Lecture 7

PREPARATION FOR THE COARSE y-EXPANSION

I: STATEMENT OF LEMMAS

R. Langlands

Recall that the right side of the basic identity is
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Since the Yx-expansion can not be introduced without recalling facts
from the theory of Eisenstein series, we begin by proving the absolute

convergence of
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This will not be a simple matter and will provide us with techniques and
lemmas necessary for the proof of the absolute convergence of the x-

expansion.

We prove in fact the stronger assertion that
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Recall that
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We begin the proof with a sequence of preliminary reductions. Since
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the integral can be replaced by an integral over Pl\ (]Pl N Gl) , the

measure on Pl N Gl being the left-invariant Haar measure. Let
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and let Acl}(}R)O = exp m'(l} be the connected component of Acl}(R). Then
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and the left-invariant Haar measure on Pl N G:1 is given by

d(pa) = pl;z(a)dpda ,
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with

Lo

ol;z(a) = |ad(a) |

1 ?1

?l being the Lie algebra of Pl' To simplify the notation in this lecture

I shall abbreviate A(l}(]R)O to A?.

Let @ be a compact subset of G satisfying KQK = @ and set

o(g) = sup |} (-1) A KP(gk, gk")| .
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It is clearly enough to show that for any real number r
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certainly enough to show that for any arbitrary & the integral
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is finite. We may suppose that on G
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The proof has two aspects. One first shows that the integrand is
zero on a large subset of the domain of integration, and then uses the
estimates of the previous lecture on the set on which it does not vanish.

We begin by finding a convenient expression for
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if
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Thus when studying the expression (3) we may replace KP(h, g) by
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because N 1is a normal subgroup of Nl' This expression is in turn

equal to
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where KP now denotes the kernel for the case that ¢ is the trivial
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automorphism.
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The expression ('b'/) becomes
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If there is no e-invariant parabolic subgroup between P1 and PZ
the sum is empty, equals 0, and the convergence of (1) is trivial.

Otherwise let Q be the largest such subgroup. For a given 7y let PY



be the smallest such subgroup containing y. Then
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and this is clearly 0 wunless PY = Q, when it is 1.

Let FE(PI’ P be the set of all vy € Q (taken modulo Pl) for
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which PY = Q. Then (&) is equal to
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To prove the convergence we need a number of lemmas. These we
next state, explaining how the convergence follows from them, postponing
the proof of the lemmas until the next lecture. It will be convenient to introduce
a notational convention. We denote by C a compact set and by ¢ a
constant both depending only on 2 and the support of ¢, and by c(¢)
a semi-norm on C:(G). All three are allowed to vary from line to line.

The first lemmas are concerned with the support of the integrand in (2).

LEMMA 7.1. There is a compact set C in 0LQ such that
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for some v €& Q = Q(Q) and some k, k'€ @ implies that
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Until now & has needed only to contain K. Now we suppose



that in addition it contains exp C-K, with the C of the lemma. Then,
at the cost of taking a slightly different T, we can replace the integral
in (/;) by an integral over G x A?Aé. Indeed T is fixed. Thus

there is a C € n? + dlg such that

c‘%(H(p) + H(a) - T) = of(H(a) - T) # 0

implies that H(a) = H + X with X € C and o-(H) # 0. This allows

us, again at the cost of enlarging @, to take T = 0.

LEMMA 7.2. If p, p'€ PY, k, k'€ @, y€ Q, a, a' € A}, b & Af then
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These two lemmas and the previous reductions allow us to majorize
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it being however understood that the integration over Af or to be
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has forced us to increase the exponent r. The function 1‘? is the

characteristic function of
{H & ﬂ?[a(H) > 0Va e Aclg} .

To estimate ¢(pa) in the integral (8) we observe that it is

dominated by
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for some k, k'€ Q. At this point there are three more steps left for
the proof. The first is to show that if this expression does not vanish
then |H(a)|| is controlled by |IH(p)|l and that is the purpose of the
next lemma. Then we have to show that the truncation provides us with
functions rapidly decreasing at infinity in @, and finally that the
summation over vy, although it tempers the rate of the decrease, does

not destroy it.
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LEMMA 7.4. Suppose Yy lies in Fe(Pl’ PZ), nm e &, a € Al’ and

that T%(H(a)) # 0. Suppose in addition that for some k, k' € @

and some m'E€ M% = M1 N Pi we have
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Then for some other m'




KP (m'ak', ye(nmak)) # 0
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and
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On A we have |a| < ce . It therefore follows from this

1
and the following lemma together with Lemma 6.6 of the previous lecture
that for certain M1 and N but for an arbitrary M and thus for an

arbitrary M'
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provided T?(H(a)) # 0.
If Y is an element of the universal enveloping algebra
of the Lie algebra of G then we can associate to Y a left-invariant

differential operator R(Y) in G and a right-invariant differential

operator L(Y).

LEMMA 7.5. Let Y lie in the universal enveloping algebra of I\/I1 and

let R(Y)KP (h, g) be the result of applying R(Y) to Kj regarded
1 1
as a function of the first variable, the second argument being held fixed.

Then there are constants ¢ = c(¢) and N such that for k, k'€ Q
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Proceeding with the proof of convergence of (5) we estimate
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where p € & and the prime indicates that we sum only over those

Y € Fs(Pl’ PZ) for which
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is non-zero for some k, k' in @ and the given pa.

The next lemma limits the vy which appear in the sum (6).

LEMMA 7.6. There exists a point TO in ot depending only on the

support of ¢ and on the compact set £ such that

Tl(H(g) - H(h) - TO) =1
whenever
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for some meM% and some k, k'e 2. Here h and g lie in G.

The following lemma and Lemma 7.6 taken together allow us to

estimate the sum (6).

LEMMA 7.7. Suppose that T € &, and M1 > 0. Then we can find

constants ¢ and M} and a set [Pl\G] of representatives for

Pl\G such that for any ‘h, g e G
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The upshot of these considerations is that the domain of integration
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in (5) can be taken to be
{(m, a)lme G, a € A?, lH@)]| < c(1+]H(m)|)

and that the integrand is dominated on this domain by a constant times
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where M'l is some perhaps large but well determined number and M' is

arbitrary. Thus this expression is dominated by a constant times

{EHm DT ™,

where M" can be taken arbitrarily large. We can integrate over the
variable a. Since the integration is over a ball of radius c(1+{|H(m)||

we are left with
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and this integral is finite.



