Lecture 6

PROPERTIES OF THE TRUNCATION OPERATOR

R. Langlands

The most important property of AT is that it converts smooth
slowly increasing functions into rapidly decreasing functions but we begin
by studying its formal properties.

Recall that AT is defined for T suitably regular in azg and

that it is defined first of all for continuous or, better, bounded measurable ¢ by

a
My(g) = ] (- 7] | gasg)ip(H(sg) - T)
P §€P\G N\ N

where
ap = dim ozP/ ozG

By Lemma 2.1 the sums appearing on the right are finite.

PROPOSITION 6.1. The operator AT is an idempotent, so that

2l Ty = atg
This proposition is of course an immediate consequence of the

following lemma.

LEMMA 6.2. If @ is bounded measurable then

/ !\T(,a(nlg)dn1 =0
NNy



unless wW(H(g) - T) <0 for every wE /Sl'

We first consider

(1) I ) Ji ¢(nén g)Tp(H(éng) - T)dn dn,
N\N; §€P\G N\N

Let Q(az,o, P) be the set of s in Q((no, m,O) such that s—la >0

for all o g Ag. The Bruhat decomposition assures us that P\G is

a disjoint union

U PWSNO ,
W being a representative of s.

Thus the expression (1) is equal to the sum over Q(ozo, P) of

(2 [ ) J ¢(nw vn )i (H(w vn g) - T)dn dn,
NNNy “IN w an. AN, VAN ShEe
VEWS BV Ny 0

The outer integral and the sum can be fused to obtain an integral over

-1
W NOwanO\ NONl s

which we then decompose as an iterated integral, so that (2) becomes a

triple integral

J / /

-1 -1 -1 -
W Nowsn NONI\ NONl W Nowsn NO\WS Nowsn NOlNI1 N\N



The domain of integration in the outer integral depends on the

choice of N1 and on s but not on P. Since it is the alternation

over P that will force the vanishing we ignore the final integration
and concentrate on the inner double integral. A little reflection con-

vinces one that

-1 - _ _1 -
w_'Ngw_n No\wslNOwanONl = w_ NOanNl\wS]NOWSan

Since s € Q(O'LO, P) the intersection WSNow;l nM is NO n M.

Thus Wsle;l N M is a parabolic subgroup of M with unipotent radical

WSN w;l n M. If we pass the variable in w_lN A Nl through W

1
we obtain a variable in NO N wlew;l (N nw N w )(M nw Nl 1).

Thus the second integration in the double integral can be taken over

the product

-1

(anNw \anNW )X(\/Ianw \anNw

1 1 1

The volume of the first factor is 1 and since the first integration is
taken over N\N the integral does not depend on the first variable in
the product.

Thus the double integral becomes finally

-1 -1
M nWSN lwS \ M anN 1wS N\N

However

(anNW_).N
S S

1



is the unipotent radical of a parabolic subgroup PS of G. So the
double integral becomes a single integral over NS\NS, which we now

write out explicitly.

3 - -
(3) f (p(nwsnlg)rp(H(wsnlg) T)dn ,
N \N
s s
the ny being the wvariable for the outer integration, which does not

concern us at the moment.
The group Ps is contained in P. The group N1 is fixed but
s varies over Q(m,o, P) and we are to sum over P and Q(“'O’ P).

What we do is fix s and a Po 3 PO and sum over all P with

s € Q(a'(,o, P) and PS = p°.

The set {a € Aols_la > 0} is the disjoint union of two subsets,
the first S1 consisting of those a in it for which s—la is orthogonal

to 01.1 and the second S1 of those for which it is not. It is clear that
P

S P
AO c AO and that
P
s _ P 1
AO = AO nsS s
for o € S1 if and only if suloc is a root in Nl' Thus the freedom
of P is that the intersection of AP with S can be chosen at will.

0 1
The dependence of (3) on P is through the function

%P(H(wsnlg) - T). The sum

aPA
Y (-1) TP(H(wsnlg) - T)



,//'\NM Sy e ;s\.\'-« -.X\\_ OM\\,—X) w N &\0 LJ\ LN A\K\‘\v -
Y

over the allowed P 1is therefore 0 wunless
m'a(H(anlg) -T) >0

for a ¢ A
'ﬁYa(H(wsnlg) -T) <0

for o € Sl'
To complete the proof of the lemma we have to show that these

inequalities imply that
WH(g) - T) <0

for wWe 1&1. We have

s-l(H(anlg) - T) =H(g) - T+ s_lH(wSV) + T - S—lT

with v € NO(A).

We write, identifying 01,0 and its dual,

H(wsnlg) - T = Z taa
o €A
0
pO
with t >0 for o ¢A uS., and t <0 for o &€S,. Then
o 0 1 o - 1
(s M(H(w n.g) - T)) = Tt (s ‘)
s 1 L7
=) 1 ta‘m'(s-la)



for s—loz is orthogonal to @, if aeSl. If océSluS1 then

ta >0 and ‘m‘(s_la) <0 and if o €S then ta < 0 and

1
U(s_lon) > 0. Thus this expression is less than or equal to zero.

To complete the proof of the lemma we need only show that for

sufficiently regular T
-1 -1
=(s H(wsv)) +w(T -s T) >0

There is certainly no harm in replacing G by a Levi factor of the
smallest standard parabolic containing s, which to simplify the notation
we suppose is G itself. Then given any constant C we can take T

sufficiently regular and suppose that
-1
=(T-s T) > C

It therefore remains to show that there exists a constant C such

that
(4) m‘(s-lH(va)) >-C

for all v e NO(A). This is a statement which is easily seen to be

independent of the choice of K. Indeed it is enough to prove it over

a field which splits G. So we can suppose G 1is split and semi-simple.
Then one has the usual optimal choice of K and for this one

proves by induction on the length of s the following lemma.

LEMMA 6.3. If v lies in NO then



with ¢ > 0.
o

This gives the relation (4) with C = 0. To prove the lemma one

begins with SL(2), taking w_ € K. So, for the non-trivial s,

Moreover H(stw;l) is the sum of its local contributions and these are

(i) v real

(e [ D
(ii) v complex
-SLn(l+|xV’2)((1) -(l))
(iii) v non-archimedean
-9n max{|1l], lxvl}(é —(l))

Thus for SL(2) and hence in general the lemma is proved for an s
of length one.
For a Chevalley group and an optimal choice of K we may take

W e K. If s = 5155 with s, 2 reflection associated to the root B



and 1 + length s, = length s then

s—lH(w v) = s_ls—lH(w w V) = s~ls—1H(w v') + s-ls—l(s H(w v))
s 271 sl 52 2 71 1 2 71 1 s,

The induction assumption allows us to write this as

-1
s, d B+z c a
2 8B >0 o

sza<0

with dB >0, ¢

> 0. Since
a =

(a > 0fsa < 01 = {u > 0]sj0 < 0} u {s;' 8]

the lemma follows.

PROPOSITION 6.4. Suppose that o, and p, are continuous functions

on G\ G and that on

N
| ¢1(8) | < clgl

for some N and that on any Siegel domain in G1 we have an inequality

L@, | < eylgl™

for all N. Then

J AT@I(g)cpz(g)dg = ql(g)AT¢2(g)dg
G\ G’ G\ G’

This clearly reduces to showing that



J { y ¢1(ndg)dnt (H(8g) - T)} ¢,(g)dg
o 1 N\ N
\G~ L§eP\G

is equal to

S (Pl(g){ z / (Pz(nég)dan(H(Gg) - T)} dg
G\G' 5€P N\N
\G

It follows readily from Lemma 7.8 of the next lecture that the
second integral is absolutely convergent when ®, and (PZ are
replaced by their absolute values. Thus a formal proof of the equality
assures us of both the equality and the convergence of the first integral.

The formal proof is of course easy, the second expression reducing

to

f (g)To(H(g) - T){ (ng)dn}dg
P\ G Frere jN\Nq’Z

which equals

A(H()—T){ ( >d}{ ( )d}d ,
J]‘NIP\G e IN\N(Plng ? fN\N LA

an expression symmetric in ¢ and ¢y

COROLLARY 6.5, AT extends to an orthogonal projection on the

Hilbert space L.

We will not need any of these assertions in the next two lectures.
What we will need is the fact that AT transforms smooth slowly

increasing functions into rapidly decreasing functions. For now we
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content ourselves with a relatively simple statement.
To any element Y of the universal enveloping algebra of the Lie

algebra of G we can associate a left-invariant differential operator

R(Y) on G.

LEMMA 6.6. Suppose T is sufficiently regular. Let ¢ be a Siegel

domain on Gl. For any pair of positive numbers N and N' and

any open compact subgroup KO of G(Af) we can find a finite subset

{Y

1 e Yr} in the universal enveloping algebra such that

1T g™ <1 sup [ROYD@ B[
! heGlg

for g e ¢ provided ¢ is invariant on the right under KO and

sufficiently smooth that all the operators R(Yi) can be applied to it.

This is proved by an argument similar to that used for the proof
of the 0°-expansion. Its structure is more transparent, many of the
incidental difficulties met with the ¢ -expansion no longer arising.
However the alternating sum is used in a slightly different way and it
is best to dispose of the necessary technical lemma immediately.

For this purpose we fix PlC PZ and consider a continuous

function ¢ on Nl\Nl' If PlC'-Pc.‘.P2 then

Ww :n '——->j ¢(nn,)dn
P 1 N\ N 1 1

is also a function on Nl\INI1 because N is a normal subgroup of N

We want to consider
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ep
Y= z (—1) P‘P
P

Let AO - AO = {al, SR us} and let 21 be the set of positive

roots o of the form

(5) a =y b8

Beh,
with bB #0 for B = a, or BE AO—A(Z). There is a parabolic p!
between P1 and P2 such that the Lie algebra of Ni is spanned by
the root vectors attached to the roots o« in 2 . For any P Dbetween
P1 and P2 there is a unique subset ZP of 1{onl, cees ar} such that
Ag is the disjoint union of ZP and Ag. Moreover

It follows easily, all the groups N being normal in Nl’ that

© m-m (M -
i=1 P i

2

where for simplicity of notation we have set Wpi = ﬂ_
Let ZO be the set of positive roots which When1 written as in (5)

have ba' # 10. Let an integer r > 0 be given. For the purposes of

the next 1lernma we define a left-invariant differential operator of type r

to be a product
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the order being immaterial and Xi. being a root vector of type o with

O
ae .
1

LEMMA 6.7. For any integer r > 0 and any open compact subgroup

U of Nfl = Nl(Af) there is a constant ¢ = c(r, U) and a finite

collection Yl’ cees Ym of differential operators of type r, the

collection depending on r alone and not on U, such that

ITToll, < <@ IRCY)l,

for any function ¢y on Nl\Nl/U which has continuous derivations up

to order rs.

The norms in the inequality are of course L _-norms. A little
reflection shows that we can make a number of simplifications. First of

all replacing y by TTP ¥ we can work in the group M2 rather than

2
in G. In other words we may suppose that G = PZ' Then the
formula (6) reduces to the case that P. is a maximal proper parabolic

1
of G over Q.

We choose a composition series of groups over Q

N, =V, 2V, ,2... 2V, ={1}

with Vi+1/Vi isomorphic to the additive group. Since

e-1
(1 - 7T )Ii)(n.l) =) | w(vnl)dv - tp(vnl)dv
P v

1 =0 Vi\vi i1 MVir1
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it is enough to prove the following lemma.

LEMMA 6.8. Let r >0 be an integer and let U be an open subgroup

of A. There is a constant ¢ = c(r, U) such that for any function ¥

on Q\A/U which is continuously differentiable of order r

3y
sup |u(x) - [ w(Mdy| <<l =l
K Q\A X

To be a function on Q\A/U 1is to be a function on a quotient

L\R where L = L(U) is a lattice in R. The inequality thus follows

) v > \1/2 _L_>l/2
zn#O | nl - <Zn=#0 | nl > <Zn¢0 an ,

at least for r > 0, but the case r = 0 is quite trivial.

readily from

We shall apply Lemma 6.7 to a function
n —> y(na)

where ¢ is a function on G\G and a € AO(A). If we want to regard
the Yi as left-invariant differential operators on G we must write

the inequality of Lemma 6.7 as

(7 sup |T|—U,)(nla)] <c) sup lR(ada_l(Yi))w(nla)i
n, 11

This will be to our advantage.

We now take up the proof of Lemma 6.8. The first step is to
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replace
tp(H(x) - T) ¢p(ng)dn
N\N
by
1 2
) FP(x, T)cl(H(x) -T)f ¢@(ng)dn ,
P.cPcP P,\P N\N
1 2 1
the sum being over the pairs Pl’ PZ' There is then a sum over P\G

and an alternating sum over P. The final result is a sum over pairs

P1C P2 of

a
(-1) T Fi(sg, T)o(H(sg) - T)  u(nég)dn
P,\G {P\P CPCP} N\N

However Corollary 4.1.2 allows us to replace Fé by Fé The

upshot is that we are forced to estimate

a
) Fé(&g, T)ol (H(sg) - T I] (-1 P I gmsg) ]
P.\G P N\N

Lemma 2.1 shows that

] Flsg, Dot - T) <clgM
Pl\G

for some M, T being held constant. Thus the problem is to estimate

a

I DT [ gnsg) |
P N\N
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It is now best to be more precise about Siegel domains. In contrast
to the previous definition the elements g of GP(TO) will now be
required to have all of the following properties:

(i) If g = pk and a = a(g) is the projection of p on A  then

0
g € a where Q 1is a fixed compact set. «— o\ b G LD Y
.. P ‘
(ii) o(H(g) TO) >0 for all o e AO' grh, ..,\,,.\,-«3 %
(ilii) There are constants ¢y and ¢y SO that Comn b A\ u\ \\l?
‘

inal| < eI < cy(1|amla ]

The final condition is easily seen to force the component of a in
AO(Af) to lie in a compact set. This modification entails a modification

in GEl)(TO, T) but the set
p LT, T)
1770

and thus the function FEl, is not changed; provided of course S

and @, which affect the size of GP(TO), are all chosen large enough.
This definition has the advantage that for a given GG(TO), for

example that of Lemma 6.6, there are positive constants c, and ¢

1
such that

-1 —e
lsg|™" <clgl ©

for all 6§ € G and all g € C;G(TO). (I know no reference for this fact.

It can be deduced from Prop. II.1.5 of A. Borel, Ensembles fondamentaux
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pour les groupes arithmétiques et formes automorphes, Cours a I'IHP

(1964).)
Thus all we need do is show that if g e Gé(TO, T) and

ci(H(g) - T) # 0 then, for a suitable choice of g modulo P.,

M+N'! & -
® g™ DT gme| <] suwp [ROYD@Mm ][]
P N\ N i hGGlg
The suitable choice of g will be an element in Gl(TO, T).
Then conditions (i) and (iii) yield

M+N! M'||H||
] < ce

g

with H = H(g) = H(a). Thus denoting the right side of (8) by A we

need only show that

) a
(9) M HIH 1} (-1 P J Ppng)| <A
P N\ N

Since we can readily deal with right translations by elements from
a compact set in (:':1 we may suppose that g = a(g) = a. As in
Lemma 4.2 we may write H = Hl + H2 with H1 € ozi and H2 e 012
and deduce from the fact that oi(H—T) # 0 that

I, < el

the constant ¢ depending of course on T, but that is of no consequence.

Thus it will be enough to prove (9) with H replaced by H1 but with a larger
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M'. This is an easy consequence of (7), for the inequality (ii) applied
with P2 replacing P assures us that the coefficients of ada‘l(Y)

with respect to a filxed basis of the universal enveloping algebra are
MM IH “
1

bounded by ce , where M" — « with r.
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Appendix

Truncation has been seen to have two essential properties. It
is an idempotent and it converts slowly increasing smooth functions to
rapidly decre;sing functions. It may be worthwhile to see how this
comes to pass in a simple case.

A function f on the upper half-plane which is invariant under
SL(2, Z) may also be considered as a function on SL(2, Z)\ SL(Z2, R)

if we set

_ ai+b _ ab
¢(g)_f(ci+d) ’ & = (cd)
1 x a 0 >
¢ (< < _1> ) = f(a’it+x)
0 1 0 a

The function f 1is determined by its values on a a fundamental

In particular

domain

7

Truncation is achieved by leaving f{ untouched below a certain line

Y =Yy in the fundamental domain and by removing the constant term
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of its Fourier expansion above the line. So it is clearly idempotent.

The inequality

anlanIZr/E 1

0 n¥0 an

N CY I /2
0 n#

n#

shows that for r >1 and y > Yo

1

2 a" 2
(1) |Af(utiy) | <c f | =— f(x+iy) |“dx
-3 dx’

However if X 1is the element
(0 1
0 o)
in the Lie algebra then

qF _ 4 1 *<> <a 0 >
—— f(x+iy) = —=¢( < _ )
ax’ ax’ 0o 1/\o a’t

with vy = al2 and right side of this equality is

op . [l x\[a 0
a TR(X) e( 1 )
0 1 0 a

Thus bounds on R(X)r¢ of the form

. 1 x a 0 o
IR(X) ¢(< > 1)) selma ,
0 1 0 a

where s is a constant independent of r - and this is the kind of

bound that will be available to us - vyield
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ar s-r
|———r f(x+iy) ] <clr)y
dx

The inequality (1) then implies that

|Af(utiy) | < cc(r)ys—r

for any r.



