Lecture 2

THE BASIC IDENTITY PROVED

R. Langlands

Recall that the identity asserts the equality of
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Once it is shown that the sums occurring on both sides are finite, the

proof will be a purely combinatorial matter.
Recall that we can define a height function on A" by setting
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Then we can choose a height function on V(A) for any vector space
over Q simply by choosing a basis for V over Q and then
identifying V(A) with A". It will be useful to recall briefly the
properties of these height functions and other functions derived from

them.



(a) If ””1 and “”2 are the height functions associated to

different bases of V(Q) then there is a positive constant c¢ such
that
s lxlly < Il < cli=l
c 1 - 2 - 1
for all x.
(b) If a is an idéle then [ax| = |a]ljx]|.
(c) ||+]] is bounded on compact sets.
such that for all Xyy vees X
n

(d) There is a constant ¢

Iy @ oo ® x| < clixyll o [l

() If @ : V — W is linear over Q then there is a positive

constant ¢ such that

le Goll < clix|

(f) If v € V(Q) then |v| >1, provided v # 0.

A basis of V defines in a natural way a basis of the space

M(V) of linear transformations of V which we use to introduce a

height function on M(V, A) and on GL(V, A). We have

(g) eyl < ll=dllivl x, v € M(V, A)

(h) =¥l < llxll, [Iv]] x € M(V, A), v € V(A)



We introduce a set Pps +eer Py of rational representations of
G over R with the following two properties:
(i) Every representation of G over R can be obtained from
s seer P by the formation of tensor products and direct summands.
(ii) For each a € AO there is an 1 = i(a), a vector vy in Vi’

the space of Py and a positive integer da such that

p(p)va =8y (p)va
o a

for all p € P.
We let o be the direct sum of the oy It acts on V =8 Vi'

We set

gl = lgl, = lle(2)]
This height function on G(A) has several obvious properties.
(1) lhg| < [h]le]
() If ¢ : G —H then

N
lp(e)] < clgl

where ¢ and N depend upcn ¢ alone.
(k) If G = GL(n) then

N
lell < clel

where ¢ and N are independent of Qz(

%



(2) There are constants ¢ and N such that the number of

elements in

{gllgl <M}

is at most cMN.
It is enough to prove this for GL(n) € M(n), the space of n x n

matrices. We have a morphism from GL(n) to Pl x PM(n) given by
-1
g —> (deg g, det "g) x g

and the assertion is a consequence of standard properties of heights in
projective spaces, the inverse image of a point in Pl x PM(n)
consisting of at most two in GL{(n).

(m) If A is a split torus we have a homomorphism

H:A — X,(A) ® R such that

e)\(H(a)) = ng(a)[

*
for all X € X (A). There are constants ¢ and N such that
{al [H(2) || 5/1(1} cA@{alla] < M}

Lo
It is enough to prove t}‘d/s for GL{(1) where it is clear.
To prove that the sum occurring on the left of the basic identity

if finite we need only establish the following lemma.



LEMMA 2.1. There are constants ¢ and N such that the number of

§ in P\G for which

T (H(sg) - T) >0

1
for all o € fp is at most c( Ig[e”T”)N.

To prove the lemma we need only show that we can find a set of

H

representatives for these § each of which satisfies ls]<c'(]g [e“T“)N .
According to reduction theory we can find a compact set C and a

TO € 0’(.0 and representatives § for which §g = am, a € AO(A),

\ -
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(L) o(H(a)) - u(TD) >0 ,
P .
o € AO and m € C. Since
07 e . el
(6] < Log 121V = Jam 1Y < clal 1 :
all we need show, according to (m), is that
(2) [H(2)] <c(1+ mlg| + [TID
Observe that o
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(3) m‘a(H(a)) <c(l+ |g)h >
A

l-'
the constant ¢ varying from time to tir&e.



Moreover by assumption

& &
(4) 7,(H(a) > g,(T) aég)

Se
!
Also O Ae
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(5) IAa) | = [ag) ], e X
for o e &P' The inequality (2) is an immediate consequence of (1), (3),

(4), and (5) and standard geometric properties of root systems which we

P
now recall. They are actually valid for each of the systems Ap .
1
The first is
PZ
(a) (a, B) <0 if a# B8, and @, B €A
1
It implies
(b) (IIYOL, wB) >0 Wa, B, where (‘Gra, B) = éaB' We denote the set {'Gra} by A
As a consequence
2+ 2 Pa. + 2 2 -
(¢c) a7 = {Hem]|a(H) > 0Ve e 2, c @ ={Heas|T(H) > OVw € A
1 1 P1 = 1 117 a
Moreover if P1 CPCcP, and a € Ag then
“ 1
P
k= 1 , 2 — 2
w, ma+z , € ¥ (AP—AP)
p

with m'a € &g » W, € A Applying (c¢) to &g we see that
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with dY > 0. Thus
1
(@, g) <0

P
for BeAP -AP and
0=(m:1, B) +c, ,

so that cB > 0.

We conclude

P P2 P2
(d) {H|a(H) >0, c e, , w(H) >0, aed;"} c{Hlw (H) >0Vae
Pl o P = o Pl

}

This is all that is necessary to complete the proof of the lemma.
Returning to the basic identity we show that the sums on the right

are finite. This will be an immediate consequence of the following lemma.

LEMMA 2.2. For a given Pl’

This lemma is clear because if 'm'a(H) >0Va e Al then there is a

P P
dhique P2 such that o(H) > 0Wa € APZ and a(H) < Vo e AP - APZ.
1 1 1

For the group SL(3) we can easily describe these sets geometrically.

The lattice of standard parabolic subgroups is



Then

Q—

all




Moreover

We return to the identity and on the right side consider a fixed

pair Plc P and sum over all P2 D P. This means we have to consider
N 0§(H)
2
P2 P
LEMMA 2.3. For fixed P1 C P,
) ol=< 7
pop ! P P

The sum on the left is a characteristic function, namely of

“u(k-%‘-‘\

G
N
— o 0'3&‘:55
{HIUa(H)>0, C!EAP,OL(H)>0,OL€A§} , .':'e.\“\ s °

1 1

while the function on the right is the characteristic function of
\V\ot\"\ S
P 376
{Hlw.(H) >0, a € 4, o(H) >0, a & A5 } . = W
a P P1 « =
e B
The first conditions clearly imply the second. So we need only show
that the second imply the first. This is however (d).
v ¢
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This leaves us with a sum over P on the left and a sum over P1

and P on the right. All we need do is show that for a fixed P the

contribution from P on the left is equal to the sum over Pl with the

same fixed P on the right. Dropping factors which are obviously equal

we see that we are reduced to showing that

K_ (8g, 6g)T (H(sg) - T)
S€P\G T P

T,P

=7 ] tp (H(Sg) - T)ip(H(sg) - T)A
P, P\G 1

1
KP(Sg, sg)

The inner sum on the right may be written as a double sum, first over

P/\P and then over P\G. Since

Tp(H(8,6g) - T) = To(H(sg) - T), 8, € P

1
and

T,P T,P

n TKR(s0g, s6g) =4 K(5,6g, 6g)

we need only show that

o T’Pl
(1 7 ) e (H(8.g)-T) A Kp(8,8, h) = K (g, h)
P, P;\P 71

LEMMA 2.4, Suppose P 1is a standard paraboclic subgroup and ¢

a continuous function on P \G. Then

T’Pl P
A ¢(8, g)rl(H(é, g) -T) =/ ¢(ng)dn
P,CP P \P N\N
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T,P
Recalling the definition of A 1 we see that the left side is

dim clR/nl

52 (-1) i $(nv,8,g)dn  ip (H(y8,g)-T) o (H(8,g)-T)
RCP CP CPl\P'(eR\Pl N\N,
In the double sum over R and P1 we fix R and sum over Pl' Thus
we have
dim nt /ot
~ P

) ) v 2 laa ey $(nyg)dn

R R\P | RCP,CP Np\ N
with

H =H(yg) - T
Observe that if v € P1 then
P _ P B
t (H(y8,g) - T) = 1(H(8) - T)

If R =P the sum over Pl in the parentheses is clearly 1. We

need to show that it is 0 otherwise. Once this is done the left side of

(1) will have been shown to equal

f K _(ng, h)
N\N P

Since Kp(ng, h) = Kp(g, h) and

N\N

the basic identity is proved.
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We prove now a more general combinatorial statement, of which the

desired identity is a special case. We fix R and P, R€ P, and a
P

A in 01.11; Let aRl(A) be +1 or -1 according as the number of
P P

roots o € ARl such that (a, A) < 0 is even or odd. Let ¢R1(A, H)

be the characteristic function of those H in ng such that

m‘a(H) >0 if (a, A) <0 and ura(H) <0 if (o, A) > 0.

LEMMA 2.5.

P P
1 1 P

RCPlcP 1

is 0 if (A, a) <0 for some aeAPl; and is 1 otherwise.

The identity we need is the special case that (4, a) <0 for all
a € Ai. We observe first of all that an identity very similar to the one

we need is easy to prove, namely that if R # P then

dim & /0t
(1) ) - R g

(H)E(H) = 0
RCP1CP

For a given H all terms are 0 wunless ‘LIS'&(H) > 0 for all aEAg.

If m’a(H) >0 for all « EAP

R then

b= (o€ agla(H) > 0}

is not empty. For this H the sum on the left is

Py
; (_l)dirnozR/’azl_ lag™ | )
P = =

~1

(-1) 0
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Returning to the lemma we replace in (1) R by P1 and the sum

over Pl by a sum over PZ' This enables us to conclude that for
Pl #P

dim oo

P 2 -

(-1) D) (-1) 1 2. 23

c
1 Pl chxP 1 2

We substitute in the sum of the lemma, obtaining the difference between

P P
(2) eR(A)d)R(A, H)
and
dimuPZ/uP Pl Pl Pz o
(-1) €R (Mog (n, H)tp (H)p (H)
RCP1CP2§P 1 2

We can apply induction. The sum over P1 is 0 unless (a, A) >0

P
for all roots a in ARZ, thus unless PZCPA where PA is defined by
P
A P
Ap- = {a € oy |(a, 1) > 0}

1

If P2 C PA the sum over P1 is equal to

dim OIPZ/JIP .
(-1) £ (H)
2
Thus we obtain
dim “PZ/“P -
(3) ) (-1) th (H)
RcP.cP 2

2 A
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unless PA = P when we obtain this expression minus 1. To prove
the lemma we need only show that (2) equals (3), for we are trying to

show that the difference is 0 unless PA =P when it is 1.

It is however clear that (3) is equal to zero unless

w(H) >0
o

P PA

R AR

satisfied it is equal to

for a € A thus for (a, A) < 0, but that if this condition is

dim OIPZ/QP
(-1)
QCPZCPA
where
2= (aea lo (H) < 0}
R R'"™a -
The sum is clearly 0 wunless Q = P,\ when it is
dim “P/\/“P

which is eg(A). The lemma follows.



