P, we can identify 6, with X4 (A)) ® R or with the
Lie algebra of AO(R) and we can choose A in AO to be a maximal
split torus in P. This yields & —> 0. Thus we have a natural

e L

decomposition

P

n =0ZP€B0‘L0 ,

0

where to emphasize its dependence on P we have written @& = ﬂzP.
It is convenient to fix A0 once and for all,

Let 44 be the set of simple roots of o, and let AI(; be the

simple roots in M. Thus AIS c AO. On a-;,(o} we introduce an inner
product compatible with the root system 4, and let /SO be the dual
basis. Thus

<m‘a, 8> =6a8 a, BGAO, m‘ae AO

We let %P be the characteristic function of

- _ P
n,=1{He ool (H) >0, aebdg-ay)

b P P
i = 1=
Observe that if H HP + H™, HP "lP, H e @ 0 then

%P(H) = 1p(Hp)

We choose once and for all a maximal compact subgroup K of G

such that G = POK = NOMOK. It is important to observe that many



operations and many formulas, including the trace formula itself, contain

K implicitly. We define H(g), g € G by g = pk and

Ix(p) | = e <H(g)’x> , X € X*(PO) . \—\u)\ eox,

In order to define the truncation operator we have to choose
T € ULO. This done we define AT()U y P 2 continuous function on

G\G, by

dim o;P/ﬂG

ATLP(g) = ZP (-1) q(nsg)dn%P(H(ag) - T)

§E€P\G N\N

Facts (to be provided later)

(a) Each of the inner sums is finite.

) T (aTq) = 2T .

(c) AT transforms sufficiently smooth slowly increasing functions into
rapidly decreasing functions.

(d) AT extends to an orthogonal projection on L.

If ¢ is a continuous function on P, \G we can more generally

T,P, 1
introduce a truncated function A given by
T,P dim ot /o P
vt =7 (-1) R p(nsg) iy (H(sg) - T) .
=]
P,CREP §ER\P, "N\ Ny
P P P Pp P
Here TR isa function on ao = JZP @ 01.0 and R (H) = TR (H 7).
1
Pl Pl Pl
On & 9 the function is defined by a dual basis A‘0 to AO/ . Itis
" & '{\L [ G EAE
the characteristic function of 0



P P P
+acgl= {H€en 1|ma(H) > 0,7, € by .
& z\l T
P1 P 1 P1
S o e It is often convenient to define AR ’ AR , and & R * Here & R is
e P P
e \\ the orthogonal complement of JIIO{ in 6 01 and ARl is the collection
.
3 N~ - 1 R P . P
Lpyo © of restrictions of o & AO - AO to fpo- The dual basis to ARl
e = P P1 R, _:1
is A which may be identified with {'Grala € 8,7 -4, }e Ay for
P
R _ . A1 R
m‘aluo—o if 'm’aeAO,aéAo.
T,P T
The operator A has properties similar to those of A7.

The basic identity

If P is an e-invariant standard parabolic subgroup we define a

kernel KP by

KP(h, g) = Z f ¢(h_1yne(g))dn
Y€ ZO\ M N .

Thus Kp is a function on NP\G x NP\G and K, =K. ' '

If Pl € P, are two standard parabolic subgroups we let ci be

the characteristic function of the set of H in oty (= & p ) or an

1
(depending on one's point of view) for which M4
. . ~ _ = _ AG p— \\\XSO
(i) ma(H) > 0 v:ra € 4,(= Apl = API) & o
P %
N
(ii) a(H) > 0 Va € APZ (= Ai) 6’;36
1 G PZ ol & bo/
(iii) a(H) <0 Va€ed, (=25) - Ap -
- "1 "1 1

The basic identity is the equality



dim n;/né _

Y (-1) ) Kp(dg, 8g)T (H(8g) - T)
POC'.P 5eP\G
dimaS/nf T,P
-3 ) o (H(sg) - T)<z - PG lKP(Gg,ch)> .
P,cP,cP, S€P \G P,CPCP,

The sum over Pl and P2 is over all standard parabolic subgroups, but
the sum over P is on both sides the sum over all e-invariant standard
parabolics. The symbol 01,; denotes the space of ¢-invariants in dt.P
and the truncation AT,P is carried out on the first variable in KP(h, g)
before substitution of (8g, §g) for (h, g). The symbol %P is an
abbreviation for fg.
Let

Gl=tgeGllxg|=1VyeX (G}

We shall expand the integral of the left side over G \Gl as a sum over
conjugacy classes ¢, obtaining finally the fine 6€-expansion and the
integral of the right as a sum over automorphic representations obtaining
ultimately the fine y-expansion. The resulting equality is the (twisted)
trace formula. Observe that all integrals that arise will be shown to be
convergent.

Since the twisted case remains to be worked out as we go along
I will confine myself on the whole in the remainder of this introduction
to the ordinary trace formula. Even here it remains uncertain that the
formal statements have the form given until various papers in preparation

are written.



The @ -expansions

The fine ¢ -expansion that we ultimately obtain will be formed by
sums over conjugacy classes, but the first step is to obtain a coarse
¢ -expansion and this runs over semi-simple conjugacy classes. If
vy€G'=G «E then vy may be written as vy = YYa with Yg semi-simple
and Ya unipotent. The two elements y and Yq have the same érojection

on E and we are interested only in those vy which project on e. Two

such elements vy and ¥y are in the same conjugacy class if y' =6 "v¢,

m
(9]

§ € G. They are the same semi-simple classes if y’s = cS_lyscS, 8

The fine & -expansion will have the form

(T ) (9)
P ee O(M) Mo

The sum is over (e-invariant) standard parabolics, &(M) is the set of

conjugacy classes in M, and Cor is a «:onstan'i:‘L I{: ~\1_‘5( 0 \{lf :7 \\»\,@_
[y —3\; DY O ¥ T

not elliptic, the class of y in M being elliptic if the/(center of the/\

centralizer of v, 18 contained in 0ty = T ,‘,@

2, s the (twisted) orbital integral over the adelic orbit of ¥

G . L ; .
and Tbea. is a distribution associated to <I>°_ and is a weighted

(twisted) orbital integral over the class in G induced from ¢ in the

sense of Lusztig-Spaltenstein. For M = G we have T%@U = 0u.
A

Thus the distribution

o]

QO

eef(G) ¢

is (twisted-) invariant.



The y-expansion

The x-expansion is also obtained in two stages. The coarse
expansion is derived first. It is a sum over cuspidal pairs. A cuspidal
pair consists of a standard parabolic subgroup P and a cuspidal
representation p of M/‘. Two pairs (p, P) and (p', P') are said
to be equivalent if there is an s ¢ Q(8t, 0t') with representative W

such that the representations p' and
m' — p(w-lm'w )
s s

are equivalent. Q(6t, 6L') is the set of linear transformations from g
to @' obtained by restriction of some element w, € G(Q).

The fine x-expansion has the form

I [ am(Ty o) (e)dr

TT)
The sum is over all (e-invariant?) standard parabolics and the integral
is over all (e-invariant?) unitary automorphic representations of M,

or at least a part of them which will be described later together with

the measure dn. In the integrand appear a function d(w)

G

G . . .
and TMOW' Here o  is the (twisted) trace of o but TMUTr is

a distribution associated to o by means of derivatives of intertwining
operators on IndgTr. Like TSIQD, the distribution TI\G/IOTr will in
general not be (twisted) invariant for M # G. But if M =G then

G __
TGO'TT =0 and



10

f d(Tr)Tgondvr

TG)

is a (twisted) invariant distribution.
Thus apart from the explicit determination of the functions clo)
and d(m), problems which have not yet been solved completely, the

final form of the trace formula, from an analytic point of view and before

stabilization, is

G _ . G
. Z”mM) c p(Tyy8p)(8) = ZP ITT d(m) (Typ ) (9)dn
(M)
Any further modification, especially any transfer of terms from one side to
the other to obtain an identity between invariant distributions, will probably

be determined by the problem to be solved.

A final remark. Let Ld be the direct sum of all irreducible invariant

subspaces of L. In the course of deriving the fine x~-expansion one
has to show that the restriction of R(9¢) to Ld is of trace class for
sufficiently smooth ¢. As I indicated the proof of this has not yet been
completely worked out. So this result and its consequences remain for

the moment uncertain.

\\\w\w S - '\—k"*'—-\g "‘\""“"\ N G g"“""‘“*‘*— © b

. . O e Q
R N Jos (S )






