Lecture 13

SOME FORMAL PROPERTIES OF THE TERMS IN
THE TRACE FORMULA

J.-P. Labesse

13.1. Some combinatorics.

Given two parabolic subgroups P and Q such that PcQ we

have defined p (resp. %8) to be the characteristic function of the
set of H € 0‘8 such that a(H) > 0 for all o e Ag (resp. w(H) >0

for all we 38) . By abuse of notation we also consider them as functions
on 0‘(.0 depending only on the projection on 018.
When P and Q are ce-invariant we define ETS (resp. efg)

to be the restriction to (ot the subset of e¢-invariant vectors. They

Q. e
P)

will also be considered as functions on 01.8 and even on 010. We
introduce a new functions on ((ng)e x (0118)8:

af-af
R Q

Q _ _ R o O
Jp(H, X) = ) (-1) Tp (H) _tx (H-X)

PCRCQ
e(R)=R

The key observation for all that follows is the

LEMMA 13.1.1.

(i) Assume that X remains in a compact subset ww then

0
H—— eI‘P(H, X)

is supported in a compact subset of (ng)e independent of X € w.




(ii) If X is regular then

Q
H— eFP(H’ X)

is the characteristic function of the set of H e ({mg)E such that

a(H) >0 for all « eAg
w(H) iw(X) for all @ &&8

(iii) eI’g(H, 0) = 68 (the Kronecker symbol).

Given H we define S = SH to be the e-invariant parabolic subgroup

S between P and @ such that

5 = (o e 2la@) > 0

We have
ae—ae
Q _ R D Q.
JTp(H, X) =] (-1) L TR(H-X)
PCcRCS
e(R)=R

This is non zero only if ®(H-X) > 0 for all @ Egg and W(H-X) <0

for all e /38 - A(SQ. Choose Xle (a‘l.g)E such that

a(Xl) < Inf a(X)
Xew U0}

for all « GAS. Since o(H) > 0 ioc(Xl) for o € Alsj and w(H) > w((X) i'E(Xl)
for we A(SQ we have w(H) >"uT(X1) for all © e Z\g In the same way,



replacing Inf by max and changing the sense of inequalities we define

Q

P we have

X then for all We A

2;
W(X) < BH) <T(X,)

whenever EI‘g(H, X) # 0 and X e w. Assertion (i) follows.

Consider now a fixed X such that o(X) > 0 for all o e Ag, then

we may take X1 = 0 and X, = X; this implies SH =Q if al“g(H, X+ 0

and assertion (ii) follows.
If X =0 we may take X1 = X2 = 0 and this implies SH = Q and

Sy =P if Erg(H, 0) # 0. This yields assertion (iii). 0O

Remark: Assertion (iii) above has already been proved, with other notations,

in Lecture 2; see 13.1.2. below.

. . . € .
We now introduce matrices of function on 8z 0 whose entries are

indexed by pairs of e-invariant parabolic subgroups: let LT (eTP Q)

be such that

cTpo= 0 if P¢Q
aE :

_ /P Q .
eTP,Q (-1) TP if PcQ

. . € . » :
considered as functions on oL o- In the same way we define cT A ssertion

(iii) in the above lemma yields the

COROLLARY 13.1.2. Erg% =1. O



We introduce a matrix EI‘ = (EFP Q) - whose entries are such that
eFP,Q =0 if P¢gQ
oo
- (_ Q .Q .
erP,Q = (-1 erP if PCcQ

Using the definition of I‘Q we see that

e P

r(H, X) = t(H) t(H-X)
€ € €
LEMMA 13.1.3.

€ €
Qe vy — AR’ R Q
p(H-X) =) (-1) p(H) TR(H, X)

PcRCQ
e{R)=R

Using Corollary 13.1.2 we see that

1

8%(H—X) = ET(H)' I(H, X) = e%(H)EP(H, x) . O

Since H — EI‘S(H, X) is compactly supported on (Olg)e

the integral

Q _ Q A(H)
Japh, X) = f Tp(H, Xe dH

Q€
()

*
is convergent for all X € oL ® C and defines an analytic function.

Q

We

want to compute Eyg. We define EAP to be the set of restrictions to



(011?)6 of e-orbits of elements in Ag Given a € Ag the coroot &
€

lies in (01.8)8. We define

Q

ECP

Q

_ v o ov.3
- |det(a! B)I O, Be EAP

and

o0y = (et T QM&)

aeeAP

Now assume that Re()\(c:)) < 0 for all a e EAg, then

;o 2@ ™an = eJ0 !

Q. e
(o)

. . . Q0 AQ Q.
Replacing roots by weights we define EAP’ Lp and EGP is the Laplace
Q Q

transform of Tpe This yields the following expression for pt

LEMMA 13.1.4.

9y

€
R 20 " XR) R, -10, -1
B0 82 (0)

€
oo x = 1 R Re

PcR cQ
e(R)=R

where EX% is the projection of X on (ﬂg)e.

The left-hand side is analytic, the right-hand side is meromorphic
and hence they are equal everywhere and the singularities of the right-

hand side cancel. O



Letting Eyg(X) = 8\(1(3(0, X) we have the

LEMMA 13.1.5. The function

X —> y5(X)

is a homogeneous polynomial of degree k = a; - aé given by

£ €
a,-a
k 4 -1 -1
L1 R R g o
PCRCQ
e(R)=R
. . . . -1 -1
well defined if A is not a singular value of 6(}) or 6(x) ~, and

independent of X.

It is clear that X —> ng(X) is analytic and homogeneous of

€
- a

Q

degree k = a and it is easy to compute the limit

€
P

Q . Q
y5(0, X) =1lim y5(tx, X)
eP 50 e'P
teR

1 1

when X is not a singular wvalue for Ee(x)" or eé()\)_ . O

13.2. The trace formula as a polynomial.

The left-hand side of the trace formula for the group G and the
function ¢ is a sum over & € 0 of terms 8J(j_’T(qo) which are the

integral over G\G'€ of JG’T(¢>, x) which in turn are the sums over

€E0
e-invariant parabolic subgroups P € G (standard) of
.

P Q z

(-1) E%P(H(sx)—T)K;'%xsx, §x)

s eP\G



where

’

f,’q;(x, vy = ) / 4(x Tyne(y))dn
YEMPna' NP

K

It was proved in Lecture 4 that the integral over G\G&': is convergent
provided T is suitably regular uniformly if ¢ varies in some compact
set of functions.

G,T+X

We want to compute J in terms of JQ’T where Q runs

over e-invariant parabolic subgroups. Using 13.1.3 we see that

€ €

an—a

e, 0= 1 n© P
PeQ
e(P)=P
e(Q)=Q

) I oS, XiRHEE) D)
EEQ\G S€P\Q

Kg”f’,(agx, 5Ex)

But if x = nmk with neNQ,meMQ and ke K we have (if P C Q)

where

q%(m) = GQ(m)%f o(k lmne(k))dn

No

Using the fact that the left-hand side of the trace formula is convergent



for (Q, ¢>15) uniformly for k € K provided T is suitably regular

we get when T and X are suitably regular

Q,T

G,T+X, .\ _ G
Jo (4) = 1 oK) I 5 oleg)
e(Q)=Q
where
_ k
K

The right-hand side is a polynomial in X and this allows one to define

G,T L1 s € €

J (¢) for all T as a polynomial in T of degree aj - a where R
e R G
is any e-invariant parabolic subgroup whose rank is minimal for the
property K;’% # 0.

A cuspidal datum x is a conjugacy class of pairs (m, MP) where 7

is a cuspidal automorphic representation for MP the Levi subgroup of a
standard parabolic subgroup. If one considers the partial spectral decom-
position indexed by cuspidal data one is led to introduce partial kernels

Kp X(x, y) and one can show, using a refinement of the results in

Lectures 7 and 8, that provided T is sufficiently regular

ae_ae
G, x)= 3 (T & 3%
e(P)=P s e P\ G

JG,T
£ X

. €
ETP(H(Sg)—T)KP’X (6%, 6x)

is integrable over G\Gi; we shall denote by J

G, T its integral. As
€ X

above we get

i



, _ G Q,T
J () = ) ) I 0g)
e(Q)=Q
provided T and X are suitably regular. The right-hand side is a
polynomial in X of degree af - a% where R is any e-invariant

R G
parabolic subgroup whose rank is minimal for the property KR X # 0.

13.3. Changing the minimal parabolic.

Let QG’E be the subgroup of e-invariant elements in the Weyl
group; let w € G be an element which represents s € QG’E. Simple
changes of variable yield

.
T P
e = ! D )
G\G! e(P)=P scw L(P)\ G
. €
ETP(H(WCSX)—T)K 1 (8%, 8x)
w (P)
where w_l(P) = w—le and where K 1 is defined in an obvious way.
w “(P)
It is natural to define T such that
e -1
w (P)
) = & (w i)
w (P)

If y = nmak is a Langlands-Iwasawa decomposition corresponding to

Q = w—l(PO) we define HQ such that HQ(y) = H(a) and hence

w H(wy) = Hy(y) + w lH (w)
and

EfP(H(wy)—T) = ETW_l (H (y)—TQ)

@ =



10

where TQ = w_l(T—H(w)). With these notations we get

I = J ) )
G\G' e(R)=R 8 €eR\G
€ RrRoQ

EfR(HQ(Gx)—TQ)Kg(Gx, §x)
which can be written
T
T _ Q
EJ (¢) - EJQ (¢)

where J is the trace formula computed using the minimal e-invariant

eQ
parabolic subgroup Q in place of PO'

13.4., Action of conjugacy.

We now want to compare JT(d)) with JT(¢y) where

Y (x) = s(yxe(x) D

We have
15Ny = ) )
G\G! %I;);l; seP\ G
E%P(H(axy)—T)Kli(ax, 6x)
but

H(sxy) = H(sx) + H(k(éx)y)



11

where k(6x) is the K-component of an Iwasawa decomposition of (6x).

Using 13.1.3 we are led to introduce
Q _ Q _
SpC ¥ = J T H(k(x)y))dH
a\fp
and

¢Q’Y(m) = 6Q(m)% [ J ¢(k_1mn€(k))€ug(k, y)dkdn

KNQ

with these notations we obtain as in 13.2

G, T, vy, _ Q,T
JU6N = ) T g )
e(Q)=Q

13.5. On some regularity property.

In 13.1 we introduced

o, X) = f El’g(H, x) et (M) gp

Q. e
(523
We shall now study this function when A is imaginary. Consider
*
D a differential operator with constant coefficients on i(ag)e then if
Q, e*
p)

A E i(o we have

D R0, )| < fQ |P(H) T3(H, X) |aH
(kp3)°

where PD is the polynomial associated to D. Using that

r(tH, tX) = I'(H, X)



12

for t e R: and Lemma 13.1.1(i) it is not difficult to see that
LEMMA 13.5.1.

D S0, X) | < e+ XY

for some N independent of X when A is imaginary. O

In other words, X — y(x, X) is a "slowly increasing" function.
* A
Now consider ¢ a Schwartz-Bruhat function on i(ag) e’ let ¢

be its Fourier transform so that

o) = | g Pan
TSN
We define
20, @)= [ ¢ p0, Xax

Q.¢
(o)

A
This makes sense also when ¢p is a "rapidly decreasing" distribution.

Lemma 13.5.1 above shows that on i(0t the function

Q, e*
P)
A 0, @)

is smooth and by 13.1.4 we obtain the following expression

[ €
a. —a
Lo, )= 1 DR 20
Jpth P "R
PCRcCQ
e(R)=R
R -1 Q -1
ENCORRNC OV



13

which is valid at least when A is imaginary and not a singular value of

1 -1 0
or 66()\) and where s)\R

eé(k)— is the projection of X on
Q,e*
(ep)” ©C.
The left-hand side is smooth and hence the singularities of the right-

hand side cancel when ¢ is any Schwartz-Bruhat function. This implies

that more generally we have the

LEMMA 13.5.2. Given any smooth function ¢

€ €
da, ~a _ _
I R Reud B o™
PCRCQ
e(R)=R

' . ) Q, e*
extends to a smooth function of X € 1(01P) . O




