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In order to compare the trace formulas of different groups, we need

a way of matching conjugacy classes in different groups.

Example: Let G and G* be comnected reductive groups over F and let
53:— = Gal(F/F). Then 52: acts on Hom_(G,G*) . Let G L G* be an isomorphism
. ¥
defined over F and suppose that oy = \poad(gg) for some gcé G(F), for all
Py . . % -1
G € ¢f. Then G is an inner form of G and for all y g G(F), w(ggygg ) =
oU(y) = o(P(y)) and hence ¥(y) and o(y(y)) are conjugate in G (F). 1In other

words, the conjugacy class of U(y) is defined over F and we have a map

v

{Conjugacy classes in G(F)} —— {Conjugacy classes in G¥(F)

which are defined over F} .

If {y},{y'} are conjugacy classes in G(F), then y({y}) = w({y'}) if and

only if v and +y' are conjugate in G(F) .
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Kottwitz's Theorem ([3]): If G is connected, reductive and quasi-split

over F, and if the derived group of G is simply-connected, then every

conjugacy class in G(F) which is defined over F intersects G(F) .

Definition: Let G be connected, reductive, quasi-split over F with simply

connected derived group. We say that y and vy' in G(F) are stably conjugate

if they are conjugate in G(F) (abbreviation: st-conjugate).

1

* . -1 . .
In the above example G — G with 1V o0y an inner automorphism for
all ¢ € g , Kottwitz's theorem shows that if the derived group of G* is

simply-connected and G* is quasi-split, then we obtain an injection

{stable conj. classes in G} & {stable conj. classes in G*1

e(®) N{g vgrg € 6G(H} —— () O {g7 v(y)g:g € ¢F (M)}

Parametrization of conjugacy classes in a stable class: If vy,y' £ G(F) and
2L T e Y'Y

g_lyg = v' for some g € G(F) , then by applying o € c—”; to this equality we

see that U(g)g-1 < Gy(f) where G"Y is the centralizer of vy, and
-1 — —
{ag = g(g)g } is a cocycle in Hl(Gg_,G;{) whose image in Hl(eg,,G) is trivial.

The next lemma 1is easy to check.

Lemma 8.1: Let v <£G(F). The set of G(F)~-conjugacy classes within the

stable conjugacy class of <y 1s parametrized by the set:

T ym = ker{n' (F,6,) — 8,0
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Let G ¢ denote the simply-connected covering group of the derived
group Gder of G and for any vy £ G, let G°% denote the centralizer in G°°C
of vy under the map 6°¢ ~— Ad(G). Then Gf{C — GY by restricting the map

GS¢ —, ¢%T | et

£(y/F) = Image of H'(5,6°%) in B'(5,G.) .
K A

Then 1t is easy to see that ﬁy/F)CE(y/F): the images of G°%(F) and G(F)

in the adjoint group coincide.

From now on we use CSG to abbreviate "Cartan subgroup of G defined

over F."

Definition: Let T, and T, be CSG's of G. We say that T, and T, are
- -1
stably conjugate if there is a g€ G(F) such that T, = g T,g and the map

t f— g—ltg is defined over F (equivalently, T. and T, are stably con-

1

jugate if some regular element of T,(F) 1is stably conjugate to an element

of T,(F)).

For T a CSG of G, set

- =1 -
OI(T) = {g € G(F):g Tg and t —» g 1tg are defined over F 1} .
Set: ,4“?’/(T/F) = T(?)\@Z(T)/G(F). It is easy to check that the map
o 1,= 1, —
A (T/F) ~——> Ker{H (GF,T) —— H(1,6)}

g — {a = o(g)g™ }
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is a bijection and identifies 4,/ (T/F) with A/(y/F) for any regular vy &€ T(F).
Let

E(T/F) = Image of H (§,T°%) in H (57,T)

sSC

0%
where T° is the inverse image of T 0N ¢?T in ¢ Then (/(T/F) CE(T/F).

Stabilization of the elliptiec regular terms: Let f = va be a function on

G(A) of the usual type to which one applies the trace formula. Assume that
-1
f(zg) =& (2)f(g) for all z € Z(A), where Z is the center of G and & is

a character of Z(F)\Z(A) . The elliptic regular term of the trace formula is:

7
E(f) = Z cS(«()'1 meas (Z(A)G_(FI\G_(A))®(y,£)
{y} elliptic Y Y

where ' denotes a sum of regular elements, {y} ranges over the elliptic
regular conjugacy classes in Z(F)\G(F), and &(y) is the index of Z(F)\GY(F)

in the centralizer of v in Z(F)\G(F) . Set:

Q;’,(T,G) = the Weyl group of T in G(F)

0_(T,G) = the Weyl group of T in G(F)

F

QF(T,G) = {w ¢ QF(T’G) t t —— w_ltw is defined over F}

-1

o = o o -1 =
QF(T,G)Y = {w € SZF(T,G) s wo oywy € zZ(F)}

for y regular in T{F) .
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For v € T'(F), &(y) = [Q;(T,G)Y[ and the conjugacy class of vy modulo
Z(F) intersects Z(F)\T(F) in [Qg(T,G)IS(y)_l points. Hence, if C]G is a

set of representatives for the conjugacy classes of CSG's in G, we have

i
E(f) = :E: {Qg(T,G)I-lmeas(Z(A)T(F)\I(A)) EE:- oy, £)
TE D, Y€ Z(FNTI(F)

where I' means sum over regular elements. For § E,iTQT/F) and vy € T(F),
-1 =1

let ’I‘(S and Y6 denote h Th and h +yh where h € O)(T) is any element

representing ¢§ . It suffices that ‘Is and 'YS are defined up to G(F)-

conjugacy because the orbital integral

2(y%,8) = f
h

depends only on §.

» £(g" 'h”'yhg)dg
T(AYR\G(A)

Given a stable conjugacy class {T}St of CSG's and T, € {T}St, the

number of To—conjugates of the form 'TG for § € i%fT/F) is equal to

195(T,6)
|2(T,6) |
and hence we may write:
i
E(f) = Z [QF(T,G){"l meas (Z(A)T(FI\G(A)) Z ; ®(y5,f)
S st YEZ(FINT(F) S€(T/F)

TE;;G
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where /J(s;t is a set of representatives for the stable conjugacy classes of

CSG's of G.

Now fix Tféfjét and vy € Z(F)\T(F) and consider the sum

> eyd,n .

§ € J(T/F)

Set:
Jr/ay = o 5(/r,)
v v
E(1/8) = 9E(T/F )
v v
We have:

Sam — Jrm)

f [

11)T
ES(T/F) —=— E(T/A)

and since @(ys,f) = H@(Ys,fv) , it is clear that @(yc,f) depends only on
v
the image of & under wT.
Let Ei(T/F) be the set of characters of & (T/A) which are trivial on
wT(LﬁkT/F)). By Tate~Nakayama duality, IKer wTI < © and EEKT/A):¢EXE(T/F)) < @,

The following two lemmas are proved in [1].

o4
Lemma 8.2: Let & € & (T/F) and suppose that WT(S)E +/(T/A) . Then

5 €. 5(1/7) .

$
Lemma 8.3: The set of places v of F such that &(y v,fv) # 0 for some
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8y gﬁfT/Fv) with §_ # 1 is finite.
fovg & §
For & € &(T/F) - J(T/F) (resp. § €E(T/F)) - AT/F ), set o(y ,£) =0

(resp. @(Yé,fv) = 0). The orthogonality relations for finite abelian groups

give:

> oy, = Y > w®eGS,n

dezm(wT) k€ R(T/F) SEE(T/A)

where convergence of the right-hand side is assured by Lemma 8.3. By Lemma

8.2, @(Yé,f) depends only on \bT(S) for § € £(T/F) . Hence

S0 = [rerug] D > ket .

§ €&(T/F) < € R(T/F) 8 € S(1/4)

For v a place of F and K, @ character of E(T/Fv), set

T/
o) v(y,f) = Z K(5)®(Y6,f)
dét(T/Fv)

For K« E\{;\(T/F) ,» let kg be the restriction of « to E(T/FV). Then

Lemma 8.3 gives:

8Ty, 8y = > < (8)0(+S, £)
SEE (T/A)

T/«

where @T/K(y,f) =10 V(y,fv). This proves the next proposition.
v

Proposition 8.4:

|Ker U, |meas(Z(A)T(FI\T(A)) /
E(f) = Z : Z Z o™y, ) .

Te’lzt [, (T,0)] * | R(1/B)] € ZINIE) we ReT/E)




-27~-

Twisted conjugacy:

Recall that G = Res (G) . Since G is isomorphic to GL; over F,

E/F
G is a twisted form of GL, x GL; . The action of 6-3: on GL,; x GL, which

defines G is: ((g,,8,) € GL,(F) x GL,(F))

[}
el

(1(g,), 1(g,)) if T
) E

(glygz) l"'—'_—‘*

[
Q

(Igy), gy if 71
E

0 01
where 1(g) = 0 1("g”™)¢ for g ¢ GL,(F) and © = (o -1 0). For g € GL,(F),
1 00

1

o(g) will denote d)-lc(tg_ )¢ . We have

G(F) = {(g,0(g)) :g €GLs(E)} .

Let o be the automorphism of G which interchanges the GL,-factors:

a((gl,gz)) = (gz,gl) . Then G embeds in G as the fixed point set of &, i.e.,

{(g,8) € G} and

[0}
1l

G(F) = {(g,g) € GL3(E) x GL;(E) :5(g) = g} .

We define a norm map

~ ~

N: G ———> G

g > galg) .

If we identify a(}?) with GL,(E) by projection onto the first factor, then
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N on GL,(E) is the map g +—> go(g) .

Lemma 8.5: Let g = (gl,g(gl)) € G(F) . Then the E(F)-conjugacy class of

N(g) intersects G(F) in a unigque stable conjugacy class.

Proof: N(g) = (gla(gl),gf(gl)gl) and glc?(gl) € GL,(E) . Since E(glg(gl)) =
gzl(gla(g))gl , the conjugacy class of g18(g1) in G(E) = GL,(E) is defined
over F and hence Kottwitz's theorem implies that there is an x € GLg(ﬁ)
such that x_l(gla(gl))x € G(F). Let h = (x,a(gl)x). Then

h-lN(g)h € G(F) C G(F) and so the a(F)-conjugacy class of N(g) intersects
G(F) . If (y,,y,) and (y,,y,) in G(F) are both G(F)-conjugate to N(g), it

is clear that y and y, are G(F) = GL,(F)-conjugate and the lemma follows.
1 2 3

This lemma gives a map
G(F) ——— {stable conjugacy classes in G(F) } .
To describe the fibers of the map, we make the following definitions.

Definition: Let Y, o Y, € G(F). We call Yy, and v, twisted conjugate

(t-conjugate for short) if there is a g € G(F) such that g-lyla(g) =y,

and twisted stably conjugate (tst-conjugate for short) if such a g ¢ G(F)

exists.

. -1 -1 S .
Since N(x wvyoa(x)) = x N(y)x, it is clear that the fibers of the

above map are tst-conjugacy classes. Let

“H : {tst-conjugate classes in 6(?)} ~—s {st-conjugacy classes in G(F) }

¢

be the resulting map. ¥For vy £ G(F), let {v} denote the tst~-conjugacy

tst

class of v . We will write H(y) = Y, to indicate that 11({y}tst) = {Yo}st'
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For vy = (yl s Yz) € G(F) s set
G, = {8 €Cig vale) = v} .

The group Gya is defined over F since o 1is, and if (gl,gz) < Gay , then

-1 . . . .
g, N(y)g, = N(y). Projection onto the first factor gives an isomorphism

~

G —r G defined over F.
Yo Y

If v,,7, € G(F) and g € G(F) is such that g-lyla(g) =Y, then
{a, = a(g)g 1€ Ker{H"(UT,aYOL) — BN, .

Denote this kernel by Agg(y/F); it parametrizes the t-conjugacy classes within

the tst-conjugacy class of vy.

Stabilization of the twisted elliptic term

For the purposes of the trace formula, we deal only with the F-points
G and it is convenient to deal instead with G(E) = G(F) = GL3(E) . The center

of G(E) is Z(E) = E* and the norm map on Z is:

N: Z(E) — Z(F)

z b—— z/z

We also have N: Z(AE) —> Z(A) . Let é =& N where £ 1is a character of
Z(FI\Z(A) and let ¢ = II¢v be a function on G(AE) of the type to which we
v

~ =1
can apply the trace formula and assume that ¢(zg) = £(z) o¢(g) .

Let £ be a set of representatives for the t-conjugacy classes of

v € G(E) such that H(y) is elliptic regular, taken module Z(E).
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We are interested first in the contribution from £ to the trace formula

applied to the kernel

Zd,)(g—lyoc(h))

As a function along the diagonal g = h, it is invariant under Z(AE) since

E(z7'5(2)) = 1 for all z € Z(a) . Set

2, (vs0) = f . o(g7 Y5 (8)dg
Z(AE)G&Y(A)\G(AE)

o (y:0) = /: . L e y8(e)de
Z(Fv)Gow(nv)\G(Fv)

Let Sa(y) be the index of Z(E)auY(F) in the a~centralizer of vy in

Z(ENG(F) . Let

-1 ~ ~
TE(9) = :E: S (v) meas(Z(A)G (FNG,  (4))0 (y,f)
o oy ay a
Yeg
This is the contribution of £ to the twisted trace formula. For the next
proposition, recall that fjét is a set of representatives for the st-conjugacy

classes of CSG's of G.

Let F* = {(z,1):G(F): z € F*} . Then we have a map F* —s £9;(Y/F)

6(z) _

which sends (z,1) to &(z) = {G((z,l))(z,l)_l} and vy zy . If

§ € }Sg(y/F) is represented by {G(g)g—l} , then &(z)8 is represented by

6(z)8 = zy6 . Hence F* acts on A?(%/F)- Let L};<Y/F) be

g((z,1)g) and ¥y
the set of orbits of F* in 4ﬁsﬁy/F) . Since & is trivial on {z € Z(E):N(z) =1} =
{z € Z(E) 1z ¢ F¥} , the twisted orbital integral @a(ys,f) depends only on

the image of § in /t?;(Y/F)-
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Proposition 8.6:

TE(d) = Z Z [QF<T,G);"lmeas<z(A)T(F)\T(A) Z @&(Yé,ﬁ
. G’J(S;t Y, € Z(FINI(F) 8€ S (v/F)

where the last sum is defined by any vy € G(F) such that Hy) = Y, (it equals

zero if {yo} is not in the image of “F}).
st

Proof: For vy € G(F) and Y, € T(F) such that 1](y) = Y, » set

2p(T,0).

{g € G(F) : g-lyo gYD—IG Z(F)}/Gy(ﬁ)
0

() = {g € 6(H g yale)y € 2B /FE (D) .

Lemma 8.7: The map Q{(y) — QF(T,G),Yo given by projecting g = (gl,gz) € Qy)
to the first factor g, is an isomorphism.

Proof: If g = (gl,gz) represents an element of {(y) is such that

g_lya(g) = zy for some 2z &£ Z(E), then gIIN(Y)gl = (z/z)N(y) . Hence

g, € Gy(f) if and only if z ¢ F¥ C z(E) . If g:lN(Y)g1 = (z/z)N(y)

(every element in Z(F) is of the form (z/z) for =z € E¥), then g = (gl,gz)
satisfies g—lycc(g) = zy, where g, = y:1g12Y1 and vy = (Yl ,S(Yl)) € G(F) .

To see that the map is an isomorphism, we have to show that if g—lya(g) = zvy

with z € P , then g &€ §*GYQ(§) and this is clear.

Now let

2’ (y) = {g € &®) 1g vale)y € Z(BIH/Z(EE (F)
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It is clear that [QO(Y)] = 6@(\{) . If g € G(F) is such that g—lycx(g) = zy

*
with z ¢ F , then z € N (%) , as one sees by taking determinants:

E/F

z = NE/F(det(g))-lz—z. Therefore, the obvious map SZO(Y) —> Q(y) 1is injective.

To prove the proposition, note that in the sum over Z(F)\T(F), a given
stable conjugacy class {Yo} occurs {QF(T,G)]»[QF(T,G)Y [—1 - times. Let 6&(“{6)
be the number of §,€ %(Y/F) such that y61 is t-congugate to zy(S for some
z € Z2Z(E). It will suffice to show that [QF(T,G)YO[ = 6@(*{6)6&(\{5) , or, by the
above, that 6&(7) = [Q(y): Qo(y)]. (we may take 6 = 1). This is clear from

the definition of /9;(\{/]5') .

§9. Conjugacy classes in G

For later use, it will be convenient to have a list of the stable
conjugacy classes of CSG's in G. Let A be a fixed CSG of G; for the next
Proposition, G can be any connected reductive group. If T is any other CSG,
there is a g € G(F) such that g—lAg = T (the map t —> g—ltg is not, in
general, defined over F). Hence {ac = G(g)g—l} € Hl(a-i,ﬁ) where N is the
normalizer of A in G(F). It is easy to check that {aa} determines the

G(F)~-conjugacy class of T. Let Q be the Weyl group of A in G(F) and let
1, = 1 — =
v E @GN — 5 (57,0

be the natural map.

Both @-3: and {} act on A and the character group X*(A) = Hom(4,GL{1)) .

_ 1 vewem - . ) . ~ ;— * Y
A cocyle o = {ac} € 5 (L, W) defines a twisted action of };(_ on X“(A):

gla) = ag-a(a) for o € XF(A)
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and hence o = {ac} defines a form Aa of A.

Proposition 9.1:

(a) Let T, ,T, be CSG's of .G associated to cocycles a,; ,Q, € Hl(c_j,ﬁ) .

Then T, and T, are st-conjugate if and only if Y(a,) = ¥(a,) .

(b) If G is quasi-split, then every a € Hl(g}-,ﬁ) is of the form y(a)
where @ arises from a CSG of G, i.e., o = P(a) for some a € Ker{Hl(@,ﬁ)-—»

B (§],6)}

Proof: Part (a) follows easily from the definitions. For (b), suppose

a € Hl(éa—_,ﬁ) and let A& be the twisted form of A that it defines. Let

Y € A&(F) be regular. There is an isomorphism q::A&(ﬁ) — Ad(ﬁ) and

o (y) € AO‘(‘-F-) is regular. Furthermore, o(¢(y)) = agtb(y)a;l for all 0 € a,
where o = {ag} . Hence the conjugacy class of ¢(y) is defined over F. By

Steinberg's theorem, G(F) contains an element Y in the G(F)-conjugacy

of y if G is quasi-split. The CSG G_ then corresponds to the cocycle a.
0

We now consider the quasi-split unitary group in three variables G = U,

with respect to a local or global quadratic extension E/F. We may assume

that U, is the unitary group of the Hermitian form @ = (8 _g é) (it 1is
1 00
001
isomorphic to the unitary group of the form (O 1 0})). Let A be the diagonal
100

subgroup of G. Then W is isomorphic to the symmetric group S, . Let
0 01 01 ¢ -1 00

w=<0-10> wl=(10 O> w2=<001> .
1 00 00 -1 010

The elements lie in N and we identify W with S, by mapping w,w, ,w, to
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the transpositions (13) , (12) , (23) respectively. The Galois group %_ acts

on G as follows:

w (i) v if T =0
E

T:g b—>

i}
oy

T({g) if Ti
E

where @(E/F) = {1,0} . Under the identification of W with Sy, T € Ei

acts on S, trivially if T| =1 and if T! =0
‘B E
(13) > (13)
T (12) r—— (23)

(23) +— (12) .

Let T be a CSG of G and let L be the centralizer of T in M,(E) .
Since L is a maximal, commutative, semi-simple subalgebra of MS(E) , 1t 1is

isomorphic to a direct sum of field extensions of E and the possibilities are:

(1) L=EQ@EQE

K®E with XK/E quadratic

(2) L
(3) L is a cubic extension of E.

To state what we need about stable conjugacy classes of CSG's, we first
. . . .
define some tori. Recall that E 1is defined as the kernel of the norm map
N :ResE/F(Gm) — Gm . Let Kl/F be a quadratic extension with K, # E and
let K =K E, so that @;L(K/F) = (Z/Z)2 . Let Gl,Tle(}J(K/F) be such that K,

is the fixed field of o, and E 1is the fixed field of Tl . Define a two-

" dimensional torus TK over F by the exact sequence:
1
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Ny /x
—_— TK —_— ReSK/F(Gﬁ) ——ils Res

1 (E) —>]

K
1

where NK/ is the map (1 +c51).

X

If L/E is a cubic extension with an automorphism o € Aut(L) of order

~

two whose restriction to E is o, let 17 be the fixed field of O and define

TL by the exact sequence

| — T. —> Res

L L/p(6) — Res 5 (6) — |

L°/F

where N is the map (1 +0). Then TL is a torus of dimension three over F.

Proposition 8.4: Let T be a CSG of G. Then T is isomorphic to one of

the following types:

- 1 ‘ . ,
Q) A= ResE/F(Gm) x E (the CSG contained in B)
(1) E! xE! xE!

(2) TK x E! where Kl/F is quadratic with K, # E.
1

(3) TL where L/E i1is a cubic extension with an automorphism o £ Aut(L)

of order two whose restriction to E is o.

Furthermore, in cases (0), (1), and (2), the stable conjugacy class of T is

™

determined by the isomorphism class of T as a torus over F.

Proof: By Lemma 8.3, the stable conjugacy classes of CSG's are parametrized
by H'(& ,W). Let T be a CSG of G and let L be the centralizer of T in

M,(E). We consider three cases separately.

Case (i): L =E®E®E. Then T splits over E and {T}st is determined
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by a cocycle in Hl(QQ,(E/F),W) , 1.2., by an element agé W such that

=1, (123), (132), or (13) and since

ac-g(ag) = 1. The possibilities are ag

0((12))(123)(12) = ¢((23))(132)(23) = 1, the choices a_ = (123) or (132) are
cohomologous. to a, = 1. Hence we may assume that a; = 1 or a, = (13) . 1If

a_ = 1, then {T}St = {A} and if a = (13) , then the twisted action of g cn
X*(A) is the multiplication by -1 . This is clear since the map a;*0 on the

diagonal subgroup is g b— g—1 . So in this case, T = TE! xE! xE!.

Lemma 8.5: Let T be a CSG of G and let K/E be the splitting field of T.

Let K' be the Galois closure of K over E. Then K 1is Galois over F.

. . -1
Proof: The involution gpr— O t

o(g)® stabilizes T(F), hence L, and
induces an automorphism ¢' of K whose restriction to E is o . It follows

that K' is stable under &{ .
"

Case (11): 1In this case, T splits over K with X/E quadratic. By Lemma 8.4,
K/F 1is Galois and hence EEL(K/F) =Z/2 @ Z/2 or Z/4 . We first show that
Z/4 cannot occur. If it did and if T, Wwere a generator of C%Z(K/F) , then T%

would act trivially on E. The cocycle {aT} € Hl(C‘g(K/F),‘v-J) associated to T

would satisfy (a 2)2 = (To(aT Ja_ )? =1 which implies that a_ = 1 or (13)
2
Yo 0 1] 0

(the cases (123) and (132) are cohomologous to a_ = 1 as in Case (i)).

0

Hence a_2t =1 and T splits over E, which is Case (i). Hence /Jg_(K/F) =
0

zZ/2 ®Z/2 . Let o, and T, generate %{K/F) with 01{ = g and Tl[ =1.
B E E

Then

a = a = g, {a_)a = a_a or

0,7, T,0, 1 70, g, T,

“M(o,(a_ Na a

a = °
acl 91 1,77 0, T,
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Up to coboundaries, the possibilities are

(1) a =1 a (13) a
g, T, 0,1,

(13)

It
[]

(2) a

n
~
[
W
[

L}

(13) a =1
9, T 9,0

and since 0, and 0,;T, both induce ¢ on E, their roies may be interchanged
and we may assume the cocycle has the form (2). Let K, be the fixed field

of 0, in K. It is easy to check that T is isomorphic to TK xE! .
"1

. . . . -1 .
Case (3) is clear since the involution g — & tc(g)@ induces an

automorphism ¢ of order two on L whose restriction to E is o.



