Notes II for the seminar "Analytical Aspects of the Trace Formula II"

Stable Conjugacy, Stable Trace Formula J. Rogawski

§8. Stable conjugacy, twisted conjugacy

- [1] Langlands, Les débuts d'une formule des traces stable
 Pub. Math., Paris VII
- [2] Langlands, Stable conjugacy, definitions and lemmas
 Can. J., 31 (1979)
- [3] Kottwitz, Rational conjugacy classes in reductive groups

 Duke J., 49, No. 4 (1982)

In order to compare the trace formulas of different groups, we need a way of matching conjugacy classes in different groups.

Example: Let G and G* be connected reductive groups over F and let $\overline{\varphi} = \operatorname{Gal}(\overline{F}/F)$. Then $\overline{\varphi}$ acts on $\operatorname{Hom}_{\overline{F}}(G,G^*)$. Let $G \xrightarrow{\psi} G^*$ be an isomorphism defined over \overline{F} and suppose that $\sigma \psi = \psi \circ \operatorname{ad}(g_{\sigma})$ for some $g_{\sigma} \in G(\overline{F})$, for all $\sigma \in \overline{\varphi}$. Then G is an inner form of G* and for all $\gamma \in G(F)$, $\psi(g_{\sigma}\gamma g_{\sigma}^{-1}) = \sigma \psi(\gamma) = \sigma(\psi(\gamma))$ and hence $\psi(\gamma)$ and $\sigma(\psi(\gamma))$ are conjugate in $G^*(\overline{F})$. In other words, the conjugacy class of $\psi(\gamma)$ is defined over F and we have a map

{Conjugacy classes in G(F)} $\xrightarrow{\psi}$ {Conjugacy classes in $G^*(\overline{F})$ which are defined over F} .

If $\{\gamma\}, \{\gamma'\}$ are conjugacy classes in G(F), then $\psi(\{\gamma\}) = \psi(\{\gamma'\})$ if and only if γ and γ' are conjugate in $G(\overline{F})$.

Kottwitz's Theorem ([3]): If G is connected, reductive and quasi-split over F, and if the derived group of G is simply-connected, then every conjugacy class in $G(\overline{F})$ which is defined over F intersects G(F).

<u>Definition</u>: Let G be connected, reductive, quasi-split over F with simply connected derived group. We say that γ and γ' in G(F) are <u>stably conjugate</u> if they are conjugate in $G(\overline{F})$ (abbreviation: st-conjugate).

In the above example $G \xrightarrow{\psi} G^*$ with $\psi^{-1} \circ \sigma \psi$ an inner automorphism for all $\sigma \in \overline{\mathcal{G}}$, Kottwitz's theorem shows that if the derived group of G^* is simply-connected and G^* is quasi-split, then we obtain an injection

 $\{ \texttt{stable conj. classes in } \mathsf{G} \} \xrightarrow{} \{ \texttt{stable conj. classes in } \mathsf{G}^{\bigstar} \}$

$$G(F) \cap \{g^{-1}\gamma g : g \in G(\overline{F})\} \xrightarrow{} G^{*}(F) \cap \{g^{-1}\psi(\gamma)g : g \in G^{*}(\overline{F})\}$$

Parametrization of conjugacy classes in a stable class: If $\gamma, \gamma' \in G(\overline{F})$ and $g^{-1}\gamma g = \gamma'$ for some $g \in G(\overline{F})$, then by applying $\sigma \in \overline{\mathcal{G}}$ to this equality we see that $\sigma(g)g^{-1} \in G_{\gamma}(\overline{F})$ where G_{γ} is the centralizer of γ , and $\{a_{\sigma} = \sigma(g)g^{-1}\}$ is a cocycle in $H^{1}(\overline{\mathcal{G}_{\Gamma}}, G_{\gamma})$ whose image in $H^{1}(\overline{\mathcal{G}_{\Gamma}}, G)$ is trivial. The next lemma is easy to check.

Lemma 8.1: Let $\gamma \in G(F)$. The set of G(F)-conjugacy classes within the stable conjugacy class of γ is parametrized by the set:

$$\mathcal{J}(\gamma/F) = \text{Ker}\{H^1(\overline{G}_j,G_{\gamma}) \longrightarrow H^1(\overline{G}_j,G)\}$$

Let G^{sc} denote the simply-connected covering group of the derived group G^{der} of G and for any $\gamma \in G$, let G^{sc}_{γ} denote the centralizer in G^{sc} of γ under the map $G^{sc} \longrightarrow Ad(G)$. Then $G^{sc}_{\gamma} \longrightarrow G_{\gamma}$ by restricting the map $G^{sc} \longrightarrow G^{der}$. Let

$$\mathcal{E}(\gamma/F) = \text{Image of } H^1(\overline{\mathcal{G}_{\gamma}}, G_{\gamma}^{SC}) \text{ in } H^1(\overline{\mathcal{G}_{\gamma}}, G_{\gamma})$$
.

Then it is easy to see that $\mathcal{J}(\gamma/F) \subset \mathcal{E}(\gamma/F)$: the images of $G^{sc}(\overline{F})$ and $G(\overline{F})$ in the adjoint group coincide.

From now on we use $\ensuremath{\mathsf{CSG}}$ to abbreviate "Cartan subgroup of G defined over F."

<u>Definition</u>: Let T_1 and T_2 be CSG's of G. We say that T_1 and T_2 are stably conjugate if there is a $g \in G(\overline{F})$ such that $T_2 = g^{-1}T_1g$ and the map $t \mapsto g^{-1}t_g$ is defined over F (equivalently, T_1 and T_2 are stably conjugate if some regular element of $T_1(F)$ is stably conjugate to an element of $T_2(F)$.

For T a CSG of G, set

$$\mathcal{O}(T) = \{g \in G(\overline{F}): g^{-1}Tg \text{ and } t \longrightarrow g^{-1}tg \text{ are defined over } F\}$$
.

Set: $\mathcal{O}(T/F) = T(\overline{F}) \setminus \mathcal{O}(T)/G(F)$. It is easy to check that the map

$$\mathcal{S}(T/F) \longrightarrow Ker\{H^1(\overline{\mathcal{G}},T) \longrightarrow H^1(\overline{\mathcal{G}},G)\}$$

$$g \longmapsto \{a_{\sigma} = \sigma(g)g^{-1}\}$$

is a bijection and identifies $\mathcal{G}(T/F)$ with $\mathcal{J}(\gamma/F)$ for any regular $\gamma \in T(F)$. Let

$$\mathcal{E}(T/F) = \text{Image of } H^1(\overline{\mathcal{G}}, T^{sc}) \text{ in } H^1(\overline{\mathcal{G}}, T)$$

where T^{SC} is the inverse image of $T^{SC} \cap G^{der}$ in G^{SC} . Then $\mathcal{S}(T/F) \subset \mathbb{E}(T/F)$. Stabilization of the elliptic regular terms: Let $f = \prod_V f_V$ be a function on G(A) of the usual type to which one applies the trace formula. Assume that $f(zg) = \xi^{-1}(z)f(g)$ for all $z \in Z(A)$, where Z is the center of G and G is a character of $Z(F) \setminus Z(A)$. The elliptic regular term of the trace formula is:

$$E(f) = \sum_{\{\gamma\} \text{ elliptic}} \delta(\gamma)^{-1} \operatorname{meas}(Z(A)G_{\gamma}(F)\backslash G_{\gamma}(A))\Phi(\gamma, f)$$

where Σ' denotes a sum of regular elements, $\{\gamma\}$ ranges over the elliptic regular conjugacy classes in $Z(F)\backslash G(F)$, and $\delta(\gamma)$ is the index of $Z(F)\backslash G_{\gamma}(F)$ in the centralizer of γ in $Z(F)\backslash G(F)$. Set:

$$\Omega_{F}^{\circ}(T,G)$$
 = the Weyl group of T in G(F)

$$\Omega_{\overline{F}}(T,G)$$
 = the Weyl group of T in $G(\overline{F})$

$$\Omega_{\overline{F}}(T,G) = \{ w \in \Omega_{\overline{\overline{F}}}(T,G) : t \longmapsto w^{-1} tw \text{ is defined over } F \}$$

$$\Omega_{\mathbf{F}}^{\circ}(\mathbf{T},\mathbf{G})_{\gamma} = \{ \mathbf{w} \in \Omega_{\mathbf{F}}^{\circ}(\mathbf{T},\mathbf{G}) : \mathbf{w}^{-1} \gamma \mathbf{w} \gamma^{-1} \in \mathbf{Z}(\mathbf{F}) \}$$

for γ regular in T(F).

For $\gamma \in T'(F)$, $\delta(\gamma) = \left|\Omega_F^{\circ}(T,G)_{\gamma}\right|$ and the conjugacy class of γ modulo Z(F) intersects $Z(F)\backslash T(F)$ in $\left|\Omega_F^{\circ}(T,G)\right|\delta(\gamma)^{-1}$ points. Hence, if \mathcal{I}_G is a set of representatives for the conjugacy classes of CSG's in G, we have

$$E(f) = \sum_{T \in \mathcal{T}_{G}} \left| \Omega_{F}^{\circ}(T,G) \right|^{-1} meas(Z(A)T(F)\backslash T(A)) \sum_{\gamma \in Z(F)\backslash T(F)} \Phi(\gamma,f) .$$

where Σ' means sum over regular elements. For $\delta \in \mathcal{N}(T/F)$ and $\gamma \in T(F)$, let T^{δ} and γ^{δ} denote $h^{-1}Th$ and $h^{-1}\gamma h$ where $h \in \mathcal{O}(T)$ is any element representing δ . It suffices that T^{δ} and γ^{δ} are defined up to G(F)-conjugacy because the orbital integral

$$\Phi(\gamma^{\delta}, f) = \int_{h^{-1}T(\mathbb{A})h\backslash G(\mathbb{A})} f(g^{-1}h^{-1}\gamma hg)dg$$

depends only on δ .

Given a stable conjugacy class $\{T\}_{st}$ of CSG's and $T_0 \in \{T\}_{st}$, the number of T_0 -conjugates of the form T^δ for $\delta \in \mathcal{J}(T/F)$ is equal to

$$\frac{\left|\Omega_{F}^{(T,G)}\right|}{\left|\Omega_{F}^{\circ}(T,G)\right|}$$

and hence we may write:

$$E(f) = \sum_{T \in \mathcal{J}_{G}} |\Omega_{F}(T,G)|^{-1} \max(Z(A)T(F)\backslash G(A)) \sum_{\gamma \in Z(F)\backslash T(F)} \sum_{\delta \in \mathcal{J}(T/F)} \Phi(\gamma^{\delta}, f)$$

where $\mathcal{J}_G^{\,\text{st}}$ is a set of representatives for the stable conjugacy classes of CSG's of G.

Now fix $T \in \mathcal{J}_G^{\text{st}}$ and $\gamma \in Z(F) \setminus T(F)$ and consider the sum

$$\sum_{\delta \in \mathcal{J}(\mathtt{T}/\mathtt{F})} \Phi(\gamma^{\delta},\mathtt{f}) \quad .$$

Set:

$$\mathcal{S}(T/\mathbb{A}) = \underset{\mathsf{v}}{\oplus} \mathcal{S}(T/\mathbb{F}_{\mathsf{v}})$$

$$\mathcal{E}(T/A) = \underset{v}{\oplus} \mathcal{E}(T/F_{v}) .$$

We have:

$$\mathcal{J}(T/F) \longrightarrow \mathcal{J}(T/A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\xi(T/F) \xrightarrow{\psi_{T}} \xi(T/A)$$

and since $\Phi(\gamma^{\delta}, f) = \prod_{\mathbf{v}} \Phi(\gamma^{\delta}, f_{\mathbf{v}})$, it is clear that $\Phi(\gamma^{\delta}, f)$ depends only on the image of δ under ψ_T .

Let $\widehat{\mathbb{R}}(T/F)$ be the set of characters of $\widehat{\mathbb{E}}(T/A)$ which are trivial on $\psi_T(\mathcal{J}(T/F))$. By Tate-Nakayama duality, $|\mathrm{Ker}\ \psi_T|<\infty$ and $|\widehat{\mathbb{E}}(T/A):\psi_T(\widehat{\mathbb{E}}(T/F))<\infty$. The following two lemmas are proved in [1].

Lemma 8.2: Let $\delta \in \mathcal{E}(T/F)$ and suppose that $\psi_T(\delta) \in \mathcal{N}(T/A)$. Then $\delta \in \mathcal{N}(T/F)$.

<u>Lemma</u> 8.3: The set of places v of F such that $\Phi(\gamma^{\delta}v, f_{v}) \neq 0$ for some

 $\delta_{\mathbf{v}} \in \mathcal{S}(\mathsf{T}/\mathsf{F}_{\mathbf{v}})$ with $\delta_{\mathbf{v}} \neq 1$ is finite.

For $\delta \in \mathcal{E}(T/F) - \mathcal{J}(T/F)$ (resp. $\delta \in \mathcal{E}(T/F_v) - \mathcal{J}(T/F_v)$), set $\Phi(\gamma^{\delta}, f) = 0$ (resp. $\Phi(\gamma^{\delta}, f_v) = 0$). The orthogonality relations for finite abelian groups give:

$$\sum_{\delta \in \operatorname{Im}(\psi_{\mathtt{T}})} \Phi(\gamma^{\delta}, \mathtt{f}) \ = \ \sum_{\kappa \in \ \overleftarrow{\mathbb{R}}(\mathtt{T}/\mathtt{F})} \ \sum_{\delta \in \ \overleftarrow{\mathbb{E}}(\mathtt{T}/\mathtt{A})} \kappa(\delta) \Phi(\gamma^{\delta}, \mathtt{f}) \ ,$$

where convergence of the right-hand side is assured by Lemma 8.3. By Lemma 8.2, $\Phi(\gamma^{\delta},f)$ depends only on $\psi_{T}(\delta)$ for $\delta\in E(T/F)$. Hence

$$\sum_{\delta \in \mathbf{E}(\mathsf{T}/\mathsf{F})} \Phi(\gamma^{\delta}, \mathsf{f}) \; = \; \left| \mathsf{Ker} \; \psi_{\mathsf{T}} \right| \sum_{\kappa \in \left[\mathsf{E}(\mathsf{T}/\mathsf{F}) \; \delta \right]} \sum_{\delta \in \left[\mathsf{E}(\mathsf{T}/\mathsf{A}) \right]} \kappa(\delta) \Phi(\gamma^{\delta}, \mathsf{f}) \; .$$

For v a place of F and κ_{v} a character of $\mathcal{E}(T/F_{v})$, set

$$\Phi^{T/\kappa} \mathbf{v}_{(\gamma,f)} = \sum_{\delta \in \mathcal{E}(T/F_{\mathbf{v}})} \kappa(\delta) \Phi(\gamma^{\delta}, f) .$$

For $\kappa \in \mathbb{R}(T/F)$, let κ_v be the restriction of κ to $\mathbb{E}(T/F_v)$. Then Lemma 8.3 gives:

$$\Phi^{T/\kappa}(\gamma, f) = \sum_{\delta \in \mathcal{E}(T/\mathbb{A})} \kappa(\delta) \Phi(\gamma^{\delta}, f)$$

where $\Phi^{T/K}(\gamma, f) = \prod_{v} \Phi^{V}(\gamma, f_{v})$. This proves the next proposition.

Proposition 8.4:

$$\text{E(f)} \ = \ \sum_{\text{T} \in \mathcal{T}_{\text{G}}} \frac{\left| \text{Ker} \ \psi_{\text{T}} \middle| \text{meas}(\text{Z}(\texttt{A})\text{T}(\text{F}) \backslash \text{T}(\texttt{A}) \right)}{\left| \Omega_{\text{F}}(\text{T,G}) \middle| \cdot \middle| \not| \left| \not| \left| \right| \right| \right| \right| \right| \right| \right| \right| \right| \right|}{\gamma \in \text{Z(F)} \backslash \text{T(F)}} \sum_{\kappa \in \mathcal{K}(\text{T/F})}^{\prime} \Phi^{\text{T/K}}(\gamma, f) \ .$$

Twisted conjugacy:

Recall that $\widetilde{G}=\operatorname{Res}_{E/F}(G)$. Since G is isomorphic to GL_3 over \overline{F} , \widetilde{G} is a twisted form of $\operatorname{GL}_3\times\operatorname{GL}_3$. The action of G on $\operatorname{GL}_3\times\operatorname{GL}_3$ which defines \widetilde{G} is: $((g_1,g_2)\in\operatorname{GL}_3(\overline{F})\times\operatorname{GL}_3(\overline{F}))$

$$\left\{ \begin{array}{c} (\tau(g_1), \tau(g_2)) & \text{if } \tau|_E = 1 \\ \\ (\tilde{\tau}(g_2), \tilde{\tau}(g_1)) & \text{if } \tau|_E = \sigma \end{array} \right.$$

where $\tilde{\tau}(g) = \Phi^{-1} \tau({}^t g^{-1}) \Phi$ for $g \in GL_3(\overline{F})$ and $\Phi = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. For $g \in GL_3(F)$, $\tilde{\sigma}(g)$ will denote $\Phi^{-1} \sigma({}^t g^{-1}) \Phi$. We have

$$\widetilde{G}(F) = \{(g, \widetilde{\sigma}(g)) : g \in GL_3(E)\}$$
.

Let α be the automorphism of \tilde{G} which interchanges the GL_3 -factors: $\alpha((g_1,g_2))=(g_2,g_1) \text{.} \text{ Then } G \text{ embeds in } \tilde{G} \text{ as the fixed point set of } \alpha \text{, i.e.,}$

$$G = \{(g,g) \in \widetilde{G}\} \qquad \text{and}$$

$$G(F) = \{(g,g) \in GL_3(E) \times GL_3(E) : \widetilde{\sigma}(g) = g\} .$$

We define a norm map

$$\begin{array}{ccc} N: & \widetilde{G} & \longrightarrow & \widetilde{G} \\ & & & & & \\ g & \longmapsto & g\alpha(g) \end{array}$$

If we identify $\widetilde{G}(F)$ with $\operatorname{GL}_3(E)$ by projection onto the first factor, then

N on ${\rm GL}_3({\rm E})$ is the map ${\rm g} \longmapsto {\rm g} \widetilde{\sigma}({\rm g})$.

<u>Lemma 8.5</u>: Let $g = (g_1, \tilde{\sigma}(g_1)) \in \tilde{G}(F)$. Then the $\tilde{G}(F)$ -conjugacy class of N(g) intersects G(F) in a unique stable conjugacy class.

<u>Proof:</u> $N(g) = (g_1\tilde{\sigma}(g_1),\tilde{\sigma}(g_1)g_1)$ and $g_1\tilde{\sigma}(g_1) \in GL_3(E)$. Since $\tilde{\sigma}(g_1\tilde{\sigma}(g_1)) = g_1^{-1}(g_1\tilde{\sigma}(g))g_1$, the conjugacy class of $g_1\tilde{\sigma}(g_1)$ in $G(E) = GL_3(E)$ is defined over F and hence Kottwitz's theorem implies that there is an $\mathbf{x} \in GL_3(\bar{F})$ such that $\mathbf{x}^{-1}(g_1\tilde{\sigma}(g_1))\mathbf{x} \in G(F)$. Let $\mathbf{h} = (\mathbf{x},\tilde{\sigma}(g_1)\mathbf{x})$. Then $\mathbf{h}^{-1}N(g)\mathbf{h} \in G(F) \subset \tilde{G}(F)$ and so the $\tilde{G}(F)$ -conjugacy class of N(g) intersects G(F). If (y_1,y_1) and (y_2,y_2) in G(F) are both $\tilde{G}(\bar{F})$ -conjugate to N(g), it is clear that y_1 and y_2 are $G(\bar{F}) = GL_3(\bar{F})$ -conjugate and the lemma follows.

This lemma gives a map

$$\widetilde{\mathsf{G}}(\mathsf{F}) \longrightarrow \{ \mathsf{stable} \ \mathsf{conjugacy} \ \mathsf{classes} \ \mathsf{in} \ \mathsf{G}(\mathsf{F}) \}$$
 .

To describe the fibers of the map, we make the following definitions.

<u>Definition</u>: Let γ_1 , $\gamma_2 \in \widetilde{G}(F)$. We call γ_1 and γ_2 twisted conjugate (t-conjugate for short) if there is a $g \in \widetilde{G}(F)$ such that $g^{-1}\gamma_1\alpha(g) = \gamma_2$ and twisted stably conjugate (tst-conjugate for short) if such a $g \in \widetilde{G}(\overline{F})$ exists.

Since $N(x^{-1}\gamma\alpha(x))=x^{-1}N(\gamma)x$, it is clear that the fibers of the above map are tst-conjugacy classes. Let

 $\label{eq:conjugate classes} & \text{$\widetilde{G}(\overline{F})$} \} & \longrightarrow \{\text{st-conjugacy classes in $G(\overline{F})$} \}$ be the resulting map. For $\gamma \in \widetilde{G}(F)$, let $\{\gamma\}_{\text{tst}}$ denote the tst-conjugacy class of γ . We will write $\mbox{$\mathcal{H}(\gamma) = \gamma_0$}$ to indicate that $\mbox{$\mathcal{H}(\{\gamma\}_{\text{tst}}) = \{\gamma_0\}_{\text{st}}$}$.

For $\gamma = (\gamma_1, \gamma_2) \in \tilde{G}(F)$, set

$$\tilde{G}_{\gamma\alpha} = \{g \in \tilde{G} : g^{-1}\gamma\alpha(g) = \gamma\}$$
.

The group $\tilde{G}_{\gamma\alpha}$ is defined over F since α is, and if $(g_1,g_2)\in \tilde{G}_{\alpha\gamma}$, then $g_1^{-1}N(\gamma)g_1=N(\gamma)$. Projection onto the first factor gives an isomorphism $\tilde{G}_{\gamma\alpha}\to G_{\gamma}$ defined over \bar{F} .

If γ_1 , $\gamma_2 \in \widetilde{G}(F)$ and $g \in \widetilde{G}(\overline{F})$ is such that $g^{-1}\gamma_1\alpha(g) = \gamma_2$, then

$$\{a_{\alpha} = \sigma(g)g^{-1}\} \in \operatorname{Ker}\{H^{1}(\overline{\mathfrak{H}},\widetilde{G}_{\gamma\alpha}) \longrightarrow H^{1}(\overline{\mathfrak{H}},\widetilde{G})\} .$$

Denote this kernel by $\mathcal{J}_{\alpha}(\gamma/F)$; it parametrizes the t-conjugacy classes within the tst-conjugacy class of γ .

Stabilization of the twisted elliptic term

For the purposes of the trace formula, we deal only with the F-points \widetilde{G} and it is convenient to deal instead with $G(E)=\widetilde{G}(F)=GL_3(E)$. The center of G(E) is $Z(E)=E^*$ and the norm map on Z is:

We also have N: $Z(\mathbb{A}_E) \longrightarrow Z(\mathbb{A})$. Let $\widetilde{\xi} = \xi$. N where ξ is a character of $Z(F) \setminus Z(\mathbb{A})$ and let $\varphi = \prod \varphi v$ be a function on $G(\mathbb{A}_E)$ of the type to which we can apply the trace formula and assume that $\varphi(zg) = \widetilde{\xi}(z)^{-1} \varphi(g)$.

Let E be a set of representatives for the t-conjugacy classes of $\gamma \in G(E)$ such that $\mathcal{H}(\gamma)$ is elliptic regular, taken module Z(E).

We are interested first in the contribution from \mathcal{E} to the trace formula applied to the kernel

$$\sum \phi(g^{-1}\gamma\alpha(h))$$
.

As a function along the diagonal g = h, it is invariant under $Z(\mathbf{A}_{\underline{E}})$ since $\widetilde{\xi}(z^{-1}\widetilde{\sigma}(z))$ = 1 for all $z \in Z(\mathbf{A}_{\underline{E}})$. Set

$$\Phi_{\alpha}(\gamma, \phi) = \int_{Z(\mathbf{A}_{E})\widetilde{G}_{\alpha\gamma}(\mathbf{A})\backslash G(\mathbf{A}_{E})} \phi(g^{-1}\gamma\widetilde{\sigma}(g)dg)$$

$$\Phi_{\alpha}(\gamma, \phi_{\mathbf{v}}) = \int_{\widetilde{Z}(F_{\mathbf{v}})\widetilde{G}_{\alpha\gamma}(F_{\mathbf{v}}) \setminus \widetilde{G}(F_{\mathbf{v}})} \phi(g^{-1}\gamma \widetilde{\sigma}(g) dg .$$

Let $\delta_{\alpha}(\gamma)$ be the index of $Z(E)\tilde{G}_{\alpha\gamma}(F)$ in the α -centralizer of γ in $Z(E)\backslash G(F)$. Let

$$TE(\varphi) = \sum_{\gamma \in F} \delta_{\alpha}(\gamma)^{-1} \operatorname{meas}(Z(\mathbb{A})\widetilde{G}_{\alpha\gamma}(F) \setminus \widetilde{G}_{\alpha\gamma}(\mathbb{A})) \Phi_{\alpha}(\gamma, f) .$$

This is the contribution of \mathcal{E} to the twisted trace formula. For the next proposition, recall that \mathcal{T}_G^{st} is a set of representatives for the st-conjugacy classes of CSG's of G.

Let $\tilde{F}^* = \{(z,1): \tilde{G}(\tilde{F}): z \in F^*\}$. Then we have a map $\tilde{F}^* \longrightarrow \mathcal{J}_{\alpha}(\gamma/F)$ which sends (z,1) to $\delta(z) = \{\sigma((z,1))(z,1)^{-1}\}$ and $\gamma^{\delta(z)} = z\gamma$. If $\delta \in \mathcal{J}_{\alpha}(\gamma/F)$ is represented by $\{\sigma(g)g^{-1}\}$, then $\delta(z)\delta$ is represented by $\sigma((z,1)g)$ and $\gamma^{\delta(z)\delta} = z\gamma^{\delta}$. Hence \tilde{F}^* acts on $\mathcal{J}(\gamma/F)$. Let $\mathcal{J}_{\alpha}(\gamma/F)$ be the set of orbits of \tilde{F}^* in $\mathcal{J}_{\alpha}(\gamma/F)$. Since $\tilde{\xi}$ is trivial on $\{z \in Z(E): N(z) = 1\} = \{z \in Z(E): z \in F^*\}$, the twisted orbital integral $\Phi_{\alpha}(\gamma^{\delta}, f)$ depends only on the image of δ in $\mathcal{J}_{\alpha}(\gamma/F)$.

Proposition 8.6:

$$TE(\phi) = \sum_{T \in \mathcal{I}_{G}} \sum_{\gamma_{0} \in Z(F) \setminus T(F)} \left| \Omega_{F}(T,G) \right|^{-1} meas(Z(A)T(F) \setminus T(A)) \sum_{\delta \in \widetilde{\mathcal{I}_{\alpha}}(\gamma/F)} \Phi_{\alpha}(\gamma^{\delta},f)$$

where the last sum is defined by any $\gamma \in \widetilde{G}(F)$ such that $\mathcal{H}(\gamma) = \gamma_0$ (it equals zero if $\{\gamma_0\}_{st}$ is not in the image of \mathcal{H}).

<u>Proof</u>: For $\gamma \in \widetilde{G}(F)$ and $\gamma_0 \in T(F)$ such that $\mathcal{H}(\gamma) = \gamma_0$, set

$$\Omega_{\overline{F}}(T,G)_{\gamma_0} = \{g \in G(\overline{F}) : g^{-1}\gamma_0 g\gamma_0^{-1} \in Z(F)\}/G_{\gamma}(\overline{F})$$

$$\Omega(\gamma) \ = \ \{g \in \widetilde{G}(\vec{F}) : g^{-1}\gamma\alpha(g)\gamma^{-1} \in Z(E)\}/\widetilde{F}^{*}\widetilde{G}_{\gamma\alpha}(\vec{F}) \ .$$

Proof: If $g=(g_1,g_2)$ represents an element of $\Omega(\gamma)$ is such that $g^{-1}\gamma\alpha(g)=z\gamma$ for some $z\notin Z(E)$, then $g_1^{-1}N(\gamma)g_1=(z/\overline{z})N(\gamma)$. Hence $g_1\in G_{\gamma}(\overline{F})$ if and only if $z\in F^*\subset z(E)$. If $g_1^{-1}N(\gamma)g_1=(z/\overline{z})N(\gamma)$ (every element in Z(F) is of the form (z/\overline{z}) for $z\in E^*$), then $g=(g_1,g_2)$ satisfies $g^{-1}\gamma\alpha(g)=z\gamma$, where $g_2=\gamma_1^{-1}g_1z\gamma_1$ and $\gamma=(\gamma_1,\widetilde{\sigma}(\gamma_1))\in\widetilde{G}(F)$. To see that the map is an isomorphism, we have to show that if $g^{-1}\gamma\alpha(g)=z\gamma$ with $z\in F^*$, then $g\in \widetilde{F}^*G_{\gamma\alpha}(\overline{F})$ and this is clear.

Now let

$$\Omega^0(\gamma) \,=\, \{g \in \widetilde{G}(F) \,:\, g^{-1}\gamma\alpha(g)\gamma^{-1} \in\, Z(E)\}/Z(E)\widetilde{G}_{\gamma\alpha}(F) \ .$$

It is clear that $|\Omega^0(\gamma)| = \delta_{\alpha}(\gamma)$. If $g \in \widetilde{G}(F)$ is such that $g^{-1}\gamma\alpha(g) = z\gamma$ with $z \in F^*$, then $z \in N_{E/F}(E^*)$, as one sees by taking determinants: $z = N_{E/F}(\det(g))^{-1}z^{-2}.$ Therefore, the obvious map $\Omega^0(\gamma) \longrightarrow \Omega(\gamma)$ is injective.

To prove the proposition, note that in the sum over $Z(F)\backslash T(F)$, a given stable conjugacy class $\{\gamma_0\}$ occurs $\left|\Omega_F(T,G)\right|\cdot\left|\Omega_F(T,G)_{\gamma}\right|^{-1}$ - times. Let $\delta_\alpha^!(\gamma^\delta)$ be the number of $\delta_1\in\widetilde{\mathcal{J}}_\alpha(\gamma/F)$ such that γ^{δ_1} is t-conjugate to $z\gamma^\delta$ for some $z\in Z(E)$. It will suffice to show that $\left|\Omega_F(T,G)_{\gamma_0}\right|=\delta_\alpha(\gamma^\delta)\delta_\alpha^!(\gamma^\delta)$, or, by the above, that $\delta_\alpha^!(\gamma)=[\Omega(\gamma):\Omega^0(\gamma)]$ (we may take $\delta=1$). This is clear from the definition of $\widetilde{\mathcal{J}}_\alpha(\gamma/F)$.

§9. Conjugacy classes in G

For later use, it will be convenient to have a list of the stable conjugacy classes of CSG's in G. Let A be a fixed CSG of G; for the next Proposition, G can be any connected reductive group. If T is any other CSG, there is a $g \in G(\overline{F})$ such that $g^{-1}Ag = T$ (the map $t \longrightarrow g^{-1}tg$ is not, in general, defined over F). Hence $\{a_{\overline{G}} = \sigma(g)g^{-1}\} \in H^1(\overline{\mathcal{O}_f}, \overline{N})$ where \overline{N} is the normalizer of A in $G(\overline{F})$. It is easy to check that $\{a_{\overline{G}}\}$ determines the G(F)-conjugacy class of T. Let $\overline{\Omega}$ be the Weyl group of A in $G(\overline{F})$ and let

$$\psi: H^1(\overline{\mathcal{G}}, \overline{N}) \longrightarrow H^1(\overline{\mathcal{G}}, \overline{\Omega})$$

be the natural map.

Both $\overline{\mathcal{G}}$ and $\overline{\Omega}$ act on A and the character group $X^*(A) = \operatorname{Hom}(A,\operatorname{GL}(1))$. A cocyle $\alpha = \{a_{\overline{\mathcal{G}}}\} \in \operatorname{H}^1(\overline{\mathcal{G}}, \overline{W})$ defines a twisted action of $\overline{\mathcal{G}}$ on $X^*(A)$:

$$\tilde{\sigma}(\alpha) = a_{\sigma} \cdot \sigma(\alpha)$$
 for $\alpha \in X^*(A)$

and hence $\alpha = \{a_{\sigma}\}$ defines a form A_{σ} of A.

Proposition 9.1:

- (a) Let T_1 , T_2 be CSG's of G associated to cocycles α_1 , $\alpha_2 \in \operatorname{H}^1(\overline{\mathcal{O}_f}, \overline{\mathbb{N}})$. Then T_1 and T_2 are st-conjugate if and only if $\psi(\alpha_1) = \psi(\alpha_2)$.
- (b) If G is quasi-split, then every $\overline{\alpha} \in H^1(\overline{\partial J}, \overline{W})$ is of the form $\psi(\alpha)$ where α arises from a CSG of G, i.e., $\overline{\alpha} = \psi(\alpha)$ for some $\alpha \in \text{Ker}\{H^1(\overline{\partial J}, \overline{N}) \longrightarrow H^1(\overline{\partial J}, G)\}$.

<u>Proof:</u> Part (a) follows easily from the definitions. For (b), suppose $\overline{\alpha} \in H^1(\overline{\partial J}, \overline{W})$ and let $A_{\overline{\alpha}}$ be the twisted form of A that it defines. Let $\gamma \in A_{\overline{\alpha}}(F)$ be regular. There is an isomorphism $\phi: A_{\overline{\alpha}}(\overline{F}) \longrightarrow A_{\overline{\alpha}}(\overline{F})$ and $\phi(\gamma) \in A_{\overline{\alpha}}(\overline{F})$ is regular. Furthermore, $\sigma(\phi(\gamma)) = a_{\overline{\alpha}}\phi(\gamma)a_{\overline{\alpha}}^{-1}$ for all $\sigma \in \overline{\partial J}$, where $\alpha = \{a_{\overline{\alpha}}\}$. Hence the conjugacy class of $\phi(\gamma)$ is defined over F. By Steinberg's theorem, G(F) contains an element γ in the $G(\overline{F})$ -conjugacy of γ if G is quasi-split. The CSG G_{γ} then corresponds to the cocycle α .

We now consider the quasi-split unitary group in three variables $G=U_3$ with respect to a local or global quadratic extension E/F. We may assume that U_3 is the unitary group of the Hermitian form $\Phi=\begin{pmatrix}0&0&1\\0&-1&0\\1&0&0\end{pmatrix}$ (it is

isomorphic to the unitary group of the form $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$). Let A be the diagonal subgroup of G. Then $\overline{\mathbb{W}}$ is isomorphic to the symmetric group S_3 . Let

$$\mathbf{w} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{w}_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \mathbf{w}_{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} .$$

The elements lie in \bar{N} and we identify \bar{W} with S_3 by mapping w , w_1 , w_2 to

the transpositions (13), (12), (23) respectively. The Galois group on G as follows:

$$\tau: g \longmapsto \begin{cases} w^{-1}(^{t}\tau(g))^{-1}w & \text{if } \tau|_{E} = \sigma \\ \\ \tau(g) & \text{if } \tau|_{E} = 1 \end{cases}$$

where $\mathcal{G}(E/F)=\{1,\sigma\}$. Under the identification of \overline{W} with S_3 , $\tau\in\overline{\mathcal{G}}$ acts on S_3 trivially if $\tau_{|_E}=1$ and if $\tau_{|_E}=\sigma$:

$$(13) \longmapsto (13)$$

$$\tau:$$
 (12) \longrightarrow (23)

$$(23) \longmapsto (12)$$
.

Let T be a CSG of G and let L be the centralizer of T in $M_3(E)$. Since L is a maximal, commutative, semi-simple subalgebra of $M_3(E)$, it is isomorphic to a direct sum of field extensions of E and the possibilities are:

- (1) $L = E \oplus E \oplus E$
- (2) $L = K \oplus E$ with K/E quadratic
- (3) L is a cubic extension of E.

To state what we need about stable conjugacy classes of CSG's, we first define some tori. Recall that \mathbf{E}^1 is defined as the kernel of the norm map $\mathbf{N}: \mathrm{Res}_{\mathbf{E}/\mathbf{F}}(\mathbf{G}_{\mathbf{m}}) \longrightarrow \mathbf{G}_{\mathbf{m}}$. Let \mathbf{K}_1/\mathbf{F} be a quadratic extension with $\mathbf{K}_1 \neq \mathbf{E}$ and let $\mathbf{K} = \mathbf{K}_1\mathbf{E}$, so that $\mathbf{G}_1(\mathbf{K}/\mathbf{F}) = (\mathbf{Z}/2)^2$. Let $\sigma_1, \tau_1 \in \mathbf{G}_1(\mathbf{K}/\mathbf{F})$ be such that \mathbf{K}_1 is the fixed field of σ_1 and \mathbf{E} is the fixed field of τ_1 . Define a two-dimensional torus $\mathbf{T}_{\mathbf{K}_1}$ over \mathbf{F} by the exact sequence:

$$| \longrightarrow T_{K_1} \longrightarrow \operatorname{Res}_{K/F}(\mathbb{G}_m) \xrightarrow{N_{K/K_1}} \operatorname{Res}_{K_1} F(\mathbb{G}_m) \longrightarrow |$$

where N_{K/K_1} is the map $(1 + \sigma_1)$.

If L/E is a cubic extension with an automorphism $\tilde{\sigma} \in \text{Aut}(L)$ of order two whose restriction to E is σ , let $L^{\widetilde{\sigma}}$ be the fixed field of $\tilde{\sigma}$ and define T_T by the exact sequence

$$| \, \longrightarrow \, \mathrm{T_L} \, \longrightarrow \, \mathrm{Res}_{\mathrm{L/F}}(\mathbf{G_{\mathrm{m}}}) \, \xrightarrow{\, \widetilde{\mathrm{N}} \,} \, \mathrm{Res}_{\mathrm{L}\,\widetilde{\mathrm{O}}/\mathrm{F}}(\mathbf{G_{\mathrm{m}}}) \, \longrightarrow \, |$$

where \tilde{N} is the map $(1+\tilde{\sigma})$. Then T_L is a torus of dimension three over F.

<u>Proposition</u> 8.4: Let T be a CSG of G. Then T is isomorphic to one of the following types:

- (0) A = $\operatorname{Res}_{E/F}(\mathbf{G}_{m}) \times \mathbb{E}^{1}$ (the CSG contained in B)
- $(1) \quad \mathbb{E}^1 \times \mathbb{E}^1 \times \mathbb{E}^1$
- (2) $T_{K_1} \times \mathbb{E}^1$ where K_1/F is quadratic with $K_1 \neq E$.
- (3) T_L where L/E is a cubic extension with an automorphism $\tilde{\sigma} \in \text{Aut}(L)$ of order two whose restriction to E is σ .

Furthermore, in cases (0), (1), and (2), the stable conjugacy class of T is determined by the isomorphism class of T as a torus over F.

<u>Proof:</u> By Lemma 8.3, the stable conjugacy classes of CSG's are parametrized by $H^1(\overline{\mathbb{Q}}, \overline{\mathbb{W}})$. Let T be a CSG of G and let L be the centralizer of T in $M_3(E)$. We consider three cases separately.

Case (i): $L = E \oplus E \oplus E$. Then T splits over E and $\{T\}_{st}$ is determined

by a cocycle in $\operatorname{H}^1(\mathcal{O}_{\overline{A}}(E/F),W)$, i.e., by an element $a_{\overline{G}} \in \overline{W}$ such that $a_{\overline{G}} \circ \sigma(a_{\overline{G}}) = 1$. The possibilities are $a_{\overline{G}} = 1$, (123), (132), or (13) and since $\sigma((12))(123)(12) = \sigma((23))(132)(23) = 1$, the choices $a_{\overline{G}} = (123)$ or (132) are cohomologous to $a_{\overline{G}} = 1$. Hence we may assume that $a_{\overline{G}} = 1$ or $a_{\overline{G}} = (13)$. If $a_{\overline{G}} = 1$, then $\{T\}_{st} = \{A\}$ and if $a_{\overline{G}} = (13)$, then the twisted action of σ on $X_*(A)$ is the multiplication by -1. This is clear since the map $a_{\overline{G}} \circ \sigma$ on the diagonal subgroup is $g \longmapsto g^{-1}$. So in this case, $T \xrightarrow{\sim} \mathbb{E}^1 \times \mathbb{E}^1 \times \mathbb{E}^1$.

<u>Lemma 8.5</u>: Let T be a CSG of G and let K/E be the splitting field of T. Let K' be the Galois closure of K over E. Then K is Galois over F.

<u>Proof:</u> The involution $g \longmapsto \Phi^{-1} {}^t \sigma(g) \Phi$ stabilizes T(F), hence L, and induces an automorphism σ' of K whose restriction to E is σ . It follows that K' is stable under Θ .

Case (ii): In this case, T splits over K with K/E quadratic. By Lemma 8.4, K/F is Galois and hence $\mathcal{O}(K/F) = \mathbb{Z}/2 \oplus \mathbb{Z}/2$ or $\mathbb{Z}/4$. We first show that $\mathbb{Z}/4$ cannot occur. If it did and if τ_0 were a generator of $\mathcal{O}(K/F)$, then τ_0^2 would act trivially on E. The cocycle $\{a_{\tau}\}\in H^1(\mathcal{O}(K/F), \overline{W})$ associated to T would satisfy $(a_{\tau_0^2})^2=(\tau_0(a_{\tau_0})a_{\tau_0})^2=1$ which implies that $a_{\tau_0}=1$ or (13) (the cases (123) and (132) are cohomologous to $a_{\tau_0}=1$ as in Case (i)). Hence $a_{\tau_0}^2=1$ and T splits over E, which is Case (i). Hence $\mathcal{O}(K/F)=\mathbb{Z}/2\oplus\mathbb{Z}/2$. Let σ_1 and σ_1 generate $\mathcal{O}(K/F)$ with $\sigma_1|_{\mathbb{E}}=\sigma$ and $\sigma_1|_{\mathbb{E}}=1$. Then

$$a_{\sigma_1 \tau_1} = a_{\tau_1 \sigma_1} = \sigma_1 (a_{\tau_1}) a_{\sigma_1} = a_{\sigma_1} a_{\tau_1}$$
 or $a_{\sigma_1}^{-1} (\sigma_1 (a_{\tau_1})) a_{\sigma_1} = a_{\tau_1}$.

Up to coboundaries, the possibilities are

(1)
$$a_{\sigma_1} = 1$$
 $a_{\tau_1} = (13)$ $a_{\sigma_1 \tau_1} = (13)$

(2)
$$a_{\sigma_1} = (13 \quad a_{\tau_1} = (13) \quad a_{\sigma_1 \tau_1} = 1$$

and since σ_1 and $\sigma_1\tau_1$ both induce σ on E, their roles may be interchanged and we may assume the cocycle has the form (2). Let K_1 be the fixed field of σ_1 in K. It is easy to check that T is isomorphic to $T_{K_1} \times \mathbb{E}^1$.

Case (3) is clear since the involution $g \longrightarrow \Phi^{-1}{}^t \sigma(g) \Phi$ induces an automorphism $\tilde{\sigma}$ of order two on L whose restriction to E is σ .