Lecture 15

(provisional text)

THE FINE yx-EXPANSION

R. Langlands

1. The operators M

P'IP(S’ A). As usual M, is fixed and we consider

only Levi factors M € L(MO) and parabolic subgroups P € 4(MO) .

For such an M the Lie algebra 2y is well-defined and so is

oty myg)-

Let s € Q(nM, uM,), P € P(M), P'e€ P(M'). We define the

operator MP'IP(S’ A) taking ¢ to be the function M (s, M¢:

P'|P

(k) (Hy (w 'ng)-(s)+0p,) (Hp, (g))
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Some explanation is in order.

Fix a class X in X, thus a pair (pX, MX) given up to association.

is referred to as a cuspidal datum. Two cuspidal data (pX, M\() and

(o, M_,) will be said to be equivalent if after conjugation M _, = M
X X v, e X X
and pX, = a® pX, o« being a character of @G trivial on &'. To X

is associated a closed subspace L;(M\M) of Lj(M\M), w being a
certain central character of M determined by pX. If @ is an
irreducible unitary representation of M let le’m(P) be the space of
measurable functions ¢ on G satisfying:

(a)  ¢(ng)
(b)  ¢(vg)

¢(g), ne NP;

oY) Y eP;

It



(c) m — ¢(mg) 1is a function in Li(M\M) for all g € G transforming
according to the representation 0;
(d)
2 2
lell® = J | $(mk) |"dndk < =
ZMM\M
The intertwining operator is defined by analytic continuation on

K-finite functions and is unitary for Re A = 0. Notice that

(¢, V) = [ ¢ (mk) P(mk) dmdk
Z, M\ MK

defines an inner product on OZX,G(P) .

The forms Pp and Ppr have the usual meaning and w is a
representative of s. Since the Iwasawa decomposition G = PK is valid
we can define HP(g) .

The operator MP'|P(S’ A) 1is certainly an intertwining operator

from OZX O(P) to @t )(P), the representation on the first space

X, s(o
being Psen and that on the second being 05(0)850\). Since ¥ is
fixed in the present lectures we may drop it from the notation.

We shall make use of a number of relations which are either elementary

or a part of the theory of Eisenstein series.

(a) If s e oy, 0z ,), s' € R0y, oL ) then
MP" Ip (s's, A) = MP” B (s', s)\)MP,[P (sA)

Of course P" €& P(M").



(b) Suppose L is a Levi subgroup containing both M and M'
and s fixes the points of oL, . Associated to every pair R, Q,
R e PL(M), Q € P(L) is a unique parabolic subgroup Q(R) € P(M)
satisfying Q(R) € Q, Q(R) nL = R. Moreover if ¢ € JLO(Q(R)) then

for each k the function (bk : m —> ¢(mk) lies in OLO(R) and

May myy(r) (8 M)y = Mpyjg (55 Moy

Notice that M A) depends only on the projection of X on nII\:I

R'[R(S’
1

(c) Suppose M' = wMw ~, P! = WPW_l and w is a representation

of s in Q(ILM, JLM,). Then by the definition

-1
_ (M+pg)Ho(w “g) -(shpy,) (Hy (g))
MP'IP(S’ >\)¢ g — CP(W g)e L P P

Now if g = p'h then W—lg = w—lp'w w ik = pw-lk. Thus

HP(W—lg) = W—IHP,(g) + HP(W-l)

Since Pp1 = sPp We conclude that

-1
(Ao ) (T -8 T,
MP'IP (s, A)p =350+ e P 0 0 ,

for as Arthur shows in Lemma 1.1 of the Annals paper there exists a T0

such that HP(W—l) =T -s—lT for all w. We define s¢ by

0 0
s¢ : g —> qb(w-lg).

(d) Combining (a) and (c) we obtain



-1
(si+p ) (T -t "T )
‘e P 0 0 M

A = (ts, A)

pi|p (s Mien|p
-1
(Mop) (T s T )

(s,A) = M 1, tA)tee
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2. (G, M) families. For the moment fix M. A (G, M)-family is a set
*
M,

in P(M). These functions are to satisfy a compatibility condition. Recall

of smooth functions cP(A), he im indexed by the parabolic subgroups

that each P in P(M) is associated to a Weyl chamber Wp In dey,.

This chamber is defined as the set of H such that a{(H) > 0 for all roots
. _ . .

a in P. Thus s(WP) = Ww(P) if w represents s. If P an(tl P

are adjacent, that is, if WP and WP' have a wall in common, then the

condition is that cPO\) = cP,(K) on the hyperplane containing this wall.

A family of points {XPIP € P(M)} is said to be A, orthogonal if
XP - XP' is perpendicular to the wall separating WP from WP' whenever
P and P' are adjacent. Then the collection of functions
MXP)
{e } is a (G, M)-family.
The set AM—orthogonal of all families is a closed subset of -]TP(M)’ a

and if w is any rapidly decreasing measure on (Ul then

MXS)
(1) cp A — [ e P dw
is a (G, M)-family. It is likely that all compactly supported (G, M)
families are of this form. Since these initial lectures on the second
American Journal paper have as their sole purpose to discover a modification
of the method of Arthur which may work in the twisted case, the rigorous

treatment to be given later, I shall assume that the compactly supported



families that arise are associated to a measure. Otherwise the combinatorics
become unmanageable. (This turned out fortunately to be unwarranted pessimism.)
I now recall some constructions and some facts from the Inventiones

and the Annals papers, many of which have already appeared in Lectures 9

* *
and 13. First of all if Q > P then iﬂ.Q c inP and we can project
* *
A€ iot onto 101.Q obtaining XQ' If cp is defined we set
c ()\) =c ()\Q)
Then we define cb by
=1 (D2 R Roy e a7
RO2Q
Recall that
S _ 1
M) = S WMAS < *)
R R
~R _
eQ()\) N AR Trm'EKR<)\ ‘m’>
‘Q Q
S . . S ~R
Here cp is the volume of the parallelepiped spanned by Ap and cq the
volume of that spanned by 1&%
The functions Q’ Q oP, P € P(M), depend on cp alone and
MXL)
not on the entire (G, M) family. If cP(X) = e P then cb is
the Fourier transform of the function Pb(-, XQ), where XQ is the

projection of XP .onto an- Thus ’



| = [ MH) o
chM = fe T (H, X ) dH

Recall that F'Q(-, XQ) is a function with support in a ball of radius
elIXQH. More generally, if the family is attached to a measure w then

. - AH) py
M) = fa jaQ e THH, X dHdw

Observe that XQ is independent of the choice of P € Q wused to define it
because the collection {XPIP € P(M)} is an AM-orthogonal family.

Arthur also introduces a function cM(K) . It is at first defined by

-1
(A) = co(A)6,(A) ,
M XPeP(M) PP

but he then shows that

) =7 cL(A)
M PeP(M)
Thus if
T, (H, {X,}) =7 T(H, XJ)
M P pcP) b P
then
- A(H
oM = joz fu R )PM(H, {Xph) dHdw

Since the prime in Fi:(H' XP) serves no useful purpose I drop it. The
measure ® being rapidly decreasing and the function FM(', {XP )9

being supported in a ball of radius ¢ supHXPII the function cM()\)
P



is smooth. Recall that cM(O) is usually denoted c,,. Of course if L
is any Levi factor containing M then the family of functions

{CQ(K)lQ € P(L)} is also defined,as is cL(X).

Recall that if each XP lies in the chamber associated to P then
the functions I‘P(-, XP) and FM(', {XP}) are characteristic functions.

A typical pair is given by the following diagrams:

r‘P(.’ XP)

I‘M(', {XP})

Suppose M is the Levi factor of an e-stable standard parabolic. Then
the e-roots divide ul\E/I into chambers. Moreover, as we know, every

root of G not lying in M has a non-zero restriction to an. Thus if



W is a chamber in “1\6/1 we can let PW be the group in P(M) defined
by the condition that a 1is a root of NP if and only if a is positive

W
on W. The collection of P will be denoted PS(M) . In a similar way,

w
using the faces of the chambers, we define the collection -7€(M) of
parabolics.
Suppose more generally that M contains M0 and that ¢t ¢ LAVE
We say that the pair (M, &) is e-special if it is conjugate to (M', ufd,),
M' being the Levi factor of an ¢-stable parabolic. Recall that if w

normalizes M0 and 01.16[, then WEW—1€

fixes each point of 01.;1, and
thus normalizes the standard parabolic with M' as Levi factor. Consequently
w represents an element Qe(no, 01.0) and maps the sets Pe(M') and
4€(M') onto themselves. So we can transport PE(M') and 4€(M') from M!'

to M, thereby obtaining Pe(M’ et) and -‘FE(M, ). Once we have

these sets we can introduce the notion of a (G, M, #) family. It consists
of a collection of functions cp on m, one for each P € Ps(M, o)

which satisfy the obvious compatibility condition.

LEMMA 1. If {cP|P e PIM)} is a (G, M) family then the collection

{EPIP € P_(M, &)} isa (G, M, ;) family, EP being the restriction

of ¢

of cp to m .

Suppose Q and Q' are in PS(M, ot ) and adjacent. The
chambers WS, Wé, in o0t associated to Q and Q' are then separated
by a wall defined by an ¢&-root «. Let Ops weey O be the roots whose

restriction to ¢t is o. These are the only roots (up to sign) separating

WQ from WQ" Thus, after renumbering, we can find a sequence



QO =Q, Ql’ vees Qr = Q' such that Qi is separated from Qi-l by a
single wall, that defined by a;. If Aed and (o, A) =0 then

(ai, A) =0 forall i and

cA(A) = = ,,. = = ¢,
o) CQO(M CQYO\) cqi(A)
Thus once & is specified we can introduce the function EM as
MXp)
- P -
. ' =
well as functions CQ, Q e '1€(M, nn). If cP()\) = e and XP

is the projection of XP on & then

3 MXG)  AMXR)

cP( A) = e P e P , A &R
Thus if {CP} is associated to the measure w then

- _ - AH) =
cM(X) = {)[ J;L e FM,:;(H’ {XP})dw

where FM “(-, {fp}) is the function on o associated to the e-roots

and the family {)TP}.

(G, M) - families defined by intertwining operators. Fix a standard P

and let M = MP' For brevity I shall denote the representation of G
on the space of functions g —> ¢(g)e>\(H(g)), b € ﬂX’O(P) by Pg, \"
Thus QG,)\(h)Cb = ¢' means ¢(gh)e>\(H(gh)) = ¢'(g)>\(H(g)). There are
several (G, M)-families to be introduced. The first is simple to define.
If Qe P(M) then Q = t_l(Pl), where t is an element of the
Weyl group and Pl is standard. Let YQ(T) be the projection onto

OLM of t_l(T-TO) + TO and set
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MY H(T))

cQ(A) = e , A e “M

To define the second we choose an s € Q(ms(P)’ nP) and, fixing

A and A, we define u by
A= seu-A

Suppose that se(o) and o are equivalent up to tensoring with a character
of Ml\M. Then we set, suppressing s and 0 from the notation and

assuming ¢ to be K-finite,

dQ(A) = tr(M (1; >\)-1MQ|€(P)(S’ E(U))EDO,)\(@)

QlP

LEMMA 2. For each A the collection {dQ} is a (G, M)-family.

Suppose Q' and Q are adjacent. By one of the functional equations

MQ'IP(l’K) ]MQ'IE(P)(S’E(U))=MQ|P(1,A) ]MQ"Q(].’)\) ]MQ|lQ(l,SE(U))MQIE(P)(S’g(U))

If the wall separating Q and Q' is defined by o and if (A, a) =0
then A and se(y) have the same projection on Ca. Thus by the

functional equations (b)

MQI[Q(I; SE(“)) = MQIlQ(l’ )\)

The lemma follows.

LEMMA 3. Let ot be the set of points in #ng, fixed by se. Then =«
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is the second term of a unique e-special pair (L, @) and L >M.

The uniqueness of L 1is clear for it must be the centralizer of #&.
So it certainly contains M. To prove its existence we argue by induction
on the semi-simple rank of G.

The lemma is clear if @& is central for the L = G. Otherwise let
X € & be a point fixed by se on which not all roots vanish. Then
{a|a(X) > 0} defines a proper parabolic subgroup of G which is fixed
by se. Conjugating M, &4 and sc we may suppose that it is standard.
Since two standard parabolics which are conjugate are equal, the parabolic
subgroup is invariant under both s and €. In particular s lies in the
Weyl group of its Levi factor, to which we then apply the induction assumption.

Since s is fixed we have not included the dependence of @& on it
in the notation. If A and A liein & then u liesin & and

U = MA. Therefore
Mg |p(L ) lMQig(P)(s,e(u)) = Mg p(LY ]MQ;p“’“A)Mmg(p)<s'€(“’\))

Recall that to each Q € P(L) and to each R € PL(M) there is
associated a unique group Q(R) € P(M) such that Q(R) € Q and

Q(R) n M = R.

LEMMA 4. If A and A liein @ then the operators

L

M® A D) = M (1, N M (1, M)

Q(R)|P Q(R)|P

are independent of R and for fixed A define an operator-valued (G, L)-

family.
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The product

(1, N M

(1, A1)

Moy P QR |P

is equal to

(1, » v 1, MMM (1, M)

Moy [P QY |e®) (M lMQ(R')|Q(R)( QR)|P

Since A and A+A lie in a,, the functional equation (b) yields

(1, N M

)(1, AMA) =1

Ma@ry|ar QRY QR

To prove that we have a (G, L)-family we imitate the proof of
Lemma 2. It is only necessary to observe that if Q and Q' in P(L)
are adjacent then we can find R and R' in PL(M) such that Q(R)

and QU'(R') are adjacent. Indeed if o e AQ defines the wall separating

Q and Q' and if a e AP restricts to o then we may so choose R

and R' that Q(R) and Q'(R') are separated by a wall lying in the
hyperplane defined by «a.

When X € 6 let {EMQ(P’ A, A)} be the (G, L, & )-family attached

to {MQ(P, A, A)}. Finally set

MY (T)) o

T _ - - Q
&:MQ(P’ A, A = CQ(A)EMQ(P’ A, A) = e eMQ<P’ A, D)

In the statement of the following lemma and in its proof P need not

be standard.
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LEMMA 5. Set €TO = l-€_lT0 and suppose r is so chosen that the

e-special pair (L, » ) associated to rse(r—l) is (MQ’ ng) where

Q is an e-invariant standard parabolic. If A ee¢ then

<)"Ts€>

MPIE(P)(S’ 8(>\)) = e eM(P; S) )

where eM(P’ s) is independent of A and

_ -1
Tsz-: = (r l)eTO

To prove the lemma we observe that

-1
Mr(P)|€(rP)(rS€(r ), e(ri))

is equal to

-1
Mr(P)|P(r’ SE}\)MP|€(P)(S, EX)ME(P)|€(1‘P)(€(I‘ ), e(ri))

Using the functional equations (c) we see that this in turn is equal to

(sehtop) (Tyr T ) L1 (e 0y ) (Tg=e(®) T ()
e rMP|€(P)(S eNe(r e

The dependence of the product of the two exponentials on A is

through
TS U |
Mg T e Te Ty e(};rss>

because scA = A,
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The upshot is that to prove the lemma we may replace L, e, P

and s by conjugate data. So we take L to be Mg and ot to be

ﬂE for we have seen that this is possible. But then every point in @&

is actually s-invariant and the equality is a consequence of the functional
equations (b).

As an aside I observe that if K is ¢-invariant, so that

H(e(g)) = eH(g), then

1

(2) € T =T, (mod mg)

and consequently

To verify this we recall (Lemma 1.1 of the Annals paper) that T,

is uniquely determined modulo &, by the condition

G

...1 _ _ -
HPO(W ) = TO S 1T0

for all seQ(uo, ao) and all w in G representing s. However

eT . - es'le‘l(eTO) = e(TO—s'lT

. = H(e(w )

0

Thus ETO is another candidate for TO and (2) follows.

The fine x-expansion. The term J’;‘:(cb) has been introduced in previous

lectures, where it has been shown that it is a polynomial. Our purpose
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in this (long) lecture is to prove a formula for it which we now describe.
If M€ L(MO) and X € oy ® C let ¥, be the character of M

defined by

() = AHED)

If ¢ and o' are two representations of M we write ¢ ~ ¢ if o' is

equivalent to o ® Xy for some X\ € d'l-M ® C. Each class has a distinguished

representative, that which is trivial on {exp H|H € uM}. We usually work
with it.
The formula expresses J;I(‘(d)) as a sum over quintuples

M, L, &, {o}, s) satisfying the following conditions:

(1) MyecMcL and ® ¢ .

(ii) {o} is a class of unitary automorphic representations of M, the
equivalence being that just defined, and 0 is the distinguished
representative.

(iii) s eQ(nE(M), a'LM) and se(g) ~ O.

(iv) (L, o) is e-special and o6t is the set of fixed points of se in &,.

(v) If P € P(M) the space @ (P) is not reduced to zero.

X» O

We now describe the term corresponding to a given quintuple. Let

QO = Q(ato, uo) and Ql\él = QM(uo, ato) . The linear transformation se-1

is invertible on azM/a.. Let A = A(s, €) be the absolute value of its

determinant. The term is

IQI\(')III <>\’Ts€>

[ (M (P, N)e M(P,s)ep_ ,(9))dA
|P(M) | A PEPM) (zﬂ)ap i@ €L £ G, A

12,

Ao ?
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(Notice that the group Z and the character w of the first lecture have
unnoticed become trivial. The general case will have to await the revised
lecture notes.) For P which are not standard the integrand is defined

by symmetry.

Loose strands. The purpose of this section is to recapitulate results from

earlier lectures, but with some minor changes and with a notation convenient
for our present purposes. We begin by discussing the coarse X-expansion
more fully than in Lecture 13.

Recall that this is an expression for JT(¢>) as a sum,

(3) %) =7 3%
X X

the index of summation running over equivalence classes of pairs of cuspidal

data. To obtain it one first expresses the kernel as a sum,

K(h, g) =) Kx(h, g)
X

For each standard P and each distinguished o let {@i} be an

orthonormal base of OZX U(P) and set

Ky p,ohr 8 = ZiE(h, 0o(8)2)E(E, &)

The collection of unitary automorphic representations of M is the union
of affine spaces of the form {OO ® X)\IOO distinguished, A€ iﬂ-M}. Let

dc be the measure which on each component is |dA|. Then
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1
K (t, g) =) —— K (h, g)do
X a X,P,0
P (2m) Vae) 19}
=] 2 [ ] E(h, p(9)8)E(g, E)do
P (ZTT) Pn(P) {0} 1
Moreover
1 -
(4) I I —5—J 1 [Et, 0,($)2)E(g, ¢ |do < =

x P (2m) Pn(P) g 1

The integer ap is equal to the dimension of the split component of P
and n(P) is the number of parabolic subgroups with the same Levi factor
as P. The absolute convergence of (4) was proven in Lecture 10.

We can also introduce
€
K (h, =K (h, ¢
X( g) X( (g))
and, when P is e-invariant,

€ _
Kp (1, 8) = Kp (b, =(g))

Of course

€ _ €

The basic identity, wviz. the equality of

E-a
€
Z (-1 z Kp

POCP §eP\G "’

(88, §g) Tp(H(8g)-T)
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and

5 (H(8g)-T) (] (-1)

P.cPcP
P,cP,CP, S€P \G 1 2

remains wvalid.

The expansion (3) is obtained from the Y-expansion of the left or
the right side of the basic identity by integration over G \Gi. It is
however necessary to verify absolute convergence in order to justify the
interchange of summation and integration. For this we use the right side.
The left side is used only for the purpose of showing that J§(¢) is a
polynomial in T, the argument imitating that in §2 of the Annals paper.

To prove the convergence of the coarse X-expansion we show that

for each pair of standard parabolic subgroups Pl c P2 the sum

I J oA (g)-T)| ] (-1)

X 1
Pl\G€ P1CPCP2

€
Kp (& g)ldg <

This is a stronger assertion than that treated in Lectures 7 and 8 but the
proof proceeds along similar lines. We indicate the necessary modifications
including those entailed by the replacement of Gi by Eoi. The critical
observation is Lemma 2.3 of the Compositio paper.

The first step is to find a substitute for the argument on pp. 3-5

in order to replace (we are taking w = 1)

P 1€
(5) ) (-1) © A Kp (B g)

sg)
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by

ag TP
(6) (-1) ~ ) A Kp_y (B ¥e(@)

Py
YeFe(Pl,Pz)

if there is an e-invariant parabolic Q between P and PZ and by

1

zero otherwise.
Lemma 2.3 allows one first to extend Lemma 7.6 in Lecture 7 to
KP . Then following §2 of the Compositio paper we deduce the equality

1’ X
of (5) with (6) or with 0 from the corresponding equality for the original

kernels.

Variants of Lemma 2.3 can be obtained from a simple observation,
which was drawn to my attention by Clozel. The kernel KP’X is the
kernel of an operator on LZ(NPP\G) and is equal to

1 2

where the superscript indicates whether we operate on the first or the
second variable and _H-X is the projection on the space attached to X.

The operator —lTX acts of course on a function f according to
1
f) = MO)f
(HX )g HX( )g

where WX(Ml) is an operator on functions on Ml and
f,(m) = f(mg), me M.

Since
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’I‘,P1 T,P1 2
A KPl.X(h’ g) = A WXKpl(h, g)
2 T,I—“‘1
= TTXA Kpl(h, g)
we conclude that when
T,P1

as a function of m € Ml then

T,P

A 1

Kpl(h, mg) 0 .

The modified Lemmas 7.2, 7.4, and 7.6 follow immediately and the changes
T,P 2

in the proof of Lemma 7.1 are minimal, for A 1 -I_I-XKD (h, g) # 0 implies

1

that KP (h, mg) # 0 for some m € Ml.
1

The proof of Lemma 7.3 for 605 is the same as its proof for Oi

and the modified Lemma 7.5 is implied by Lemma 4.4 of the first Duke Jour.
paper and was proved by Clozel.

The coarse YX-expansion is the expansion

Ty = 1 3%
X X

and J§(¢) is the sum over pairs Plc P2 of standard parabolic subgroups of

a T,Pl

€
/ leoi(ﬂ(gwr){z -1 T a tRp (g, g)de
PA\G_ P,cPCP,
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Following the arguments of Lectures 8, 10, and 11 one shows that

this may be written as

€ T,P

aQ z j 2 1
(7 (-1 o (H(g)-T) A K (g,ve(g))dg
1 el 121 ProX

YEP\F_(P,P,)/c [(P) Pync ¥ (131)\(;1€ 1

It was shown in Lectures 10 and 11 that each term is zero unless there is a
unique e-invariant parabolic Q between P1 and PZ’ However more can
be squeezed out of the arguments given there, namely that even when the
ge-invariant parabolic between P1 and P2 is unique the only contribution
which perhaps does not vanish is that attached to the class of v = 1.
Since this leads to an indispensable simplification, we give the necessary
supplementary argument.

The element Y may of course be taken to normalize MO' Let it
represent the element s in the Weyl group. We may assume that

se(a) > 0 for ae Aé, for we are free to modify s on the right by an

€ (M)
element of Q . Recall that there is a unique standard parabolic

subgroup Pse such that

P nNnM, = s'ls_l(Pl) n M

S€E 1 1

and that if H = H(g) the following conditions must be satisfied if the

term of (7) corresponding to 7Y is not to vanish:

1

(1) WH-T) <0, Tel_ .

(ii) €G§(H-T) £ 0.
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(iii) w(H-seH) < C, We [’S? (For this it is necessary to apply the original
arguments within Q.)

The conditions (i) and (ii) allow us to write the projection of H-T

on d‘LS as

—z . ot 2 9 cmm s
X W WEA
s€ 1

with all coefficients non-negative. Thus TISO(H-saH) is equal to

(8) Ty(T-seT) + y . c By(se(@)) + ) AQcmmo(w—saD)
OL€AS€ meAl
if ©, € &Q Notice that w™.(a) = 0 if o & Al
0 1 0 se’

The expression (8) must be bounded by a constant independent of T

S€E

and H. The space no is spanned by roots of Mse' Thus se(nze)

is orthogonal to ¢ . and if o € Aie is the image of a'é€ Aé then

1
'm‘o(se(oc)) = ‘GIO(SE(OL')) . Consequently mo(se(a)) > 0. We conclude that

‘GSO(T—seT) + Ecmmo('cﬁ—sem) <C
Let

X = Z cwm’o

moeAl

Multiplying by Cx and summing we conclude that
0

(X, T-seT) + (X, X) - (X, seX) < C|X]|
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Q+
Now X € 60 1 Thus if we assume (and we shall) that T is

e~-invariant then
(X, T-seT) = (X, T-sT) >0
Moreover there is a constant & > 0 such that

(X, X) - (X, sex) > 6||x]°

Q

on @t 1+. To see this we have only to verify that

min Q ((X, X) - (X, seX)) >0
+
xe e, [x]=1)
Q
The minimum is certainly not negative. If it is 0 then for some Y € O'Ll

Y = seY

Q
0

parabolic subgroup between Pl and Q which is properly smaller than Q.

The set of roots o in A such that (o, Y) > 0 define a standard

Since it is invariant under se& it is invariant under both € and s. This
contradicts the definition of Q.

We conclude that

1% < cYx|)

and thus that ||X|| is bounded. We obtain finally inequalities
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Ty(T-sT) < C" , W, €

>
— 0

These inequalities can be violated for T sufficiently regular unless

M
se § 1. This leads to the desired conclusion.

So we are to consider
T,P

1)
a
(-1 R A(H(g)-TIN 'K, (g, <(g))dg
-1 1° X
P1n€ (Pl)\Ge

It was shown in Lectures 10 and 11 that this could be expanded as

ag . ) T,P,
-n <) —— LO](H(E)-T) A Kp 4., o8 €(g))dodg
P 2m Pay®) P acl®)\G, L(P) 1
$(P) being the set of possible {o}. Recall that
Kp ,x,2, o8 £8)) = E]_ Ep (8 o(9)¢))Ep (e(e), %)

Thus we have an integral over the space parametrized by P, 0, j»
and g. Some care is necessary because there is an element of conditional
convergence, which we recall explicitly. The group iul acts on I
and we can clearly decompose I(P) as a product Zl(P) x iet,, the

connected components of I, being affine spaces over inl (The attempt

P

to distinguish between spaces and their duals becomes too much of a burden
on the notation and I abandon it).

1f o, € Zl’ Xle iey denote p01®x>\ by p01’>‘1. The integral is

1
obtained by iterating two other integrals, each of which is absolutely
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convergent although their iteration may not be. The first is

T,P

(99 —L 1 I8 YE) (gp , (0)0)E; (e(@), 8 |dA]
2p im, TR R A S| ]
(2m) "n,(P) 1
The second is over
{(P, 0)|P DP,, 0, € Z,(P)} x P ne e )\P1 x K x 0}
’ 2%y 91€ 4 1 1 1Le

where EDL% is the set of H € 0‘11 such that dyx(H) = 0 for every

e-invariant character ¥ of G defined over Q. The integrand for the
~2pp (H)

second is the product of (9) with E:oi(H-T)e 1 , g being p(exp H)k.
For this we do not need to assume that ¢ is K-finite. However for the
first part of the proof of the fine X-expansion we do, the assumption
and the theory of Eisenstein series assuring us that the set of (P, 0, i),
o distinguished, which yield a non-zero contribution for a given X Iis
finite, so that the sum over these parameters presents no analytical problems.
Thus until we explicitly return to the general case ¢ will be K-finite.

The integrand of (9) is clearly an entire function of Xl. It is
shown in Lectures 10 and 11 that the contour can be deformed to

Re A, = -A, A€

1 arbitrary, without changing the value of the integral,

1

which remains absolutely convergent, the parameter implicit in EP (e(g), <I>j)
1

being -7\-1. We choose A such that (A, a) >»> 0 for all oceAl.

Then, and this will be shown in Lectures 10 and 11, the double

integral
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T.P
(10 I

-1 1 -
Plne (Pl)\Pl"K Re Al- A

, JES (elpak),¥,) y &= )
Epl(pa.k p°1'*1(¢)¢1)EP1£ pak J Id)\z|dpd.k a=expH

is absolutely convergent. Given the properties of the truncation operator

this follows from an estimate \

(11) ) [Ep (cCypak), 9] <c)|mN
\(elee“l(Pl)\P1

Here p = nm, N is some fixed real number depending on A but not on
Al with Re )\1 = -A, and m lies in a Siegel domain of Ml.

The parameter in the Eisenstein series is }\l' All we need do is
estimate

(12) ) |Ep (ve, @) ]
YePl\G

on a Siegel domain of G, for taking g = €(pak) we majorize (10). That
(12) is bounded by Clg |N follows from the elements of the theory of
Eisenstein series (see the remarks following Lemma 4.1 of my notes on the
subject) .

Apart from a finite sum over P, distinguished o, and j and a

constant

1

(-1 ° =
(2m) nl(P)



27

we have to consider

, 20 (H)
(13) fml ohE-me 1 f a(pak, 1) = AT (¢)
e Re A=-A plne‘l(P )\ P1xk
VP
where
N T.P,
, ) =
a(p ) = A Epl(pak, pg,}\(¢)¢>j(EPl(€(pak), <I>j) ,

= 1 . .
a = expH, and e %1 c f, is the intersection of the kernels of the e-invariant

rational characters of G.

In contrast to the integrals appearing in the ordinary trace formula,
(13) does not seem to admit a useful explicit expression even when <I>]. is
a cusp form. So we derive an approximate formula for it, anticipating the
needs of the arguments in the two Amer. Jour. papers. Recall that they

involve substituting ¢Y = ch for ¢ where Y = YH is the distribution

<
il
Dl

A
sel s 'H

and ¢Y is obtained from ¢ by applying the multiplier aésociated to Y.
Then AT(q)H) is a function of T and H, H € ?’ (Arthur works with
a subspace ?1 c ?, but with our formulations 9- is better).

In order to simplify the formulation at various places, we formalize

the inequality (5.1) of Amer. Jour. I into a definition. Fix an integer

dOzO. If KDT(H) is a function of T and H we write

vT(H) ~ 0

if there are positive constants € and C and for every invariant

differential operator D on } a constant cp such that
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d
0w | < epe I oy

whenever d(T) > C(1+||H||). Recall that

a(T) = min a(T)
{0,Qae An»Q2P )

Set p=-¢()) and define ¥, by
®j(€(g)) = Wj(g)

It is a function in (] 1 _ (e—l(P)). Thus if P'cC €_l(P1) n P1
-1 € (X),€ (O)
€ (Pl)

and sef (o 1 aLP,) we may build the associated Eisenstein

e “(P)

1

(s, WY¥.). Set

series E5 (g, M
P
(P) J

1 P'|e

(14) b(pak,\) = ZP.ZSA EP1<pak,oc,m)@j)ipl(pak,m (s DY)

P'le “(P)

The sum over P' is a sum over associate classes within E-l(Pl) n Pl' )

Thus we take only one representative from each class, several classes

appearing only because they become associate in e—l(P The variable

1)'

S runs over

s_l(Pl)rxPl( I\ a_l(Pl) )
Q 0ty 1o, Q (e _ » 0L,
P P e 1(P) P

Finally set
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—ZpP (H)
BT (9) = f Eci(H—T)e 1 f [ b(mak, A) .
Re A=0 Ml\MixK

We shall show that the iterated integral converges and that
T T
A (CbH) - B (¢H) 0
We begin by studying

J a(pak, A)

-1 1
Pln € (Pl)\ PlxK

when <I>j is a cusp form. This is best regarded as a triple integral, over
1 -1
(Ml\IMIl x K) x (M1 n e (Pl) \Ml) X Nl\ Nl .

and we begin with the integral over Nl\Nl'

Since

T,P
A

T,P

1 _
EPl(ng. DO,)\(¢)®].) = A

1
Epl(g, og,x(cb)@j)

we are led to consider

f E, (e(ng), ¢.)dn = [ E (ng, ¥.)dn
NAN 1 ] J

I claim that it is equal to

(15) YV E 1 lea M (s, W¥.) ,
P' s Pine (P P'le (P) ]
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the range of summation being the same as in (14).

It is enough to verify this equality in the domain of absolute convergence
of the Eisenstein series. The proof will be' easier to follow if for a few brief
moments we change the notation, letting E_l(Ml) be G, Pl n E-l(Ml) be Q,

and e—l(P) be P. Our integral is then

(16) [ Eg(ng, ¥;)dn
NQ\ NQ
Let
(uto,) (Hp (g)
Flg, ¥)) = ¥(gle RS

so that (16) is equal to

(17) ) i ) F(yéng, ¥)dn
YEPNG/Q N, \N, 5€QnY PY\Q

Each Y may be chosen to lie in the normalizer of R, and thus to

represent an element s_1 of the Weyl group Q(uo, no). We have sufficient

1
freedom to suppose that so > 0 for a € Aeo (P). The group

-1 -1 S|
v8QS§ Ty n Mp = YQy T aMp

is then a standard parabolic subgroup of MP with unipotent radical

YNQY—I n MP' Since ‘Pj is a cusp form the term of (17) associated to Y

-1 _ -1
QY n MP = 1 and thus unless YMQY ] MP'
-1

We now assume this and in addition that s ¢ > 0 for o e Ag

is 0 wunless ¥N
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which implies that sa > 0 for o€ A}g, The group
P = Ny Y aM) = No(v NpvaMy v My
Q Q = Noly NpvaMg-y My

is a parabolic subgroup associate to P and s € Q(nP, a-zP,)°

The term associated to Y 1is equal to

) J F(yéng, ¥;)dn
§eQ ny_lPY\Q/N N né-ly_lP\(cS\]N
Q Q Q

or

) J F(yndg, ¥.)dn
- - j
SeQny lPY\Q/NQ NQ ny ]PY\NQ

The domain of integration is NQ n Y—lNPY\ NQ and may be replaced by
-1 . _ -1

NQ ay NPY\NQ' Since NP' = NQ(Y NPY nMQ) and

Y—-lNPY nMQ c y-lNPY the domain of integration may in fact be taken to

be NP' n Y_lNPY \NP" Hence the integration yields
The range of summation is
-1 = o
(Mg nY PONNQ = PIAQ
So we obtain



32

Summing over Y and reverting to our original notation we obtain (15).
The next step is to replace g by Yg in (15) and to sum over

Y e M1 n e‘l(Pl) \Ml' Interchanging the order of summation we obtain

(17) ZP'ZZ E o e Moy (s WYY

° yeMyac lep\M, T10¢ D P'le "(P)

To justify the interchange we must show that the inner sum converges

absolutely. If so, it yields

Ep (gs M )

(s, MY.)
1 P'|e “(P) ]

For absolute convergence we need

Re(a, spp) = (3, se (1)) > 0

Py Py Pl“E-l(Pl) L
for all ae A -1 or for o € AO - AO , which is of course
Plns (Pl)
P Ae“lwl) ) o
o " 4 , a subset of AO - AO . Here M = -e ()\1) where

A, 1is the projection of A on 0. Since se_l(A) = E—l(A),
(@, s 1)) = (e(@), D)

- Al. Hence (e(a), A) > 0 by assumption.

and e(a) € AO 0

We are left with the evaluation of

AT,Pl
1

. Epl(mak"po,kw)@j)EP (mak,M 4 (t,u)‘i’j)dmdk ,
1

P' t M\M 1 P'le “(P)



33

in which, for convenience later, the variable of summation s has been
replaced by t. These integrals are evaluated by the inner product
formula of the Compositio paper, which has (in effect) been proved in
Lecture 12. The integral corresponding to P' and t is equal to

ZOPI(H)

e times

1
(sl>\+sztu)(T +H)

(18) ¥ ¥ 2 (M (s, Mo ,($)d., M
1- , PP ] g, A
P" 5,8, 0 pn (s Ats, th) | ]

P"|e “(P)

P P
1 1
O _C__ P" E Pl, Sl [ Q (uP9 uPn)9 52 6 Q (aPl’ aPu)‘ The

Here P
projection of T on 0&3 is denoted Tl.

In general the terms of (18) are not individually defined on the
domain of integration, Re A = Re Xl = -], because of the zeros of the

denominator, which we now examine more closely. Apart from a constant

Oé,,(sl)ﬁsztu) is equal to

Tl- oc(sl>\+sztu) = TT a(sl)\—szts_l(k))

oaeAl oceA1

P Hi P i)
Moreover

Re o(sh-s te i) = oc(szts—l(A)) =80

2

with B = e(t_ls_z-l(cx)), and B either is identically 0 on 01.1 or

. + . . : .
vanishes nowhere on 0t 1° If it vanishes identically and s, sg are the

reflections corresponding to a and 8 then
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-1 -1, -1
saszta —szts (sB)e

If we sum (18) over P' and t we obtain sums over P', P", and

S5 whose ranges of summation are to be specified, of

sl>\+sztu(Tl+H)
(199 ] = (M 1p(s e ()0, M (s,t, M%)
1 " , A -1 2
spt 0L (s syt TP VTS Tontlip ]
P, e’l(Pl)
s, running over (., a,,) and t over Q (L , e ).
1 P P enl(P) P

The remarks above allow us to apply the usual arguments and to conclude
that the zeros of the denominators do not contribute to the singularities of
(19). The sum is over P" which we associate to P in Pl’ and for

each P" over a set of representatives P' for the associate classes in

P. n e_l(P

1 1)

and P' are fixed,

which lie in the associate class of P" in Pl' Once P"

P e'l(Pl) AP

s, €9 1(ar.P,, np.,)/n

l(nP,, n P,)

We are taking (A, a) > 0, v € A Thus the numerators of (19)

1

are well-behaved functions and we can consider

(s h+s,t0) (T L4+H)
(20) f 72 Mpy (s Mo (9)0,M 1 (s,t,)¥))[dA, |
Re A=-1 st SIl,,,(slMsZtu) PRI o, AT g le Ly @ } 1

I claim that this is zero for T sufficiently regular and E:Oi(H—T) ¥ 0

-1
£ (Pl)nP1

unless €0 . The reader will note that sufficiently regular

S2
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means d(T) > C(1 + ||H0”) when ¢ = ¢, .
0

Recall that Q is the smallest e-invariant parabolic containing Pl'

Let H=T +X+Y with Y € & and with X € OLQ Then T =T +T1

1 Q 1° 1

and o(X) >0 for all a € A?. We deform the contour to Re >\1 = -A-tX.
Then

s Ms.tu(T +H)

1 2

e

is multiplied by
-1 -1
—t(X—szts (X),T)-t(X—sZts (X),X)

Now, as we saw above,

(x-szte'l(x),x) > 8]1x||?
and
te_l(X),T) = (X-es

(X-s te}(x),T) >0

2 2

Since we can estimate

(MP" |P(Sl’ >\)po,’>\(¢H )(bj’ M -1

(s,t, WY.)
0 pr|e ey 2 ]

when Re A = -A-tX by

clIxfllH,l
e f(ImA) ,

with f integrable, we see that the integral vanishes unless x| < CHHOH

For [|X]| <c ”HOH we take o € Acl2 and deform the contour to
AL -1 -1
Re )\1 = -A tw, . If est e (moc) # B, then
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(T -es,t (@), T) > c|T|

s_l(P )

If S5 ¢ Q we can choose o such that es t—le-l(‘wa) # ™, and

2
then we obtain vanishing for |[|T| > c(1+||HOH) . Note that the value of the

constant ¢ changes from line to line.
1Py n Py
If s, € Q then it may be taken to be 1. Then the

integral (20) has a very useful property. Neither M A) nor

pi|p{Sy’
M (t, 1) depends on XA, but only on the projection of X onto
)1 1
P"|e “(P)
1

O‘tP. Thus they have no singularities to obstruct the deformation of the

contour, which may therefore be taken to be defined by any A with

Q

(a0, A) <0 for all € A or even Al . We may not however allow the

l’

(e, A) to become zero, for the zeros of the denominators could then cause
trouble.

To obviate this we choose & such that none of the functions

M _ (s,t, WY,
P"IE l(P) 2 ]

which appear in (19) have singularities in the region [|Re A| < &,
e lp PoP,
(ReA, a) <0, a el .

%, even if 52¢ Q Then we choose a A

with ||A]] < §. Having deformed the contour we take once again the

sum over all P', P" and s thereby introducing an error which must

2’
be estimated. This done the zeros of the denominator no longer cause

any trouble; so we can deform to A = 0. Putting back the factor

2Pp (H)

e 1 , then integrating over dté;, and finally multiplying by
—2pp (H)

1

EOi(H—T)e (as we have in effect already done) and integrating
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over emi we ohtain BT(cb).

The error is a sum of integrals

f eci(H—T)J’ C(\, H)|dX|aH ,
1

1 .
e ™ 10p

-1
£ (Pl)nP1
where C(A, H) is given by (20) with sz¢ Q but with

IA]l < §. The estimations, which establish incidentally that the integrals
defining BT(qb) converge, mimic the earlier proof of vanishing.

Let H = T1+X+Y as before then the same arguments establish that
for ||X|| > C”HO” we have

lcr, W <cpe

Notice that the e-form of Lemma 7.3 implies that [|Y| < c||X|| if
€CI?_(X+Y) # 0 (¢ 1is a highly variable constant). On the other hand if

d(T) > C(H|Hy) and [X]] <clHyl with C > c then

ch, H) < cze'C”T” :

Since

_ ~c[[H |
f S:oi(X+Y)e 0

{H=X+Y[ || X|>c|lH ]|}
the asserted estimates follow easily. (The reader will have observed that
the arguments are often sketchy. This is partly because they will
ultimately be included in the notes of the earlier lectures.)

To show that



38

aT(s) - BT (o ~ 0

even when ®j is not a cusp form we have to use techniques from the
second Duke Journal paper. There will not be time to discuss this paper;
so we merely sketch the argument envisaged, referring for a careful
exposition to the revised lecture notes.

An Eisenstein series on the group P1 associated to P may be built
up with residues of Eisenstein series associated to cusp forms on groups Q
contained in P. Recall that taking a residue involves nothing more than a
contour integration over a small cycle surrounding the point at which the
residue is wanted. These cycles lie in ng ® C and the parameter which
is important for the transition from AT(¢) to BT(q)) was >\1 & 0’(1.

So they do not interfere with each other.

Hence we are able, in imitation of Lemma 3.1 of the Duke Journal paper,
to show that all operators commute with the formation of residues, thereby
deducing the general statements from those for cusp forms. For example,
this is certainly so of the integrations over Nl\ Nl and Ml\Mi x K
and of the summation over M1 2 E—l(Pl)\ M1 that appeared in the treatment
of AT(¢>). So we will obtain formulas like (18) but by no means so simple.
Nonetheless these terms whose apparent singularities prevent us from
deforming the contour back to Re )\l =-A, (A, @) >0, |[Al < 8 can still
be shown by the previous arguments to be zero. So we can deform the
contour and then restore these terms and estimate the error introduced as

before.
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More loose strands. To obtain the fine x-expansion for the twisted case

we imitate the arguments in the Amer. Jour. papers but, once again for
lack of time, we can only sketch the modifications.
We know that J';E((b) is a polynomial (presumably for d(T) > c(I+||H|)

if ¢ 1is replaced by ch) . It is given by

€

-2pp (X)
(2 ] —-17] n—z'ﬁrf 151(x Tye ' ¥7 (X1, 0) dAdX

P (2m) P o PCP1CP 1 Re A=0

plus an error term, ET(¢) . The error term satisfies
T ~
EN (¢ ~ 0

The sum over P, 0, which is effectively finite provided ¢ is K-finite
runs over P D P, and distinguished o for which OZX, G(P) # 0. The
sum over P1 < P2 runs over pairs of standard parabolics which are
separated by a unique e-invariant standard parabolic Q. The expression

‘¥’£(X, A, ¢) which implicitly depends on P, is equal to

T,P
1 J A lEP (mak,py 3(6))Ep (mak, M ) (s,i)¥;)dmdk
s j Ml\MlxK 1 Py P'|e (P ]

If we let PT(H) be the polynomial in T which equals J;I(‘((bH)

for d(T) > c(1+||H[]) and if we let IDT(H) be the value of (21) when

¢ = ch we still have

pl) - vT(H) ~ 0
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and

X-(H)
RIS I yL(H)e |

Thus Prop. 5.1 of the first Amer. Jour. paper allows us to write

X (H)
Py - J Phame |,
T
the P%‘(H) being polynomials in T, and various estimates obtaining.
At this point we can take over the argument of Amer. Jour. I almost

literally. It allows us first of all to consider not (21) itself, but (21)

U ’ O

where B is a Weyl group invariant function on the Schwartz space of

i]’. Then §7 of the paper allows us to replace ‘Yg(X, A, ¢) by a much
2pp (X)

. . 1 .
more convenient expression, namely e times

skt (Th4x)
tr(eM

(22) ] 1

._1 -
(e T ML, 1o (ss M 2 (9))
P! s,t Gé,(skﬂ:u) '[P g, A

Pl l(p)

Here P' runs over standard parabolic subgroups of P1 associate to P
P
and s € § 1( Rps (nP,). On the other hand t runs over all elements of

QQ(oz, ) which can be expressed as a product t.t, with
e_l(P),P' 172
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P1 £ (Pl)
t; €9 “(apy, ""P')’ t, € Q (ot , “P")'

e (P)
After making these two substitutions we obtain a function of T which

depends on B. All we need do is to find a polynomial PT(B) to which it
is approximately equal for d(T) > §||T|| > 0 and to see what happens to
PT(B) as B —> 1 in an appropriate sense. The primary purpose of

this lecture was to deal with the first step, mimicking the second Amer. Jour.

paper. We need only consider compactly supported B.

Symmetrization. In (21), with the substitutions indicated, we may sum
c
a

over all pairs PlC P2 provided we remove (-1) Q from before the

integral and insert

(-1 2

PeQcp,

after it, the sum on Q now being taken over all e-invariant parabolics
between P1 and PZ'

There are also a number of simple modifications of (22) to be made.

First of all

_1 - 3 _
sMPIIe_l(P)(t,e (M) IMP.IP(s,x) = M(piy p(e(®), ) wg(P,)IE(P)(g(S),g(mg ,

and by the functional equation the right side is equal to

Mo (L lew) o (et 1s), e
e(t (P))|P e(t “(P")) |e(P)

times
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-1 -1
_ +et “sA-p  _ ,T ~-e(t )T
Len) et 1pn) O o)

e €
So we change the notation, letting e(t-l(P')) become P', £(t) become t,
and E(t_ls) become s, thereby simplifying the product to

(ssx-x,To-t'lT())

Mp.p(1, x)‘IMP,l e(N))e

S(P) (s,

The new s lies in Q(aP,, “E(P)) and the sole condition on it is

that it be expressible as a product

e(P
e 0

1

with s, (ne(P)’ nt(P'))' Observe also that t is determined

by the condition that t applied to the new P' be standard.

With the new notation the denominator is replaced by

t He(P))

b

(seX-A)

Moreover we can combine the two exponential factors that appear in the

numerator to obtain

. <s€>\—>\,t_1€(X-T 1)> +<se>\—X,YP,(T)>

where

Yo, (T) = £ He(T) + Ty - ¢ T
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We are thus concerned with

€
1 0 2 1 T
(23) § D ) (-1) ™ 05(X-T) f Q- (X,))drdX
a 1 g1 n.(P) A O

P (2m) P cPl em'l Plc:Qc:P2 1 Re A=0

where QE(X, A) is the sum over the indicated P' and s of

(s, ¥, (T)+t le(x-T )
y tr(M
(ser-1)

1

e -
(24) E(P (1)>\) MP'IE(P)(S’ 8()\))390, )\(¢))BG(>\)

1
GP'

P'|P

Recall that nl(P) is the number of parabolic subgroups of }?l with
a given Levi factor in common with P. The next step is to replace nl(P)
by n(P), defined in the same way but with G replacing P,.

Suppose r e Q(o We replace in (23) and (24) the variable

P"’P)'
A by rX and o0 by ro. The expression (24) becomes the product of

{rlsetmrenr, You(T) - Ty + r Ty + r i lex-T))
(25) = 1 ,
r 't E(Pl) -1
er (r SE(r) E)\—)\)

with P"™ = r—l(P'), and

(26)  tr Mpy p(1, 0 My, | (py (50 Sx)en, . (4)B, ()
Since B is invariant under the Weyl group,

Brg(rk) = Bo( A)
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Moreover the functional equations allow us to rewrite

Mpip(L, r)\)-]'MP,IE(P)(s, e(rd))

as the product of

-1
Mp (£ DMp, (2, ) lM c(pn) (S5) €M oy 1 puy (£(x), ()

We also have

-1 -1
ME(P)!E(P")(E(r)’ e(N)) “e= QMPIP"(r,)\)

and

-1 _ -1
Mpipulrs A 70,5 2 (0) = 05y (OMppu(r, M)
Thus (26) is equal to

tr (Mp, pu (x, “_]Mpwe(pu)(se(r)' e(N)epg \(9)B (M)

Making use of the functional equations as before we see that this is equal

to the product of

! (1, M (r Tse(r), e(N)epy 4($))B ()

tr(M__ -1
r (PI)IPH r (P')]E(P")

and

(Mlse@e-n T el )

e

Notice that this exponential cancels part of the numerator of (25).



45

Now we have to try to simplify the results. The sum in (23) is
over all standard parabolics P, Pl containing P. The invariance with
respect to r just established allows us, for a given Pl’ to replace
P by a fixed element in its associate class provided we replace nl(P)
by |QP1(01P, nP)[ . However we can then use the invariance once again
to sum over all P" and all r provided we replace nl(P) by n(P).
So we change the notation, denoting P" by P, P" by P', tr by t,

and r—lsa(r) by s.

We obtain
2
P's (3m Pn(py 0P, ¢®; P{CQCP, iap P

where wg,(X, A) 1is equal to

(s8N TR (D (XY (D)

tr (Mp, (1) Mpyy oy (5, £ €0y L (B (1)

Py
OP' (seX-))

There are further changes in the notation to explain. The group

formerly labelled r—lt—le(Pl)

P1 is that it contain P'., Moreover P2 is the former r-lt-ls(PZ).

is now labelled Pl’ and the condition on

The new t 1is determined by the condition that t(P'), and thus

t(P and t(P,) be standard. The function 02 is then defined by

el
transport of structure and Yl(T) is the projection of t-lT on #t

P
1
So are the groups Q, but they can clearly be defined intrinsically.

If (L, m#) is the e-special pair attached to s then the groups Q
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are the elements of 4€(L, o) which contain Pj.

We can unburden ourselves of P2 if we fecall from Lecture 9 that

a€
-— z (_l) Q TQ i

T
PICQ le Q

a€
(-1 Yo
{Q,PZIPICQ CPz}

[l A

The sum over P, s, and 0 can now be forgotten as can

1
a
(2m)

the transition from P to M being effected as in the second Amer. Jour.

. n(;) for they appear in the statement of the fine X-expansion,
P

paper.

Thus we are reduced to considering

0 0 2 T
(27 XP J 11 (-1) Tl(X-Yl(T))ETQ(X—Yl(T))_}'iu ZP' wp (X, A,
(S

1 %1 Q2P p

in which we have still to be precise about which P' and Pl occur.
Choose the unique standard P" and the unique t & Q(J‘LP,, o P")

such that t(P') = P". If we review the calculations that led to this point,

we see that

-1, _ -1
tse(t 7) = slszs:(s1 )
t(P ) t(P,)
with s, e Q (“P",t(P'))’ s, € Q (nP,,, “‘e(P”))’ where
P e 4(MO) . We see indeed that the necessary and sufficient condition
that P' and P1 occur is that tse(t_l) have this form. In particular

if one P' occurs then, as we should expect, all parabolics associate to

it in P1 occur. Thus for a given P1 either no P'<¢C P1 occur or



47

M

P' runs over P 1(MP)'

Combinatorics. We take P1 with np € ap and consider
1
A€
T T
(28) [ ;1 -1 *%x-v,(T)) T (x-Y,(THS T T (%,
ai {oe (L, n)ngPl} 1 1 €Q 1 , P P

e iy pigp 1(MP)

without asking whether it actually occurs in (27). We shall see that if it
does not occur then it approaches 0 as T approaches «, and therefore
may be added to the sum (27), in whose behavior we are interested only
for large T.

Let (L, 6t) be the e-special pair determined by s. We introduce
new coordinates on iotP, replacing A by the pair (v, A), with v
the projection of A on i and A = sel-A. It is this change of
coordinates which introduces the factor % into the statement of the fine
X-expansion.

We may write YP,(T) + X-Yl(T) as X + Y;,(T), where

{Yll,,(T)]P' € Pl(MP)} is an AI&I -orthogonal family. Yé,(T) is given by

P

-1...1 -1
(r °T) +T0-r TO ,

where (r.l'l‘)1 is the projection of r_lT on aé, r being any element

of the Weyl group such that r(Pl) is standard.

The inner integral in (28) is equal to

(29) e <A,X> tr(MM(A)MPl E(P)(s,E(K))epo’x(d)))Bc()\) |dAd A |

with
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My, (LN M, o (1 Ay (T)
MM(K)=Z P'|P P'|P e< P >

, 1
P GP,(A)

and M = MP° We have used the identity

-1 _ -
Mp|p (10 Mpy 1 gy (8, 600) = Mpy p (L0 Mp, 5 (L se)Myp (s £(0)

1,
We denote the value of (28) by f(X), the function f{ being
defined on ul or on dll/n /H"Ll because A is orthogonal to a.
We remark that if D 1is any differential operator with constant

coefficients on iozl then

, d
(30)  [D(tr(y MMy (py(ss e eng 3 (6))B )] < ep(H#]|TID °

where do is independent of D. I omit the verification, which is easy
with the help of the expansion Z cl\s/ldl to be developed below. The
essential observation is that <A, Y;,(T)) =0 for AE iazl.

We deduce from (30) that if X = U+V,Veieaf, U orthogonal to ie
then for.any n we have

d
(31) €0 | < e,y Tl °

LEMMA 6. The expression (28) goes to 0 as T approaches

unless nl is invariant under se& and M1 is the centralizer of aie.

To prove this lemma it is useful to write
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€

%0 Q
(-1) ™ TAX-Y(T)) _T(X-Y (T))
.Qppl 1 1 £Q 1
Qe4€®,h)

once again as
€
1 aQ 2
) (-1) ~ o7(X-Y (T))

P,2Q2P,

the sum running over those P, such that there is exactly one element

1 and PZ'

It is clear that we may reduce ourselves to the case that Pl is

of 4'€(L, ) between P

standard. We shall show that if P1 is standard and (28) does not o
approach 0 as T approaches « then P1 is e-invariant and s € Q l.
A consequence will be that if (28) does not approach 0 then it actually
occurs in (27).

It will approach 0 if there is a positive constant ¢ such that
(32) 1all > <ffvil , l[ulf > <l

whenever Eci(X_Yl(T)) # 0 for some P2 such that there is a unique
e-invariant parabolic between P1 and PZ'
Recall that d(T) > c||T||. Consequently “T1“ > c|T|, T, =Y(T)

being the projection of T on 0!.1 (unless P, = G, the trivial case).

1
If (32)/ then ws can find a sequence {(X_, Tr‘)} such that

. v
LouAs~

U
n

ORIV _ I
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Taking the limit we find a non-zero pair (X, T) with X € ¢t nat

1
and with
oa(X-T,) >0 aeAZ a(X-T,) <0 aeA—AZ
17 -7 1’ 1" - 171”7
W(X-T,) >0, ae A- A
£ a r -"" €0 €0
e Q Q - 7R .
Let X—X1+XQ, XQE OLQ, Xlenl,Tl—Tl+TQ. Since
Xclz‘ € n? N & and since Q is the smallest e-invariant parabolic
containing P, we conclude that XQ = 0. Then Y K
1 1 v €

a-TH >0, aen

AR

1 then

If Py # Q, so that A? is not empty, and if o €

AT = «T) > aT) > c|T|

We deduce that T =0 if P1 # Q. On the other hand the proof of

Lemma 7.3 of Lecture 7 shows that
IxQ-T71 2 ellx Tyl ¢ >0

Thus X? =T = 0 implies that XQ =X = 0. We conclude that P1 = Q.
The upshort is that in (27) we are free to sum over all Pl with

< =
(npl ”lP or only over those Pl such MPl MQ for some
Qe 3 €(L’ ot). We take the former, larger set.

We set



//\2"\\““* &Y\L\ /t\\ N (\) '\ \9“'\'6»“6 \»IWKB

> b : [ « ,-.«\ S \/

: \
S —w A = s<X- X ) Qe W) oy N )/—/X\._y -

cu«—yw\f\% gy
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\H~ 2
X % % )4
1 (8,¥p(T)) AN
CP'(A) = e ) A € nP' ~ 1\& Al
‘S(“ @‘(d\
and we set ‘ /{\__”\ N
s N
_ -1 ' :
dpy (A h) = triMp, o (1,07 My, (LM py(s, e eng (9)IB (D . N
CANY

Moreover for convenience in the following discussion we denote the variable

X appearing in (29) by H Then by Lemma 6.3 of the Annals paper

1°
the expression (29) is equal to
AH P
je< Y y cohdg ', mydnay
se 3o

Recall that if S € 4(M) then we attach to S the point Yo(T),

obtained by projecting any Yé,(T) on 0 P'C S, and the collection

S
M

S’
y

= {Yl

y S(

51 R)(T)-Yé(T)}R cs, R eP}

S S

. - 1 S,. : -
MW'—ATPTV]CbLb o Y (T). If TM( , VM) is the characteristic

function of the convex hull of the points in VfA then

1 S
A YZ(T) A(H“)
e < oS >fuﬁe Ty Hy Yyp iy

P
The notation for the function dSl is not good. For example

dg is the function formerly denoted d'S. In any case for each fixed A\

we express dP,(X, A) as a Fourier transform
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dp, (0 M) = J dp, O, U)e<A’U>dU
i
M

Then, as was observed in Lecture 13,

1
dfoun = au f (dHS &5, U)e (ng) +(tuy) re(Hg, Ug)

th “’S

if P'C€ S. Since we are dealing with a (G, M) family this may also be

written
(nagy+{0,u))
s 1 1
ju dUg jul dH dg(M,Uge s)
s s
with
ds(A, Ug) = [ < dp, (A, UgtV)AV P'cS
Tum

3
Putting this all together we see that (29) is equal to

£ 11,1 1, .S s
3Q - (H,Y,(T)-U X (T)-U TS (H~ .Urrﬁ,,v (H,U.)dH
EE] 2 3 D QETQ(HIYI(T) 1)"121(‘*1 ¥ (T)-U T g(HG (D), U My, Vi) og (H, U
1 Sl QoP :S

where H = Hl + Hé + H?/I and the inner sum is over Q. The function

¢S(H, US) is given by
- AH) G
9g(H, Ug) = f d./\.d\)e< >ds(>\, Ug)

Recall that X = M4, V), where A = scA-)X and Vv is invariant under

SE.
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In (33) the space enl\l/l is the set of all X in LoV such that
dx(X) = 0 for all e-invariant rational characters of G (The notation
is not ambiguous, but almost so, for there is a danger of confounding
E:m'l\])l with O‘L;I). The point is that the domain of integration is

independent of P so that we can take the sum of (27) under the

l)
integral sign obtaining (33) again but with the summation extending not
only over Q and S but also over Pl.
So we can simplify it, because
Q _ _ 1..1.1 1, _ Q. _
L Tp (H =Y (T)-U T S(HG YS(T)_’ Ug) = 15(HgY(T))

P1 1

This formula is implicit in §2 of the Annals paper, and corresponds to

the following diagram:

Q4
R
Q=
A
w3
Q Q P'
I's Tpr X Ty
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Thus the sum over }?1 of the integrals (33) becomes the sum over

S of

€

a
Q2 Qv QTS (55 vS
1 LD ST (HG Y (T)-UL) TG (HG-Y S(T)Ty (Hy, Y Dog (H,Ug) dH

(34)
f“s jn QoS

¢ M

LEMMA 7. The integral (34) converges. It approaches 0 as T approaches

infinity unless g c 0y

For the purposes of this lemma it is best not to work with (34) but
to return to (33), removing the sum over S and replacing

€

0 - Q
ZQ(-l) QY (DU Gep ()Y, (T)-Uy)

2
2. Oy HY(T)-Uy)

<<)

The function d is a Schwartz function of A, v, U. Thus

s %

is a Schwartz function on dtM/ n x & For convergence we need to

S
show that if

Ho = X+V

with V € #t, X orthogonal to @ then there is a positive constant c
such that

Xl + llugll > < vl

s
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on the support of the integrand, T being for the moment fixed. If this
were not so then the usual argument shows the existence of a non-zero
V E M n ﬂl which takes in the closure of the support of eoi" This
contradicts the proof of Lemma 7.3 of Lecture 7.

We use a similar argument to show that the integral approaches 0
if ozs is not contained in by For this we write

H=HM=X+V ,

V € #1, X orthogonal to & and show that for some c > 0

IxlF+ ugl > elvll » 1]+ flugll 2 <l

S s

on the support of the integrand. Because of Lemma 6, or rather because
of its proof, we can simplify the situation somewhat. We can suppose that
Pl = Q is e¢-invariant and standard and that s acts trivially on uQ.

€

Thus L 2 sz, n 2 #ZQ We may also suppose that S is standard.

If we cannot find the constant ¢ then we can find a non-zero pair

(V, T) such that V-T is in the closure of the support of 60% and
such that

1.1 .1

I'S(VS TS)’ 0) # 0
(35)

S S TS

I‘M(VM, VM) #0 ,

where VSI is defined like VI\S/I but with TO = 0. Moreover V € @,
1

Thus Ve #, for P1=Q is invariant under s and €. However
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the first of the inequalities (35) implies that
(36) vl=rl

Since d(T) ic[]T” we have T, =0 only if T =0, If T =0 the

n

second inequality implies that V., = 0. However the proof of Lemma 7.3

)]

shows that Vl-Tl= 0. Thus T cannot be 0 without V being 0.

We conclude that Té # 0. The inequalities (35) actually imply that V

is in the convex hull of the collection
- {r’l(TM)lreQS(M)}

If o is a root of S which does not vanish on dzs then there is

a positive constant c¢ such that
ar NT)) > T
M _

for all r € QS(M) . We conclude that a(V) > c||T|| # 0. However if @

L

S
is not contained in uL we can find a root o« which vanishes on o
and thus on V but not on & g Changing its sign if necessary we
obtain a root in S and then a contradiction.
We continue to work with the modified (33) assuming that 0 g ca
. S5 S S ;.S S
We show that we may substitute I‘L(HL, VL) for I‘M(HM, VM).

For lack of time we simply quote two lemmas from the second Amer. Jour.

paer. The first states that
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S,eS

Sy _ 1SS
TD(HT, YD) = IyfHyp Yy > 0

The second states that where the difference is not 0,

S ;S
Iyl > ellTl

¢ being as usual a positive constant. Since H;-HE is the projection of

X on nlh;[ the conclusion follows readily. See diagram at end of lecture.

Final combinatorics. We are reduced to considering

€
a
Q » Q1 R_vQ S S S
(37) juliu o ja ZQQSH) T (Ha =Y o (T)-Up) T (HG-Y S (T (HE V) og (H, Ug)
e M S=L S

We first treat
€
(38) ] J I (D QE

-AEQ
A= ao QIS

0 4R-v2 (1115 (1S yS
(Hy =Y o (T)-U)Tg (HG-Yg (T)HIy (HT,Y7) g (H,Ug)

We may interchange the order of summation and integration. We

SE

write U =U;€+V with U2® in @ 5% and Vv orthogonal to uQ

S Q Q

and integrate first with respect to V.
> - <A,H> o €
(39) [ ¢ (H,UZ+V)dV = [ dAdv e J d. (A, US+V)dV
nQ ¥ M0 nQ S5 H0
sg S se S

Q . se
where s&:“’S is the orthogonal complement of azQ in otg. If

P' e PS(M) the right side is equal to
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\,Q/
J)‘w
\}'r\
A S
AH '
fdAdve< >j 0 P,(A U€+V)dV A A
S€ M d KX
ot
QC 5%
However an
%
. £
f o0 P,(A U +V) J O v, an dV, dp, (A, UGV +V)
se™M se Q M
and
an P,(x UgHv)av,
M
is the Fourier transform of the restriction of dP' to an, and therefore

the same for all P'ec Q. Thus (39) is equal to

(A, U +V)dV R

fdAd\)e<A’H>f 0 d,

seQ

and, in particular, is independent of S.

Set
Vo(H,Uy) = [ dAdv e<A'H>aQ(>\,UQ>

The sum (38) is equal to

a .
Q Ny (T
(40) LoD = f  TgHG YT -Uv(H, U
Q

because
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Qv rS(mS vS) =
) o TSESYSTIILELY) =1
Se#*(L)

1

This identity, which I do not prove formally, is another form of

Lemma 6.3 of the Annals paper and corresponds to the following diagram:

M

The outer integral in (37) can be taken first over se ™M and then
s€ . M
= ot
over “M #t. To integrate (40) over set M Ve have to take
J M Vo(H, U
se M
Since sa“’ﬁ is the domain in which -iA wvaries this integration yields

4. 0,udr
i 000



ot \
60 O,V\-’)J\ 4 .
. \(‘[\u’
, (P
We next integrate this over fig/ taking o &
I qav L aQ(A,US€+V)dt>~

ot
se Q

and observing that

se _ = s€
S 0 Q(A,UQ+V)dV—dQ(>\,U ),

Q
SE Q
where we now regard Q as an element of 4'€(L, ¢t ) and where EQ
is defined by the (G, L, ¢t )-family attached to {dP,}.
Summing up the results so far, we see that (37) is equal to

€

a N
1y QQ 2 = SE SE
fa {ZQJ se(-1) ~ T(HAY (T)-U2 ){f I Ug )dA}dUQ }dH
e ia

(The notational difficulties and inconsistencies are growing more and more
severe.) Let L' run over the Levi factors of groups in ?e(L, a ).

Using the results of §2 of the Annals paper we expand

€
a
_ Q -~ _ _r1S€
(-1 = T HSYAT)-ULD)
as
€ €
307%R A
) (-1) TQ(HQ Q(T)) T (H g YT, UQ) ,

R2Q

it being understood that the sum is over R €& 4€(L, ot ).

We postpone consideration of
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s€E

Q

SE

G s€
f se fRHG YT, U 0

R 0
%q

cil AU du
)dq( )
observing for the moment only that it depends on R alone and not on Q

because

SE
+V)dv
q *Vd

=z A,
i dnr, U
does, the integration being taken over the orthogonal complement of
s€E s€
“’R on m,Q .
This observation allows us to sum
ae "'B.E
I ¢ ® R im v )
QcR

obtaining (cf. Lemma 5.3.5 of Lecture 5)

R,..R
eFL(HL’eVE)

Since this is a function with compact support we see that (37) is

equal to the integral over i6t of the sum over R of the product of

R
L’e

—. R h’*»v T
“R I (H
L

vﬁ) = E'E(T) Ve
and

]

€ SE
0 )dU dH

o~ G seg, =
G\j e 8I'R(HQ-YQ(T),UQ )dQ(>\,U o Gy

OlR nQ

which equals
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-G % L
X © \f"/

~
We obtain finally P\

[y &mE&Enan
in R R

a polynomial in T. Using Lemma 6.3 of the Annals paper to collapse the

sum and examining the definitions we see that this is equal to

jm te( M (PIMp ) py(s,e())en 3(9))B () [dA|

All that is left is to rid ourselves of the BO(X) and for this we

must consider the normalization of intertwining operators.

Normalization of intertwining operators. In the second Amer. Jour. paper

Arthur assumes a normalization of the local intertwining operators with
the properties to be stated below. I now want to point out, with minimal
explanation, that such a normalization can be easily deduced from results
already in the literature.

References 1. J. Arthur, On the invariant distributions attached to

weighted orbital integrals (preprint).

2. K. F. Lai, Tamagawa number of reductive algebraic

groups, Comp. Math.

3. A. Silberger (i) Introduction to harmonic analysis on

reductive p-adic groups P.U.P. (ii) Special represen-

tations of reductive p-adic groups are not integrable,

Annals. (iii) On Harish-Chandra u-functions for

p-adic groups, Transactions.



63

I observe that we do not need the formula of Th. 1.6 of paper [3.ii],

<

which, ,a/é/ Shahidi has pointed ‘out to/‘m’e', is not correct. The source of
/ ) — - e e < -
error is perhaps the assertion preceding Lemma 1.2.
If G 1is a group over a local field with standard parabolic P0 then

for any P 2 MO and any unitary representation ¢ of M = MP we can
introduce as usual the induced representations Py a OB the space ﬂG(P) .

Here XA lies in the complex dual of & We also introduce the intertwining

M
operators MQIP(I,A), MQIP(O,)\) = MQIP (1,0, whichlsend o € aO(P)

to ¢'E€ N—O(Q) with

(AMpg) (Hy(ng))-(Mp~) (HA(g))
o'(g) = [ - ¢(ngle P’ VP Q Q dn

NQnNP\ NP

The global operators are tensor products of these local operators.

We need decompositions

(o,)) = MNL(o,A)

MQ'P nQ|P(O, Q!P

where nQIP(O,)\) is a scalar and both functions on the right are meromorphic

*
in A, A € &M ® C. The following conditions are to be satisfied.

(1) NRIP(O',X) = NR|Q(O',>\)NQ|P(O',>\)

.. * -
(ii) NQIP(G,A) = NQIP(O,-A)

(iii)

Ng@ny|s®)(O M = Npirdy
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(iv) If ¢ and G are unramified and ¢ 1is fixed by a hyperspecial K,

then
NQ IP(O’ >\) q)

is independent of A,

(v) If o is tempered then n (0,A) has neither zeros nor poles in

QP
the positive chamber attached to P.

(vi) If the local field is non-archimedean then N (og,\) is a rational

Q|P
function of {q-ao\)la € AP}.

In the paper [1l] Arthur has established the existence of such a
normalization for real groups. Much of his argument is also applicable to
p-adic groups and shows that it is enough to verify the existence of

and N when o is tempered, P is maximal, and Q =P

"olp Q|P

is opposite to P.

In this case, by [3]

— %
M_ (0,-0) M_ (0,})) = cu(o;A)
P|p P|P

where c¢ is a positive constant and u is the function appearing in
Harish-Chandra's Plancherel formula. Again by [3], this function is a

rational function of z = q"OLO\) (o

is now the unique simple root)

U(O—,X) = U(o,2)

All we need do is to decompose U(o,z) as
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1

U(o,z) = VP(o,z)'\_/'P(c,?_ )

where VP(O,z) is a rational function with neither zero pole in |[z]| < 1

and with VP(G,z) = 7__(0,-2-), for we then set
P

n_ (o, = /2 Vy(o,q *M)

Plp
and
M_ (o,N)
N_ (0,0 = 2E
PP ﬁlP(O,K)
Since
M_ (o,\) =M (g,-A)
P|p P|P
and
1—1_ (o,A) =n _(O',-_X-)
Plp P|P

the condition (ii) is fulfilled. Observe that o = -a, that is, replacing
by P entails replacing o by -o.

To verify (i) we need only check that

N (o,)N_ (o,) =1
P|P P|p

By (ii) the left side is

N_ (0,-D'N_ (5,

P|P PlP
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which equals

Cu(c9 >\) =1
\_IP(G,'z"l)VP(o, z)

That VP(G, z) can be so chosen that (iv) is satisfied follows from
the calculations in [2].

To prove the existence of VP(O, z) I use an argument of Shahidi.
It exploits the following two properties of U(0,z), both consequences
of the fact that U(c,z) is real and positive for |z| = 1:
(i) Ulo,2) = 00,7 1)
(ii)gAny zero of U(o,z) on |z| = 1 is of even multiplicity.

It follows from (i) that if o is a root of U(O,z) = 0 then 3t

is also. The same assertion is valid for poles. Thus we may write

TTE | (10,2 (15 2)

—1
Tl (1-8,2) (1-B; "2)

U(o,z) = a

where |o.| <1, |8,/ <1, 1<i<r, and

T o,
T 8,

>0

a

We let

-

e

il
)

—
|

[y
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and set
T]-?_ (1o, z)
Vp(0,2) = b =1 !
M=y (18;2)
Then
TR Ty o
VP(O,z ) i
il B1 Tﬁ;l (1—81 2)
and

1

U(o,z) = VP(o,z)vP(o,E" )

If we replace P by P then u(o,\) is not changed but z is

replaced by 21 and U(o,z) by U(O,z_l), which equals

-~ -1

- Tlle (1-0.2) (1o, "2)
- -1

Ty (1-B;2)(1-8, "2)

So we may take
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