Lecture 13

SOME FORMAL PROPERTIES OF THE TERMS IN THE TRACE FORMULA

J.-P. Labesse

13.1. Some combinatorics.

Given two parabolic subgroups P and Q such that P = Q we have defined τ_P^Q (resp. $\hat{\tau}_P^Q$) to be the characteristic function of the set of $H \in \pi_P^Q$ such that $\alpha(H) > 0$ for all $\alpha \in \Delta_P^Q$ (resp. $\varpi(H) > 0$ for all $\varpi \in \hat{\Delta}_P^Q$). By abuse of notation we also consider them as functions on π_0 depending only on the projection on π_0^Q .

When P and Q are ε -invariant we define ${}_{\varepsilon}{}^{\tau}{}_{P}^{Q}$ (resp. ${}_{\varepsilon}{}^{\tau}{}_{P}^{Q}$) to be the restriction to $({\boldsymbol m}_{P}^{Q})^{\varepsilon}$ the subset of ε -invariant vectors. They will also be considered as functions on ${\boldsymbol m}_{0}^{\varepsilon}$ and even on ${\boldsymbol m}_{0}$. We introduce a new functions on $({\boldsymbol m}_{P}^{Q})^{\varepsilon} \times ({\boldsymbol m}_{P}^{Q})^{\varepsilon}$:

$$\varepsilon^{\mathbf{Q}}_{\mathbf{P}}(\mathbf{H}, \mathbf{X}) = \sum_{\substack{P \subset \mathbf{R} \subset \mathbf{Q} \\ \varepsilon(\mathbf{R}) = \mathbf{R}}} (-1)^{a_{\mathbf{R}}^{\varepsilon} - a_{\mathbf{Q}}^{\varepsilon}} \varepsilon^{\mathbf{R}}_{\mathbf{P}}(\mathbf{H}) \varepsilon^{\widehat{\tau}_{\mathbf{R}}^{\mathbf{Q}}}(\mathbf{H} - \mathbf{X}) .$$

The key observation for all that follows is the

LEMMA 13.1.1.

(i) Assume that X remains in a compact subset ω then

$$H \longrightarrow {}_{\epsilon}\Gamma_{P}^{Q}(H, X)$$

is supported in a compact subset of $(n_P^Q)^{\epsilon}$ independent of $X \in \omega$.

(ii) If X is regular then

$$H \longrightarrow {}_{\epsilon}\Gamma_{P}^{Q}(H, X)$$

is the characteristic function of the set of $H \in (\pi_P^Q)^{\epsilon}$ such that

$$\alpha(H) > 0 \quad \underline{\text{for all}} \quad \alpha \in \Delta_{\mathbf{P}}^{\mathbf{Q}}$$

$$\overline{w}(H) \leq \omega(X) \quad \underline{\text{for all}} \quad \overline{w} \in \hat{\Delta}_{\mathbf{P}}^{\mathbf{Q}}.$$

(iii)
$${}_{\epsilon}\Gamma^{Q}_{P}(H, 0) = \delta^{Q}_{P}$$
 (the Kronecker symbol).

Given H we define $S=S_{\mbox{\scriptsize H}}$ to be the \$\epsilon{-invariant parabolic subgroup} S between P and Q such that

$$\Delta_{\mathbf{P}}^{\mathbf{S}} = \{ \alpha \in \Delta_{\mathbf{P}}^{\mathbf{Q}} | \alpha(\mathbf{H}) > 0 \}$$
.

We have

$$\varepsilon^{\mathbf{Q}}_{\mathbf{P}}(\mathbf{H}, \mathbf{X}) = \sum_{\substack{P \subset \mathbf{R} \subset \mathbf{S} \\ \varepsilon(\mathbf{R}) = \mathbf{R}}} (-1)^{a_{\mathbf{R}}^{\varepsilon} - a_{\mathbf{Q}}^{\varepsilon}} \varepsilon^{\mathbf{Q}}_{\mathbf{R}}(\mathbf{H} - \mathbf{X}) .$$

This is non zero only if $\overline{w}(H-X) > 0$ for all $\overline{w} \in \hat{\Delta}_S^Q$ and $\overline{w}(H-X) \leq 0$ for all $\overline{w} \in \hat{\Delta}_P^Q - \hat{\Delta}_S^Q$. Choose $X_1 \in (\boldsymbol{\pi}_P^Q)^{\epsilon}$ such that

$$\alpha(X_1) \leq \inf_{X \in \omega \cup \{0\}} \alpha(X)$$

for all $\alpha \in \Delta_P^Q$. Since $\alpha(H) > 0 \ge \alpha(X_1)$ for $\alpha \in \Delta_P^S$ and $\varpi(H) > \varpi(X) \ge \varpi(X_1)$ for $\varpi \in \hat{\Delta}_S^Q$ we have $\varpi(H) > \varpi(X_1)$ for all $\varpi \in \hat{\Delta}_P^Q$. In the same way,

replacing Inf by max and changing the sense of inequalities we define X2; then for all $\varpi \in \hat{\Delta}_P^Q$ we have

$$\varpi(X_1) < \varpi(H) \leq \varpi(X_2)$$

whenever $\Gamma_{p}^{Q}(H, X) \neq 0$ and $X \in \omega$. Assertion (i) follows.

Consider now a fixed X such that $\alpha(X) \geq 0$ for all $\alpha \in \Delta_P^Q$, then we may take $X_1 = 0$ and $X_2 = X$; this implies $S_H = Q$ if ${}_{\epsilon}\Gamma_P^Q(H, X) \neq 0$ and assertion (ii) follows.

If X=0 we may take $X_1=X_2=0$ and this implies $S_H=Q$ and $S_H=P$ if $\epsilon^Q_P(H,0)\neq 0$. This yields assertion (iii). \square

Remark: Assertion (iii) above has already been proved, with other notations, in Lecture 2; see 13.1.2. below.

We now introduce matrices of function on π_0^{ϵ} whose entries are indexed by pairs of ϵ -invariant parabolic subgroups: let $\epsilon^{\tau} = (\epsilon^{\tau} P, Q)$ be such that

$$\varepsilon^{\mathsf{T}}_{\mathsf{P},\mathsf{Q}} = 0 \quad \text{if} \quad \mathsf{P} \not = \mathsf{Q}$$

$$\varepsilon^{\mathsf{T}}_{\mathsf{P},\mathsf{Q}} = (-1)^{\mathsf{a}_{\mathsf{P}}^{\mathsf{E}}} \varepsilon^{\mathsf{Q}}_{\mathsf{P}} \quad \text{if} \quad \mathsf{P} \not = \mathsf{Q}$$

considered as functions on n_0^{ϵ} . In the same way we define $\hat{\tau}$. Assertion (iii) in the above lemma yields the

COROLLARY 13.1.2.
$$\epsilon^{\tau} \hat{\epsilon}^{\hat{\tau}} = 1$$
. \square

We introduce a matrix $\varepsilon^{\Gamma} = (\varepsilon^{\Gamma}_{P,Q})$ whose entries are such that

$$\varepsilon^{\Gamma}_{P,Q} = 0 \quad \text{if} \quad P \not\subset Q$$

$$\varepsilon^{\Gamma}_{P,Q} = (-1)^{a_{P}^{\varepsilon} - a_{Q}^{\varepsilon}} \varepsilon^{\Gamma}_{P}^{Q} \quad \text{if} \quad P \not\subset Q \quad .$$

Using the definition of ${}_{\epsilon}\Gamma_{P}^{Q}$ we see that

$$_{\varepsilon}\Gamma(H, X) = _{\varepsilon}\tau(H)_{\varepsilon}\hat{\tau}(H-X)$$
.

LEMMA 13.1.3.

$$\epsilon^{\tau_{P}^{Q}(H-X)} = \sum_{\substack{P \subset R \subset Q \\ \epsilon(R) = R}} (-1)^{a_{R}^{\varepsilon} - a_{Q}^{\varepsilon}} \epsilon^{T_{P}^{Q}(H)} \epsilon^{T_{R}^{Q}(H, X)}.$$

Using Corollary 13.1.2 we see that

$$\varepsilon^{\hat{\tau}(H-X)} = \varepsilon^{\tau(H)} \varepsilon^{-1} \varepsilon^{\Gamma(H, X)} = \varepsilon^{\hat{\tau}(H)} \varepsilon^{\Gamma(H, X)} . \square$$

Since H \longrightarrow $_{\varepsilon}\Gamma_{P}^{Q}(H,\ X)$ is compactly supported on $(\alpha_{P}^{Q})^{\varepsilon}$ the integral

$$\varepsilon^{Q}_{P}(\lambda, X) = \int_{(\mathfrak{A}_{P}^{Q})^{\varepsilon}} \varepsilon^{P}_{P}(H, X) e^{\lambda(H)} dH$$

is convergent for all $\lambda \in \pi_0^* \otimes \mathbf{C}$ and defines an analytic function. We want to compute ${}_{\epsilon}\gamma_P^Q$. We define ${}_{\epsilon}\Delta_P^Q$ to be the set of restrictions to

 $(\boldsymbol{\alpha}_P^Q)^{\epsilon}$ of ϵ -orbits of elements in Δ_P^Q . Given $\alpha \in {}_{\epsilon}\Delta_P^Q$ the coroot $\tilde{\alpha}$ lies in $(\boldsymbol{\alpha}_P^Q)^{\epsilon}$. We define

$${}_{\varepsilon}{}^{c}{}_{P}^{Q} = |\det(\overset{\bullet}{\alpha}, \overset{\bullet}{\beta})|^{\frac{1}{2}} \qquad \alpha, \beta \in {}_{\varepsilon}{}^{\Delta}{}_{P}^{Q}$$

and

$$\varepsilon^{Q}_{P}(\lambda) = (\varepsilon^{Q}_{P})^{-1} \prod_{\alpha \in \varepsilon^{\Delta}_{P}} \lambda(\alpha).$$

Now assume that $\operatorname{Re}(\lambda(\alpha)) < 0$ for all $\alpha \in {}_{\epsilon}\Delta_{P}^{Q}$, then

$$\int_{(\mathfrak{o}_{P}^{Q})^{\varepsilon}} \varepsilon^{\hat{\tau}_{P}^{Q}(H)} e^{\lambda(H)} dH = \theta_{P}^{Q}(\lambda)^{-1}.$$

Replacing roots by weights we define $\hat{\epsilon}^{\hat{Q}}_{P}$, $\hat{\epsilon}^{\hat{Q}}_{P}$, and $\hat{\epsilon}^{\hat{Q}}_{P}$ is the Laplace transform of $\hat{\epsilon}^{\hat{Q}}_{P}$. This yields the following expression for $\hat{\epsilon}^{\hat{Q}}_{P}$:

LEMMA 13.1.4.

$${}_{\varepsilon} \gamma_{\mathbf{P}}^{\mathbf{Q}}(\lambda, \mathbf{X}) = \sum_{\substack{P \subset \mathbf{R} \subset \mathbf{Q} \\ \varepsilon(\mathbf{R}) = \mathbf{R}}} (-1)^{\mathbf{a}_{\mathbf{R}}^{\varepsilon} - \mathbf{a}_{\mathbf{Q}}^{\varepsilon}} \mathbf{e}^{\lambda(\varepsilon_{\mathbf{X}}^{\mathbf{Q}})} \hat{\theta}_{\mathbf{P}}^{\mathbf{R}}(\lambda)^{-1} \theta_{\mathbf{R}}^{\mathbf{Q}}(\lambda)^{-1}$$

where $\epsilon^{X_R^Q}$ is the projection of X on $(\boldsymbol{n}_R^Q)^{\epsilon}$.

The left-hand side is analytic, the right-hand side is meromorphic and hence they are equal everywhere and the singularities of the right-hand side cancel. \Box

Letting $_{\varepsilon}^{\gamma}_{P}^{Q}(X) = _{\varepsilon}^{\gamma}_{P}^{Q}(0, X)$ we have the

LEMMA 13.1.5. The function

$$X \longrightarrow {}_{\epsilon} Y_{\mathbf{P}}^{\mathbf{Q}}(X)$$

is a homogeneous polynomial of degree $k = a_P^{\varepsilon} - a_Q^{\varepsilon}$ given by

$$\frac{1}{k!} \sum_{\substack{P \, \mathbf{C} \, \mathbf{R} \, \mathbf{C} \, \mathbf{Q} \\ \varepsilon(\mathbf{R}) = \mathbf{R}}} (-1)^{a_{\mathbf{R}}^{\varepsilon} - a_{\mathbf{Q}}^{\varepsilon}} \lambda (_{\varepsilon} \mathbf{X}_{\mathbf{R}}^{\mathbf{Q}})^{k} \varepsilon^{\hat{\theta}_{\mathbf{P}}^{\mathbf{R}}(\lambda)^{-1}} \varepsilon^{\mathbf{Q}}_{\mathbf{R}}(\lambda)^{-1}$$

well defined if λ is not a singular value of $\hat{\theta}(\lambda)^{-1}$ or $\theta(\lambda)^{-1}$, and independent of λ .

It is clear that $X \longrightarrow_{\epsilon} \gamma_P^Q(X)$ is analytic and homogeneous of degree $k = a_P^{\epsilon} - a_Q^{\epsilon}$ and it is easy to compute the limit

$$\epsilon^{Q}_{P}(0, X) = \lim_{\substack{t \to 0 \\ t \in \mathbb{R}}} \epsilon^{Q}_{P}(t\lambda, X)$$

when λ is not a singular value for $_{\epsilon}^{\theta(\lambda)^{-1}}$ or $_{\epsilon}^{\hat{\theta}(\lambda)^{-1}}$. \square

13.2. The trace formula as a polynomial.

The left-hand side of the trace formula for the group G and the function ϕ is a sum over $\sigma \in \mathcal{O}$ of terms $_{\varepsilon}J_{\sigma}^{G,T}(\phi)$ which are the integral over $G \setminus G'_{\varepsilon}$ of $_{\varepsilon}J_{\sigma}^{G,T}(\phi,x)$ which in turn are the sums over $_{\varepsilon}$ -invariant parabolic subgroups $P \subset G$ (standard) of

$$(-1)^{a_{P}^{\varepsilon}-a_{Q}^{\varepsilon}} \sum_{\delta \in P \setminus G} \hat{\tau}_{P}(H(\delta x)-T) K_{P,\sigma}^{\varepsilon,\phi}(\delta x, \delta x)$$

where

$$K_{P,\sigma}^{\epsilon,\phi}(x,y) = \sum_{\gamma \in M_{P} \cap \sigma} \int_{P} \phi(x^{-1}\gamma n\epsilon(y)) dn .$$

It was proved in Lecture 4 that the integral over $G \setminus G'_{\epsilon}$ is convergent provided T is suitably regular uniformly if ϕ varies in some compact set of functions.

We want to compute $J^{G,T+X}$ in terms of $J^{Q,T}$ where Q runs over ϵ -invariant parabolic subgroups. Using 13.1.3 we see that

$$\varepsilon^{J} \sigma^{T+X}(\phi, x) = \sum_{\varepsilon \in Q} (-1)^{a_{p}^{\varepsilon} - a_{Q}^{\varepsilon}} e^{-(-1)} e^{$$

$$\sum_{\xi \in Q \setminus G, \delta \in P \setminus Q} \Gamma_Q^G(H(\xi x), X) \hat{\tau}_P^Q(H(\delta \xi x) - T)$$

$$K_{P,\sigma}^{\varepsilon,\phi}(\delta\xi x, \delta\xi x)$$
 .

But if x = nmk with $n \in \mathbb{N}_Q$, $m \in \mathbb{M}_Q$ and $k \in K$ we have (if $P \subset Q$)

$$K_{P,\sigma}^{\varepsilon,\phi}(x, x) = K_{P,\sigma nQ}^{\varepsilon,\phi_Q}(m, m)$$

where

$$\phi_{Q}^{k}(m) = \delta_{Q}(m)^{\frac{1}{2}} \int \phi(k^{-1} m n \epsilon(k)) dn .$$

$$N_{Q}$$

Using the fact that the left-hand side of the trace formula is convergent

for (Q, ϕ_Q^k) uniformly for k $\pmb{\varepsilon}$ K provided T is suitably regular we get when T and X are suitably regular

$$\varepsilon^{J_{\boldsymbol{\sigma}}^{G,T+X}(\phi)} = \sum_{\varepsilon(Q)=Q} \varepsilon^{\gamma_{Q}^{G}(X)} \varepsilon^{J_{\boldsymbol{\sigma}}^{Q,T}(\phi_{Q})}$$

where

$$\phi_{Q} = \int_{K} \phi_{Q}^{k} dk \quad .$$

The right-hand side is a polynomial in X and this allows one to define $J^{G,T}(\phi) \quad \text{for all } T \quad \text{as a polynomial in } T \quad \text{of degree} \quad a_R^{\epsilon} - a_G^{\epsilon} \quad \text{where } R$ is any ϵ -invariant parabolic subgroup whose rank is minimal for the property $K_{R,\sigma}^{\epsilon,\phi} \neq 0$.

A cuspidal datum χ is a conjugacy class of pairs (π, M_p) where π is a cuspidal automorphic representation for M_p the Levi subgroup of a standard parabolic subgroup. If one considers the partial spectral decomposition indexed by cuspidal data one is led to introduce partial kernels $K_{p,\chi}(x,y)$ and one can show, using a refinement of the results in Lectures 7 and 8, that provided T is sufficiently regular

$$\varepsilon^{\int_{\chi}^{G,T}(\phi, x)} = \sum_{\varepsilon(P)=P} (-1)^{a_{P}^{\varepsilon} - a_{G}^{\varepsilon}} \sum_{\delta \in P \setminus G} \delta \varepsilon^{\hat{\tau}_{P}(H(\delta x) - T)K_{P,\chi}^{\varepsilon}} (\delta x, \delta x)$$

is integrable over $G \setminus G^1_\epsilon$; we shall denote by ${}_\epsilon J_\chi^{G,T}$ its integral. As above we get

$$J_{\chi}^{G,T+X}(\phi) = \sum_{\varepsilon(Q)=Q} {}_{\varepsilon} \gamma_{Q}^{G}(x) {}_{\varepsilon} J_{\chi}^{Q,T}(\phi_{Q})$$

provided T and X are suitably regular. The right-hand side is a polynomial in X of degree $a_R^\varepsilon - a_G^\varepsilon$ where R is any ε -invariant parabolic subgroup whose rank is minimal for the property $K_{R,\chi} \neq 0$.

13.3. Changing the minimal parabolic.

Let $\Omega^{G,\epsilon}$ be the subgroup of ϵ -invariant elements in the Weyl group; let $w \in G$ be an element which represents $s \in \Omega^{G,\epsilon}$. Simple changes of variable yield

$$\varepsilon^{\mathbf{J}^{\mathbf{T}}(\phi)} = \int_{\mathbf{G}_{\varepsilon}^{1}} \sum_{\varepsilon(P)=P} (-1)^{a_{\mathbf{P}}^{\varepsilon}} \sum_{\delta \in \mathbf{w}^{-1}(P) \setminus \mathbf{G}}$$

$$\varepsilon^{\hat{\tau}}_{P}(H(w\delta x)-T)K^{\varepsilon}_{w^{-1}(P)}(\delta x, \delta x)$$

where $w^{-1}(P) = w^{-1}Pw$ and where K is defined in an obvious way. It is natural to define $\epsilon \hat{\tau}_{w^{-1}(P)}$ such that

$$\varepsilon^{\hat{\tau}_{\mathbf{P}}(\mathbf{H})} = \varepsilon^{\hat{\tau}_{\mathbf{w}}^{-1}(\mathbf{P})} (\mathbf{w}^{-1}(\mathbf{H}))$$
.

If y = nmak is a Langlands-Iwasawa decomposition corresponding to $Q = w^{-1}(P_0)$ we define H_Q such that $H_Q(y) = H(a)$ and hence

$$w^{-1}H(wy) = H_Q(y) + w^{-1}H(w)$$

and

$$\varepsilon^{\hat{\tau}}_{P}(H(wy)-T) = \varepsilon^{\hat{\tau}}_{w}-l_{(P)}(H_{Q}(y)-T_{Q})$$

where $T_Q = w^{-1}(T-H(w))$. With these notations we get

$$\varepsilon^{\mathbf{J}^{\mathbf{T}}(\phi)} = \int \sum_{\substack{\xi \in \mathbb{R} \\ \varepsilon \in \mathbb{R} \supset Q}} \sum_{\delta \in \mathbb{R} \setminus G}$$

$$\epsilon^{\hat{\tau}}_{R}(H_{Q}(\delta x)-T_{Q})K_{R}^{\epsilon}(\delta x, \delta x)$$

which can be written

$$\varepsilon^{\mathrm{J}^{\mathrm{T}}(\phi)} = \varepsilon^{\mathrm{J}^{\mathrm{T}}_{\mathrm{Q}}}(\phi)$$

where $_{\epsilon}^{J}_{Q}$ is the trace formula computed using the minimal $_{\epsilon}$ -invariant parabolic subgroup Q in place of $_{0}^{P}$.

13.4. Action of conjugacy.

We now want to compare $J^{T}(\phi)$ with $J^{T}(\phi^{y})$ where

$$\phi^{y}(x) = \phi(yx\epsilon(y)^{-1})$$
.

We have

$$J^{T}(\phi^{y}) = \int \sum_{\varepsilon \in P} \sum_{\mathbf{p} \ni P_{0}} \delta \varepsilon P \setminus G$$

$$\varepsilon^{\hat{\tau}_{p}}(H(\delta x y) - T) K_{\mathbf{p}}^{\varepsilon}(\delta x, \delta x)$$

but

$$H(\delta xy) = H(\delta x) + H(k(\delta x)y)$$

where $k(\delta x)$ is the K-component of an Iwasawa decomposition of (δx) . Using 13.1.3 we are led to introduce

$$\varepsilon^{\mathbf{Q}}_{\mathbf{P}}(\mathbf{x}, \mathbf{y}) = \int_{\mathbf{C}} \int_{\mathbf{P}} \varepsilon^{\mathbf{Q}}_{\mathbf{P}}(\mathbf{H}, -\mathbf{H}(\mathbf{k}(\mathbf{x})\mathbf{y})) d\mathbf{H}$$

and

$$\phi_{Q,y}(m) = \delta_{Q}(m)^{\frac{1}{2}} \int \int \phi(k^{-1}mn\epsilon(k)) \epsilon^{Q}_{\epsilon}(k, y) dk dn$$

$$K N_{O}$$

with these notations we obtain as in 13.2

$$\varepsilon^{J^{G,T}(\phi^{y})} = \sum_{\varepsilon(Q)=Q} \varepsilon^{J^{Q,T}(\phi_{Q,y})}.$$

13.5. On some regularity property.

In 13.1 we introduced

$$\epsilon^{\gamma_{\mathbf{P}}^{\mathbf{Q}}(\lambda, \mathbf{X})} = \int_{(\boldsymbol{\kappa}_{\mathbf{P}}^{\mathbf{Q}})^{\epsilon}} \epsilon^{\Gamma_{\mathbf{P}}^{\mathbf{Q}}(\mathbf{H}, \mathbf{X}) e^{\lambda(\mathbf{H})} d\mathbf{H}} .$$

We shall now study this function when λ is imaginary. Consider D a differential operator with constant coefficients on $i(\boldsymbol{\alpha}_P^Q)^{\epsilon^*}$ then if $\lambda \in i(\boldsymbol{\alpha}_P^Q)^{\epsilon^*}$ we have

$$|D_{\varepsilon}\gamma_{P}^{Q}(\lambda, X)| \leq \int_{(\boldsymbol{\kappa}_{P}^{Q})^{\varepsilon}} |P_{D}(H)_{\varepsilon}\Gamma_{P}^{Q}(H, X)| dH$$

where $P_{\overline{D}}$ is the polynomial associated to D. Using that

$$\Gamma(tH, tX) = \Gamma(H, X)$$

for t $\boldsymbol{\varepsilon}$ \mathbf{R}_{+}^{\times} and Lemma 13.1.1(i) it is not difficult to see that LEMMA 13.5.1.

$$|D_{\varepsilon}\gamma_{\mathbf{p}}^{\mathbf{Q}}(\lambda, X)| < c(1 + ||X||)^{\mathbf{N}}$$

for some N independent of λ when λ is imaginary. \square

In other words, $X \longrightarrow \gamma(\lambda, X)$ is a "slowly increasing" function. Now consider φ a Schwartz-Bruhat function on $i(\pi_P^Q)^{*\epsilon}$, let $\hat{\varphi}$ be its Fourier transform so that

$$\varphi(\lambda) = \int_{(\sigma_P^Q)^{\epsilon}} \hat{\varphi}(H) e^{\lambda(H)} dH$$
.

We define

$$_{\varepsilon} Y_{\mathbf{P}}^{\mathbf{Q}}(\lambda, \boldsymbol{\varphi}) = \int_{(\boldsymbol{\pi}_{\mathbf{P}}^{\mathbf{Q}})^{\varepsilon}} \boldsymbol{\hat{\varphi}}(\mathbf{X})_{\varepsilon} Y_{\mathbf{P}}^{\mathbf{Q}}(\lambda, \mathbf{X}) d\mathbf{X} .$$

This makes sense also when $\hat{\varphi}$ is a "rapidly decreasing" distribution. Lemma 13.5.1 above shows that on $i(\sigma_P^Q)^{\epsilon^*}$ the function

$$\lambda \longrightarrow {}_{\epsilon} \gamma_{\mathbf{P}}^{\mathbf{Q}}(\lambda, \boldsymbol{\varphi})$$

is smooth and by 13.1.4 we obtain the following expression

$$\epsilon^{Q}_{P}(\lambda, \boldsymbol{\varphi}) = \sum_{\substack{P \in R \in Q \\ \epsilon(R) = R}} (-1)^{a_{R}^{\epsilon} - a_{Q}^{\epsilon}} \boldsymbol{\varphi}(\epsilon^{\lambda}_{R}^{Q})$$

$$\epsilon^{Q}_{\epsilon}(\lambda, \boldsymbol{\varphi}) = \sum_{\substack{P \in R \in Q \\ \epsilon(R) = R}} (-1)^{a_{R}^{\epsilon} - a_{Q}^{\epsilon}} \boldsymbol{\varphi}(\epsilon^{\lambda}_{R}^{Q})$$

which is valid at least when λ is imaginary and not a singular value of $\hat{\epsilon}^{\hat{\theta}(\lambda)}^{-1}$ or $\hat{\epsilon}^{\theta(\lambda)}^{-1}$ and where $\hat{\epsilon}^{\lambda}_{R}^{Q}$ is the projection of λ on $(\boldsymbol{\alpha}_{R}^{Q})^{\epsilon^{*}} \otimes \boldsymbol{C}$.

The left-hand side is smooth and hence the singularities of the right-hand side cancel when $\,\phi\,$ is any Schwartz-Bruhat function. This implies that more generally we have the

LEMMA 13.5.2. Given any smooth function ϕ

$$\sum_{\substack{\epsilon \in R \subset Q \\ \epsilon(R) = R}} (-1)^{a_R^{\epsilon} - a_Q^{\epsilon}} \varphi(_{\epsilon} \lambda_R^Q)_{\epsilon} \hat{\theta}_P^R(\lambda)^{-1} {_{\epsilon} \theta_R^Q(\lambda)}^{-1}$$

extends to a smooth function of $\lambda \in i(\alpha_P^Q)^{\epsilon^*}$. \square