Lecture 3

THE COARSE O-EXPANSION

J.-P. Labesse

3.1. Statement of the main result.

Let G be a connected reductive group and G' an extension of G, over Q, by a finite group E generated by ϵ_0

$$G \longrightarrow G' \longrightarrow E$$
.

Notice that we do not assume that the extension is split. Choose a minimal parabolic P_0 and a Levi component M_0 ; there is an ε \in G^1 projecting on ε_0 such that $\varepsilon(P_0) = \varepsilon P_0 \varepsilon^{-1} = P_0$ and $\varepsilon(M_0) = M_0$. Let A_0 be the split component of the center of M_0 ; the action of ε on A_0 is of finite order. All parabolics considered below will be assumed to be standard.

Any g \mathbf{e} G' has a Jordan decomposition g = $g_u g_s$ with g_s semisimple in G' and g_u unipotent in G.

We shall use the following equivalence relation in G, which could be called ϵ -semisimple-conjugacy.

Two elements γ_1 and γ_2 in G will be called equivalent if $\gamma_1' = \gamma_1 \varepsilon \quad \text{and} \quad \gamma_2' = \gamma_2 \varepsilon \quad \text{have conjugate semisimple parts.} \quad \text{In particular}$ if γ_1' and γ_2' are semisimple this means that γ_1 and γ_2 are ε -conjugate, i.e., there exist δ ϵ G such that $\gamma_1 = \delta^{-1} \gamma \varepsilon(\delta)$.

LEMMA 3.1.1. Given P an ε -invariant parabolic and $\gamma \in P$, denote by N^O the centralizer of the semisimple part of $\gamma' = \gamma \varepsilon$ in N the unipotent radical of P. Let ϕ be a function with finite support on P, then

$$\sum_{\mathbf{n} \in \mathbf{N}} \phi(\mathbf{n} \gamma) = \sum_{\mathbf{n} \in \mathbf{N}} \sum_{\mathbf{n} \in \mathbf{N}} \phi(\delta^{-1} \, \mathsf{n} \gamma \epsilon(\delta)) .$$

Notice that N° is normalized by γ' . Let us denote by θ the automorphism of N defined by the conjugation by $\gamma \epsilon$. We shall prove a slightly generalized version of the above lemma. Consider a nilpotent group N_1 and an automorphism θ (over \mathbf{Q}), let N_2 be a subgroup θ -invariant such that N_2 contains the subgroup of θ_s -fixed points in N_1 (where θ_s is the semisimple part of θ), then given ϕ on N_1 with finite support one has

$$\sum_{n \in N_1} \phi(n) = \sum_{\delta \in N_2 \setminus N_1} \sum_{n \in N_2} \phi(\delta^{-1} \eta \theta(\delta)) .$$

We can now proceed by "dévissage" and it is enough to prove this when N_2 is invariant in N_1 and $N_2 \backslash N_1$ abelian; in such a case θ induces in the Lie algebra of $N_2 \backslash N_1$ a linear map θ' which is such that $\theta'-1$ is invertible, and the lemma follows. \square

The preceding lemma shows that if P is an ϵ -invariant parabolic and σ an ϵ -semisimple-conjugacy class then

$$P \cap \sigma = N \cdot (P \cap \sigma)$$
.

We can now define

$$K_{P,\sigma}(x, y) = \int \sum_{\mathbf{N}, \gamma \in P, \sigma, \sigma} \omega(y) \phi(x^{-1}n^{-1}\gamma \varepsilon(y)) dn$$

where $(N) = N(Q) \setminus N(A)$. Obviously one has

$$K_{p} = \sum_{\sigma \in O} K_{p,\sigma}$$

where θ is the set of ϵ -semisimple-conjugacy classes. Now introduce

$$k_{\sigma}^{T}(x) = \sum_{\varepsilon(P)=P} \sum_{\delta \in P \setminus G} (-1)^{a_{P}^{\varepsilon}} \hat{\tau}_{P}(H(\delta x) - T) K_{P,\sigma}(\delta x, \delta x) .$$

(Undefined notations are taken over from Lectures 1 and 2.)

The aim of this lecture is to prove the

THEOREM 3.1.2. Provided T is sufficiently regular, the sum

$$\sum_{\boldsymbol{\sigma} \in \mathcal{O}} \int_{\mathbf{G}}^{1} |\mathbf{k}_{\boldsymbol{\sigma}}^{\mathrm{T}}(\mathbf{x})| d\mathbf{x}$$

<u>is finite</u>. (Here \bigcirc 1 stands for $G(\mathbf{Q}) \setminus G(\mathbf{A})^1$.)

3.2. Some partitions of G(A).

Let P be a parabolic and T_0 a vector in π_0^- , define $\mathbf{G}_P(T_0)$ to be the set of $\mathbf{x} \in G(\mathbf{A})$ such that

$$\alpha(H(x) - T_0) > 0$$

$$\forall \alpha \in \Delta_0^P$$

$$\forall \alpha \in \Delta_0^P$$

$$\forall \alpha \in \Delta_0^P$$

$$\forall \alpha \in \Delta_0^P$$

According to reduction theory we know that if $-T_0$ is sufficiently regular then

$$P. \mathbf{G}_{p}(T_{0}) = G(\mathbf{A}) .$$

We shall assume that T_0 is fixed so that the above property holds for all P. Let $P_1 \subset P$ and consider $T \in \pi_0^+$; define $G_P^1(T_0, T)$ to be the set of $x \in G_P^1(T_0)$ such that

$$\varpi(H(\mathbf{x}) - T) \leq 0$$
 $\forall \varpi \in \hat{\Delta}_0^1$.

We shall denote $F_p^1(\cdot, T)$ the characteristic function of the set $P_1 G_p^1(T_0, T)$.

PROPOSITION 3.2.1. Assume T is sufficiently regular, then given P we have

$$\sum_{\{P_1 \mid P_1 \subset P\}} \sum_{\delta \in P_1 \setminus P} F_P^1(\delta x, T) \tau_1^P(H(\delta x) - T) = 1$$

for all $x \in G(A)$.

The proof relies on the following particular case of the combinatorial Lemma 2.5 (of Lecture 2). Assume $\Lambda \in \pi_0^+$ then

$$\sum_{\{P_1 \mid P_1 c P\}} \Phi_0^1(\Lambda, H) \tau_1^P(H) = 1$$

for all $H \in \mathcal{M}_0$. Recall that for $\Lambda \in \mathcal{M}_0^+$ the function $H \longmapsto \phi_0^1(\Lambda, H)$

is the characteristic function of the set of H such that $\overline{w}(H) \leq 0$ for all $\overline{w} \in \hat{\Delta}_0^1$.

Now fix $\mathbf{x} \in G(\mathbf{A})$; thanks to reduction theory we know that there exist at least one $\delta \in P$ such that $\delta \mathbf{x} \in \mathbf{G}_P(T_0)$; the combinatorial lemma applied with $\mathbf{H} = \mathbf{H}(\delta \mathbf{x}) - \mathbf{T}$ provides us with exactly one parabolic $P_1 \subset P$ such that

$$F_p^l(\delta x, T)\tau_l^p(H(\delta x) - T) = 1$$
.

Hence, the sum in the proposition is at least 1. To prove that it is exactly 1 consider $x \in \mathbf{G}_p(T_0)$ and $\delta \in P$ such that $\delta x \in \mathbf{G}_p(T_0)$. The combinatorial lemma provides us with two parabolics P_1 and P_2 such that

$$F_{P}^{1}(x, T)\tau_{1}^{P}(H(x) - T) = F_{P}^{2}(\delta x, T)\tau_{2}^{P}(H(\delta x) - T) = 1 .$$

We need to show that this implies $\delta \in P_1$ (and hence $P_1 = P_2$). We need two lemmas.

LEMMA 3.2.2. Given $P_1 \subset P$ and $H \in a_0^P$ such that

(i)
$$\alpha(H) > 0$$
 $\forall \alpha \in \Delta_1^P$

(ii)
$$\varpi(H) \leq 0 \qquad \forall \varpi \in \hat{\Delta}_0^1$$

then the following holds

(iii)
$$\alpha(H) > 0$$
 $\forall \alpha \in \Delta_0^P - \Delta_0^1$.

In fact one can write

$$H = \sum_{\varpi \in \hat{\Delta}_{1}^{P}} c_{\varpi} - \sum_{\alpha \in \hat{\Delta}_{0}^{1}} c_{\alpha} .$$

The hypotheses (i) and (ii) imply that $c_{\overline{w}} > 0$ and $c_{\alpha} \ge 0$. Now consider $\beta \in \Delta_0^P - \Delta_0^1$, of course $\beta(\overline{w}) \ge 0$ but since $\beta \notin \Delta_0^1$ at least one of the $\overline{w} \in \hat{\Delta}_1^P$ is not orthogonal to β ; moreover $\beta(\alpha) \le 0$ for all $\alpha \in \Delta_0^1$. and hence $\beta(H) > 0$.

LEMMA 3.2.3. Assume that x and δx are in $\mathbf{G}_{P}(T_{0})$ with $\delta \in P$ and that

$$\alpha(H(x) - T) > 0$$
 $\forall \alpha \in \Delta_0^P - \Delta_0^1$

then provided T is sufficiently regular one has $\delta \in P_1$.

This is a standard result in reduction theory, but we should maybe recall the proof. We may assume δ ϵ M the Levi component of P containing M_0 , and consider the Bruhat decomposition of δ in M:

$$\delta = v w_s \pi$$

with $\gamma \in \mathbb{N}_0^P = \mathbb{N}_0 \cap \mathbb{M}$, $\pi \in \mathbb{P}_0 \cap \mathbb{M}$ and \mathbf{w}_s represents $s \in \Omega^M$ the Weyl group of M. Write $\mathbf{x} = \mathrm{nak}$ with $\mathbf{n} \in \mathbb{N}_0$, $\mathbf{a} \in \mathbb{M}_0$ and $\mathbf{k} \in \mathbb{K}$, then

$$H(\delta x) = (s.H(a)).H(w_s n_1)$$

for some $n_1 \in \mathbb{N}_0$. But since $\delta x \in G_P(T_0)$ we know that

7

 $\beta(H(\delta x)) > \beta(T_0)$ for any $\beta \in \Delta_0^P$, or more generally for any positive root of M. The factor $\beta(H(w_s n_1))$ is negative. Now if $s \notin \Omega^1$ the Weyl group of M^1 there is an $\alpha \in \Delta_0^P - \Delta_0^1$ such that $-\beta = s^{-1}\alpha$ is a negative root of M and then $\beta(sH(a))$ cannot be bounded from below independently of T. \square

The proposition follows from these two lemmas, the first one being applied to $H = H(\xi x) - T$ for some $\xi \in P_1$.

Thanks to the above proposition we see that $k_{\pmb{\sigma}}^T(x)$ is the sum over all pairs of parabolics P_1 C P with $\epsilon(P)$ = P of

Recall that

$$\sum_{\{P_2 \mid P_1 \mathbf{c} \ P \ \mathbf{c} \ P_2\}} \sigma_1^2(H) = \tau_1^P(H) \hat{\tau}_P(H)$$

and define $H_1^2(x)_{\sigma}^T$ to be the sum over all ε -invariant parabolics P such that P_1 **c** P **c** P_2 of

$$(-1)^{a_{P}^{\varepsilon}} F_{P}^{1}(x, T) \sigma_{1}^{2}(H(x) - T) K_{P, \sigma}(x, x)$$
.

Then obviously

$$k_{\sigma}^{T}(x) = \sum_{P_{1} \subset P_{2}} \sum_{\delta \in P_{1} \setminus G} H_{1}^{2}(\delta x)_{\sigma}^{T}$$
.

To obtain the Theorem 3.1.2 all we need to prove is the

PROPOSITION 3.2.4. Provided T is sufficiently regular

$$\sum_{\sigma \in \mathcal{O}} \int_{P_1 \setminus G(\mathbf{A})^1} |H_1^2(\mathbf{x})_{\sigma}^T| d\mathbf{x}$$

is finite.

This will be proved in the next lecture.

Erratum to Lecture 3

The proof of the Lemma 3.2.3 in the notes is incorrect and should be replaced by the following one. We first recall the statement.

LEMMA 3.2.3. Assume x and δx are in $\mathbf{G}_{P}(T_{0})$ with $\delta \in P$ and that

$$\alpha(H(x) - T) > 0$$
 $\forall \alpha \in \Delta_0^P - \Delta_0^1$

then provided T is sufficiently regular one has δ ε P₁.

We are free to modify δ and x by elements in P_0 , on the left, so that we need only to consider the case $\delta = w_s$ where w_s represents $s \in \Omega^M$ the Weyl group of M. We have

$$H(\delta x) = H(w_{S}x) = sH(x) + H(w_{S}n)$$

if x = ank with $a \in M_0$, $n \in N_0$ and $k \in K$. There exists $T_1 \in \alpha_0^+$ such that for any $n \in N_0$ and any $s \in \Omega$

$$X_s = s^{-1}H(w_s n) + T_1 - s^{-1}T_1$$

is a positive linear combination of coroots $\overset{\bullet}{\beta}$ of M such that $\beta>0$ and $s\beta<0$ (cf. Lemma 6.3 of Lecture 6). Let V_s^+ be the positive linear span of those roots β and V_s^{++} be the subcone of the $\lambda \in V_s^+$ such that moreover $\lambda(\overset{\bullet}{\beta})>0$ for all those β . In particular $\lambda(X_s)\geq 0$

and since

$$H(x) - T_1 + X_s = s^{-1}(H(w_s x) - T_1)$$

we have

$$\lambda(H(x) - T_1) \leq s\lambda(H(w_s x) - T_1)$$
.

We have assumed that $w_s x \in \mathcal{C}_p(T_0)$ and hence

$$s\lambda(H(w_s x) - T_0) \le 0$$

since $s\lambda$ is a positive linear combination of negative roots. This yields the following inequality:

$$\lambda(H(x)) \leq \lambda(T_1) - s\lambda(T_1-T_0)$$
.

By hypothesis we may write

$$H(\mathbf{x}) = \sum_{\alpha \in \Delta_0^P} \mathbf{h}_{\alpha} \overline{\mathbf{w}}_{\alpha} + \mathbf{H}_P$$

with $H_P \in \mathcal{M}_P$, $h_\alpha > \alpha(T_0)$ for all $\alpha \in \Delta_0^P$ and $h_\alpha > \alpha(T)$ for all $\alpha \in \Delta_0^P - \Delta_0^1$. Since λ is a positive linear combination of positive roots $\lambda(\overset{\checkmark}{\varpi}_{\alpha}) \geq 0$, and we get

$$\sum_{\alpha \in \Delta_0^{P-\Delta_0^1}} h_{\alpha} \lambda(\overline{w}_{\alpha}) \leq (\lambda - s\lambda) (T_1 - T_0) .$$

If T is sufficiently regular this is possible only if $\lambda(\overline{\omega}_{\alpha}) = 0$ for all $\alpha \in \Delta_0^P - \Delta_0^l$ and all $\lambda \in V_s^{++}$. This implies that $V_s^+ \subset (\boldsymbol{n}_0^l)^*$ so that $\boldsymbol{\nu} \in \boldsymbol{n}_0^l$ whenever $\beta > 0$ and $s\beta < 0$. This is the case only if $s \in \Omega^l$ the Weyl group of M_1 . \square

