
Some tempered distributions on semisimple 
groups of real rank one 

Introduction 

The Selberg trace formula leads naturally to the  study of certain 
tempered distributions on reductive groups defined over local fields. An 
important problem is to calculate the Fourier transforms of these distribu- 
tions. We shall consider this question for the  case tha t  the local field is R 
and the group G is semisimple and has real rank one. In this context the  
notion of the  Fourier transform of a tempered distribution has been defined 
in [l(a)]. 

A distribution T is said to be invar ian t  if 

T( f  "1 = T( f )  

for every f e C:(G) and y e G,  where 

f qx) = f (yxy-l) , x e G  . 
The invariant distributions which appear in the  trace formula have recently 
been examined by Sally and Warner. However, the  trace formula also 
contains some interesting noninvariant distributions. In this paper we shall 
calculate the Fourier transforms of the  restriction of these distributions to 
Â£[(G) the  space of cusp forms on G. 

For the  case tha t  G = PSL(2, R) these noninvariant distributions have 
already been dealt with. Here one utilizes the known formula for a matrix 
coefficient of a discrete series representation of G. This enables one to 
calculate the required Fourier transform (see, for example, [21]). For the 
general case, however, new methods are needed. 

The basic distributions tha t  we shall consider are the ones which appear 
in term (9.1) of [l(b)]. They are parametrized by the R-regular points 

{a,ht: t e R, t + 0, ai e Ai} 

of the noncompact Cartan subgroup of G, and will be denoted by T(t, al). 
In Section 5 we show tha t  T(t, a,) satisfies a second order nonhomogeneous 
differential equation, which becomes homogeneous if we restrict T(t, a,) to 
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Co(G). This reduces our problem to a search for boundary conditions. 
At  first glance, the study of the  point t = might seem promising. 

This in fact would work if we were to calculate the Fourier transform of 
T(t, a,) on CL(G), the  space of functions in C(G) tha t  are orthogonal to Co(G). 
The boundary condition can be expressed by means of the constant term of 
the  Eisenstein integral. The Fourier transform turns out to be a sum of two 
components, one which is not invariant and involves the  derivative of the 
constant term, and another which is invariant but  rather complicated. We 
shall give the details in another paper. 

However, the asymptotic behavior of functions in ("(G) is not yet  well 
enough understood for us to obtain a suitable boundary condition a t  t = -a. 

Instead, we take the limit 2s t approaches 0 of a certain distribution that  
involves the derivative of T(t, a,) with respect to t. As we show in Corollary 
6.3, this limit defines an invariant distribution. We obtain from i t  a bounda- 
ry  condition which eventually allows us to compute our Fourier transform 
on C (G) in Theorem 7.2. In the process we derive a rather curious Jacobian 
formula (Theorem 6.4). 

In Section 4 we introduce a distribution T(aJ which is closely related 
to T(t, al). We obtain the Fourier transform of T(aJ in Corollary 7.3. Dis- 
tributions of the form T ( a )  also appear in the trace formula. They are the 
noninvariant components of term (9.2) in [l(b)]. 
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1. Preliminaries 

Suppose tha t  G is a connected semisimple Lie group of real rank one. We 
shall assume tha t  G is contained in Gc, a simply connected complexification 
of G. Let a, be the Lie algebra of G, and let 

g = f + p  

be a fixed Cartan decomposition of G with Cartan involution 0. Let K be 
the analytic subgroup of G corresponding to f .  Then K is compact. 

Let a be a fixed maximal abelian subspace of p .  Then the  dimension of 
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a is one. Let A = exp a. Fix an abelian subspace a, of f such tha t  

is a Cartan subalgebra of g .  Let IIT and At be the centralizers of a in f and K 
respectively. Then a, is a Cartan sub21gebra of 111. If Ai is the centralizer 
of 6 in K, A, is a Cartan subgroup of M. 

Fix compatible ordering on the real dual spaces of a and a + ia1. Let 
P be the set  of positive roots of (gc, fit) with respect to this ordering. Let 
P_ be the set of roots in P which do not vanish on a and let Pv be the  com- 
plement of P_ in P. Py can be regarded as a set of positive roots of (me, sic). 

Let p' be the linear functional on a which equals one half the  largest 
positive restricted root of (9, a). Extend the definition of ,ul to f i  by defining 
i t  to  be zero on 0,. Let us fix en element H' in a such tha t  pl(H') = 1. De- 
compose 9 with respect to the adjoint action of a. Then 

. - dira g, = dim 9-, , 
I*_  = dim g2 = dim !i_2 . 

Let B be the Killing form of gc. The restriction of B to fit is non- 
degenerate, so we can lift B to the complex dual space of fit. Then 

if 7 a 2  = 2 ( 6  + 418~). 
The Cartan involution 0 lifts to an automorphism of G which we shall 

also denote by 6. Let it = gl @ g2 and let N = exp n. Then 

6(N) = exp 6(u) - e x ~ ( g - ~  @ g-2) . 
For an element n in N we shall sometimes write ii for 6(n). Then 

- 
n-n 

is an isomorphism from N onto = 0(N). 
From now on we shall write 

This identifies the  group A with the  additive real numbers. We shall also 
write 
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t is a quasi-character on the  Cartan subgroup exp hc of Gc. In particular 
it defines a quasi-character on A,-A. 

There are two possibilities for g. Either any Cartan subalgebra of g is 
G-conjugate to f i  or there exists a second G-conjugacy class of Cartan sub- 
algebras, which has a representative contained in f .  

LEMMA 1.1. There i s  a Cartan subalgebra b of g with b E f i f  a n d  only 
i f  there exists a root 6 in P_ which vanishes on a,. 

Proof. Let s. = rank g - rank f .  Then s. equals 0 or 1 depending on 
whether b exists or not. By the  Iwasawa decomposition 

dim g - dim f = [P_]  + 1 . 
For any root a in P_ define 

a\H) = a(OH) ,  

Then -a"s also a root in PT. a = -a"f and only if a vanishes on a,. 
Therefore [PA]  is odd or even, depending on whether a root /3 in P- which 
vanishes on a, exists or not. Since the number of roots of a reductive Lie 
algebra is always even, 

(dim g - rank g) - (dim f - rank f )  

is an  even integer. Therefore 

[ P I  + 1 - E 

is an even integer. This proves the  lemma. 

LEMMA 1.2. Suppose that there exists a root 6 in P_ which va11-~S /Z~S  
on a,. Then 6 = 2,~ ' .  

Proof. Suppose that  = yr. Choose a root a of the form 2/ir + a ,  for 
some linear functional on f i e  which vanishes on ac. We shall show that  
a, can be chosen to be zero. 

Notice tha t  

Theref ore 

+ a , ,  a',, - + a , .  -2"' + a, 
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are all roots of (qc, Qc). We also have 

This implies that  a - a1 = 2:~' is a root of (gc, fie). Therefore 2/3 is a root 
of (qc, Qc). This is a contradiction. 

Let A[ be the set of semi-regular elements in A, of noncompact type; 
that  is, those elements a, in A, such that  g(al)', the  derived algebra of the  
centralizer of a, in g, is isomorphic to sl(2, R). Then a, is in A[ if and only if 

( i ) there  is a /3 e P- which vanishes on a^, 
and 

( i i )  %al) + 1 for ae P, - {p}. 
Now suppose that  6 is a root in PL that  vanishes on a,. Choose a root 

vector X' for p such that  

1 
- B(X', OX')  = - r2  . 

2 

Let Y' = -a'. Then 

[HI, X' ]  = 2X1 , 
[H', Y'] = -2Y'  , 
[X', Y'] = H' . 

Since p is a real root, X '  and Y1 are contained in 9. The subalgebra I of a, 
generated by {H', XI, Y'} is isomorphic to  sl(2, R). Our notation is con- 
sistent with [3(b), Â 241. Following Harish-Chandra's paper, we set  

where -[ - exp (-:(XI - Y')). Then A, = Z(A)A'i, if A; is the connected 
component of A,. 

Fix an element a, in A[. Let GI and g, be the centralizers of a, in G and 
q respectively. Then 

91 = I@", 

LEMMA 1.3. G, is c o n n e c t e d .  

P r o o f .  Suppose that  G? is the connected component of the identity in 
G, and let GT be any other connected component. Take 7- in G;. Notice 
that  

r ) G W  = G[ . 
Replacing 7" by one of its left  Gy-translates, all of which lie in G;, we obtain 
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an element in GT which normalizes a. Now there is a representative in G'l 
of the  nontrivial element of the  restricted Weyl group of (a, a). Therefore 
we can find an element in G: which leaves a pointwise fixed. In  other words, 
every component of G, contains some element in M. On the other hand, 
since a ,  is semi-regular, the  only elements of Mwhich leave a ,  fixed belong 
to A,. Therefore 

GI = Al. G; = Z(A). A;G': = Z(A)G; . 
Since Z(A) G'i, GI is connected. El 

We remark that  9, = a, @ I is independent of the semi-regular element 
a ,  which we chose. GI is the  analytic subgroup of G corresponding to the  
Lie algebra q,, so Gl is also independent of a,. 

In  the  future  we shall be dealing with Haar measures on certain sub- 
groups of G. We shall normalize them now for once and for all. 

For any X in a,, write 

X ? =  - B ( X , O X ) .  

This defines a Euclidean norm on q and on any subspace of a. In particular 
i t  defines a Euclidean measure d N  on n. We define a normalized Haar 
measure dn on N by 

More generally for any subspace q of n we shall define a measure on exp q 

from the Euclidean measure on q. Similarly, we define a measure on exp q 
for any subspace d of 17. 

We normalize the  Haar measure da on A by 

For any compact subgroup H of K, choose the  Haar measure on H which 
assigns to  H the volume one. 

If al is an element of Al, let g(al) and G(ai) be the  centralizers of a ,  in g 

and G respectively. Then 

G(a,) = K(al) . A .  M a l )  

is an Iwasawa decomposition for G(a,) where K(al)  = K 17 G(a,) and N(a,) = 

N n G(a,). Let dxl be the Haar measure on G(a,) defined by 

In particular, this defines a Haar measure dx on G. 
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Finally suppose that  H is a unimodular Lie subgroup of G with a distin- 
guished Haar measure dh. Let dx* be the  unique G-invariant measure on 
G j H  defined by 

We shall normalize all measures according to  these conventions without 
fur ther  comment. 

2.  A function on N 

There is an important function on N whose properties we must discuss 
before we define our distributions. 

For any a; e G, let  h, x.. , and a;, be the  elements in K, N ,  and A respec- 
tively such that  x = .i\.~.,x.,. Pu t  H(x) = log (A\). H(x) is in a. Define 

\(n) = 't'(H(rz)) , neN. 

It is known that  \(%) is a nonnegative real number. I t  has been computed 
explicitly by Helgason ([4(b), Th. 1.141). We describe his formula. 

The map 

(X, Y)-expX-esp Y = e x p ( X +  Y) , Xe(\, , y e n 2 ,  

is a diffeomorphism of q ,  @ LL onto AT. For any Z in g recall tha t  iZI2 = 

- B(Z, 0 2 ) .  Then if 

n = exp X-exp  Y ,  -Ysg,, Y e i i z ,  

the formula is 

Let LC be a representative in K of the  nontrivial element of the re- 
stricted Weyl group of (g, a). Helgason has proved in [4(b), Lemma 1.151, 
that  to can be chosen such that  w2 lies in the center of G. By replacing w 
with an element of the  form flzomr,,  for some TO, in M, we can assume 
that  Ad(w) maps o, onto itself. Notice that  for any X in 9, 

1 M - ~ X Z ~  \ = \xi .  
Since 

w-^W = $I_, = 0(̂ ) , 
we see from the above formula for \(E) that  

\(n) = l (w^nw)  . 
We shall refer to the element w later on. 
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For X e  Q ~ ,  Y e  g, 

exp X - e x p  Y = exp(X + Y) = exp Y-exp X .  

On the other hand for Xi and X2 both in a,,, 

There is a constant a,, such that  

LEMMA 2.1. There is a constant C such that f o r  ?z e N, a, e Al and t syf- 
ficiently large, 

I q E  - allzt - E-I- aF1z;') - X ( f i )  ~ 5 Ce-' . 
Proof. Let n = exp X -exp Y, X e gl, Y e  g,. Then 

Ti -  allzi T i 1  ai7;;' 

= ffbi.all;tl-W- a*') 
= ~ ( e x p  X - exp Y - exp( - Xqe-') -exp(- Y^ec2')) 

where 

2'- = Ad(al)Z , 

Theref ore 

\(E. al/it - a ' .  - ̂ (a) 
is one-half the logarithm of 

Replace the numerator of this expression by the sum of 

and a remainder R(t, al, X ,  Y). Now, 

X = X ,  'Pi = Y , ,  

and 

1 [X, Xal] ' 5 a. , x 1'- . 
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Therefore we can find a constant C such tha t  

It follows tha t  the  expression (2.1) differs from 1 by a function tha t  is 
bounded by C e t .  The lemma then follows. 

There is another consequence of t h e  formula for \(Ti) which we shall 
eventually need. For any n e N we can choose elements X ( n )  and Y(n) in 
qi  and g2 respectively such tha t  

LEMMA 2.2. Bo th  1 X ( n )  \ a n d  1 Y(n) 1 are bounded func t ions  o f  n. 

Proof.  Suppose that  n = exp X - e x p  Y, X e  (\i, Y e  g 2 .  We have 

- 
?zv = Y = exp R(n)-exp S ( n )  , â fli , S(?z) E g2 . 

Therefore C., = 8 ,, so tha t  

Now we have 

exp ̂ Y(;i)- exp Y(n)  = G' exp R(?L) - exp S(is-) - Ti 
= exp (e-' ^ R(iz,)) exp (e-2J "(11) )  . 

Theref ore 

and 

A glance a t  formula (2.2) shows that  these functions are  bounded. T 

!L 

3. The distributions T ( t ,  a ; )  

Assume for the remainder of this paper tha t  there is a root 3 in P_ 
which vanishes on q. 

Following standard notation we write 
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A(alht) = naFp (L2 (a lh )  - m)) , a , e A , ,  t e R ,  

A.,.(O = (:A) - :-a/a(ai)) 9 a, E A, . 
For real t # 0, and a, e A, define the  following distributions: 

<T(t ,  a,), f) = sgn t.A(a.17,)- \ f(kn-a,Ii,- n-'k-')\(n)d~idk , 
I < X  K 

These integrals are easily seen to converge absolutely. 
The distribution F( t ,  a,) is well known. In Harish-Chandra's notation 

<F(t ,  a,), f > = F.f(a1~~t) 

F( t ,  a,) is tempered, and invariant. We mention i t  only for the sake of 
comparison. I ts  Fourier transform can be readily computed in terms of the  
characters of the principal series. On the other hand, T(t ,  al)  is not invariant. 
Accordingly, its Fourier transform is considerably more complicated. Of 
course we must first of all show tha t  T(t, a,) is tempered. This will permit 
us to regard T(t, a,) as a continuous linear functional on C(G), the Schwartz 
space of G. 

Let Co(G) be the closed subspace of G(G) generated by the K-finite matrix 
coefficients of all the  square integrable representations of G. I t  is known 
([3(c)]) that  Co(G) is nontrivial if and only if there is a compact Cartan sub- 
group of G. Unlike F( t ,  a,), the distribution T(t, a,) does not vanish on 

Co(G). I t  will be our goal in this paper to calculate the Fourier transform of 
the restriction of T(t, a,) to  Co(G). 

There is a slightly different formula for our distributions which we 
shall need. Define a function A on G as follows: if x = h a ,  k e K, 11, e N, 
a e A, let 

A(%) = \(n) . 
Suppose zolnzu = \i. Then A(^) = \{n). We also have 

s-w = k w - ^ - a 1  
= kw-\iI,-M-,,54.~-1 . 

Since 

;̂) = A(T0) = /<'(H(5,)) , 

we have 

'\(a;) = ;i'(H(xzo)) + p l (H(x ) )  . 
In  particular A(xzo) = A(%). A is actually defined on G/A, so for the normal- 
ized measure dx* on G/A we have 
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( T ( t ,  a,), f )  = sgn t .A(alht ) .  ( f(x*.alht-x*")A(x*)dx* . 
G / A  

Let We,^ be the normalizer of the Cartan subalgebra t )  in G modulo its 
centralizer in G. WG,^ operates on the roots of (Q, ale). For any y in WG,^ 
let 

Pjr = { a t  a a PM}  . 
Define eN(y)  to equal 1 or - 1 depending on whether [PA; n (- P,v)] is even 

or not. eM is a homomorphism of WG,$ into the multiplicative group { I ,  - I } .  
Now for any y in WG,^ the map 

x -xy  

is a diffeomorphism of G j A  that preserves the measure dx*. Since A(xy) = 

A($) we obtain the formula 

T(tU, ,a?) = & , V ( Y ) ~ ( ~ ,  ~ 1 )  1 Y e  WG4 

The same argument applies to the diffeomorphism x 4 O(x) of G/A.  I t  
follows that 

T ( - t ,  a,) = T ( t ,  a,) . 
These formulae also imply that 

( T ( t ,  a,), f )  = sgn t A(a,/i,). ( f(knÂ¥a1h %-lk-')\(Ã‡)d%d . 
K X ?  

There is a well known Jacobian formula on N which we should mention 
before proving that T ( t ,  a l )  is tempered. Suppose that a ,  e A,, t is a nonzero 
real number, and that 6 a C*). If 

then 

This is a consequence of [3(b), Lemmas 11 and 121. 

LEMMA 3.1. For fixed a ,  and t # 0 the distribution T ( t ,  a,) is tempered. 

Proof. Since T ( t ,  a,) is symmetric in t ,  we may assume t > 0. For 
f a C T G )  

I < TÃ‡ a,), f > I 
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If we set  
- 
v = Ti-allzt. n ' . a ; l h 1  

we can regard E as a function of 5, t ,  and a,. Then from (3.1), \ ( T ( t ,  a,}, f )  1 
is bounded by 

et' " ' .  1 -l,,(ai) 1 -  ( - 1 f (k5Â¥a1h,-k- '  \- \(E)dcdk . 
11 \ 

We must show that  \(n) is bounded by a suitable function of v, a, ,  and t .  
Now 

O(Y) = 5 = 6 a l l z t~  E l .  a*;' 

= O(%.  al;~;l .  n-I ~ 1 ~ 1 1 ~ )  . 
Suppose that  

and 

Then 

and 

Theref ore 

and 

7 = exp X-exp  Y , 

Y = exp 3 - e x p  S , 

I t  follows tha t  there exists a constant Cn, independent of t ,  a,, R, and S such 
that  

Theref ore 

\(Z) 2 log [Co( l  - edt)-'1 + \(5) . 
We have shown tha t  1 ( T ( t ,  a,\), f) 1 is bounded by 
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. (log [C ( 1  - e-')-'] + \W} d̂ dk . 

From [ l (a ) ,  Lemma 111, i t  follows that  pr(H(x)}j(l Ã +)) is a bounded func- 
tion on G. On the other hand, in [3(c), Lemma 211, Harish-Chandra proves 
that  there is a number r' such that  

converges and is bounded independently of t and a,,. I t  follows that  T ( t ,  a,) 
is tempered. 

From the proof of this lemma we also have 

COROLLARY 3.2. F o r f e  C(G) and t 7 0 tlze integral 

is  absolntcl~~ coavergent and equals ( T ( t ,  a,), j'). 3 
If we express the estimates of the lemma more precisely we obtain 

COROLLARY 3.3. For every positive integer d there is a continuous semi- 
norm 1 1  [i', on Q(G) such that for any  t > 0 ,  a, e A, and j e  C(G), 

1 ( T ( t ,  al) ,  f )  i 5 i i  f ii'i-log (1  - e- ' ) - (1  + t)-' . 
Proof. Suppose that  \> e fl, al e A ,  and t > 0. Then 

which is bounded by (1  + t ) \  Therefore we may take I ]  11';  to  be a multiple 

of I I  \\,l r ,  1 .  0 

1. The bcha-*. ior f o r  t near 0 

There is another distribution that  is also of interest. I t  may be obtained 
by examining the  behavior of T ( t ,  a.) as t - 0 +. 

For a,  e A,, let n ( a ) ,  q/a,), g2(a1), and N(al)  be the  centralizers of a, in i t ,  

g l ,  g2 and AT respectively. Suppose tha t  n(a,) +0 . Let P-(a l )  be the  set of 
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roots a in P+ such tha t  Ea(al) = 1. Set 

Ax(allzt) = ̂ .asp-p-(al-l ( t m l M t )  - ̂ i W t ) )  . 
-- 

Let dTi, dn*, and fi be the  normalized invariant measures on N ,  N/N(al), 
- 

and N(al) respectively. Then 

dTi = dn,dn*. 

For f e C:(G), define 

- 
where S is a function defined on N(al) as follows: 

If gl(al) ̂  0 , a(exp (XI + Yl)) = log I Xi I , Xl e g-l(al) 
YI e g-dal) 7 

and 

if gl(al) = o , G(exp y1) = log [Y; 1 , Yl e g-dal) 

Clearly the  expression 

\__ f(/iTiy -alTil- i;xlkl)-S(Til)dTi; 
\ l! 

- 
depends only on the Mal)-coset of Ti*. 

Now (T(t, al), f )  equals 

Suppose tha t  
%* - - exp ( X  + Y) , n, = exp (XI + Yl) , v = exp (R + S )  

for X e  g17 YE g2, X17 R e gl(al), and Yl, S e g2(al). Then 

Y = exp (XI + YJ-exp (- e t X  - e "  Yl) 

= exp (Xl(l - e-') + Yl(l - e-")) 

so that  

Xi = R(l  - ect)-l 

and 

Y 1 - - S(1 - e-%)-l . 
I t  follows tha t  
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n*nl = exp X .  exp Y .  exp [ R ( l  - ect)-'1 exp [ S ( l  - ecZt)- l]  

= exp [ X  + R(1 - ect)-'1 

Therefore \(-) equals one half the logarithm of 

(I + 5.1 x + R(I - e+)-'\zT 

Let us write Gn": 5)  for \(n"n,), since Â¥?! is a function of !̂  for t > 0. 
Let p* = (zaep-(ali G-}/2. Applying the formula (3.1) to the group Mai )  

we see that ( T ( t ,  al) ,  f )  equals 

e v H  ) .  AX(a,1~,)- ( f(kiixa,- Flit- iiy-'k-l) \(Fix:  F)dFdiiYdk . 
K x \ / \  n , l x \  a ,  

Suppose that gl(al) + 0, and that R + 0. Then 

The limit of this expression as t -+ 0 + equals 

On the other hand, suppose that gl(al) = 0 and that S + 0. Then 

1 
\(B*: F )  + log (1  - e-")' = ̂ - log (1  - e-")'(I + 1 XI')' 

0 0 2r 

The limit of this expression as t -  ̂0+ equals 

For t # 0 define 

S(t, a,) = T( t ,  ai)  + ̂ - log (1 - e-t)4.  F( t ,  aÂ¥  , if gl(al) + 0 , - 
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Then we use the  Lebesgue dominated convergence theorem and the  above 
formulae to obt2in a formula for (T(al),  f} if f~ CT(G). The result is 

We shall have occasion to  use the  distributions S(t, al) t o  calculate the  
Fourier transform of T(t ,  a l )  on Co(G). If Ca(G) # 0 there is a compact Cartan 
subgroup B of G, and so by Lemma 1.1 there is a root ,8 whose restriction 
to  CI~ is trivial. $ = 2/t1 by Lemma 1.2. 

Suppose that  al is in -4:, the  set  of semi-regular elements of non-compact 
type in Al, defined in 3 1. Then ,8 is the  only root in P+ such that  :3(al) = 1. 
Take a function j' in C:(G) and put 

We shall find a formula for 

In  Â 1 we introduced the  root vector X1 in g2 corresponding to  (9. For 
real ,I:, let 

~ ( 2 ; )  = exp (?:XI) . 
For the  other roots {a} in P- let {Xcs} be a fixed set of root vectors. Pu t  

Then i t A  = g; @ $1; if g: = g2 F, IT*, i = 1 ,  2. Let  N v  = exp 1 1 ~ .  We hzve the 
diff eomorphism 

of A v . ~  -< R onto AT. According t o  the  conventions in 5 1,  dqz* is the  measure 
on N* defined by the Euclidean measure on 11'~. For f E CT(AV), 
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92* = ?z4:(X, Y )  = exp X-exp  Y .  

We have 

1 h(%*n(x( l  - e - 2 t ) ) )  + - log (1 - 
2 

Fix f E C;(G). Set @(t: nT: x) equal to 

Then (S( t ,  al) ,  .f) equals 

The function 

is differentizble a t  t = 0. Therefore 

is the limit as t -+ O +  of the difference of 

and 

We shall show that  the limit of each of these terms exists. 

The term (4.1) equals 
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Now notice t h a t  

Since f is of compact supporty this last i n t e g r d  is absolutely convergent. 
Therefore by the Lebesgue dominated convergent theorem, the limit as t -+ 

O +  of (4.1) exists and equals 

Similarly, the limit as t - O +  of (4.2) exists and equ2.1~ 

For f 3 C ,(G)) write 

S (a,), f) = Iimt+ { S1(t, a Jy  J ' )  - (S1( -  t, ul), f ) }  . 
Then S \ ( a )  is a distribution on G .  We shall show Izter tha t  i t  is boih 
tempered and invariant. 

5. 1 cl i f fere~~tial  equation 

The distributions F ( t y  al)  satisfy 2 well-known linear homogeneous dif- 
ferential equation. By studying Harish-Chzndra's proof of this fact  we shall 
show tha t  the distributions T(t, al)  satisfy a linear non-homogeneous differ- 
ential equation. 

Let 9 and 3C be the universal enveloping algebras of gc and ljc respec- 
tively. For any X in gc and any g in 9, write 

R.l (c7) = g x  9 

L.T(c7) = Xg 
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For every root a in P fix root vectors Xe and XPe such tha t  

B ( X e )  X-el = 1 . 
Then [Xcc, X-<\] = He, where He is the vector in QC such tha t  

q H n ,  H )  = a ( H )  , H E  $c . 
Define 

s = e s I ,  (CXe 4- Cx-e) . 
3 is a subspace of gc. Let S be the image of the symmetric algebra on 3 

under the canonical mapping. S is a vector subspace of $3. 

Fix a regular element ,ft in AIA) the Cartan subgroup of G corresponding 
to the Cartan subalgebra $. I t  is clear tha t  there is a unique linear mapping 

such that  
( i ) rIt(l 8 u )  = ZL, u E JC 
( i i )  F ( X I  - - -  X r @ u )  = ( L l ,  ,,- - RXl) - . -  ( L A d  P-I l r  - R l r ) u ,  

X I ,  - - ,  X? â 3,  u â x. 
Harish-Chandra has shown tha t  the restriction of ru  to S @ :X maps S @ 3C 
bijectively onto $1 ([3(a), Lemma 151). Let 5' be the set  of elements in S of 
strictly positive degree. Then i t  is obvious t ha t  for any g in 9 there is a 
unique element ,5',(g) in JL' such tha t  g - p l Z ( g )  is in r ,(s' @ :X). 

Let {HI}  and {Hz ,  . . . ) HnL} be orthonormal bases of ac and olc respectively) 
with respect to the Killing form. If coJ is the Casimir operator on G7 

CO,=Hf-  - H ~ + ~ o c p H e + 2 ~ e G p x - f i x a .  

Let (d be the sum of and (112) Hn i 21) where I is the identity opera- 
tor. co is in s) the center ~f 9. We would like to  find the element in S @ 3C 
whose image under rU is co. 

Suppose fl E P. Then 

equals 
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we see t ha t  He + 2X-0Xfi equals 

There is a well-known homomorphism 7 of S onto the set  of elements 
in 3C invariant under the Weyl group of (gc7 qc). I t  is an easy calculation 
to show tha t  

7(w) = HI2 -k - - - + HA . 
See [l(a)? p. 6.111. Harish-Chandra has shown tha t  for any element 2 in S 

@p(z) = (&R(/')4(/~))-'7(z) (ER(/ ' )~(P))  . 
See [3(a), Theorem 21. This formula can also be proved directly for z = 

from our formulae for ~ ( w )  and Bp(w). (The symbol cR(p) follows standard 
notation of Harish-Chandra. We shall also permit ourselves to  write h ( t )  
for 

g R ( h t )  = sgn t 

whenever t is a nonzero real number.) 
Now let us apply (5.1) to the distributions T(t, ul). For any f in C(G) 

and x in G write 

f (xpx-I) = f (x: p) = fz-1(xp) . 
Then for any X in g, 

in the usual notation. This equals 
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d -/(x exp ( t x ) . p . e x p  (- t x ) x - l )  
dt t=o 

f ( x p l ;  0))  = fz-1(xw w)  

since w lies in the center of 9. By (5.1) and the definition of the map Tp. this 
equals 

f (a;: ,̂ /3 , (~) )  + ̂ ^ aa(;")f (a;; X-aXa: ;"I . 
Now suppose that  our regular element ;" equals [alht, for al in Ai and 

t + 0. As we saw in 9 3, ( T ( t ,  a,), f )  equals 

Therefore ( T ( t ,  a,), w f )  is the sum of 

and 

For any real number s, 

Ad(h.)X^Xa = Uh.r 'X-aXa = X.aXa . 
Therefore / (a ;*;  X-aXa: alht) is well defined for x* in G / A ,  so the above 
integral makes sense. 

We shall use the relation between paA(w) and 7(w). Let V2 be the dif- 
ferential operator 

HI + ..  . + HA 

on A,. Recall that  

r2  = 2(r1 + 4rz) = B(H1,  HI) = B(;"', ;"')-I . 
If p is any function in Cw(AlA) ,  

Then we have shown that  
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equals 

Ea,, a.(a,1~~)e~(t)A(a,h~) ( f (a"; X - A :  alht)A(x*)dP . 
GI A 

For a e P ,  

( f (x*;  X_Ja:  a,ht)A(x*)dx* = [ f (x*: alht)A(x*; XaX-&Lc* . 
G l A  G /  -4 

Recall t ha t  

A($) = p ' ( ~ ( x ) }  + p ' { ~ ( x w ) )  . 
Then 

A(x; XaX.a) = pr(H(x; XaX.J) + pr(H(x; XaX.a: w ) )  , 
if H(x: w )  = H(xw). 

Theref ore 

A(%; x~x,~) = p ' ( ~ ( x ;  X-aXa + Ha)) + p'(H@u; Ad(w-l)(XaX-Ã£)) 
= p ' ( ~ ( x ;  X-aXa)) + ̂ {H(x; Ha)) + p ' { H ( ~ w ;  xavXPav)} , 

where a" is the root of ( g c ,  l j c )  given by 

m H )  = a(Ad(w-l)H) , H e ^ c .  

If a is positive on a, a" is negative on a. If a is zero on a, so is a". In 
any case if a is in P, 

@(H(xw; XawX_aw)) = 0 . 
Also 

$(H(x;  XWaXa))  = 0 . 
Finally, 

$(H(x; Ha)) = r-'-na 

where is an integer which equals 0, 1, or 2 depending on whether a ( H r )  
equals 0, 1, or 2 respectively. 

Theref ore 

A(%; XaXpa)  = y-"-Ha . 
We have proved the following: 

THEOREM 5.1. For a fixed f e (?(G) and a,ht a regular element in A I A ,  

equals 

( T ( t ,  a,), c ~ j ' ,  + 21*-2-z(1 , p  ~ , ~ ( t ~ ! ~ ( a ~ h ~ )  - :-a!2(alht))-2* ( F ( t ,  al) ,  f / . 0 
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The points 

are sometimes called the It-regular elements of AIA. Theorem 5.1 is certainly 
true if alht is only an R-regular element in AIA. 

6. An integral formula 

As we noted earlier, the distribution T(t, al)  is not invariant. To pro- 
ceed fur ther  we must associate an invariant distribution with T(t, a,}. 

For f e Cm(G), y e G, write 

THEOREM 6.1. Let f e C(G) and  y e G. Then f o r  t # 0, 

T(t, ~ l ) ,  f ff> - < m al)? f > 
equals 

Proof.  Fix a e CaA)  such tha t  a(a)da = 1. Define a function A on 

G by 
L 

A(x) = a ( d ,  x e G .  

Then /Tit ,  a,), f u, equals 

This expression equals 

The first integral in (6.1) equals 
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since H(y-I-kna) = H(y-lk'} + H(a). 
This in t u rn  equals 

The second integral in (6.1) equals 

Notice tha t  

Therefore, the  second integral in (6.1) equals 

We have expressed <T(t, al), f u )  as  a sum of four terms, only two of 
which depend on y. If we se t  y equal to  1, these two terms vanish, so the 
sum of the  other two terms equals <T(t ,  al), f).  Therefore, 

< T(t, 011, f = < T(t, all, f > 
+ sgn t A(alht) {( f (kn- alht .  n-'K1) pf(H(y-'k))dkdn 

Kx.V 

For f in (?(G) let f o  be the projection off  onto ^(G). Define 

< To(t, a111 f )  = <TO, 011, f o )  1 f e C(G) 

COROLLARY 6.2. To(t, al) i s  a n  invar ian t  distribution. 

Proof. Fix y in G. Since (f vo = (f0)#, 

<To(t, a111 f 9 = < T(t, all, (fo)") 

= < m ,  all, f )  
+ sgn t A ( ~ ~ / ! J  {( fO(tÂ¥n all%, . n - l i ;~ ) .  p ' ( ~ ( y - ~ t ) ) d n d k  

A' x .V 
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For f in C(G) let 

Then the map 
f--7, f e C(G) 9 

is a continuous linear operator on (?(G). I f f  is in Co(G), so is 7. Therefore 

It follows tha t  

< Tdt,  al), f = <To(^ all, f > 9 

which verifies the corollary. 

Suppose that  a,  is a semi-regular element in A,. In $ 4  we defined the 
distribution 

<S*(al), f )  = limt+O+ {<s(t, 0 1 1 ,  f > - (st(-  4 011, f >} 9 f cr(G) . 
COROLLARY 6.3. S*(a,) is invar iant .  

Proof. For any y in G ,  and t # 0, 

sgn t . A(nlht)-  ( f ( k w  0, n-lk-l). pl(H(y-lk))dndk 
K X N  

= sgn t A(alht) ( / (n  alht . n-l)dn 
N  

This function is differentiable a t  t = 0. Similarly 

is differentiable a t  t = 0. Therefore ( T ( t ,  a^), f )  and ( T ( t ,  a,), f )  differ by 
a function in t which is differentiable a t  the origin. Since the distribution 
F ( t ,  a,) is invariant, 

(S ( t ,  all, f - <S(t, a119 f > 
is also differentiable a t  t = 0. This proves the corollary. 

Recall that we are assuming that  there is a root p in P+ which vanishes 
on al. Recall that  G, was the centralizer in G of any element in A[. Consider 
the map 

I?: ( k ,  n*) - kil* -GI  

of K x N* into GIG,. A consequence of the Iwasawa decomposition for G is 
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tha t  r is surjective. Another consequence is tha t  the inverse image under 
r of eaG1  is Kl = K n Gl, a compact group. 

For any function g in Cc(G/Gl) define 

Tis a continuous linear functional on Ci/G/G,). Therefore there is a measure 
p on GIGl such that  

Fix u1 e  A[ and choose a function p in Cr(A,) such that  the support of p is 
contained in A[ and such tha t  o(al) = 1. Then if g e  Cr(G/G,), the function 

f ( ~ * E ~ a ; * - ~ )  = g(x*)+(El) , x* e  GIG,, & e  Al 

is in C:(G). As we saw in Lemma 4.1, 

Applying this formula to f for y e  G, we have 

(Sv(al), f Â¥ = 2d2. r . A*(a1). \ g(y.i*)dp(x*) . 
GIG, 

By Corollary 6.3 we have 

S(x*)dp(x*) = \ g(yx*)dp(x*) , 
GIG, 

so that  p is a G-invariant measure on GIG,. I t  is well known tha t  any G- 
invariant measure on GIGl is unique up to a scalar multiple. Therefore, 
there exists a non-zero constant c such that  

We shall prove tha t  c = 1. 
Suppose that  @ is any bounded measurable function of compact support 

on G. Then 
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where K, = K n G,, and N, = N n GI. This equals 

(i(kTlkn*Elakl)e'~'n*le's^f'(H(a))dnldudktdkdn* . 
For any 3 > 0 let ( N A ) ~  be the set  of elements in NA of the form 

a*% , n* e AT*, TO,â  N,, u e A 

such t ha t  

(NA), is a neighborhood of the  identity in HA.  For any 3 > 0 fix a neighbor- 
hood Gd of the identity in G such t ha t  

( i G& K(NAIs, 
( i i )  V G &  = Gs for  every ki e K,. 

Let @ be the characteristic function of Gs divided by the  volume of Gs. Then 

This expression is the  sum of 

and 

The first term in this sum equals 

c \ (i(x)dx . 
G 

Therefore 

by the properties of the neighborhood Gs. Since 3 is arbitrary, c equals 1. 
We have proved 

THEOREM 6.4. F o r  g in Cr(.G/G,) 

\ g(x*)ds:' = \ g^fi^el^ 
GIGl K , . V  

dkdn* . 
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7 .  Evaluation of the distributions on C',,(G) 

As in [3(b), 5 241, let y = (7ri/4(X' + Y')). y is in Gc, and y leaves a,c 
pointwise fixed. i(X' - Y') equals (H')@. Define 

b, = i n = R(X' - Y') , 
b = b , + a . ,  

and 

B = exp 6 , 

B is a compact Cartan subgroup of G. If 0 equals brl ,  0 and -0 are the 
only roots of (gc, bc) t ha t  vanish on ale. For 6 e R, define 

to = exp (6(X' - Y')) . 
Then t, = 7 and t,- = 1. Define 

Suppose a, belongs to A[. Then for a suitably small positive number 0, 
alto is a regular element in B. We define, as usual, 

and 

LEMMA 7.1. Let a, be a n  element in A[. Then f o r  any  f lit C(G), 

equals 

Proof. This is a special case of a result of Harish-Chandra, ([3(c), Lem- 
mas 23 and 281). We shall repeat his proof in order to  obtain the correct 
constant. For xe GI, define 

gz(u) = f ( x u x l )  , U E G , .  

Let dx* and 05 be the  normalized G-invariant measures on G,'Gl and G/B 
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respectively. Let du* be the normalized GI-invariant measure on GJB. Then 
dZ = du*dx*. Therefore, 

Let Bl be the Killing form of 1c, the derived subalgebra of glc. S and - S 
can be regarded as roots of (Ic, b2c). Let H,, be the element in bzc such tha t  

Bl(Hla, X )  = a(X) 9 X E  bzc . 
Then 

B,(H,,, i ( ~ '  - Y')) = B~((H,,)~-~, (H')+) = ̂ (H') = 2 . 
Since B m ' ,  H') = 8, we have 

i Hi, = -(X' - Y') . 
4 

From a well known formula on SL(2, R) we have for any g e (?(GI), 

- ag(a,) = F*lte; His) 
i = - F m ;  X '  - Y') 
4 

Applying the formula for g = g,, and using (7.1) one obtains the formula 

The lemma follows. 

Let Sd be the set of unitary equivalence classes of square integrable 
representations of G. Choose a class a in Â¤>. corresponding as in [3(c), Theorem 
161 to  a real linear functional v on ib. Fix a function f in <?,(G), the closed 
subspace of (E(G) generated by the matrix coefficients of any representation 
in the class a. We are going to calculate (T(t, a,), f). 

Recall the definitions of F(t ,  a,) and S(t, a,) from $4.  Since f is in C0(G), 
(F(t, al), f) = 0,  so tha t  

(s(tl f > = < T(tl f > ' 
Suppose that  a, is in A[. Then 
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by Lemma 4.1 and Theorem 6.4. According to Lemma 7.1 this last expression 
equals 

On the other hand, a theorem of Harish-Chandra ([3(c),  Theorem 141) asserts 
that  for f e t?,,(G), 

F?(a,tO) = f  (1) . d i l -  A(alto) e0(a1to) , 
where 0,, is the character of a and d o  is the formal degree. 

Now for b e B, 

A(b)@,(b) = (- - sgn A(v) .ESe ,,., ~ ( s ) L ( b )  

where w(y) = I Iaep-+ B(vyl a )  and 29' = (dim gc - rank gc) - (dim qc - rank Qc). 

If s is an element in W G l  we can write 

( a t )  = eik(suloCg"(al)  , 

for k(sv) an integer and C" a character on A,. Any character C on A, defines 
a linear functional p(C) on ia1. Put  1 C 1' = B(p(Q,  p(C)). Notice tha t  

( V ,  V )  - I C s L  1' = B(w,  S V )  - 1 C g u  1' 
= k(sv)'. B(H' ,  H')-l + B(/1(CSL), ^)) - 1 C S U  1' 
= k(sv)'. Y-' . 

Since 

AB(a1to)@daito) 

equals 

(- sgn A(v) .Ete ,,,G &(s)eik^ - rsb (a,) , 
we have established the following formula: 

limt-o+ {( T'(t7 a,), f > - ( T'( - t ,  a1)1 f >} 
(7.2) f i  

- -. d i l - f  (1 ) -  (- l )q.  (Ese,rG sgn A(sv) -k(sv).^(a^))  . 
2 

Now let us return to the differential equation. If o is the differential 
operator defined in 3 5, of = B(v ,  v )  f .  Since 

( F ( t ,  a1)1 f > = 0 1 

the equation of 3 5 becomes homogeneous. I t  is 

Let A* be the dual group of Al. For C e A* define 
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Then we have differential equation 

Therefore, there are constants C; and C r  such tha t  ( T ( t ,  Q, f )  equals 

Cc-exp {rtVB{y, v )  - 1 [ 1 2 }  + C;--exp { - r tVB{v ,  v )  - 1 [ 1 2 } .  
Now, by Corollary 3.3, we know tha t  1 ( T ( t ,  Q, f )  1 decreases for large 

t  faster than any power of t .  We shall write AF(v) for the set of characters 
[ in A* such tha t  1 [ I 2  < B(v ,  v) .  Then if [ is in A*(v),  and t > 0 ,  C t  must 
be 0. Moreover if C is not in A f ( v )  then CT = C; = 0. It follows tha t  there 
are numbers {C(Q:  e A:(v)}, depending only on f  and v such that  for E A[ 
and t  == 0, 

(7.3) ' U t ,  a l ) ,  f  ) = I::â z,*,u, C(Q.C(al) exp { - r  I t  I v'B(JJ, 4 - I C 1 2 }  . 

From this formula we see that 

lirnt-O+ {< T ' ( t l  0 1 ) l  f > - < T'( - t 1  ~ 1 ) l  f >} 

equals 

(7.4) - 2 r ^ ^ V B ( v 1  v )  - 1 %  I '-c(C)-qo . 
Now we are through, because we can compare (7.2) with (7.4) to solve for 
the numbers C(0. C(C) will be zero unless C = [" for some s E We,  in which 
case 

- 2 r - C ( C - ) - d ~ ( u ,  v )  - 1 Cs' 1' 
equals 

-. v2r  d l 1 -  / ( l ) - ( - l ) q - ( s g n  Ã § i ( . s v ) - k ( w ) . ~ ~ ( a 1 )  . 
2 

Since B(v, v )  - 1 ["Â 1' = & ( S U ) ' ? - - ~ ,  C(?) equals 

sgn { k ( m ) ~ i ( s v ) }  f ( 1 )  .d l1  . 
4 

We have essentially proved the following, which is our main result. 

THEOREM 7.2. Suppose f E Po((?), and "ec e is associated to the l inear  
functional v o n  ib. T h e n  for a l e  Ail and t # 0 ,  ( T ( t ,  al) ,  f )  equals 

1/2r 
(- - f  ( l ) - d ; l ( E , e Ã £  sgn {k(sv)&(sv)} .e- lkt") t l .  ?(al))  . 

4 
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Proof. For a, e A' the formula follows by substituting the above value 
for C ( P )  in (7.3); but A; is dense in A, and for fixed t + 0, ( T ( t ,  a,), f) is a 
smooth function of a,. Therefore the formula is true for all a, in A,. Q 

COROLLARY 7.3. In the notation of the theorem, (T(al ) ,  f) equals 

where s equals 1 or 2, d e p e n d i n g  o n  whether gi(al) = 0 or not. 

Proof. (F( t ,  al), f) equals zero for all a, and all t .  Therefore by a 
formula in $ 4 ,  

The corollary follows from the theorem. 
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