Thursday Morning Seminar

DIVISION ALGEBRAS I

R. Langlands

Introduction.

In the Friday afternoon seminar a method for comparing traces on
different groups was described and applied to some low-dimensional groups
of rank one. As a further test of its effectiveness we will consider here
the comparison of the trace formula on G = GL(n) and G'= D*, D
being a2 division algebra of degree n2 over the global field F of
characteristic zero.

It should be emphasized that the advantage of the method is that it
does not require that the trace formula be made invariant, so that many
problems in local harmonic analysis are avoided. On the other hand it
cannot, so far as I can see, be applied when one is working, for whatever

reason, with a single trace formula.

The procedure.

We suppose we are given a function ¢' = ﬂ—v‘b"\r on G', smooth
and of compact support, and a similar function ¢ = ﬂ_d;v on G. We
suppose that at each place v of F and for each regular y in GV
the orbital integral (v, :;)V) is equal to @(y, ¢;,) if v occurs in G{r

and to 0 otherwise. We want to show that

0 (4) = 05 ($)



Observe that G and G' have no non-trivial cuspidal endoscopic groups,
so that stabilization is superfluous.

The trace formula for G' reads simply

T (8D = 65,(s")
The trace formula for G reads
T c T
Y I(0) = ) 0y (e)
MM M M

The sum over M runs over conjugacy classes of Levi subgroups of
parabolic subgroups of G. They are indexed by unordered partitions
of n. One lesson to be drawn from the following is that it is better to
use a sum over M D MO'
We take it for granted that Jg(cp) = JG(q)) is equal to JG,(cb'),

obtaining an equality

T T
(1) 0(¢) - 8,4,(¢") = J(6) - 0 4(d)
G G ? ZM:*:G M zMzCr M

Before going on I underlire a peculiar feature of the notation. Both
JI\T/I and Ogj are distributions on G and thus depend on the pair M
and G, the dependence on G being implicit in the function ¢. If
. T T .
however we write JM(wM,) or GM(\[)M,) where M c M' and Yapr 1S
a function on M' then it is understood that the distributions involved

are those for the pair M, M'. Since the T 1is of no concern to us we

drop it from the notation.



What we want to do is show the existence of smooth, compactly

supported functions IPM on M, M # G, such that

Ml
(2) J (¢) = J. ),
zMzG M zM' zM M

the inner sum being taken over conjugacy classes of M in M'. The trace

formula for M' vyields
M! M!
Do) =1 g0
M M
and the relation (1) becomes

M. -
0.(¢) - 0.,(8") = o, ) - 0,,(¢)
G G zM':GZM M ZMzc; M

!
This equality will allow us - provided the \pM satisfy a supplementary
condition that is to be explained later - to proceed with the argument on

decomposition of measures and to show not only that
= 1
but also that for each M # G

L, oy W) = o,06)

appropriate care being taken with the range of summation on the left.
However, our concern at present is with (2) and indeed at first with

a weaker statement. We anticipate that we will be provided with an



expression for JM(¢) of the following form,

2]

I (8) = { Gl ) Iyl ¢)
Q

Ml 6!

the outer sum running over all M' containing M, and conjugate to M

0

and the inner sum over all elliptic conjugacy classes in M. Thus we may

expect that (2) reduces to a collection of equalities, one for each & ¢ G,

M M .
SR J[“—Gi‘z I(eyed = 1] J|“—,|Lz T(orye o)
Mz Q o ,CO et oy e0r
MO‘.:_'M M= M'z2G MOEM_C_M M

It is thus convenient to fix a Levi subgroup MO of PO and to

work only with M containing MO' It will also be convenient to suppose
Q

that ¢, a function on MQ’ is defined for each Q containing MO'

So we are reformulating the problem, the functions we originally introduced

being m — J ) wQ(g_ lmg), with g in the normalizer of
M' Q€ P(H")

M., g 1Mg = M', and M' running over the conjugates of M.

0’
In this lecture we are concerned with (3) only for regular ¢, and

it is clear it would follow from

9

14

(5) (o, @) =1  Jle, v
MeQ
Q=G
@ now being a conjugacy class in M.
Let p{(M) be the dimension of the center of M minus the dimension

of G and let p(Q) = p(MQ). The functions wQ are to be defined

inductively on p(Q), starting with p(Q) = 1. The only condition is



that (5) be satisfied at each stage.

Weighted orbital integrals.

Let S be a finite set of places containing all infinite places, all
places at which D ramifies, and all places at which ¢v is not a

spherical function. If v ¢ S and if M is the Levi factor of Q then

_ -1
(6) 95 ,4(m) = pp(m) jK J’\I - )¢v(k mnk)dndk
: v QY v

0 being the square root of the absolute value of the determinant of

adm\ w-~, is a spherical function on M and is independent of Q.
\ o) P v P

My

So we sometimes denote it ¢V . We demand, and this is the supplementary
condition mentioned above, that

Q_ Q M

- Q
1 _WS WV*S ¢V

Since the function ¢ has compact support there will be only

finitely many conjugacy classes ¢ for which JM(O' ) # 0 for some M

M 9
and some 0y & - It is easily seen that we can choose the finite set of places
S' = S(¢) to be so large that for each such ¢ and s the

class O’M has a representation y which for v € S' lies in KV and
. -1 . .

is such that g “yg € KV, g e GV implies that g € GY(FV)KV. The
group Kv is of course the standard maximal compact subgroup of Gv'

As a consequence we may replace JM( O'M, ¢) by

clerypJ cb(g_lYg)vla(g)dg
G (Ag)\GAg)



or

-1
clery) [ ¢c.i(g Yg)VG(Y, g)dg
o agancag ° M

Let
!
K5 =77 K
vés V

and let G(O‘M) be 1 or 0 according as O’M does or does not meet

{g k5" glg € caS')3
Then

c(o-M) = meas(GY\ G'Y)meas(Ks' N GY\KS')G(O'M)

The weight factor vﬁ(g) is that given by the trace formula and VIC\;/I(Y’ g)
that given by Flicker's trick. For the y being studied at the moment
they are equal.

We may disregard the factor c(O’M), examining instead

v 9 = |06 [*f bi(g YEI VoY, g)dg
G (Ag)\GAg)

The factor ]DG(Y) | is that introduced on P. 30 of Arthur's Annals
paper. It is 1 for regular semi-simple y in G. We shall study
Jﬁ(y, ¢) for vy in M(AS') and regular in G. We need to show,

by the same inductive procedure, the existence of tpg, such that



Q
(7) Y, ba)) = ] Iy, ¥g)
M ?s veg M S

Q=G

for every M. There is only one observation to make. We began by
choosing S' = S(¢). It can always be made larger. As we construct the
\J)Q inductively we will introduce S(\pQ). They may not be contained in
S'. We simply enlarge S' at each stage to accommodate them.

This being understood we work entirely within the given set S',

sometimes dropping it from the notation. All functions will be spherical

outside of S.

Basic lemmas.

The distributions ¢ —> JM(Y, $) = JI\GA(y, ¢) are very similar to

G
M,y

Apart from the fact that our S' is his S the difference is that he

the distributions f —> J (f) studied in §8 of Arthur's Annals paper.

works with VS{ rather than Vﬁ. The analogue of his Lemma 8.2 is valid

and the proof is exactly the same.

LEMMA 1. Let L oM be Levi factors of G over F. Let h lie in

L(AS,) and let y on M(AS,) be regular in L(AS,). If ¢ is smooth

and of compact support on L(AS,) then

h
Ty, ) =) ¥, ¥n 1)
M oe Fopp M7 QA

The sum runs over the parabolic subgroups of L over F which contain
M. Moreover \DQ L s a function on MQ(AS,). So in agreement with

M
» . . q , .
our notational conventions JM(Y, wQ,h) is JM (v, wQ,h)' The function



pr h is defined on p. 20 of Arthur's paper and is smooth and of compact
support on MQ(AS,).
It is important to observe that - this one sees immediately from the

definition - if h € L(AS) then f = \pQ h is a product,

My
£=1f5 - T, egnsty

M
The function ¢V

Q . . =
is defined by (6) and fs = I‘DS,Q,h'

For technical reasons it is convenient to fuse all infinite places into

a single place, denoted «., With this convention F_  denotes -H_VGS FV

v {»}, S' =8 v {«}

and M_ = ers Mv' Moreover S = S fin

fin

Suppose that L 1is a Levi factor of G containing MO and that

fS is a smooth, compactly supported function on L(AS)" A collection
of functions Fg, Q lying in L and Fg being a smooth, compactly
supported function MQ (AS), will be said to be adapted to fS if for
every S' 2 S and every collection of spherical functions fv’ v e S'-S,
every M, MO € M cL, and every semi-simple vy in M(AS,) regular in

G the equality

W

, _ Q.
JM(Y’ '95 ) -ITV& S-S fv) =1 L JM(Y’ Fs ﬂ-va,v)
Qed (M)
Q=L
holds. The functions fQ . are defined by the equation (6), fv

replacing ¢,

LEMMA 2. Suppose that fS = Tl—vesfv and that for some given v the

orbital integral ¢(y, fv) = 0 for all semi-simple ¥y iﬂﬁr(FV) regular

w
L



L
in ;Z'/(FV). Then a collection Fg adapted to fS exists.

For v = » the proof of the lemma draws on various facts whose
explanation it is convenient to postpone. For v finite it is however an
immediate consequence of Lemma 1 and the following lemma of Vignéras

(cf. §2 of Caractérisation des intégrales orbitales sur un groupe réductif

p-adique and App 1.1 of Représentations des algébras centrales simples

p-adiques). ;;./\Jg(“.\—\ S ey

LEMMA 3. If v is finite and &(y, fv) = 0 for all regular semi-simple

i
y then f may be expressed as a sum zi fi,v - fi,v’ hi,E L(F_).

We set :fi = f, . szva and take

LEMMA 4. Suppose that f is a smooth function with compact support on

M(AS) and that for every regular semi-simple vy the orbital integral

d(y, £f) = 0. Then f is a sum Z £ where £V is a sum of functions
veS ,
f;’ such that each f;’ is a product ] FW and ¢(y, Fv) =0 for
wE S

all regular semi-simple y in M(FV).

Observe that the Fw depend on v and 1i. It is inconvenient
and unnecessary to incorporate this in the notation.
The lemma is proved by induction on the cardinality of S. 1t is

trivial if Sﬁn is empty. So choose v € Sfin' If C is a compact

subset of M and U an open compact subgroup of it, let H(C/IU)
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be the set of functions on MV supported by C and bi-invariant under U.
We write m € M(AS) as (ml, mz), m; € M(Asl), m, & M(FV), S1 =S - {v}.
Choose C and U such that for each my the function m, —> f(ml, mz)
lies in H(C//U).

Since H(C//U) is finite dimensional we can find, for a suitable &,

functions hl’ coes hz in it and 4% regular semi-simple elements
Yyr +ees Y, in MV such that @(Yi, hj)2= 6ij and such that any other
function in H(C//U) is of the form z a].hj + h, where h € H(C/U)

=1
and all its orbital integrals are 0. In particular

f(ml, rnz) = Zaj(ml)hj(mz) + h(ml, mz)
with

_ -1
a.(ml) —f f(ml, m, sz)dm

j 2
MY(FV) \M(Fv)

The lemma ffollows.

We shall be faced with the following problem. We shall be given a
function y —> Y¥(y) on regular semi-simple classes in M(AS) and
we will want to show that there is a smooth, compactly supported function
f such that V¥(y) = o(y, f) for all such vy.

If v is a place in S we say that V¢ is satisfactory at v if
for each regular semi-simple Yy in M(Asl) there is a function le
on M(Fv) smooth and of compact support, such that:

(i) For all regular semi-simple Y, in M(Fv) and all regular semi-

simple Y1 in M(AS)
1
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‘i’(Yl, Yz) = <I>(Y1. f‘; )
2

(ii) If v is finite then there is a C and U such that

£f' € H(C/U) for all «v..
Yy 2

LEMMA 5. If VY is satisfactory at every v in S then there is a

smooth, compactly supported function f{ on M(AS) such

that Y(y) = ¢(y, f) for all regular semi-simple vy in M(AS).

We argue by induction. If S contains only one element there is

nothing to prove. So suppose Sfin contains v. Choosing hl’ cens hJL

and Yy» +eer Y, @S above we may write
£.=Ya, (y)h, +h_ ,
y T Lajnhy +h
with
aj(Y) = <I>(Y]., Y)

By induction there are functions f'Y on M(AS ), smooth and of compact
i 1 ’
support, such that

@(Yj, y) = o(y, f'Y]_)

We may take

f(m), m,) = zj f'Yj(ml)hj(mz)
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LEMMA 6. Suppose that R 1is a subset of S containing at least two

elements and that for every v in R and every regular semi-simple

Y, in M(Fv) there is a smooth compactly supported function fY on
2

M(AS ) such that
1

‘i’(Yl, Yz) = <I>(Y1, fY )
2

for regular, semi-simple Yy in M(AS ). Suppose moreover that for each
1 -

finite w # v, all Yoo and all m' € W va the function

m —> fY (m', m) lies in H(C/U) for some given C and U. Then V¥
2

is satisfactory at every place in S.

This is clear.

A simple problem. The functions pr will be chosen inductively and the

lack of unicity is somewhat disconcerting. To allay at least some of the
unease we consider a Levi factor L of G and the trace formula for a
function ¢ on L so chosen that vy = ﬂ-vwv and, for some v, all
orbital integrals of b, are zero. With this assumption the trace formula
should be trivial and we should be able to take all terms from the left to
the right without any difficulty.

Q

This means that we should be able to find functions y on M™,

Q e 4(M0). Q # G such that the analogue of (5) is satisfied,

Lemma 2 guarantees the existence of an satisfying this relation.



13

Existence.
We come now to the proof of the existence of the functions po
attached to ¢ = ﬂ—vd)v. The critical property of the function ¢ is the

following (cf. part C of Vignéras's notes).

Suppose L # G. Then there exist at least two places v € S such that

for all vy e L(FV) which are regular in G the orbital integrals

o(y, ¢v) are zero.
Let Nys eeey B be the partition defining M and let dv be the
denominator of the invariant of D at v. In order that &(y, q‘>v) is not

zero for all y in L(FV) all n n_ must be divisible by dv' If

10

this were so at all but one v it would be so at all v and then r would

be 1 and L = G,

For p(M) =1 the factors V;(y, g) are linear, and

G, |1 -1 .G
Iy, ¢) = |[DT(y)|% ) o(g yg)Virly, g.) =0
M v jGY(AS,)\ G(ag,) M M

Thus we may take LpQ =0 if p(Q) = 1.

We now suppose that for p(Q) < p we have so defined wQ that

Q
(8) Iy, ¢) = J .y, v)
M EMCQ M

Q=G
for p(M) < p, and we prove the existence of ¥y for p(RQ) = p satisfying

the corresponding equation. We apply Lemma 6 to the difference

Q
J(Y!d’)— J(Y,IP),
M ZMEQ M

Q=G

Q € P(M)
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/
T

proving that it is equal to ;i/(y, f) for some smooth compactly supported

function on M(AS,) and we set

Q_ 1
YTl
for Q € P(M).

Let v be a place in S such that &(y, ¢V) =0 for all vy e MV
regular in G’v' We need only show that for such a v the condition
of Lemma 6 is satisfied.

According to Lemma 6.3 of Arthur's Annals paper we have a
decomposition of VSI(g) as

Q
Vi(g,)U~(g,)
Qe4-(M)M 177Q =2

where g; € G(AS ), g, € G(Fv)' This leads to a decomposition
1

(9 Iy(rs b9 =1 Wy 4Ly 65)

Qe 3

where ¢(g) = ¢l(gl)¢2(g2> and

¢é(m) = pQ(m)J’ f ¢ (k" 'mnk) dndk

K1 NQ(AS'I)

If Q =G then UQ(gZ) = 1 and LQ(YZ, ¢2) = 0, for it is an ordinary
orbital integral and Y, € Mv' So we drop the term corresponding to
Q =G from the sum (9).

For any other Q we apply Lemma 2 to the function d)é and write
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1 Q!
I (Y, 05) =} Iy, F3)
MY %Q Q,%QMl Q

McQ'

Since Y, and ¢, play the role of fixed parameters in the discussion

we remove them from the notation, setting

SES)

Ql
F~™ = FILn(v,s 9,)

We also have a decomposition

9

Q,1 Q,2
Iy, v°) = ) T (Y1 050 LAy, v7°)
M McQ'e0 M1’ Yo Q''\Y2
We set
Q! Q,1 Q,2
H =7 vor Ly, 9779
Qe 8 R
2<0(Q) <p

] ) 1
Both HQ and FQ are smooth, compactly supported functions on MQ (AS ).

1
By assumption

Q' Q!
(10) ¥ Tl FoO) - ] Joaly;, HY) =0
Qre dun ML Qredn ML

i p(M) < p.
If p =2 then
LI ED) Ty(rys FO
Qe POM)

Thus we may take
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£ =) FR
Y2 Qe Pm)

Now we suppose that

p > 2 and we define inductively on p(M"),

Ml
on My(As,), Q €4 (M), Q # M,
| Q75
which are smooth and of compact support.

!
2 2 p(M") < p(M), functions gM’ 0

They will be shown inductively to have the property that the orbital
integrals of

H n f 1 n
fg = 7§ -1 D D SRV
1 QrePMm "1 QrePmm 1 MaMr QrerMm 51
p(M') >2
are zero on regular semi-simple elements if p(M") < o,
i
This being so we will take the functions Elg Q to be those attached
1
"
to f‘g by Lemma 2. The relation (10) assures us that for o(M") = 2
1
the function
n n n
£y = FS' - ] HY
1 Q"e P(M") 1 Qne P(M") 1
has orbital integrals zero. So we can begin the process.
n 3
To verify that it continues we have to evaluate JM"(Yl’ flg ). Observe
1
first of all that if M™ ¢ M" then
QH QH
(11) Yy F& ) - 1 Tyl s HS )
EQ"eP(MH) Ml! 1 Sl Q”eP(Mn) Mll 1 Sl
plus
(12) M!',Qn

J , E
M'aM" Q'e PM'(M") M"'(Yl Sl )
o(M")>2



17

is equal to

'
(13) 1 J |||(Y ’ EM, ’Q'") .
Q'"€4M (M"™) M 1 Sl
QMa=M"
We are interested in calculating JM'"(Yl’ fl\SAm). This will involve,
’ 1
for each M" 2 M"™, the terms
MH Ql"
(14) z n J m(Y » E ’ )
Qe 'pM (M"') M 1 Sl

They appear in (11) and thus can be calculated as the sum of (11) and (12)
minus the difference of the remaining terms in (13). Moreover there will
have to be a sum over M" 2 M",

m
This will lead to an expression for JM'“(YI’ fI\SAl) containing first
of all

Q. _
zQe4(M|||)JM"'(Yl’ Fsl) B JM'"(Y’ ¢S)

and secondly

)= Ty (0 9D

)

- E Jyrm (Y1, HQ
Qe daam MU STt e dum)

By assumption these two terms cancel.

The sum of the contributions (12) gives for every triple M' 2 M"

MI’QH)‘

51

On the other hand if in the contributions from (13) we denote M" by

!
(with M">M"™) and every Q"€ PM (M") a term JM"'(Yl’ E

M' and Q™ by Q', denoting M by M" (which contains M™

Ql
but is different from it) we see that they cancel those of (12).
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Thus the inductive definition is permitted. We cannot define

for the given M with p(M) = p because Hg is not defined for
1

Qe P(M). However we can introduce the function

_ Q H',Q _ Q'
fs = FS + 2 M! ES ‘PQ
1 aeran 51 wam ee™an 51 ‘aeran Q20

p(M')>2

The previous calculation now shows that

T vy fo ) = Ty, ¢o) - ) T (v, v3)
M1 S1 M S Qe4(M)M S
Q¢ P(M)

f5
1

» 1

A similar calculation, using the properties of adapted collections, shows that

the relation remains valid if S 1is replaced by S'. This completes the

proof of the existence.

Q,Z)



