Lecture 3

THE COARSE 0-EXPANSION

J.-P. Labesse

3.1. Statement of the main result.

Let G be a connected reductive group and G' an extension of

G, over Q, by a finite group E generated by €y

Notice that we do not assume that the extension is split. Choose
a minimal parabolic PO and a Levi component MO; there is an ¢ € G'

projecting on such that e(Py) = EPOE—I =P, and e(My =M

0 0
Let AO be the split component of the center of MO; the action of ¢

€0

on A0 is of finite order. All parabolics considered below will be
assumed to be standard.

Any g € G' has a Jordan decomposition g = 8,8 with g
semisimple in G' and Su unipotent in G.

We shall use the following equivalence relation in G, which could
be called e-semisimple-conjugacy.

Two elements Y1 and P in G will be called equivalent if
Y] = Yq€ and *{'2 = v,E have conjugate semisimple parts. In particular
if Y4 and Y'Z are semisimple this means that Y1 and Y, are &-

conjugate, i.e., there exist ¢ € G such that Y, = G-lys((‘i).



LEMMA 3.1.1. Given P an e-invariant parabolic and y € P, denote

by N° the centralizer of the semisimple part of ' = ye in N the

unipotent radical of P. Let ¢ be a function with finite support on P,

then

) ¢(ny) = ) T 406 L aye(s))
neN 5§ eN°\N neN°

Notice that N° is normalized by y'. Let us denote by 6 the
automorphism of N defined by the conjugation by ye. We shall prove
a slightly generalized version of the above lemma. Consider a nilpotent

group N1 and an automorphism 6 (over Q), let N2 be a subgroup

p-invariant such that N2 contains the subgroup of es-fixed peints in

N1 (where es is the semisimple part of 6), then given ¢ on N1

with finite support one has

-1
. Y ¢(n) = ) Y e(8 Tne(s))
EYR\
“j&*“* neN, §eN,\N, neN,
. i We can now proceed by "dévissage" and it is enough to prove this
ol L . : . .
when N2 is invariant in N1 and NZ\ N1 abelian; in such a case 6
yops
G‘f) v induces in the Lie algebra of NZ\ Nl a linear map ©' which is such
1\'\ L.-s-.-hk\_.x .
at 6'-1 is invertible, and the lemma follows. {1
\D\.y\f\.u\/\(‘)

The preceding lemma shows that if P 1is an e-invariant parabolic

and & an e¢-semisimple-conjugacy class then

Pne& =N.(Pag)



We can now define

Kp gz ¥) = S ) w(Y)¢(x_1n_lYE(Y))dn
@YEP nT

where @ = N(Q)\ N(A). Obviously one has

where 0 1is the set of ¢-semisimple-conjugacy classes. Now introduce

T ap
ko, (x) = ) Y (-1) © tp(H(Sx) - K, (8%, &)
e(P)=P $8€P\G

(Undefined notations are taken over from Lectures 1 and 2.)

The aim of this lecture is to prove the

THEOREM 3.1.2. Provided T is sufficiently regular, the sum

I Ik o ex
. - @1

is finite. (Here @l stands for G(Q)\G(A)l.)

3.2. Some partitions of G(A).

Let P be a parabolic and TO a vector in 01.6, define GP(TO)
to be the set of x € G(A) such that

.~

a(H(x) - Ty) >0 Ve AS»%
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According to reduction theory we know that if —TO is sufficiently

regular then
P. GP(TO) = G(A)

We shall assume that TO is fixed so that the above property holds for
all P. Let P, € P and consider T € az,g; define G];L’(TO’ T) to be

the set of x € GP(TO) such that

w(H(x) - T) <0 Vm'e&é

We shall denote Fé(u T) the characteristic function of the set

1
PIGP(TO, T).

PROPOSITION 3.2.1. Assume T is sufficiently regular, then given P

we have
) ) Fé(dx, T)TI;(H((SX) -T) =1
{P,|P,cP} s€P\P
for all x € G(A).

The proof relies on the following particular case of the combinatorial

Lemma 2.5 {(of Lecture 2). Assume A € azg then

T

) so(h, H)Th(H) = 1
{P1|P1CP}

for all H € 0'(0. Recall that for A € 01; the function H — q’:é(A, H)



is the characteristic function of the set of H such that w®(H) <0 for
all weht
0
Now fix x € G(A); thanks to reduction theory we know that there
exist at least one & € P such that 6x € GP(TO); the combinatorial
lemma applied with H = H(éx) - T provides us with exactly one parabolic

Pl C P such that

Fh(sx, T)TE;(H(SX) -T) =1

Hence, the sum in the proposition is at least 1. To prove that it is
exactly 1 consider x € Gp(TO) and 6 € P such that d&x € GP(TO).

The combinatorial lemma provides us with two parabolics P1 and P

2
such that
Fo(x, T)7 (H(x) - T) = Fi(6x, T)r5(H(ex) - T) = 1
We need to show that this implies & € P, (and hence P1 = PZ) . We

1

need two lemmas.

LEMMA 3.2.2. Given Plc P and H € aP such that

0
(1) a(H) > 0 Voert
(ii) T(H) < 0 Vrel,
then the following holds
(iii) a(H) > 0 Vae Ag - Aé.

In fact one can write



ure_&]i Q€A

o

The hypotheses (i) and (ii) imply that c¢_> 0 and ¢,z 0. Now consider
o z

v

Be aP - Al, of course B(W) > 0 but since B ¢ Al at least one of the
0 0 - 0

1
0

TE &LI is not orthogonal to B8; moreover B(&) <0 for all o€ A and

hence B(H) > 0. J

LEMMA 3.2.3. Assume that x and &x are in GP(TO) with 8§ € P

and that
P
a(H(x) - T) >0 VaEAO-Aé

then provided T is sufficiently regular one has & € P

1’
This is a standard result in reduction theory, but we should maybe

recall the proof. We may assume § € M the Levi component of P

containing MO’ and consider the Bruhat decomposition of § in M:

P M

with vy € NO = NO aM, Te€ PO nM and w_ Trepresents s € Q the

Weyl group of M. Write x = nak with n € NO, a€e M, and kg K,

0
then

H(8x)= (s .H(a)).H(wsnl)

for some ny € NO. But since &x € GP(TO) we know that



B(H(sx)) > B(TO) for any B € A?,M generally for any positive

root of M. The factor B(H(Wsnl)) is negative. Now if s § ol the

Weyl group of M1 there is an a € Ag - A(l) such that -8 = s~1oa is a

negative root of M and then B8(sH(a)) cannot be bounded from below

independently of T. O

The proposition follows from these two lemmas, the first one being

applied to H = H(gx) - T for some ¢ € P.. |

1

Thanks to the above proposition we see that kz(x) is the sum over

all pairs of parabolics Plc P with e(P) =P of

a€
I -1 PFLex, DrhG(ex) - T) Fp(H(8x) - TIKp (6%, 6x)
5€ P \G

Recail that

) o%(H) = <5 ()75 (H)
®, IPlC PCP,}

and define H%(x)g to be the sum over all e-invariant parabolics P

such that PIC PC PZ of

£
a

(-1) T Fi(x, TIo(HE) - TIK, (x, x)

Then obviously



To obtain the Theorem 3.1.2 all we need to prove is the

PROPOSITION 3.2.4. Provided T is sufficiently regular

2 T
o€l Pl\G(A)

is finite.

This will be proved in the next lecture.



Erratum to Lecture 3

The proof of the Lemma 3.2.3 in the notes is incorrect and should

be replaced by the following one. We first recall the statement.

LEMMA 3.2.3. Assume x and &x are in GP(TO) with &6 € P and

that

1

«(H(x) - T) >0 VaeAIg—AO

then provided T is sufficiently regular one has § € P;.

We are free to modify 8 and x by elements in PO’ on the left,
so that we need only to consider the case & = W where W represents

s € QM the Weyl group of M. We have
H(§x) = H(WSX) = sH(x) + H(Wsn)

+
if x = ank with aEMO, n €N and k € K. There exists T, € 0

0 1 0
such that for any n € NO and any s € Q
X =s H(wn)+ T, - s T
s s 1 1

is a positive linear combination of coroots é of M such that g > 0
+

and sB < 0 (cf. Lemma 6.3 of Lecture 6). Let VS be the positive

linear span of those roots g and V:‘_ be the subcone of the X € V;

v
such that moreover A(B) > 0 for all those B. In particular )\(XS) >0






and since

H(x) - T, + X_ = s_l(H(wsx) - T))

we have

A(H(x) - Tl) < S)\(H(WSX) - Tl)
We have assumed that W X € GP(TO) and hence
S)\(H(WSX) - TO) <0

since s\ is a positive linear combination of negative roots. This yields

the following inequality:
A(H(x)) < )\(Tl) - s)\(Tl-TO)
By hypothesis we may write

H(x) = ) hw +H

a o P
o€ Alg
with H_. € 0_, h > a(T,) for all o€ AP and h > a(T) for all
P P a 0 0 o
a € AO - A.. Since A 1is a positive linear combination of positive

> 0, and we get

) . h M@ ) < (A=s)(T-T)






If T is sufficiently regular this is possible only if )\(%a) = 0 for all

*
o € Al(; - A(l) and.- all X € VZ+. This implies that V; C (IL(l)) so that

é € 01,3 whenever B > 0 and sB < 0. This is the case only if s € Ql
the Weyl group of M,. O






