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Introduction

Suppose that G is a connected reductive group over a local field F' of characteristic 0. The study of harmonic
analysis on G(F') leads directly to interesting functions with complicated singularities. If the field F' is p-adic,
there is an important qualitative description of the behaviour of these functions near a singular point. It is given
by the Shalika germ expansion, and more generally, its noninvariant analogue. The purpose of this paper is to
establish similar expansions in the archimedean case F' = R.

The functions in question are the invariant orbital integrals, and their weighted generalizations. They are defined
by integrating test functions f € C2°(G(F)) over strongly regular conjugacy classes in G(F). We recall that
v € G(F') is strongly regular if its centralizer G, in G is a torus, and that the set G, of strongly regular elements
is open and dense in G. If v € G,eg(F') approaches a singular point ¢, the corresponding orbital integrals blow
up. It is important to study the resulting behaviour in terms of both y and f.

The invariant orbital integral

feln = D [ fa ), 7€ Gues(P),
G+ (F)3G(F)

is attached to the invariant measure dx on the conjugacy class of «y. Invariant orbital integrals were introduced
by Harish-Chandra. They play a critical role in his study of harmonic analysis on G(F'). The weighted orbital
integral

Jm (v, f) = ID(W)IW/ Fa™ o (@)dz, 7 € M(F) N Greg(F),

G (F)5G(F)

is defined by a noninvariant measure v);(z)dz on the class of v. The factor vy () is the volume of a certain
convex hull, which depends on both = and a Levi subgroup M of G. Weighted orbital integrals have an indirect
bearing on harmonic analysis, but they are most significant in their role as terms in the general trace formula.
In the special case that M = G, the definitions reduce to vg(x) = 1 and Jg(7, f) = fa(y). Weighted orbital
integrals therefore include invariant orbital integrals.

Suppose that c is an arbitrary semisimple element in G(F'). In §1, we shall introduce a vector space D.(G) of
distributions on G(F). Let U.(G) be the union of the set of conjugacy classes I'.(G) in G(F') whose semisimple
part equals the conjugacy class of ¢. Then D.(G) is defined to be the space of distributions that are invariant
under conjugation by G(F'), and are supported on U.(G). If F is p-adic, D.(G) is finite dimensional. It has a
basis composed of singular invariant orbital integrals

f*)fG(p)’ pGFC(G)v

taken over the classes in I'.(G). However if F = R, the space D.(G) is infinite dimensional. It contains normal
derivatives of orbital integrals, as well as more general distributions associated to harmonic differential operators.
In §1 (which like the rest of the paper pertains to the case F' = R), we shall describe a suitable basis R.(G) of
D.(G).

For p-adic F, the invariant orbital integral has a decomposition

(1)p fe( = >_ (M falp), feCx(G(F)),

pET(G)

into a finite linear combination of functions parametrized by conjugacy classes. This is the original expansion of
Shalika. It holds for strongly regular points -y that are close to ¢, in a sense that depends on f. The terms

p\/(,Y) = gg(’%p)’ pE FC(G)7
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are known as Shalika germs, since they are often treated as germs of functions of v around c. One can in fact
also treat them as functions, since they have a homogeneity property that allows them to be defined on a fixed
neighbourhood of ¢. The role of the Shalika germ expansion is to free the singularities of fg(y) from their
dependence on f.

In §2, we introduce an analogue of the Shalika germ expansion for the archimedean case F' = R. The situation is
now slightly more complicated. The sum in (1), over the finite set I'.(G) has instead to be taken over the infinite
set R.(G). Moreover, in place of an actual identity, we obtain only an asymptotic formula

(D fe() ~ D pY(Mfalp), f€CE(@).

PER:(G)

As in the p-adic case, however the terms
P’ (v) = 9&(,p), p € Re(Q),

can be treated as functions of v, by virtue of a natural homogeneity property. The proof of (1) is not difficult,
and is probably implicit in several sources. We shall derive it from standard results of Harish-Chandra, and the
characterization by Bouaziz [B2] of invariant orbital integrals.

Suppose now that M is a Levi subgroup of G, and that ¢ is an arbitrary semisimple element in M (F'). It is
important to understand something of the behaviour of the general weighted orbital integral Jys (7, f), for points
v near c. For example, in the comparison of trace formulas, one can sometimes establish identities among terms
parametrized by strongly regular points . One would like to extend such identities to the more general terms
parametrized by singular points p.

In the p-adic case, there is again a finite expansion*

2)» In(nH =Y Y aktne) el f), feCx(G(F)).

LeL(M) peT (L)

The right hand side is now a double sum, in which L ranges over the finite set £(M) of Levi subgroups containing
M. The terms

gxr(v. p), Le L(M), peT.(L),

in the expansion are defined as germs of functions of 7y in M (F') N Gyeg(F') near c. The coefficients
JL(pvf)a LE‘C(M)7 pEFc(L)a

are singular weighted orbital integrals. These objects were defined in [A3, (6.5)], for F real as well as p-adic, by
constructing a suitable measure on the G(F')-conjugacy class of the singular element p. The role of (2), is again
to isolate the singularities of Jps(7y, f) from their dependence on f.

The goal of this paper is to establish an analogue of (2), in the archimedean case F' = R. We shall state the results
in §5, in the form of two theorems. The main assertion is that there is an infinite asymptotic expansion

(2w In(u 0~ Y > antne) e f), f€C&(GR)).

LeL(M) peR.(L)

* thank. Waldspurger . for inti is Vers1on of the expansion out to me. My original
}ormu ation [%% Iiz’ro 051t10n9§)]0 was ss egant. P y &
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The double sum here is essentially parallel to (2),, but its summands are considerably more complicated. The
terms

€)) 9517, p), Le L(M), p€ Re(L),

are “formal germs”, in that they are defined as formal asymptotic series of germs of functions. The coefficients
(4) JL(ﬂ?f)v LG‘C(M)7 pGRC(L)v

have to be defined for allsingular invariant distributions p, rather than just the singular orbital integrals spanned
by I'.(L). The definitions of [A3] are therefore not good enough. We shall instead construct the distributions
Jr(p, f) and the formal germs g%, (v, p) together, in the course of proving the two theorems. We refer the reader
to the statement of Theorem 5.1 for a detailed list of properties of these objects.

The proof of Theorems 5.1 and 5.2 will occupy Sections 6 through 9. The argument is by induction. We draw
some preliminary inferences from our induction hypothesis in §6. However, our main inspiration is to be taken
from the obvious source, the work of Harish-Chandra, specifically his ingenious use of differential equations
to estimate invariant orbital integrals. One such technique is the foundation in §3 of some initial estimates for
weighted orbital integrals around c. These estimates in turn serve as motivation for the general spaces of formal
germs we introduce in §4. A second technique of Harish-Chandra will be the basis of our main estimate. We shall
apply the technique in §7 to the differential equations satisfied by the asymptotic series on the right hand side of
(2)g, or rather, the difference between Jys(7, f) and that part of the asymptotic series that can be defined by our
induction hypothesis. The resulting estimate will be used in §8 to establish two propositions. These propositions
are really the heart of the matter. They will allow us to construct the remaining part of the asymptotic series in
§9, and to show that it has the the required properties.

In §10, we shall apply our theorems to invariant distributions. We are speaking here of the invariant analogues
of weighted orbital integrals, the distributions

IM(f%f)a ’YE M<R)ﬁGreg(R)7
that occur in the invariant trace formula. We shall derive an asymptotic expansion

LeL(M) pER.(L)
for these objects that is parallel to (2)g.

We shall conclude the paper in §11 with some supplementary comments on the new distributions. In particular,
we shall show that the invariant distributions

(6) IL(ﬂ?f)v LG‘C(M)7 pGRC(L)v
in (5), as well as their noninvariant counterparts (4), satisfy a natural descent condition.

The distributions (6) are important objects in their own right. They seem to be essential for dealing with problems
of endoscopic transfer. However, their definition is quite indirect. It relies on the construction of noninvariant
distributions (4), which as we have noted, is a consequence of our main theorems. Neither set of distributions is
entirely determined by the given conditions. We shall frame this lack of uniqueness in terms of a choice of some
element in a finite dimensional affine vector space. One can make the choice in either the noninvariant context
(Proposition 8.3), or equivalently, the setting of the invariant distributions (as explained at the end of §10). When
it comes to comparing invariant distributions (6) on different groups, it will of course be important to make the
required choices in a compatible way. As we shall see in another paper, the asymptotic expansion (5) will be an
integral part of the process.
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§1.  Singular invariant distributions

Let G be a connected reductive group over the real field R. If ¢ is a semisimple element in G(R), we write G +
for the centralizer of ¢ in G, and G, = (Gc,+)0 for the connected component of 1 in G, . Both G+ and G,
are reductive algebraic groups over R. Recall that c is said to be strongly G-regular if G,y = G is a maximal
torus in G. We shall frequently denote such elements by the symbol -, reserving c for more general semisimple
elements. We write I',;(G) = ['ss(G(R)) and I'yeg(G) = Treg (G(R)) for the set of conjugacy classes in G(R)
that are, respectively, semisimple and strongly G-regular.

We follow the usual practice of representing the Lie algebra of a group by a corresponding lower case gothic
letter. For example, if ¢ belongs to I's5(G),

gc={X €g: Ad(c)X = X}

denotes the Lie algebra of G.. (We frequently do not distinguish between a conjugacy class and some fixed
representative of the class.) Suppose that v € I'tes(G). Then T' = G, is a maximal torus of G over R, with Lie
algebra t = g, and we write

D(y) = D%(v) = det(1 — Ad(7)),, ,

for the Weyl discriminant of G. If y is contained in G, we can of course also form the Weyl discriminant

De(v) = D (7) = det(1 — Ad(%))

of G.. The function D, will play an important role in formulating the general germ expansions of this paper.

Suppose that f is a function in the Schwartz space C(G) = C(G(R)) on G(R) [H3], and that 7y belongs to I'yeq (G).
The invariant orbital integral of f at v is defined by the absolutely convergent integral

o) = Janf) =IDE [ e

One can regard fg(7) as a function of f, in which case it is a tempered distribution. One can also regard fc(v)
is a function of +y, in which case it represents a transform from C(G) to a space of functions on either I';¢z (G) or

Treg(R) = Gv (R) N Greg (R)

(Recall that Gyeg(R) denotes the open dense subset of strongly G-regular elements in G(R).) We shall generally
take the second point of view. In the next section, we shall establish an asymptotic expansion for f¢ (), as v
approaches a fixed singular point.

Let ¢ € I'ys(G) be a fixed semisimple conjugacy class. Keeping in mind that ¢ also denotes a fixed element
within the given class, we write U, (G) for the union of those conjugacy classes in G(R) whose semisimple Jordan
component equals ¢. Then U (G) is a closed subset of G(R) on which G(R) acts by conjugation. We define
D.(G) to be the vector space of G(R)-invariant distributions that are supported on U, (G). In this section, we
shall introduce a suitable basis of D.(G).

Elements in D.(G) are easy to construct. Let 7.(G) be a fixed set of representatives of the G. y(IR)-orbits of
maximal tori on G, over R, or equivalently, a fixed set of representatives of the G(R)-orbits of maximal tori in G
over R that contain c. We shall write S.(G) for the set of triplets

o= (T,9,X),
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where T belongs to 7.(G), §2 belongs to the set 7 . (Treg(R)) of connected components of Ty.s (R) whose closure
contains ¢, and X is an invariant differential operator on T'(R). (By an invariant differential operator on T'(R),
we of course mean a linear differential operator that is invariant under translation by 7'(R).) Let o be a triplet in
Sc(G). A deep theorem of Harish-Chandra [H3] asserts that the orbital integral

fG('Y)7 fEC(G),’YE(L

extends to a continuous linear map from C(G) to the space of smooth functions on the closure of . It follows
from this that the limit

fi() = I (X fa) (7). TEQ fEC(O)

exists, and is continuous in f. If f is compactly supported and vanishes on neighbourhood of U.(G), fa(o)
equals 0. The linear form f — fg(o) therefore belongs to D.(G).

Bouaziz has shown that, conversely, the distributions f — fg(o) span D.(G). To describe the result in more
detail, we need to attach some familiar data to the tori 7' in 7.(G). Given T, we write W (G, T) for the subgroup
of elements in the Weyl group W (G, T) of (G, T') that are defined over R, and W (G(R), T'(R)) for the subgroup
of elements in Wg (G, T) induced from G(R). We also write Wg (G, T') and W, (G(R), T'(R)) for the subgroups
of elements in Wg (G, T) and W (G(R), T(R)), respectively, that map the element ¢ € T(R) to itself. We then
form the imaginary root sign character

ge,1(w) = (-1)°, b= |w(2j1) n EIIL w € Wr(G,T),

on Wr (G, T), where Zj, ; denotes the set of positive imaginary roots on (G., T) relative to any chamber. This
allows us to define the subspace

S(t((C))C’I ={ue S(tQC)) : wu=ccr(w)u, we W, (GR), T(R)}

of elements in the symmetric algebra on t(C) that transform under W, (G(R), T(R)) according to the character
€c,1- There is a canonical isomorphism u — 9(u) from S (t((C))C’I onto the space of ¢, r-equivariant differential
operators on T'(R).
For each T' € 7.(G), we choose a connected component Q7 € 7o . (Treg(R)). For any u € S(A(C))C’I and
w € Wr (G, T), the triplet

Owou = (T7 wr, 8(u))

lies in S;(G). We obtain a linear transformation

(1.1) pr P SHO) — D)

TeT(G)

by mapping u to the distribution

Pu - f‘> Z Ec,l(w)fG(O—w,u)y f S C(G)a

weEWR (G, T)

in D.(G). For each T', we choose a basis B(t(C)) “Tof § (t(C)) ! whose elements we take to be homogeneous.
We then form the subset
R.(G) = {pu: T € T.(G), u e B(t(C))*"}

of D.(G).
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Lemmal.l. The map (1.1) is an isomorphism, and R.(G) is a basis of D.(G). In particular, D.(G) consists

of tempered distributions.

Proof. Since R.(G) is the image under the linear transformation (1.1) of a basis, it would be enough to establish
the assertion that (1.1) is an isomorphism. We could equally well deal with the mapping

(1.1) P P SHC) — DG

TeT.(G)
that sends an element u € S(t(C)) “! to the distribution
Py f— faloru) = fa(T,Qr,0(v)), [ €C(q).

For it is an easy consequence of Harish-Chandra’s jump conditions for orbital integrals that there is an isomor-
phism of the domain of (1.1) to itself whose composition with (1.1) equals (1.1)’. It would be enough to show
that (1.1)’ is an isomorphism.

That the mapping (1.1)’ is an isomorphism is implicit in the papers [B1] and [B2] of Bouaziz. In the special case
that ¢ = 1, the corresponding result for the Lie algebra g(R) was proved explicitly [B1, Proposition 6.1.1]. The
assertion for G(R), again in the special case that ¢ = 1, follows immediately from properties of the exponential
map. A standard argument of descent then reduces the general assertion for G(R) to the special case, applied to
the group G.(R). O

If p = (T,Qr,0(u)) belongs to R.(G), we set deg(p) equal to the degree of the homogeneous element u €
S(t(C)). Observe that for any nonnegative integer n, the subset

Ren(G) = {p € Ru(G) : deg(p) < n}
of R.(G) is finite. This set is in turn a disjoint union of subsets
Re 1) (G) = {p € R(G) : deg(p) = k}, 0<k<n.

The sets R, ) (G) will be used in the next section to construct formal germ expansions of invariant orbital
integrals.
Let Z(G) be the center of the universal enveloping algebra of g(C). For any torus T' € 7.(G), we write

hr : 2(G) — S(ye)" "

for the Harish-Chandra isomorphism from Z(G) onto the space of W (G, T')-invariant elements in S(t(C)). We
then define an action o — zo of Z(G) on D.(G) by setting

zp = (T, Qr,0(hr(2))u), z € Z(Q),
forany p = (T, Qr, 8(u)) inthebasis R.(G). Itfollows immediately from Harish-Chandra’s differential equations
(12) (2f)a(v) = 0(hr(2)) fa(v), feC(G), v € Treg(R),

for invariant orbital integrals that

(1.3) fa(zp) = (2f)a(p).
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There is no special reason to assume that R.(G) is stable under the action of Z(G). However, we do agree to
identify any function ¢ on R.(G) with its linear extension to D.(G), in order that the values

¢(zp), z € Z(G), p € Re(G),

be defined. Moreover, for any z € Z(G), we write Z for the transpose of the linear operator o — zo on D.(G),
relative to the basis R.(G). In other words,

(1.4) ST oblpEe) = D dlzp)t(p).
PER(G) PER(G)
for any functions ¢ and ¢ of finite support on R.(G).

We note for future reference that as a Z(G)-module, D.(G) is free. To exhibit a free basis, we write D¢ harm (G)
for the finite dimensional subspace of D (G) spanned by triplets (T, €2, (u)) in S¢(G) for which u belongs to the
subspace Sharm (t(C)) of harmonic elements in S(¢(C)). (Recall that  is harmonic if as a polynomial on ¢(C)*,

O(u*)u = 0 for every element u* € S (t((C)*)W(G"T) with zero constant term.) It can be shown that

c,I

S(t((C)) " = Sharm (f((C))C’I ® S(t(c))W(G,T)

)

where

Sharm (HC)) " = Sharm (H(C)) N S(H(C)) .
Any linear basis of D, harm (G) is therefore a free basis of D.(G) as a Z(G)-module.

The remarks above are of course simple consequences of the isomorphism (1.1). Another implication of (1.1)
is the existence of a canonical grading on the vector space D.(G). The grading is compatible with the natural
filtration on D.(G) that is inherited from the underlying filtration on the space

I(G) = {fc(n) - [ €C(G)}.

We shall be a bit more precise about this, in order to review how subsets of R.(G) are related to Levi subgroups.

By a Levi subgroup M of G, we mean an R-rational Levi component of a parabolic subgroup of G over R. For
any such M, we write A, for the R-split component of the center of M. Then A, (R)O is a connnected abelian
Lie group, whose Lie algebra can be identified with the real vector space

Ay = HOIn(X(M)]R,R).

We write
W(M) =W (M) = Normg(M)/M

for the Weyl group of (G, Apr). We shall follow a standard convention of writing £(M) = L&(M) for the
finite set of Levi subgroups of G that contain M, and L£°(M) for the complement of {G} in £(M). Similarly,
F(M) = FE(M) stands for the finite set of parabolic subgroups

P =MpNp, Mp € L(M),
of G over R that contain M, while

P(M)=P%M)={PeP(M): Mp=M}
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stands for the subset of parabolic subgroups in F(M) with Levi component M. Again, F°(M) denotes the
complement of {G} in F(M).

Suppose that M is a Levi subgroup of G. We write I g-ycg (M) for the set of classes in I'yeq (M) that are strongly
G-regular. There is a canonical map from I' g-req (M) t0 1o (G) on whose fibres the group W (M) acts. The dual
restriction map of functions is a linear transformation ¢ — ¢ar from Z(G) to Z(M). We define FMZ(G) to
be the space of functions ¢ in Z(G) such that ¢, = 0 for every Levi subgroup L of G that does not contain a
conjugate of M. If M = G, FMZ(G) is the space Z.usp(G) of cuspidal functions in Z(G). This space is nonzero
if and only if G has maximal torus T  over R that is elliptic, in the sense that T'(R) /A (R) is compact. Letting M
vary, we obtain an order reversing filtration on Z(G) over the partially ordered set of G-conjugacy classes of Levi
subgroups. The graded vector space attached to the filtration has M-component equal to the quotient

GM(1(G)) = FM(Z(G))/ Y FH(Z(@)).

LOM

The map ¢ — ¢ is then an isomorphism from G (Z(G)) onto the space Zeysp (M)W M) of W (M)-invariant
cuspidal functions in Z(M). (See [A6]. The definition of F*(Z(G)) was unfortunately stated incorrectly on
p- 508 of that paper, as was the definition of the corresponding stable space on p. 510.)

Since the distributions in D.(G) factor through the projection f — fg of C(G) onto Z(G), they may be identified
with linear forms on Z(G). The decreasing filtration on Z(G) therefore provides an increasing filtration on D.(G).
To be precise, F (D.(G)) is defined to be the subspace of distributions in D..(G) that annihilate any of the spaces
FL(Z(G)) with L 2 M. The M-component

GM(Do(G)) = FM(D(G))/ Y F*(De(G))

LCM

of the corresponding graded vector space can of course be zero. It is nonzero if and only if M (R) contains some
representative of ¢, and M, contains a maximal torus 1" over R that is elliptic in M. The correspondence M — T'
in fact determines a bijection between the set of nonzero graded components of the filtration of D.(G) and the set
7.(G). Moreover, the mapping (1.1) yields an isomorphism between the associated graded component S (t(C)) !
and GM (D.(G)). We therefore obtain an isomorphism

(1.5) D(G)-= P M (D)),
(1}

where {M} = {M}/G ranges over conjugacy classes of Levi subgroups of G. The construction does depend on
the choice of chambers ()7 that went into the original definition (1.1), but only up to a sign on each summand in
1.5).

The isomorphism (1.5) gives the grading of D.(G). We should point out that there is also a natural grading on the
original space Z(G). For the elements f¢ in Z(G) can be regarded as functions on the set Iliem, (G) of irreducible
tempered representations of G(R), rather than the set I'yes (G). The space of functions on Iliem, (G) so obtained
has been characterized [A5], and has a natural grading that is compatible with the filtration above. (See [A6, §4]
for the related p-adic case.) However, this grading on Z(G) is not compatible with (1.5).

We shall say that an element in D.(G) is elliptic if it corresponds under the isomorphism (1.5) to an element in
the space G%(D.(G)). We write D, 11(G) for the subspace of elliptic elements in D,.(G), and we write

Rc,ell(G> = R((G) N Dc,ell(G>
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for the associated basis of D, ¢11(G). For any Levi subgroup M of G, we shall also write D, ci(M, G) for the
subspace of distributions in D, 1 (M) that are invariant under the action of the finite group W(M). (We can
assume that M (R) contains a representative c of the given conjugacy class, since the space is otherwise zero.) The
set

Rc,ell(Mv G) = RC(G> nGgY (DC(G))

can then be identified with a basis of D, o1 (M, G). The grading (1.5) gives a decomposition

RC(G) - H Rc,ell(Mv G)
(a1}

of the basis of D.(G).

Suppose, finally, that 6 is an R-isomorphism from G to another reductive group
G1 =0G over R. Then ¢; = fcisaclass inI's(G1). For any f € C(G), the function

Of)(x1) = (07 1), 21 € G1(R),
belongs to C(G1). The map that sends any p € D.(G) to the distribution 6p defined by

(1.6) (0f)c(0p) = fa(p)

is an isomorphism from D..(G) onto D, (G1). It of course maps the basis R.(G) of D.(G) to the basis R, (G1) =
OR.(G) of D., (G1).



Germ expansions for real groups 11

§2. Invariant germ expansions

Let ¢ be a fixed element in I's5(G) as in §1. We are going to introduce an asymptotic approximation of the
invariant orbital integral f;(7), for elements -y near c. This will be a foundation for the more elaborate asymptotic
expansions of weighted orbital integrals that are the main goal of the paper.

Suppose that V is an open, G(R)-invariant neighbourhood of ¢ in G(R). We write
I(V) ={fc : Viee—C, f€C(G)}

for the space of functions on
Vieg = V N Greg(R)

that are restrictions of functions in Z(G). If 0 = (T, 2, X ) belongs to the set S.(G) defined in §1, the intersection
‘/Q = ‘/reg N

is an open neighbourhood of ¢ in the connected component 2 of T}eg (R). The functions ¢ in Z(V') are smooth on
Vq, and have the property that the seminorms

(2.1) 6llo = sup (X))

are finite. These seminorms make Z (V') into a topological vector space. To deal with neighbourhoods that vary,
it will be convenient to work with the algebraic direct limit

I.(G) = lim Z(V')
v

relative to the restriction maps
Z(Vi)—Z(Va), Vi O Vh.

The elements in Z.(G) are germs of G(R)-invariant, smooth functions on invariant neighbourhoods of ¢ in
Gheg(R). (We will ignore the topology on Z.(G) inherited from the spaces Z(V'), since it is not Hausdorff.)

As is customary in working with germs of functions, we shall generally not distinguish in the notation between
an element in Z.(G) and a function in Z(V') that represents it. The open neighbourhood V of ¢ is of course
not uniquely determined by original germ. The convention is useful only in describing phenomena that do not
depend on the choice of V. It does make sense, for example, for the linear forms p in D.(G). By Lemma 1.1,
p factors through the map f — fg. It can be evaluated at a function in any of the spaces Z(V'), and the value
taken depends only on the image of the functions in Z.(G). In other words, the notation ¢(p) is independent of
whether we treat ¢ as a germ in Z.(G) or a function in Z(V).

For a given V, Bouaziz characterizes the image of the space C2°(V') under the mapping f — fq. He proves that
the image is the space of G(R)-invariant, smooth functions on V¢ that satisfy the conditions I (G)-14(G) on
pp. 579-580 of [B2, §3]. Assume that the open invariant neighbourhood V' of c is sufficiently small. The conditions
can then be formulated in terms of triplets (T, €2, X) in S.(G). Condition I;(G) is simply the finiteness of the
seminorm (2.1). Condition I(G) asserts that the singularities of ¢ in T'(R) N V' that do not come from noncompact
imaginary roots are removable. Condition I3(G) is Harish-Chandra’s relation for the jump of X ¢(y) across any
wall of Vi, defined by a noncompact imaginary root. Condition I4(G) asserts that the closure in T'(R) NV of the
support of ¢ is compact. The theorem of Bouaziz leads directly to a characterization of our space Z.(G).
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Lemma2.1. Z,(G) is the space of germs of invariant, smooth functions ¢ € C°(Vieg) that for any (T,Q, X) €
Sc(G) satisfy the conditions Iy (G) — I3(G) in [B2, §3].

Proof. Suppose that ¢ belongs to Z.(G). Then ¢ has a representative in Z(V'), for some open invariant neigh-
bourhood V' of c. We can therefore identify ¢ with the restriction to Vg of an orbital integral fo of some function
f € C(G). It follows from the analytic results of Harish-Chandra that f¢ satisfies the three conditions. (See [H3,
Lemma 26] and [H4, Theorem 9.1].)

Conversely, suppose that for some small V, ¢ is an invariant function in C*°(V;¢g) that satisfies the three
conditions. In order to accommodate the fourth condition, we modify the support of ¢. Let 11 € C*(G(R))
be a smooth, G(R)-invariant function whose support is contained in V, and which equals 1 on some open,
invariant neighbourhood Vi C V of ¢. For example, we can chooose a positive, homogeneous, G 4 (R)-invariant
polynomial g. on g.(R) whose zero set equals cU;(G.), as in the construction on p. 166 of [B1], together with
a function oy € CZ°(R) that is supported on a small neighbourhood of 0, and equals 1 on an even smaller
neighbourhood of 0. The function

Y1 (z) = a1 (ge(log 7)),
defined for any

=y levy, y € GR), v € G(R),

has the required property. Given 11, we set
¢1(z) = ¥1(2)9(2), z € G(R).

The function ¢; then satisfies the support condition I4(G) of [B2]. It is not hard to see that ¢ inherits the other
three conditions I; (G) —I3(G) of [B2] from the corresponding conditions on ¢. It follows from the characterization
[B2, Théoreme 3.2] that ¢1 = f¢, for some function f € C°(V). Since C2°(V) is contained in C(G), and since ¢
takes the same values on V; ;¢ as the function ¢, = fg, the germ of ¢ coincides with the germ of fg. In other
words, the germ of ¢ lies in the image of C(G). It therefore belongs to Z.(G). O

In order to describe the asymptotic series of this paper, it will be convenient to fix a “norm” function that is
defined on any small G(R)-invariant neighbourhood V of cin G(R). We assume that V' is small enough that
(i) any elementin V is G(R)-conjugate to T'(R), for some torus T' € 7 (G),

(i) for any T' € 7.(G) and any w in the complement of W, (G(R), T(R)) in W (G(R), T(R)), the intersection
w(VNT(R)) N (VNT(R))
is empty, and
(iii) forany T" € 7.(G), the mapping

(2.2) y—Le(v) = log(yc™")

is a diffeomorphism from (V' N T(R)) to an open neighbourhood of zero in t(R).

We can of course regard the mapping v — £.() as a coordinate system around the point cin T'(R). Let us assume
that the Cartan subalgebras {t(R) : T € 7.(G)} are all stable under a fixed Cartan involution 6. of g.(R). We
choose a G, 1 (R)-invariant bilinear form B on g. such that the quadratic form

|X||> = —B(X,0.(X)), X € go(R),
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is positive definite on g.(R). The function
v — M,

defined a priori for v in any of the sets V N T(R), T' € 7.(G), then extends to a G(R)-invariant function on V. It
will be used to describe the estimates implicit in our asymptotic series.

We have noted that the elements in D.(G) can be identified with linear forms on the space Z.(G). Let us write
Z..»(G) for the annihilator in Z..(G) of the finite subset R, ,,(G) of our basis R.(G) of D.(G). It is obvious that

Zen(G) =lmZ, ,(V),
1%

where Z. (V) is the subspace of Z(V') annihilated by R, ,(G). We can think of Z. ,(G) as the subspace of
functions in Z.(G) that vanish of order at least (n + 1) at c. For later use, we also set C,. ,,(G) equal to the subspace
of C(G) annihilated by R, ,,(G). Itis clear that the map f — f¢ takes C. ,(G) surjectively to Z.. ,,(G).

Suppose that ¢ is an element in Z,(G). We can take the Taylor series around c, relative to the coordinates /.(7),

of each of the functions
o), v CVa, T € T(G), Q € mo.c(Treg(R)),

that represent ¢. For any nonnegative integer k, let #(¥) be the term in the Taylor series of total degree k. Then
#*) can be regarded as an invariant, smooth function in C*°(V;g). We claim that it belongs to Z..(G).

Proposition 2.1 asserts that ¢(*) belongs to Z.(G) if and only if it satisfies the conditions I; (G) — I3(G) of [B2, §3].
Condition I; (G) is trivial. Conditions I2(G) and I3(G) are similar, since they both concern the jumps of ¢ about
walls in Vo, for triplets (7', 2, X') € S.(G). We shall check only I3(G). Suppose that 5 is a noncompact imaginary
root of (G, T) that defines a wall of 2 = Q4. Let Q_ be the complementary component in Tye,(R) that shares
this wall. By means of the Cayley transform associated to 3, one obtains a second triplet (73,3, X3) € S.(G)
for which 23 also shares the given wall of 2. Condition I3(G) for ¢ asserts that

(2.3) (Xoa,)(7) = (X¢a_)(7) = d(B)(Xsda,)(7),

for v on the given wall of 2. Here, ¢, represents the restriction of ¢ to Vq,, a smooth function that extends
to the closure of Vg, while d(() is independent of ¢. If X is a homogeneous invariant differential operator on
T, (R) of degree d, and ¢ is homogeneous of degree k (in the coordinates £.(7y)), then (X ¢q. ) (7) is homogeneous
of degree k — dif k > d, and vanishes if k& < d. The relation (2.3) for ¢ then implies the corresponding relation

(Xoa)(7) = (X64)) () = d(B)(Xp04))(7)

for the homogeneous components #F) of ¢. This is the condition I3 (G) for #*) . The claim follows.

We set
IMN(G) = {p € T.(G) : ¢ = ¢},

for any nonnegative integer k. Suppose that n is another nonnegative integer. Then P (G) is contained in
Z.n(G) if k > n, and intersects Z. ,,(G) only at 0 if & < n. It follows from what we have just proved that the

quotient
Ig (G) = I(:(G)/Ic,n(G>

has a natural grading



Germ expansions for real groups 14

But Z. ,(G) is the subspace of Z.(G) annihilated by the finite subset

Ren(G) = [ Rew(G)

0<k<n
of R.(G). It follows that R ,,(G) is a basis of the dual space of 77" (G), and that R, () (G) is a basis of the dual
space of 7 (G).
Let
{0": peRw(@)}

be the basis of Z.") (G) that is dual to R (4)(G). If T € 7.(G) and Q € mg,c(Teg(R)), the restriction to Vg, of any
function p" in this set is a homogeneous polynomial

v —p"(7), v € Vo,

of degree k (in the coordinates /.(v)). In particular, p" has a canonical extension to the set of regular points in any
invariant neighbourhood of V' of ¢ on which the coordinate functions (2.2) are defined. Thus, unlike a general
element in Z.(G), p" really can be treated as a function, as well as a germ of functions.

The union over k of our bases of Ic(k) (G) is a family of functions

pv(7)7 ’Y E V;egz p E Rc(G>7

with properties that are dual to those of R.(G). For example, the dual of the action (1.3) of Z(G) on D.(G) is a
differential equation

(2.4) (2p)" = h(z)p",

forany z € Z(G) and p € R.(G). Here Z represents the transpose action (1.4) of Z(G), and h(z) is the G(R)-
invariant differential operator on V. obtained from the various Harish-Chandra maps z — hr(z). The dual of
(1.6) is the symmetry condition

(2.5) Qp\/ _ (Hp)v,

for any isomorphism §: G — 0G over R, and any p € R.(G).

The main reason for defining the functions {p"} is that they represent germs of invariant orbital integrals. It is
clear that

sF =D p’nep), k>0,

peRc,(k) (G)

for any function ¢ € Z.(G). Suppose that f belongs to C(G). The Taylor polynomial of degree n attached to the
function fg(7) on Viey (taken relative to the coordinates .()) is then equal to the function

(2.6) ra =3 Pm= 3 ).

0<k<n PER: n(G)

It follows from Taylor’s theorem that there is a constant C,, for each n such that

|[fa(y) = fEM] < Callle(nI™F
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for any v € V;eg. Otherwise said, f¢(y) has an asymptotic expansion

> M ialp),

PER(G)

in the sense that f¢(7) differs from the partial sum fZ(7y) by a function in the class O(||¢.(7)||" ).

The main points of Sections 1 and 2 may be summarized as follows. There are invariant distributions

f— fa(p), p € R(G),

supported on U.(G), and homogeneous germs

v —p'(7), p € R:(G),

in Z.(G), which transform according to (1.3) and (2.4) under the action of Z(G), satisfy the symmetry conditions
(1.6) and (2.5), and provide an asymptotic expansion

2.7) fe) ~ > p'(WMialp), 7 € Viegs

PER:(G)
around c for the invariant orbital integral fc (7).

It is useful to have a formulation of (2.7) that is uniform in f.

Proposition 2.2. For any n > —1, the mapping

[ — fa(v) = f&(), fec(a),

is a continuous linear transformation from C(G) to the space I, (V).

Proof. We have interpreted fi(7y) as the Taylor polynomial of degree n for the function f(7y). Since I., (V') can
be regarded as a closed subspace of functions in Z(V') that vanish of order at least (n + 1) at ¢, the difference
fa(y) — f&(v) belongs to Z. , (V). The continuity assertion of the lemma follows from the integral formula for
the remainder in Taylor’s theorem [D, (8.14.3)], and the continuity of the mapping f — fc. O

Remarks. 1. Proposition 2.2 could of course be formulated as a concrete estimate. Given n > —1, we simplify
the notation by writing

(2.8) (n,X)=(n+1- deg(gc))Jr = max{(n+ 1 —deg X), 0},

for any differential operator X . The proposition asserts that for any o = (7', 2, X) in S.(G), there is a continuous
seminorm p” on C(G) such that

X (fa(v) = FED)] < mp (DI,

forany v € Vo and f € C(G).

2. Invariant orbital integrals can be regarded as distributions that are dual to irreducible characters. In this sense,
the asymptotic expansion (2.7) is dual to the character expansions introduced by Barbasch and Vogan near the
beginning of [BV].
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Our goal is to extend these results for invariant orbital integrals to weighted orbital integrals. As background
for this, we observe that much of the discussion of Sections 1 and 2 for G applies to the relative setting of a
pair (M, G), for a fixed Levi subgroup M of G. In this context, we take c to be a fixed class in I's5(M). Then ¢
represents a W (M )-orbitin I's (M) (or equivalently, the intersection of M with a class in I's5(G)), which we also
denote by c. With this understanding, we take V' to be a small open neighbourhood of cin M (R) that is invariant
under the normalizer

W (M)M(R) = Normgr) (M (R))

of M(R) in G(R).

Given V, we can of course form the invariant Schwartz space Z(V') for M. If f belongs to C(G), the relative
(invariant) orbital integral fj; around c is the restriction of fg to the subset

Va-reg = V N Greg(R)
of Greg (R). It is easy to see that f — fas is a continuous linear mapping from C(G) into the closed subspace
(V,G) = (V)W)

of W(M)-invariant functions in Z(V). (We identify functions in Z(V,G) with their restrictions to Vig-reg.)
Other objects defined earlier have obvious relative analogues. For example, S.(M, G) denotes the set of triplets
(T, Q, X), where T belongs to the set 7,(M) (defined for M as in §1), 2 is a connected component in 7-req (R)
(rather than T'hs-req(R)) whose closure contains ¢, and X is an invariant differential operator on T'(R) (as before).
The elements in S. (M, G) yield continuous seminorms (2.1) that determine the topology on Z(V, G). We can also
define the direct limits
T.(M,G) = i Z(V,G)
1%

and
In(V,G) =limZ. ,(V,G),
v
where 7., (V, G) denotes the subspace of Z(V, G) annihilated by the finite subset R, ,,(M) of the basis R.(M).
We shall use these relative objects in §4, when we introduce spaces that are relevant to weighted orbital integrals.

We note that there is also a relative analogue of the space of harmonic distributions introduced in §1. We define the
subspace D, G-harm (M) of G-harmonic distributions in D, (M ) be the space spanned by those triplets (7', 2, (u))
in S¢(M, G) such that the element u € S(t(C)) is harmonic relative to G. Any linear basis of De,¢-harm (M) is
a free basis of D.(M), relative to the natural Z(G)-module structure on D.(M). In our construction of certain
distributions later in the paper, the elements in D¢, g-harm (M) will be the primitive objects to deal with.
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§3.  Weighted orbital integrals

We now fix a maximal compact subgroup K of G(R). We also fix a Levi subgroup M of G such that a,; is
orthogonal to the Lie algebra of K (with respect to the Killing form on g(R)). There is then a natural smooth
function

vy (x) = )l\li% PEPZ(M)Q—/\(HP(I))QP()\)—l

on M(R)SG(R)/K, defined as the volume of a certain convex hull. This function provides a noninvariant
measure on the G(R)-conjugacy class of any strongly G-regular point in M (R), relative to which any Schwartz
function f € C(G) is integrable. The resulting integral

Inl N =I5 =D [ e e

is a smooth, M (R)-invariant function of y in the set
Mgreg(R) = M(R) N Greg(R).

(See [Al, Lemma 8.1] and [A2, §6-7].) We recall a few of its basic properties.

For any +, the linear form f — Ja (7, f) is a tempered distribution. In contrast to the earlier special case

Ja(v, f) = fa()

of M = (G, however, it is not invariant. Let

frew— flyay™), z € G(R),

be the conjugate of f by a fixed element y € G(R). The weighted orbital integral of f¥ can then be expanded as

(3.1) Iu(n ) = D> I (s faw);

QEF (M)

in the notation of [A2, Lemma 8.2]. The summand with Q) = G is equal to Jys (7, f). The expansion can therefore
be written as an identity
M
Ju(y, 4= f) = Z I (0, faw)
QEFO (M)

that represents the obstruction to the distribution being invariant.

Weighted orbital integrals satisfy a generalization of the differential equations (1.2). If z belongs to Z(G), the
weighted orbital integral of z f has an expansion

(3.2) Iu(v,2f) = Z (v, z) I (v, f)-

LeL(M)

Here 2 — z7, denotes the canonical injective homomorphism from Z(G) to Z(L), while 8%, (v, z1,) is an M (R)-
invariant differential operator on M (R) N Lyes (R) that depends only on L. If T is a maximal torus in 7.(M),
0% (v, z1) restricts to an algebraic differential operator on the algebraic variety 77-,cq. Moreover, 9%, (7, z1) is
invariant under the finite group W% (M) of outer automorphisms of M. We can therefore regard 0%, (v, 2,) as a
WE(M)M (R)-invariant, algebraic differential operator on the algebraic variety Mg-reg. Inthe case that L = M,
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917 (7, zar) reduces to the invariant differential operator d(h(z)) on M (R) obtained from the Harish-Chandra
isomorphism. The differential equation (3.2) can therefore be written as an identity

Tar (v, 2F) = 0 (M=) I (v, £) = D 0xr (v, 2) T (7, f)

L#M

that is easier to compare with the simpler equations (1.2). (See [Al, Lemma 8.5] and [A3, §11-12].)

Suppose that §: G — 60G is an isomorphism over R, as in §1. We can then take weighted orbital integrals on
(0G)(R) with respect to 0 K and 6. They satisfy the relation

(33) JOJV[ (677 gf) = JI\/[ (’77 f)

[A7, Lemma 3.3]. In particular, suppose that = Int(w), for a representative w € K of some element in the Weyl
group W (M). In this case, Jus (7, 0f) equals Jas (7, f), and OM = M, from which it follows that

Jar(wyw™, f) = T (7, f)-

Therefore Jas (7, f) is actually a W (M) M (R)-invariant function of ~.

At this point, we fix a class ¢ € I'ss(M) and an open W (M )M (R)-invariant neighbourhood V' of ¢ in M (R), as
at the end of §2. We can assume that V' is small. In particular, we assume that the intersection of V' with any
maximal torus in M (R) is relatively compact.

We propose to study Jas (7, f) as a function of 4 in Vig-reg. The behaviour of this function near the boundary
is more complicated in general than it is in the invariant case M = G. In particular, if (T, 2, X) lies in the set
Sc(M, G) introduced at the end of §2, the restriction of Jas (7, f) to the region

Vo=VnNAQ

does not extend smoothly to the boundary of Vi,. The function satisfies only the weaker estimate of the following
lemma.

Lemma 3.1. For every triplet 0 = (T,Q,X) in S.(M,G), there is a positive real number a such that the
supremum

to(f) = sup (X Jar(v, £)I[De(1)]*), fec@),

yEVQ
is a continuous seminorm on C(G). In the case that X = 1, we can take a to be any positive number.

Proof. This lemma is essentially the same as Lemma 13.2 of [A3]. The proof is based on an important technique of
Harish-Chandra for estimating invariant orbital integrals [H1, Lemma 48]. We shall recall a part of the argument,
in order to persuade ourselves that it remains valid under the minor changes here (where, for example, C(G)
replaces C2° (G (R)), and D, () takes the place of D()), referring the reader to [A3] and [H1] for the remaining
part.

We fix the first two components 7' € 7.(M) and Q € 7o, (TG-reg(R)) of a triplet o. We require an estimate for
every invariant differential operator X that can form a third component of 0. As in Harish-Chandra’s treatment
of invariant orbital integrals, one studies the general problem in three steps.

The first step is to deal with the identity operator X = 1. In this case, the required estimate is a consequence of
Lemma 7.2 of [A1]. The lemma cited leads to a bound

[T (7, )l < () (L + L))" 7 € Va,
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in which f is a continuous seminorm on C(G). The function L(vy) is defined at the bottom of p. 245 of [A1] as a

supremum of functions

|log (|1 — a(v)])

attached to roots « of (G, T). Since V is assumed to be small, the function attached to « is bounded on Vg, unless

) v € Va,

aisaroot of (G.,T). It follows that for any a; > 0, we can choose a constant C; such that

(14 L))" < C1|De()|7™, v € Va.
Lemma 7.2 of [A1] therefore implies that
(3.4) f— SU-‘;) (|JM(’Y7f)HDC('7)‘a1)7 f EC(G)7
yeVa

is a continuous seminorm on C(G). The required estimate is thus valid in the case X = 1, for any positive

exponent a = aj.

The next step concerns the case that X is the image under the Harish-Chandra map of a biinvariant differential

operator. That is,
X =09(hr(2)), z € Z(G).

In this case, the differential equation (3.2) yields an identity

XJIu(v, f) = 0(hr(2)Im (v, f)
= Jum(y,2f) — Z o (v 2) (v, f)

LOM

for the function we are trying to estimate. We have noted that for each L, 0%, (v, z1,) is an algebraic differential
operator on TG-reg. In other words, the coefficients of 9%, (, z1,) are rational functions on T whose poles lie along
singular hypersurfaces of T'. Since V' is small, any singular hypersurface of T that meets the closure of Vq is
defined by a root of (G, T). It follows that for each L, there is a positive integer k, such that the differential
operator

De(v)*0g1(v, 21)

has coefficients that are bounded on V. We can assume inductively that Lemma 3.1 is valid if M is replaced by
any L D M. The estimate of the lemma clearly extends to differential operators with bounded coefficients. We
can therefore choose ay, > 0 for each such L so that

f— sup (1De(7)" 051 (v, 2£) T (v, H)I[De(7)]*)
veVa

is a continuous seminorm on C(G). We set a equal to the largest of the numbers k7, + ar,. The functional

f— > sup (105 (v, zL) Je (v, NIDe()]%)

LoM Y€Ve

is then a continuous seminorm on C(G). According to the case (3.4) we have already established,

f— sup ([Ju (v, 2f)l[De(7)])

vEVa
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is also a continuous seminorm on C(G). Applying these estimates to the differential equation for X Jys (7, f)
above, we conclude that

(3.5) f— sup (|XJu(y, HlID()]), fec(G),

vEVq

is a continuous seminorm on C(G). We have established the lemma for X of the form 9 (hr(2)).

The last step is to treat a general invariant differential operator X on T'(R). This is the main step, and the part
of the argument that is based on [H1, Lemma 48]. In the proof of [A3, Lemma 13.2], we explained how to apply
Harish-Chandra’s technique to the weighted orbitals we are dealing with here. Used in this way, the technique
reduces the required estimate for X to the case (3.5) obtained above. It thus establishes the assertion of the lemma
forany X, and hence for any triplet o in S¢(M, G). We refer the reader to [A3] and [H1] for the detailed discussion
of this step. O

With Lemma 3.1 as motivation, we now introduce some new spaces of functions. We first attach some spaces to
any maximal torus 7" in M over R that contains c. Given T, let Q € 7 ¢ (TG-reg(R)) be a connected component
whose closure contains c. Then Vo = V N Q is an open neighbourhood of c in €. If a is a nonnegative real
number, we write F%(Vq, G) for the Banach space of continuous functions ¢ on Vg, such that the norm

¢l = sup (Jea(NIIDe(V)I")
veVa
is finite. More generally, if n is an integer with n > —1, we define F¢,, (Va,G) to be the Banach space of
continuous functions ¢q on Vg such that the norm

16alla = sup (|¢a(NIIDe(v)I*ll€c(nII~"*Y)
YEVQ

is finite. The first space F*(Vq, G) is of course the special case that n = —1. It consists of functions with specified

growth near the boundary.

Lemma 3.1 suggests that we introduce a space of smooth functions on the W (M)M (R)-invariant set Vi-reg
whose derivatives also have specified growth near the boundary. This entails choosing a function to measure the
growth. By a weight function, we shall mean an assignment

a: X — a(X)

of a nonnegative real number a(X) to each invariant differential operator X on a maximal torus T" of M. We
assume that
a(X) =a(deg X),

for an increasing function @ on the set of nonnegative integers. The weight function is then defined independently
of T.

Suppose that « is a weight function, and that V' is as above, an open W (M) M (R)-invariant neighbourhood of ¢
in M(R). If ¢ is a function on Vig-reg, and o = (T, Q, X)) is a triplet in the set S.(M, G) introduced in §2, we shall
write ¢q for the restriction of ¢ to V. We define F&(V, G) to be the space of smooth, W (M )M (R)-invariant
functions ¢ on Vg-reg such that for every o = (7,8, X) in Sc(M,G), and every ¢ > 0, the derivative X ¢q
belongs to the space F;" (X)+E(‘/Q, G). More generally, suppose n > —1 is a given integer. We define 7', (V, G)
to be the subspace of functions ¢ in F¢(V, G) such that for any o = (7, Q, X) and €, X ¢, belongs to the space

Fox Ve, ©) = FLG (Va, ©).
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We recall here that
(n,X) =max {(n+1— deg(X)),0}.

The seminorms
[¢lloen = I X alln

make 7, (V,G) into a topological vector space. The original space F¢'(V, () is again the special case that
n = —1. Itis the topological vector space of smooth, W (M )M (R)-invariant functions ¢ on Vg-reg such that for
every o = (T,Q, X) and ¢, the seminorm

I$lloe = sup (I(XS)(NIIDe(y)*)*<)

z€Va
is finite.
Lemma 3.1 is an assertion about the mapping that sends f € C(G) to the function Jas (7, f) of ¥ € Vig-reg. It can
be reformulated as follows.

Corollary 3.2. There is a weight function «, with (1) = 0, such that the mapping

f — J]W(’Y,f), fEC(G)a

is a continuous linear transformation from C(G) to F&(V,G). O

There are some obvious operations that can be performed on the spaces F¢,,(V, G). Suppose that a; is second
weight function, and that n; > —1is a second integer. The multiplication of functions then provides a continuous
bilinear map

Fen(V.G) x F2i, (V.G) — Foti, n (V. G),

c,n1

where o 4 o1 is the weight function defined by

(a+a1)(dy) = d+I}111a:Xd+ (@(d) + a1 (dv)), dy > 0.
In particular, suppose that g is a W (G, T')-invariant rational function on a maximal torus 7" in M that is regular
on TG-reg- Then g extends to a W (M )M (R)-invariant function on Vg-reg that lies in F¢'¢ (V, G), for some weight
function ;. The multiplication map ¢ — g¢ therefore sends F2,, (V, G) continuously to Fe. +Y(V,G). Asimilar
observation applies to any (translation) invariant differential operator X on T that is also invariant under the
action of W(G,T). For X extends to a W (M)M (R)-invariant differential operator on Vg-req, and if X« is
the weight function X’ — (X X’), the map ¢ — X ¢ sends F2, (V,G) continuously to F* (V,G). More
generally, suppose that 9(y) is an algebraic differential operator on T-reg that is invariant under W(G, T'). Then
0() extends to a W (M )M (R)-invariant differential operator on Mg-reg. One sees easily that there is a weight
function da such that ¢ — ¢ is a continuous mapping from 7', (V, G) to fc no(V, Q).
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84. Spaces of formal germs

We fix a Levi subgroup M of G, and a class ¢ € I'ss(M), as before. We again take V' to be a small, open,
W (M )M (R)-invariant neighbourhood of ¢ in M (R). In the last section, we introduced some spaces of functions
F&,(V,G) on Vg-reg. In this section, we shall examine the behaviour of these spaces under operations of
localization and completion.

The space F&(V, G) is a generalization of the relative invariant Schwartz space
(V,G) = (V)W)
It is an easy consequence of Lemma 2.1 that for each «, there is a continuous injection
I(V,G) — FXV,G).
As in the special case of Z(V, G), we can localize the spaces F&(V, G) at c. We form the algebraic direct limit
(4.1) G (M. G) = lim F2 (V. G),
v

relative to the restriction maps
fg(V1,G)—>fg(‘/2,G)7 V1D V.

We shall call G (M, G) the space of a-germs for (M, G) at c. The elements of this space are germs of smooth,
W (M)M (R)-invariant functions on invariant neighbourhoods of ¢ in Mg-req (R), with a-bounded growth near
the boundary. The space has a decreasing filtration by the subspaces

Go (M, G) =lim F2,.(V,G), n>—1.
1%

Asymptotic series are best formulated in terms of the completion of G¥(M, G). For any «, and any n > 0, the
quotient
ge™ (M, G) = G2 (M, G)/G¢, (M, G)

is a vector space that is generally infinite dimensional. We call it the space of («, n)-jets for (M, G) at c¢. The
completion of G¢(M, G) is then defined as the projective limit
(4.2) G (M, G) =limG>™(M,G).

This space is obviously also isomorphic to a projective limit of quotients
G (M, G) = G2 (M, G)/G2,, (M. G),

where é\?n (M, G) is the kernel of the projection of Q\f‘(M, G) onto G&™(M, G). We call Q\S‘ (M, G) the space of
formal a-germs for (M, G) at c. The final step is to remove the dependence on a. We do so by forming the direct
limit

(4.3) Ge(M,G) = 1im G (M, G),

[e3
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relative to the natural partial order on the set of weight functions. The operations of multiplication and differ-
entiation above clearly extend to this universal space of formal germs. In particular, any W (M )M (R)-invariant,
algebraic differential operator 0(vy) on Mg-reg has a linear action g — dg on G.(M, G).

As an example, consider the case that G = M = T is a torus. The function D.(7) is then equal to 1, and the
various spaces are independent of a.. For each «, G.(T') = G2 (M, G) is the space of germs of smooth functions
on T'(R) at ¢, while G ,(T') = G2,,(M, G) is the subspace of germs of functions that vanish at c of order at least
(n + 1). The quotient G'(T') = G&™ (M, G) is the usual space of n-jets on T'(R) at ¢, while Go(T) = GX(M, G) is
the space of formal Taylor series (in the coordinates ¢.(v)) at c.

If G is arbitrary, but cis G-regular, the group T' = G is a torus. In this case, the function D.(7y) is again trivial. The
various spaces reduce to the ones above for T', or rather, the subspaces of the ones above consisting of elements
invariant under the finite group M. +(R)/M_.(R). We are of course mainly interested in the case that ¢ is not
G-regular. Then D.(v) has zeros, and the spaces are more complicated. On the other hand, we can make use
of the function D, in this case to simplify the notation slightly. For example, given a and 0 = (7,2, X), we
can choose a positive number a such that for any n > 0, ¢ — X ¢q is a continuous linear map from F, (f?‘n(V, Q)
to 2, (Va, G) (rather than F?, (Vi,@)). A similar result applies if X is replaced by an algebraic differential
operator on TG-reg (R). ’

Lemma4.1. For any V, « and n, the map
Fe(V.G) — G2(M, G)

is surjective. In other words, any element g" in G&™(M,G) has a representative g™ () in F*(V, Q).

Proof. Suppose that g belongs to G&" (M, G). By definition, g™ has a representative gi (y) in F&(Vo, G), for
some W (M)M (R)-invariant neighbourhood Vj of ¢ in M(R) with V, C V. Let 1o be a smooth, compactly
supported, W (M) M (R)-invariant function on V; that equals 1 on some neighbourhood of ¢. The product

g"(v) = vo(v)g (7)

then extends by 0 to a function on V that lies in & (V, G). On the other hand, both ¢"(7) and ¢ (y) represent
the same germ in G.(M, G). They both therefore have the same image ¢" in G&" (M, G). The function ¢ (7) is
the required representative. O

Lemma 4.2. For any weight function a, the canonical map from QA(O‘(M, G) to C;C(M, Q) is injective.

Proof. It is enough to show that if o’ is a weight function with @’ > «, the map from Q\f‘ (M,G) to Q\f‘, (M, Q) is
injective. Suppose that g is an element in G*(M, G) that maps to 0 in G2 (M, G). To show that g = 0, it would
be enough to establish that for any n > 0, the image ¢ of g in G (M, G) equals 0.

Fix n, and let ¢" () be a representative of ¢” in the space of functions F&(V, G) attached to some V. We have to

show that g" () lies in 7, (V, G). In other words, we must show that for any o = (7', €, X) in S.(M, G), and

any € > 0, the derivative (X g&3)(7) lies in F." SggJFE(VQ, G). This condition is of course independent of the choice

of representative ¢". Given o, we are free to assume that ¢ () represents the image ¢ of g in G&™(V,G),
for some large integer m > n + deg X. Since g™ maps to zero in G (M, G), g"(7) lies in fg;n(M G). In

o’ (X)+e’

other words, (Xgg;)(7) lies in £, (Va, G), for the large integer n’ = m — deg(X) and for any ¢’ > 0. But

(X g8)(7) also lies in F.* O+’ (Va, G). We shall apply these two conditions successively to two subsets of V.
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Given ¢ > 0, we choose ¢’ > O withe’ < e. Wethenwrited =e¢ —¢’,a = a(X) +¢,and a’ = o/(X) +¢’. The
two conditions amount to two inequalities

(Xg8) ()] < C'[De()]™ IeeI™, v € Vo,

and
(X gB) ()| < Cs5|De(y)|~ @+ = O Do (7) 7| De(7) ), v € Vo,

for fixed constants C” and Cs. We can assume that a’ > a, since there would otherwise be nothing to prove. (The
functions | D.(7y)| and ||4.(7)]| are of course bounded on Vi,.) We apply the first inequality to the points «y in the
subset

V(3,(n, X)) = {y € Va: L™ <[De(v)°}

of Vg, and the second inequality to each -y in the complementary subset. We thereby deduce thatif n’ is sufficiently
large, there is a constant C' such that

|(Xga) (N < CID() =31,

for any point  in V. In other words, |(X go) ()| belongs to the space F," 72?2“ (Va, G). It follows that the vector

g™ in G&"(M, G) vanishes. Since n was arbitrary, the original element g in G(M,G) vanishes. The map from
G(M,G) to G (M, G) is therefore injective. O

The lemma asserts that G, (M, G) is the union over all weight functions « of the spaces Q\f‘ (M, G). Suppose that
we are given a formal germ g € G.(M, G), and a positive integer n. We shall write g” = ¢g*" for the image of ¢
in the quotient G>™(M, G), for some fixed « such that G (M, G) contains g. The choice of « will generally be
immaterial to the operations we perform on ¢", so its omission from the notation is quite harmless. If ¢(v) is a
function in one of the spaces F¢(V, ), we shall sometimes denote the image of ¢(7y) in G.(M,G) simply by ¢.
This being the case, ¢™ then stands for an elementin G (M, G). This element is of course equal to the projection
of the original function ¢(y) onto G&" (M, G).

We shall need to refer to two different topologies on QAC(M ,G). The first comes from the discrete topology on
each of the quotients G&™ (M, G). The corresponding projective limit topology over n, followed by the direct
limit topology over ¢, yields what we call the adic topology on Q\C(M , G). This is the usual topology assigned to
a completion. A sequence (gi) converges in the adic topology if there is an « such that each gy, is contained in
G(M, @), and if for any n, the image gp of gi in G&™ (M, Q) is independent of k, for all k sufficiently large.

To describe the second topology, we recall that the quotient spaces G*™ (M, G) are generally infinite dimensional.
As an abstract vector space over C, however, each G&" (M, G) is a direct limit of finite dimensional spaces.
The standard topologies on these finite dimensional spaces therefore induce a direct limit topology on each
G¥"(M,G). The corresponding projective limit topology over n, followed by the direct limit topology over
o, yields what we call the complexr topology on Q\C(M ,G). This is the appropriate topology for describing
the continuity properties of maps from some space into _C'Z(M ,G). A sequence (gi) converges in the complex
topology of G.(M, @) if there is an « such that each g, is contained in G% (M, G), and if for each n, the sequence
gy is contained in a finite dimensional subspace of G&"*(M, G), and converges in the standard topology of that
space. Unless otherwise stated, any limit in _C'Z(M , G) will be understood to be in the adic topology, while any
assertion of continuity for a Ge (M, G)-valued function will refer to the complex topology.

Suppose that g lies in G.(M, Q). We have agreed to write g" for the image of g in the quotient G%"(M, G) of
G%(M, G). Here n is any nonnegative integer, and « is a fixed weight function such that g lies in G (M, G). We
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shall also write g™ (7y) for an a-germ of functions in G¥(M, G) that represents ¢”, or as in Lemma 4.1, a function
in F¢(V, G) that represents the a-germ. The function g™ (7) is of course not uniquely determined by g. To see
that this does not really matter, we recall that under the previous convention, g™ also denotes the image of g™ ()
in C;C(M ,G). We are therefore allowing g" to stand for two objects: an element in G2 (M, G) that is uniquely
determined by g (once « is chosen), and some representative of this element in QACO‘ (M, Q) that is not uniquely
determined, and that in particular, need not map to g. With this second interpretation, however, the elements g"
do have the property that

g = lim (g").

n—oo

These remarks can be phrased in terms of asymptotic series. Suppose that gx(7) is a sequence of functions in
F2(V, G) such that the corresponding elements g, € G.(M, G) converge to zero (in the adic topology). In other
words, for any n all but finitely many of the functions gy () lie in the space 7, (V,G). We shall denote the
associated asymptotic series by

(4.4) 9(7) ~ Y gk(),
k

where g is the element in G.(M, G) such that
(4.5) 9= o
k

(in the adic topology). Conversely, any formal germ can be represented in this way. For if g belong to G. (M,G),
the difference

9" =g"(7) —g" (7). n>0, g () =0,

stands for a function in a space F¢',,_;(V, G). Therefore

g=> g™,
n=0

so we can represent g by the asymptotic series

g(@) ~ Y g™ ().
n=0

We shall use the notation (4.4) also to denote a convergent sum of asymptotic series. In this more general usage,
the terms in (4.4) stand for asymptotic series gx(7) and g(7y), which in turn represent elements g; and ¢ in
G.(M, G) that satisfy (4.5).

As a link between the (relative) invariant Schwartz space and the general spaces above, we consider a space
FL4(V,G) of bounded functions. For any integer n > —1, let 724 (V, G) be the space of smooth, W (M )M (R)-
invariant functions ¢ on Vg-reg such that for each o = (T,Q, X) in S.(M, G), the derivative X ¢ belongs to the
space F?, (V,G). If « is any weight function, F2% (V, G) is contained in FZ,,(V, G). In fact in the basic case of
n = —1, the space

FUV.G) = FL,(V.G)

is just the subspace of functions in F&(V,G) whose derivatives are all bounded. As above, we form the
localizations
g1, (M, G) = lim 44V, ),
v
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the quotients
GU7 (M, G) = GY(M, G) /GE, (M, G) = GEL, (M, G) /gLt (M., G)

c,—1

and the completion
GY(M,G) = lim G2 (M, G).

n

Lemma 4.3. Suppose that « is a weight function with a(1l) = 0. Then for any nonnegative integer n, the
canonical mapping

Get" (M, G) — G (M, G)
18 injective.

Proof. By Lemma 4.1, there is a canonical isomorphism
Ge" (M, G) = FH(V, G) [ Fon(V, G).
On the other hand, any element in G¢4" (M, ) can be identified with a family
{66 : T € Te(M), Q € mo.c(Teres(R)) }

of Taylor polynomials of degree n (in the coordinates ¢.(7)). This is because the {2-component of any function in
Fb4(V,G) extends to a smooth function on the closure of Vg,. In particular, each element in G44" (M, G) has a
canonical representative in 72¢(V, ), which of course also lies in 7 (V, G). With this interpretation, we consider
a function ¢ in the intersection

Ghim(M, G) N F2, (V. G).

We have only to show that ¢ vanishes.
Suppose that T € 7.(M) and Q € mg,c (TG-reg(R)). As an element in F¢,, (V, G), ¢q satisfies a bound

sup (|¢(7)]|De()[F[[€e(3)]|~" D) < oo,
vEVa

for any ¢ > 0. As an element in G**"(M,G), ¢po = ¢ is a polynomial (in the coordinates £.()) of degree
less than (n + 1). Taking € to be close to zero, we see that no such polynomial can satisfy the bound unless it
vanishes. It follows that ¢ = 0. We conclude that that the function ¢ vanishes, and hence, that the original map
is injective. g

Corollary 4.4. For any weight function «, the canonical mapping
Q\gd(M7 G) — éca(Ma G)

1S 1njective.

Proof. Given a, we choose a weight function arg < a with ag(1) = 0. The lemma implies that gAé’d(M ,G)
maps injectively into Q\S‘O (M, G), while Lemma 4.2 tells us that Q\f‘“ (M, G) maps injectively into Q\f‘ (M,G). The
corollary follows. O

Remark. It is not hard to show that if the weight function « is bounded, the injection of Corollary 4.4 is actually
an isomorphism. The completion gAgd(M , G) is therefore included among the general spaces defined earlier.



Germ expansions for real groups 27

The (relative) invariant Schwartz space Z(V, 3) is the closed subspace of functions in F2¢(V, ) that satisfy the
Harish-Chandra jump conditions. Its localization Z.(M, ) is therefore a subspace of G2¥(M, ). Recall that for
any n, Z. (M, G) is the subspace of Z.(M, G) annihilated by the finite set of distributions R, ,,(M). It follows
easily from the discussion of §2 that

Ten(M,G) =T.(M,G) N GY%L (M, G).

The quotient
IX(M,G)=I.(M,G)/Icn(M,G)
of Z.(M, G therefore injects into the quotient G2%" (M, G) of G¥(M, G). This in turn implies that the completion

(4.6) Z.(M,G) = lim I (M, G)

n

injects into GY(M, G). We thus have embeddings
T.(M,G) € G(M,G) € G&(M,G) € G(M,G),

for any weight function «

As a subspace of C;C(M , G), the completion fC(M , G) is particularly suited to the conventions above. If g belongs
to Z.(M,G) and n > 0, we take g"(7) to be the canonical representative of ¢" in Z.(M, G) that is spanned by
the finite set {pV(v) : p € Re.n(M)}. This means that g () is the canonical element in Z.,,_1 (M, G) that is
spanned by the set {p¥(y) : p € R (n)(M)}. The formal germ g can therefore be represented by a canonical,

g=>_ 9lpp",

pER:(M)

adically convergent series

or if one prefers, a canonical asymptotic expansion

g~ D gp)e’ (),

pPER:(M)

for uniquely determined coefficients g(p) in C. In particular, suppose that g equals fy, for a Schwartz function
f € C(G). The relative invariant orbital integral f;(7y) then has an asymptotic expansion

()~ Y (e’ ().

pPER:(M)

We end this section by remarking that the W (M )-invariance we have built into the definitions is not essential.
Its purpose is only to reflect the corresponding property for weighted orbital integrals. We shall sometimes
encounter formal germs for which the property is absent (notably as individual terms in a finite sum that is
W (M)-invariant). There is no general need for extra notation. However, one case of special interest arises
when M, is a Levi subgroup of M, and c is the image of a class ¢; in I'g4 (Mj7). Under these conditions, we let
C;Cl (M | M, Q) denote the space of formal germs for (M7, G) at ¢1, defined as above, but with W (M) replaced
by the stabilizer W (M, | M) of M in W (M3). There is then a canonical restriction mapping

9 — 9My; geé\C(MaG)v

from G, (M, G) to G, (My | M, G).
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§5. Statement of the general germ expansions

In 82, we  introduced  asymptotic = expansions for the invariant orbital integrals
Ja(y, f) = fa(y). Our goal is now to establish formal germ expansions for the more general weighted or-
bital integrals Jaz (7, f). We shall state the general expansions in this section. The proof of the expansions will
then take up much of the remaining part of the paper.

Recall that the weighted orbital integrals depend on a choice of maximal compact subgroup K C G(R), as well as
the Levi subgroup M. The formal germ expansions will of course also depend on a fixed elementc € I';5(M). The
theorem we are about to state asserts the existence of two families of objects attached to the 4-tuple (G, K, M, ¢),

which depend also on bases
R.(L) C D.(L), Le (M),

chosen as in Lemma 1.1.

The first family is a collection of tempered distributions
G.1) f—"Ju(p. f), Le L(M), p € Re(L),
on G(R), which reduce to the invariant distributions

JG(ﬂ»f):fG(p)’ PGRc(G)7

when L = G, and in general are supported on the closed, G(R)-invariant subset U.(G) of G(R). The second
family is a collection of formal germs

(5.2) g11(p), LeL(M), p€ Re(L),

in G.(M, L), which reduce to the homogeneous germs

g%(p):pva pERC(M)v

when L = M, and in general have the convergence property

(5.3) lim (g3;(p)) = 0.

p—00

This implies that the series

951 (Tee(D)) = Y ar(0)Tilp, f)

pPER(L)

converges in (the adic topology of) QAC(M ,L), for any f € C(G). The continuity of the linear forms (5.1) also
implies that the mapping
f— gt (Jr.e(£)

from C(G) to G.(M, L) is continuous (in the complex topology of G.(M, L).) The objects will also have a functorial
property, which can be formulated as an assertion that for any L and f,

(5.4) g% (Jr,c(f)) is independent of the choice of basis R.(L).
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The two families of objects will have other properties, which are parallel to those of weighted orbital integrals. If
y lies in G(R), the distributions (5.1) are to satisfy

(5.5) Tl ) = 3 I fou): fec(@).
)

QEeF(L

If z belongs to Z(G), we require that

(5.6) Jr(p,2f) = Jr(zLp, f)

and

(5.7) gk Gep) = > 03(zs)g8(p)m
SeLL(M)

Finally, suppose that §: G — 6G is an isomorphism over R. The two families of objects are then required to
satisfy the symmetry conditions

(5.8) Jor(0p,0f) = Jr(p, f)
and
(5.9) gort(0p) = 0951 (p),

relative to the basis Ry.(0L) = OR.(L) of Dy.(0L).

Given objects (5.1) and (5.2), consider the sum

gM,c(f) = Z g]I\A4(JL,c(f))'

LeL(M)

Then gz, is, a priori, a continuous map from C(G) to a space of formal germs that lack the property of symmetry
by W (M). However, suppose that § = Int(w), for a representative w € K of some element in the Weyl group

W(M). Then
091, Z Z 0911(p) - I (p, f)
= ZdeM 0p) Jor(0p, 0F),
L p
by (5.8) and (5.9). Since M equals M and Jyr,(0p, 0f) equals Jor(0p, f), we obtain
Ogare(f) = Z Z 957 (0p)Jor(0p, f)
_ZZQM JL pa _g]\/f,c(f)v

from the condition (5.4). It follows that gz (f) is symmetric under W (M), and therefore that g/ (f) lies in the
space G.(M, G). In other words, gas,. can be regarded as a continuous linear map from C(G) to G.(M, Q).
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Theorem 5.1. There are distributions (5.1) and formal germs (5.2) such that the conditions (5.3)-(5.9) hold,
and such that for any f € C(G), the weighted orbital integral Jy(f) has a formal germ expansion given by
the sum

(5.10) S ogn(oe) = DY D gip)ilp. ).
)

LeL(M LeL(M) peR.(L)

Theorem 5.1 asserts that the sum (5.10) represents the same element in QAC(M ,G) as Jy(f). In other words, the
weighted orbital integral has an asymptotic expansion

T ) ~ D> gt (v, p) Ti(p, f).

L p

This is the archimedean analogue of the germ expansion for weighted orbital integrals on a p-adic group ([A3],
[A8]). We should note that the formal germs g%, (p) are more complicated in general than in the special case
of L = M = G treated in §2. For example, if M = G, the formal germs can be identified with homogeneous
functions g& (7, p) = p¥ (7). In the general case, each g%, (7, p) does have to be treated as an asymptotic series.

The functorial condition (5.4) seems entirely natural in the light of the main assertion of Theorem 5.1. We observe
that (5.4) amounts to a requirement that the individual objects (5.1) and (5.2) be functorial in p. More precisely,
suppose that for each L, R.(L) = {p'} is a second basis of D.(L). The condition (5.4) is equivalent to the
transformation formulas

(5.4.1) T, 1) = anle',p)T(p, f)
and
(5.4.2) gr(p) = _ay (e p)gki(p),

where A7, = {az (¢, p)} is the transformation matrix for the bases {p'} and {p}, and A} = {a}(p',p)} = 'A;*

is the transformation matrix for the dual bases {(p')" } and {p"}. In the special case that M = G, these formulas
are consequences of the constructions in §1 and §2 (as is (5.4)). In general, they follow inductively from this
special case and the condition (5.4) (with L taken to be either M or G). The two formulas tell us that for any L,
the two families of objects are functorial in the following sense. The distributions (5.1) are given by a mapping
f— Jr(f) from C(G) to D.(L)* such that

JL(p, ) = {p, Jr.c(f)), p € R.(L).

The formal germs (5.2) are given by an element g% in the (adic) tensor product
G.(M, L) ® D.(L) such that
(g1 p) = 931 (p), p € Ro(L).

The distribution in (5.4) can thus be expressed simply as a pairing

91%4 (JL,C(f)) = <9£[a JL7C(f)>~

However, we shall retain the basis dependent notation (5.1) and (5.2), in deference to the traditional formulation
of p-adic germ expansions.
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The formal germ expansion for Jys(f) is the main result of the paper. We shall actually need a quantitative form
of the expansion, which applies to partial sums in the asymptotic series, and is slightly stronger than the assertion
of Theorem 5.1.

It follows from (5.3) and the definition of the adic topology on QAC(M , L) that there is a weight function « such
that g%, (p) belongs to G(M, L), for all L and p. Given such an «, and any n > 0, our conventions dictate that
we write g1;"(p) for the projection of g% (p) onto the quotient G*™ (M, L) of G*(M, L), and g%:" (v, p) for a

representative of 5" (p) in F(V, L). We assume that g5:" (v, p) = 0, if g57* (p) = 0. The sum

(5.11) T ) =33 g""(v.p)J(p. f)

can then be taken over a finite set. Our second theorem will include a slightly sharper form of the symmetry
condition (5.9), namely that the functions gifn (7, p) can be chosen so that

(5.9)* goni"(07,0p) = g3;" (v, p),

for 6 as in (5.9). This condition, combined with the remarks prior to the statement of Theorem 5.1, tells us that
(5.11) is invariant under the action of W (M) on «y. The function J}; (7, f) therefore belongs to F&(V, G). Itis
uniquely determined up to a finite sum

(5.12) Z ¢i(7)Ji(f),

for tempered distributions J;(f) and functions ¢;(7) in F¢,,(V, G).
According to Corollary 3.2, we can choose « so that the weighted orbital integral Jas (7, f) also belongs to
F&(V,G).

Theorem 5.1*. We can chose the weight function o above so that a(1) equals 0 and the symmetry condition
(5.9)* is valid, and so that for any n, the mapping

f — JI\/[(Fva) 7Jx[(’77f)7 fEC(G)a

is a continuous linear transformation from C(G) to the space ', (V,G).

Remarks. 1. The statement of Theorem 5.1* is well posed, even though the mapping is determined only up to a
finite sum (5.12). For (5.12) represents a continuous linear mapping from C(G) to F¢,,(V, G). In other words, the
difference

K3 (v f) = Ju (v, ) = TR (v )
is defined up to a function that satisfies the condition of the theorem.

2. In concrete terms, Theorem 5.1* asserts the existence of a continuous seminorm 5 ., on C(G), for each
o= (T,Q,X)inS.(M,QG), each ¢ > 0, and each n > 0, such that

XK (7, )] < 1 e (HIDe(7) |70 ()] ),

for every v € Vg and f € C(G). This can be regarded as the analogue of Taylor’s formula with remainder. The
germ expansion of Theorem 5.1 is of course analogous to the asymptotic series provided by Taylor’s theorem. In
particular, Theorem 5.1* implies the germ expansion of Theorem 5.1.
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We are going to prove Theorems 5.1 and 5.1* together. The argument will be inductive. We fix the 4-tuple of
objects (G, K, M, ¢), and assume inductively that the two theorems have been established for any other 4-tuple
(G1, K1, My, c1), with

dim(Ap, [Ag,) < dim(Ax/Acg).

In particular, we assume that the distributions Jr, (+, f) have been defined for any L D M, that the formal germs
g% (-) have been defined for any L C G, and that both sets of objects satisfy conditions of the theorems. Our task
will be to construct distributions Jy (-, f) and formal germs ¢, (+) that also satisfy the required conditions.

We shall begin the proof in the next section. In what remains of this section, let us consider the question of how
closely the conditions of Theorem 5.1 come to determining the distributions and formal germs uniquely. Assume
that we have been able to complete the induction argument by constructing the remaining distributions J (-, f)
and formal germs g§;(-). To what degree are these objects determined by the distributions and formal germs for
lower rank whose existence we have postulated?

Suppose for a moment that p € R.(M) is fixed. Let *Jps(p, f) be an arbitrary distribution on G(R) that is
supported on U, (G), and satisfies (5.5) (with L = M). That is, we suppose that

“Im(p, fY) = "Imlps f) + Z Tar® (0 fou),
QEFO (M)

for any y € G(R). Applying (5.5) to Jas(p, f), we deduce that the difference

fH*JM(pvf)fjk[(phf)

is an invariant tempered distribution that is supported on U, (G). It follows that

(5.13) o ) =Tulp. )+ Y elp.pa)falpe),
pGERc(G)
for complex coefficients {c(p, pc)} that vanish for almost all p¢.

Suppose now that *Jy (-, f) and *g§;(-) are arbitrary families of objects that satisfy the relevant conditions of
Theorem 5.1. For each p € R.(M), the distributions *Jas(p, f) and Jar(p, f) then satisfy an identity (5.13), for
complex coefficients

(5.14) c(pu, pa), pm € R(M), pa € Re(G),

that for any pjs, have finite support in pg. The terms with L # M, G in the formal germ expansion (5.10) are
assumed to have been chosen. It follows that the difference

951 (Ja.e () = g5 (Ja.o(f)) = Z (957 (pc) = *g5i(pa)) fa(pc)
pGERL(G)

equals

g3t (FIare(£)) — gn1 (Jare(f)) = Z pxr(FIne(pass £) — I (pars f))
pMER(M)

Z Z prrclpn, pa) | falpa)-

PGERA(G) \pmER(M)
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Comparing the coefficients of fg(pc), we find that

(5.15) 95ip) =g5i0)— > pirclpmp),
PMER(M)

for any p € R.(G). The general objects *Jas (-, f) and *g§; (+) could thus differ from the original ones, but only in
a way that is quite transparent. Moreover, the coefficients (5.14) are governed by the conditions of Theorem 5.1.
If z belongs to Z(G), they satisfy the equation

(5.16) c(pm, Zpc) = c(zmpm; pG)-

They also satisfy the symmetry condition

(517) C(HPMvoPG) = C(PMaPG)»

for any isomorphism 0: G — 0G over R. Finally, they satisfy the transformation formula

(5.18) (P Pe) =D Y an(Phrs pra)elprs pa)ads (g, per)

PM PG

for change of bases, with matrices {ans (0}, par)} and {a(p, pc)} asin (5.4.1) and (5.4.2).

Conversely, suppose that *.Jp/ (-, f) and *¢§;(+) are defined in terms of Ju; (-, f) and ¢, (+) by (5.13) and (5.15), for
coefficients (5.14) that satisfy (5.16)-(5.18). It is then easy to see that *Jy/ (-, f) and * g%’}() satisfy the conditions
of Theorems 5.1 and 5.1*. We obtain

Proposition 5.2. Assume that Theorems 5.1 and 5.1% are valid for distributions Ji(-, f) and formal germs
gk (). Let*Jp(-, f) and *g%;(+) be secondary families of such objects for which*Jp(-, f) = Jp(-, f) if L # M,
and *g¥.(-) = g% () if L # G. Then Theorems 5.1 and 5.1* are valid for *J.(-, f) and *g%, () if and only if
the relations (5.13) and (5.15) hold, for coefficients (5.14) that satisfy the conditions (5.16)—(5.18). O
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86. Some consequences of the induction hypotheses

We shall establish Theorems 5.1 and 5.1* over the next four sections. In these sections, G, K, M and ¢ will remain
fixed. We are assuming inductively that the assertions of the theorems are valid for any (G1, K1, My, c1), with

dlIIl(A]w1 /AGl) < dlm(Ak[/Ag)

In this section, we shall see what can be deduced directly from this induction assumption.

Let L be a Levi subgroup of G in £(M) that is distinct from both M and G. The terms in the series

gv(Tee() = Y. gr(0)Telp, ), fec@,

pPER(L)

are then defined, according to our induction assumption. The series converges to a formal germ in §C(M , L) that
is independent of the basis R.(L), as we see by applying (5.3), (5.4.1) and (5.4.2) inductively to L. Moreover, the

mapping
f— am(Jr.e(f)), fec(a),

is a continuous linear transformation from C(G) to C;C(M , L). We begin by describing three simple properties of
this mapping.

Suppose that y € G(R). We can then consider the value

git (Te.e() = > arilp)Telp, £¥)

PER(L)

of the mapping at the y-conjugate of f. Since
dlm(AL/AG) < dlm(AM/Ag),

we can apply the formula (5.5) inductively to J(p, f¥). We obtain

ST gk = >0 ST gk e fou)

PER:(L) pER:(L) QeF (L)
= Z <Z gnr(p /), fQ,y)) :

It follows that

6.1) gi(Te(f) = 3 gk (71 (fou). feca).

Suppose that z € Z(G). Consider the value

95t (Jee(zH) = Y gii(0)Ti(p, 2f)

pPER.(L)

of the mapping at the z-transform of f. Since

dim(Ar /Ag) < dim(Ay /Ag),
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we can apply the formula (5.6) to JL(p, z f). We obtain

Z 9x1(p) e (p, 2f) = ZQM )JrL(zLp, f)

pPER(L)

= Z g Zrp)JL(p, f),

pPER(L)
by the definition of the transpose Zr. Since
dim(A]u/AL) < dim(A]\/j/AG),
we can apply the formula (5.7) inductively to g%, (Z1.p). We obtain

> awGo) e ) =Y D (9%(25)95(p)m) T (p, f)

pER.(L) P SeLk(M)
= Zaﬂ(zs) <Z!]§(P)MJL(/% f)) -
S p

It follows that

62) G (ezN) = Y 05k (Tre() yre Jec@).

SeLL(M)

Finally, suppose that §: G — 0G is an isomorphism over R. Consider the composition

99M JL ol Z 0931(p) - T (p, f)
pER.(L)

of the mapping with 6. Since
dim(Ar /Ag) < dim(Ay /Ag),

we can apply (5.8) to J(p, f). Since

dim(An/Ar) < dim(Arx/Ag),
we can apply (5.9) to g%, (p). It follows that
(6.3) 9981 (Jor.oc(0.)) = 0931 (J1.c(1))-
The main assertion of Theorem 5.1 is that the difference

Ky (f) =Ju(f) — Z 91%4(JL,c(f))7

LeL(M)

regarded as an element in §C(M ,G), vanishes. We are not yet in a position to investigate this question, since we
have not defined the terms in the series with L = M and L = G. We consider instead the partial difference

(6.4) Ku(f) = Julf) - > gk (Jr.e(h), feca),

{LeL(M): L#£M,G}

regarded again as an element in G.(M, Q).
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Lemma 6.1. Suppose that f € C(G) and y € G(R). Then

(6.5) Eu(f)—Eu()= > g (TS (fou)-

QEFO(M)
Proof. The left hand side of (6.5) equals

(Jae(fY) = I (f)) = Z (951 (T2, (") = 931 (Jz.e()))

L#M,G

We apply (3.1) to the term on the left, and (6.1) to each of the summands on the right. The expression becomes

Z JM (fo) — Z Z gM Lc ny))

QeFO(M) L#M QeFo(L)

We take the second sum over () outside the sum over L. The new outer sum is then over ) € F°(M ), while the
new inner sum is over Levi subgroups L € £Me (M) with L # M. Since Q # G, the formal germ g4 (Jﬂj\ji (fo)
is defined, according to the induction assumption. We can therefore take the new inner sum over all elements
L € L£LMa (M), provided that we then subtract the term corresponding to L = M. The left hand side of (6.5) thus
equals the sum of

St - > k(I8 (fow)

QEFO (M) LeLMe (M)

and

ST M (S (faw))-

QeFO (M)

The first of these expressions reduces to a sum,

Z KMQ (fou):

QEFO(M)

whose terms vanish by our induction assumption. The second expression is just the right hand side of (6.5). The
formula (6.5) follows. U

In stating the next lemma, we write f¢ . for the function
Ja.ce(f): p—Ja(p, ) = falp), p € Re(G),

to remind ourselves that it is invariant in f.

Lemma 6.2. Suppose that f € C(G) and z € Z(G). Then

(6.6) Kn(zf) = 0(h(2)) K (f) = > O (2)g7 (fa.e)m

{LeL(M): LM}
Proof. The left hand side of (6.6) equals

(JM(Zf> - a(h(z))szf(f)) - Z (91%4 (JL,c(Zf)) - 8(h(z))gf4 (JL,c(f)))-

L#M,G
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We apply (3.2) to the term on the left, and (6.2) to each of the summands on the right. The expression becomes

>0 (28)Is(f) = D 931 (28)95 (Jr.e(£) o
S

L,S
where the first sum is over Levi subgroups S € £L(M) with S # M, and the second sum is over groups L and S
in £L(M) with
McScLCQG.
This second sum can obviously be represented as an iterated sum over elements S € L(M) with S # M, and
elements L € L£(S) with L # G. Since S # G, the formal germ g% (J1.c(f)) oy 1s defined, according to the

induction assumption. We can therefore sum L over all elements in £(S), provided that we then subtract the
term corresponding to L = G. The left hand side of (6.6) thus equals the sum of

A (zs) | Js(f) — Z 9 (T.e(f)) o

{SeL(M): S£M} LEL(S)

and

O (25)9 (Ja.e(f)) -
{SeL(M): S£M}

The first of these expressions reduces to a sum,

> O(zs)Ks(flm

SAM

whose terms vanish by our induction assumption. The second expression equals

Z 81%4(2L)gg(fG,c)]\/I7

{LeL(M): LM}

the right hand side of (6.6). The formula (6.6) follows. ]

Lemmas 6.1 and 6.2 can be interpreted as identities

Eu( ) = Eu( = > oM Ty (o)), feca),
QEFO(M)
and N N
KIW(’V? Zf) - 3(h(2))KM('y, f) = Z 811\14(,77 ZL)gICf(r% fG,C)? f € C(G)a
L#M

of asymptotic series. What do these identities imply about the partial sums in the series? The question is not
difficult, but in the case of Lemma 6.2 at least, it will require a precise answer.

As in the preamble to Theorem 5.1*, we can choose a weight function « such that for each L # G and p € R.(L),
g% (p) belongs to G*(M, L). By applying the first assertion of Theorem 5.1* inductively to (L, K N L, M, ¢) (in
place of (G, K, M, c)), we see that o may be chosen so that (1) equals zero. By Corollary 3.2, we can also assume
that « is such that f — Ja (7, f) is a continuous linear transformation from C(G) to F&(V, G). Having chosen
o, we set

(6.7) JM’Y = Z Z gM Y, 0)JL(p, f),

L#M.G peR.(L)
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for any n > 0. The sums in this expression can be taken over finite sets, while the functions gfj" (v, p) can be
assumed inductively to satisfy the symmetry condition (5.9)*. The function

6.8) K3y, f) = Iy, f) = T (v, f), feca),

is then invariant under the action of W (M) on 1, and is uniquely determined up to a continuous linear mapping
from C(G) to F¢,,(V, G).

The following analogue of Corollary 3.2 is an immediate consequence of these remarks.

Lemma 6.3. There is a weight function o with a(1) =0, such that for any n, the mapping

defines a continuous linear transformation from C(G) to F&(V,G). O

We shall now state our sharper form of Lemma 6.2. We assume for simplicity that c is not G-regular, or in other
words, that the function D, is nontrivial. The identity in Lemma 6.2 concerns an element z € Z(G). In order
to estimate the terms in this identity, we fix a triplet 0 = (T,Q, X) in S.(M, G). For any n > 0, we then write
k2 (7, f) for the function

X (K (v, 2f) = 0(ha (D) K3y (v, ) = D 0kr(7,20)97 " (7. fae))

LAM
of v € Vq.

Lemma 6.4. Given z and o, we can choose a positive number a with the property that for any n > 0, the
functional

Ve (f) = sup (K2, (v, HIDe()* ()~ HY), feC(G),

vEVQ
is a continuous seminorm on C(Q).

Proof. The assertion is a quantitative reformulation of Lemma 6.2 that takes into account its dependence on f.
The proof is in principle the same. However, we do require a few preliminary comments to allow us to interpret
the earlier argument.

There is of course some ambiguity in the definition of k7 , (7, f). The definition is given in terms of the restrictions
to Vi, of the functions I}}\}('y, zf), I?}\}('y, f) and gf’"(’y, fa.e) in F&(V,G). For a given n, these functions are
each defined only up to a continuous linear map from C(G) to 7, (V, G). Tt is actually the images of the three
functions under three linear transformations

¢ — Xoq,
¢ — X0 (hr(2))da,

and
¢—>XaII\I/I(FY72L)¢Qv (bej:ca(‘/aG)’ L#Mv

that occur in the definition of k7 , (7, f). Each transformation is given by a linear partial differential operator on
TG-reg (R) whose coefficients are at worst algebraic. Since D, # 1, the notation of §4 simplifies slightly. Recalling
the remark preceding the statement of Lemma 4.1, we see that there is a positive number ag with the property that
for any a > ag, and any n, each of the three linear transformations maps F,,(V, G) continuously to 2, (V, G).
It follows that k7' , (v, f) is determined up to a continuous linear mapping from C(G) to F¢,, (V,G). In other
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words, k7 (7, f) is well defined up to a function that satisfies the condition of the lemma. This means that it
would suffice to establish the lemma with any particular choice for each of the three functions.

The main ingredient in the proof of Lemma 6.2 was the formula (6.2), which we can regard as an identity

gvt(nTee(zh) = > 0r(128)95 (v, Tr.e(f))
SeLL(M)

of asymptotic series. To prove the lemma at hand, we need a corresponding identity of partial sums. For each .S,
we choose a weight function 3 such that the formal germ g% (JL o(f)) lies in GP(S, L). For any positive integer
m, gé’m (v, Jr,c(f)) then denotes a representative in F7(V, L) of the corresponding m-jet. After a moment’s
thought, it is clear that we can assign an integer m > n to every n such that

g (e Iee(zh)) = D (1, 28)95 " (. Tne(f))-
SeLL(M)

The left hand side here stands for some particular representative of g5;" (Jr,e(2f)) in F&(V, L), rather than the
general one. Its sum over Levi subgroups L # M, G yields a particular choice for the function K7,(v, f) that
occurs in the definition of k7 (7, f). As we have noted, this is good enough for the proof of the lemma.

Armed with the last formula, we have now only to copy the proof of Lemma 6.2. A review of the earlier argument
leads us directly to a formula

Ko ()= X03(v,29)K§ (v, f), v € Va.
SEM

We are free to apply Theorem 5.1* inductively to the summand K g (v, f), since S # M. We thereby observe that
f— KZ (v, f) is a continuous linear transformation from C(G) to .7-"2 (V,G). Since D, # 1, we know from the
discussion in §4 that there is an a > ag such that for any n, and any m > n, the linear transformation

6 — X05i(v, 25)¢0, ¢ € Flu(V,G),
maps F/,,,(V, G) continuously to ¢, (Vo, G). It follows that for any n, the map

f—k (0 1), fec@),

is a continuous linear transformation from C(G) to F¢,,(Vo, G). The assertion of the lemma then follows from
the definition of F¢,, (Va, G). O

Recall that for any nonnegative integer N, C. v (G) denotes the subspace of C(G) annihilated by R. v (G). This
subspace is of finite codimension in C(G), and is independent of the choice of basis R.(G).

Lemma6.5. For anyn > 0, we can choose an integer N so that if f belongs to C. n(G), the function k7 , (v, f)
simplifies to
k?,cr(’% f) = X(K;\}(’Ya Zf) - a(hT(Z))K;\}(’% f))a RS VQ-

Proof. We have to show that the summands

97" (v fa) = > gr () falp), L#M,
PER:(G)

n
z,0

in the original definition of k7 (v, f) vanish for the given f. Applying (5.3) inductively (with (G, M) replaced

by (G, L)), we see that the («, n)-jet g&(p) vanishes for all but finitely many p. We can therefore choose N so
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that for each L, the function gf’"(’y, p) vanishes for any p in the complement of R, y(G) in R.(G). The lemma
follows. |

Finally, we note that that K M (f) transforms in the obvious way under any isomorphism #: G — 0G over R. If
we apply (3.3) and (6.3) to the definition (6.4), we see immediately that

(6.9) Kon(0F) = 0K (f), fec@).
Moreover, for any n > 0, the function (6.8) satisfies the symmetry condition
(6.10) K (07,0F) = Ky (v, f), % € Varres | € C(G).

This follows from our induction assumption that the relevant terms in (6.7) satisfy (5.9)*.
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§7. An estimate

We have been looking at some of the more obvious implications of our induction hypothesis. We are now ready
to begin a construction that will eventually yield the remaining objects g§;(p) and Ins(p, f). We shall carry out
the process in the next section. The purpose of this section is to establish a key estimate for the mapping K,
which will be an essential part of the construction. The estimate is based on an important technique [H1] that
Harish-Chandra developed from the differential equations (1.2).

Recall that Ky is a continuous linear transformation from C(G) to Ge(M, G). We choose a weight function « as in
Lemma 6.3. For any n > 0, f — K7 (f) and
f—K T (v, f) then represent continuous linear mappings from C(G) onto the respective spaces G (M, G) and
F2(V,G). To focus the discussion, let us write 17, for the restriction of K7, to some given subspace C.. y (G) of
C(@G). Then

f— ¥ f) = Ky (v, f), feCen(@),

is a continuous linear mapping from C. n(G) to F&(V, G). For all intents and purposes, we shall take N to be
any integer that is large relative to n, and that in particular has the property of Lemma 6.5. This will lead us to
an estimate for ¢}, (7, f) that is stronger than the bound implied by the definition of F&(V, G).

To simplify the statement of the estimate, we may as well rule out the trivial case that c is G-regular, as we did
in Lemma 6.4. In other words, we assume that dim(G./T) > 0, for any maximal torus T € 7.(M). We fix T,
together with a connected component Q € g . (Tg-reg (R)). Consider the open subset

Va(a,n) = {v € Va: [De(n)|"*[llc(y)II" <1}

of T-reg(R), defined for any a > 0 and any nonnegative integer n. Our interest will be confined to the case that
the closure of Vi (a, n) contains c. This condition will obviously be met if n is large relative to a, or more precisely,
if n is greater than the integer

at =a dim(G./T).

According to our definitions, any function in the space 7, (V, G) will be bounded on Vg (a, n), for any a > «(1).
(We assume of course that the invariant function ¢.(7y) is bounded on V') The function %, (v, f) above lies a

priori only in the larger space F¢(V, G). However, the next lemma asserts that for NV large, the restriction of
i (7, f) to Va(a, n) is also bounded.

More generally, we shall consider the derivative X¢},(v, f), for any (translation) invariant differential operator
X on T(R). Given X, we assume that a is greater than the positive number

at(X) = a(X) + deg(X) dim(G./T)~".
Then if n > a™, as above, and € > 0 is small, n will be greater than deg(X), and

| De()[ 7@ (m) |55 = | Do) |7 @EFD e () o8 X
< CD() ™ lle(n) ", Y € Vieg,
for some constant C'. It follows that the X-transform of any function in ¢, (V, G) is bounded by a constant

multiple of ||¢.(7)|| on Vo (a,n), and is therefore absolutely bounded on Vi (a, n). We are going to show that for
N large, the function X%, (v, f) is also bounded on Vi (a, n).
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Lemma 7.1. Given the triplet o = (T,9, X), we can choose a positive integer a > o (X) with the property
that for any n > a™, and for N large relative to n, the function

f - sup |Xw17\14(’7a f)|a f € CC,N(G>7
yEVa(a,n)

is a continuous seminorm on Ce n(G).

Proof. We should first check that the statement of the lemma is well posed, even though the function ¥ %, (v, f) is
not uniquely determined. As in the remark preceding the statement of Theorem 5.1*, we observe that 7, (7, f)
is defined only up to a finite sum

Z d)%(r)/)‘]%(f)? f S Cc,N(G)v

for tempered distributions J;(f) and functions ¢;(v) in 72, (V, G). From the discussion above, we see that the
function

Z (Xg:(7))Ji(f)

i
is bounded on V(a, n), and in fact, can be bounded by a continuous seminorm in f. In other words, X9}, (v, f)
is well defined up to a function that satisfies the condition of the lemma. The condition therefore makes sense for

XY (v, )

Let u; = 1,us,...,u, be a basis of the G-harmonic elements in S(t(C)). Any element in S(t(C)) can then be
written uniquely in the form

ZUth(Zj), zj € Z(G)
J
Foranyn >0, f € C. n(G), and v € Vo, we write

i (1, ) = i (v, ) = 0(ua) Py (v, £), 1<i<gq

Our aim is to estimate the functions
(7.1) ()i (v, f), ue S(HC)),1<i<q.

The assertion of the lemma will then follow from the case i = 1 and X = 9(u).

Consider a fixed element u € S(t(C)). For any i, we can write
q
uw; =y h(zij)uj,
j=1
for operators z;; = z,;; in Z(G). This allows us to write (7.1) as the sum of
Z Vi (v, 25 f)
J
with

(7.2) Z A(u;) (O (hr (zi)) V3 (v, f) — i (v, zi5 ).

We shall estimate the two expressions separately.
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The first step is to apply Lemma 6.4 to the summands in (7.2). For any given n, we choose N to be large enough
that the summands have the property of Lemma 6.5. In other words, the expression (7.2) is equal to a sum of
functions

_ZkZ,:j,Uj (’7vf)7 g5 = (T7Qva(uj))7 f € Cc,N(G>7

defined as in the preamble to Lemma 6.4. Applying Lemma 6.4 to each summand, we obtain a positive number
a with the property that for any n, and for each ¢ and j, the functional

v, (f) = sup (K2, (v, DD Le(n)II~ D)
vEVa

is a continuous seminorm on C. n(G). Given a, we write v2"(f) for the supremum over 1 < ¢ < g and 7 in
Va(a, n) of the absolute value of (7.2). It then follows from the definition of Vi (a, n) that

ver(f) < Cosup (3o v2, 0 () feCn(@),
¢ J

where

Co= sup [L()].
yEVa(a,n)

We conclude that v$'™ is a continuous seminorm on C y (G). The exponent a depends on the elements z;; € Z(G),
and these depend in turn on the original elements u. It will be best to express this dependence in terms of an
arbitrary positive integer d. For any such d, we can choose an exponent a = a4 so that for any u € S(t(C)) with
deg(u) < d, the functional v ( f) is a continuous seminorm on C. n (G).

The next step is to combine the estimate we have obtained for (7.2) with the estimate for the functions
V3 (v, 25 f) = O(u;) Ky (v, 245 f)

provided by Lemma 6.3. It is a consequence of this lemma that there is an integer b such that for any n, ¢, and j,
the mapping
f— 97 (v, 25 f), f€Cen(G),

is a continuous linear transformation from C. n(G) to F?(Vq, Q). (Here, N can be any nonnegative integer.) In
other words, each functional

sup (| De()* [} (v, 25 F)), feCen(G),

veVa

is a continuous seminorm on C. n(G). We can now handle both expressions in the original decomposition of
(7.1). Our conclusion is that there is a continuous seminorm ! on C. x (G) such that

D)7 (v, /)| < [De(n)| i (f) + vie™ (£), feCen(G),

for every «yin Vo (a,n). In particular,

10(u) P (v, £)] < u&™ ()| D)7, v € Val(a,n), f€Cen(G),

where

e (F) = () + ( sup D))

yEVa(a,n)
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is a continuous seminorm on C. y(G). We need be concerned only with the index ¢ = 1. We shall write

Yo (v, ) = 0w (v, f) = 0wt (v, f),

in this case. The last estimate is then

[ (v, F)I < ™ (HIDe(N)I™, 7 € Vala,n), f €Cen(G),

for any element u € S(t(C)) with deg(u) < d. Our task is to establish a stronger estimate, in which b = 0.
We emphasize that in the estimate we have already obtained, b is independent of u, and therefore also of d and
a = agq. It is this circumstance that allows an application of the technique of Harish-Chandra from [H1].

For any § > 0, set
Vas(a,n) = {7 € Va(a,n) : [[Lc(7)] < 8}

If v belongs to the complement of Vo 5(a, n) in V(a, n), we have
[ De(V)|* > lee(M™ = 6"

It follows that the function |D.(7)|® is bounded away from 0 on the complement of Vi, s5(a,n) in Vo(a,n). We
have therefore only to show that for some J, the function

(7.3) sup  (|v5 (v, ), f€Cen(G),

YEVa,s(a,n)

is a continuous seminorm on C. n (G).

Given a and n, we simply choose any § > 0 that is sufficiently small. We then assign a vector H € {(R) to each
point v in Vi 5(a, n) in such a way that the line segments

(74) 1/1t:79XptH> ’YEVQ,(S(aan)? OStS 17

are all contained in Vi (a, n), and the end points y; = yexp H all lie in the complement of Vo, 5(a, n) in Vo (a,n).
We can in fact arrange that the correspondence v — H has finite image in t(R). We can also assume that the
points (7.4) satisfy an inequality

|De(y)|7F < Oyt dm(Ge/T) 0<t<l,

where C} is a constant that is independent of the starting point y in Vi s(a,n). Setting p equal to the product
of dim(G./T') with the integer b, and absorbing the constant C'? in the seminorm p2"(f) above, we obtain an
estimate

v (v, O < p™ ()P, felen(@),
for each of the points ; in (7.4), and any u € S(t(C)) with deg(u) < d.
The last step is to apply the argument from [H1, Lemma 49]. Observe that

d

Therefore
d

GG < o
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for any ~ as in (7.4), and any u € S(t(C)) with det(u) < d — 1. Combining this estimate with the fundamental
theorem of calculus, we obtain

[ (it n)as

1
< / SO (F)s~Pds + o (f)

by (9, f)] <

+ |t (n, )

< ()T = )+ ()

It follows that there is a continuous seminorm MZT on C., n(G) such that

[ (s £ < Y ()P

for any <y; as in (7.4), and any u € S(t((C)) with deg(u) < d — 1. Following the proof of [H1, Lemma 49], we
repeat this operation p times. We obtain a continuous seminorm ;' on Cc,  (G) such that

|¢Z(’Yt7f)| < MZ7Z(f)| 1Ogt|7

for any v; asin (7.4), and any u € S(t(C)) with deg(u) < d — p. Repeating the operation one last time, and using
the fact that log ¢ is integrable over [0, 1], we conclude that there is a continuous seminorm A\%" = NZZ L1 0n
Cc,n(G) such that

[ (s P < AL (), feclen(G),

for all y; as in (7.4), and any u € S(t(C)) with deg(u) < d — (p + 1). Setting ¢t = 0, we see that the supremum
(7.3) is bounded by A% ( f), and is therefore a continuous seminorm on C. n(G).

We have now finished. Indeed, for the given differential operator X = 0(u), we set
d = deg(u) + b dim(G./T) + 1 = deg(u) +p+ 1,

where b is the absolute exponent above. We then take a to be the associated number a 4. Given g, together with a
positive integer n, we choose ¢ > 0 as above. The functional (7.3) is then a continuous seminorm on C. v (G). As
we have seen, this yields a proof of the lemma. O

Corollary 7.2 Given the triplet o = (T,9,X), we can choose a positive number
a > at(X) with the property that for any n > a™, and for N large relative to n, the limit

(75) X]\/I(U7 f) = %/I_)HICwaI(f%f)’ Y S VQ(&,’I’L), f S CC,N(G>7

erists, and is continuous in f.

Proof. Once again, the statement is well posed, even though ¢}, (7, f) is defined only up to a function
> (N i(f)

in 72, (V, G). For it follows from the preamble to Lemma 7.1 that the X -transform of any function in ¢, (V, G)
can be written as a product of /. () with a function that is bounded on Vg (a, n). In particular, X¢/%, (v, f) is well
defined up to a function on Vg (a, n) whose limit at ¢ vanishes.
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Given o, and thus X, we choose a so that the assertion of the lemma holds for all the differential operators
d(H)X, H € ¢(C).

The first derivatives
a(H)XQZJJT(J(’yvf)? Y S ‘/SI(CL?n)a f GCC,N(G)7

of the function X9}, (7y, f) are then all bounded on Vi, (a, n) by a fixed, continuous seminorm in f. It follows that
the function v — X¢%, (7, f) extends continuously to the closure of Vi (a,n) in a way that is also continuous in
f- The limit x pz (o, f) therefore exists, and is continuous in f. O

Remarks. 1. As the notation suggests, the limit x as (o, f) is independent of n. For if m > n, ¥} (v, f) differs
from ¢}/ (7, f) by a function of y that lies in ', (V, G). As we noted at the beginning of the proof of the corollary,
the X-transform of any such function converges to 0 as -y approaches ¢ in V(a,n). Of course n must be large
relative to deg(X), and N has in turn to be large relative to n. The point is that for any o = (T, Q, X), and for N
sufficiently large relative to deg(X), the limit

xm (o, f), f€Cen(G),
can be defined in terms of any appropriately chosen n.

2. Lemma 7.1 and Corollary 7.2 were stated under the assumption that dim(G./T) > 0. The excluded case that
dim(G,/T) = 0is trivial. For in this case, the function ¢}, (y, f) on Vq extends to a smooth function in an open
neighbourhood of c¢. The lemma and corollary then hold for any n.
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§8. The mapping X ps

We fix a weight function « satisfying the conditions of Lemma 6.3, as we did in the last section. Then «(1) equals

zero, and the continuous mapping
K]\/[ : C(G) — QC(M7 G)

takes values in the subspace QAS‘ (M, G) of Go(M, G). Recall that the space Z.(M, @) introduced in §4 is contained
in G (M, G). The goal of this section is to construct a continuous linear mapping

Yar : C(G) — To(M,G)

that approximates K.

The main step will be the next proposition, which applies to the restrictions
Ui = K+ Cen(G) — G2 (M, G)
treated in the last section.

Proposition 8.1. Suppose that n > 0, and that N is large relative to n. Then there is a uniquely determined
continuous linear transformation
X’rIc[ : CC,N(G> - I?(Ma G)>

such that for any f € Cc n(G), the image of X%, (f) in G&™(M, G) equals Y}, (f). More precisely, the mapping

is a continuous linear transformation from C. n(G) to the space F,(V,G).

Proof. Recall that Z.(M, G) is contained in the space G%¥(M, ) of bounded germs. The first step is to construct
X, as a mapping from C.. y (G) to the quotient G¢4" (M, G) of G24(M, G). As we observed in the proof of Lemma
4.3, any element in G5%" (M, G) can be identified with a family

" = {(b?z : TeT(M), Qe WQ,C(TG-reg(R))}

of Taylor polynomials of degree n (in the coordinates £.(-y)) on the neighbourhoods Vg,. In particular, G%" (M, G)
is finite dimensional. The subspace Z['(M,G) consists of those families that satisfy Harish-Chandra’s jump
conditions (2.3).

Suppose that f belongs to C. n(G), for some N that is large relative to n. We define x%;(f) as a family of Taylor
polynomials of degree n by means of the limits x (o, f) provided by Corollary 7.2. More precisely, we define

X?J,Q(Va f)v T e Z(M)7 Qe T0,c (TG-reg(R))v v e ‘/Qa

to be the polynomial of degree n such that
(82) %E’I}: (XXXLQ(PY’ f)) = XM (07 f)a gaS ‘/Qv

where X ranges over the invariant differential operators on T'(R) of degree less than or equal to n, and where
o= (T,9Q,X).If (T, Q) is replaced by a pair (1", ') thatis W (M )M (R)-conjugate to (7T, §2), the corresponding
polynomial x}; o (7', f) is W(M)M (R)-conjugate to x}i; o(7,f). This follows from Corollary 7.2 and the
analogous property for the (a,n)-jet ¥, (v, f). Therefore x7,(f) is a well defined element in G4 (M, G).
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Moreover, Corollary 7.2 tells us that each limit (8.2) is continuous in f. It follows that f — x%,(f) is a continuous
linear map from C. y(G) to the finite dimensional space G*4" (M, G).

The main step will be to establish the continuity of the mapping (8.1), defined for some weight « that satisfies
the conditions of Lemma 6.3. This amounts to showing that for any triplet o = (7,2, X) in S.(M, G), and any
e > 0, there is a continuous seminorm p(f) on C. n(G) such that

(8:3) X (@3 (1, 1) = x5 (1, )| < w(DIDe() [T e ()|,

for v € Vq. Observe that if deg | X| > n, (8.3) reduces to an inequality

(XK (7, £) < u(f)|De(r)|~ @0+,

since Xx%, (7, f) = 0and (n, X) = 0. We know from Lemma 6.3 that such an inequality actually holds for any
f in the full Schwartz space C(G). We may therefore assume that deg(X) < n. We shall derive (8.3) in this
case from four other inequalities, in which p1 (f), p2(f), ps(f), and pa(f) denote four continuous seminorms on
Ce,n(G).

We have first to combine Taylor’s formula with Lemma 7.1. This lemma actually applies only to the case that
dim(G./T) > 0. However, if dim(G./T) = 0, D.(7y) equals 1, and the weight function « plays no role. In this
case, the estimate (8.3) is a direct application of Taylor’s formula, which we can leave to the reader. We shall
therefore assume that dim(G./T) > 0.

We have fixed data n, 0 = (7,9, X) and ¢, with deg(X) < n, for which we are trying to establish (8.3). For
later use, we also fix a positive number ¢’, with ¢’ < . At this point, we have removed from circulation the
symbols X and n in terms of which Lemma 7.1 was stated, so our application of the lemma will be to a pair of
objects denoted instead by Y and m. We allow Y to range over the invariant differential operators on T'(R) with
deg(Y) <n+1.1f
a=a, >sup (a(Y)) =a(n+1)+ (n+1)dim(G./T) ",
Y

as in Lemma 7.1, we choose m with
m > a} = a, dim(G./T).

The lemma applies to functions f € C. n(G), for N large relative to m (which is the same as being large relative to
n, if m is fixed in terms of n). In combination with the fundamental theorem of calculus, it tells us that )7 (v, f)
extends to a function on an open neighbourhood of the closure of Vi (a,,, m) that is continuously differentiable
of order (n + 1). The derivatives of this function at v = c¢ are the limits treated in Corollary 7.2. They are
independent of m, and can be identified with the coefficients of the polynomial x}, (7, f) on V. We can therefore
regard xi; (7, f) as the Taylor polynomial of degree n at v = c¢ (relative to the coordinates £.(y)) of the function
Y (7, f) on Va(an, m). Now if v belongs to Vi (a,,, m), the set

Ai(y) = ¢ exp (tle(v)), 0<t<l,

is contained in Vi (ay,,m), and may be regarded as the line segment joining ¢ with . Applying the bound of
Lemma 7.1 to the remainder term (of order (n + 1)) in Taylor’s theorem, we obtain an estimate

X (WRE(r, £) = X3 (3 )| < s (D),
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for any « in Vg (an, m). We are assuming that m > n and that « satisfies the conditions of Lemma 6.3. The
projection of ¥ (f) onto G&™ (M, G) therefore exists, and is equal to 1, ( f). The definitions then yield a second
estimate

X (W5, ) = e (s )< 2 (D)D)~ e () ),

that is valid for any 7 in V5. Combining the two estimates, we see that

(8.4) X (W3 (7, ) = X (1, )] < s () De() |7 ()| ),

for any v in Vo (an, m).

The functions ¥, (v, f) and X7, (7, f) in (8.4) both belong to the space F&(V, G). Applying the estimate that
defines this space to each of the functions, we obtain a bound

|X (6507 ) = X (1 )| < a( ) De()| 7O+,

that holds for every «y in Vq. Suppose that v lies in the complement of Vo (ay,, m) in V. Then

[De()] < )™,
for the exponent m’ = ma,,!. Setting § = £ — &’ > 0, we write
[De()| ) = Do) 7D (3)[7 < [De()] =T eI
We are free to choose m to be as large as we like. In particular, we can assume that
om’ > (n, X),

and therefore that
[De()] 7 G < D ()|~ CHD o)),

for some constant C’. Absorbing C” in the seminorm p4(f), we conclude that

(55 X (@3 £) = X (1, D)| < pa(F)De(n)|~CE+ |, ()] 40,

for any « in the complement of Vo (an, m) in Vo.

The estimates (8.4) and (8.5) account for all the points v in V5. Together, they yield an estimate of the required
form (8.3), in which we can take

p(f) = us(f) + palf).

We have established the required assertion that for IV large relative to n,

f—”/)}\?(%f)—x%(%f% fecc,N(G>7

is a continuous linear transformation from C. n(G) to ¢, (V,G). From this, it follows from the definitions
that the image of x%,(f) in G2 (M, G) equals ¥%,(f). In particular, ¥, (f) lies in the subspace G*%" (M, G) of
Gr(M,G).

The space I7* (M, G) is in general a proper subspace of G*%™(M, G), by virtue of the extra constraints imposed

by the jump conditions (2.3). The last step is to show that for suitable N, x7}, takes C. n(G) to the smaller space
I (M, G). This will be an application of Lemma 6.1.
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Let ¢ be a linear form on the finite dimensional space G?4" (M, G) that vanishes on the subspace Z7 (M, G). The
mapping
T f— &0 () = @ (f)), [ €Cen(G),

is continuous, and is therefore the restriction to C.,n (G) of a tempered distribution. Suppose that
f=hvY—h, heC(G), y € GR).

Then
Je(f) = E(zé?w(hy - h)z
= (KR (hY) — Ky (h))
= Y. o (artthay)),
QEFO(M)

by Lemma 6.1. The sum of the n-jets
n M,
o (T’ (hQ), Q€ Fo(M),

lies in the subspace Z7* (M, G) on which ¢ vanishes. The distribution J¢ thus annihilates any function of the form
h¥ — h, and is therefore invariant. On the other hand, if fy € C(G) is compactly supported, and vanishes on a
neighbourhood of the closed invariant subset U.(G) of G(R), one sees easily from the definitions that K v (fo)
equals 0. It follows that the distribution J¢ is supported on U.(G). We have established that J¢ belongs to the
space D.(G), and is therefore a finite linear combination of distributions in the basis R.(G). Increasing N if
ncessary, we can consequently assume that for each £, J¢ annihilates the space C., v (G). In other words, ¢}, takes
any function f € C. n(G) to the subspace Z7 (M, G) of G44" (M, G). Since %, (f) equals x%,(f), the image of
X7y is also contained in Z" (M, G).

We have now proved that for N large relative to n, f — x%,(f) is a continuous linear mapping from C. n(G) to
I (M, G). We have also shown that the image of x,(f) in G¥"(M, G) equals ¥}, (f). But Lemma 4.3 implies
that the mapping of Z"(M, G) into G&™(M, G) is injective. We conclude that x%,(f) is uniquely determined.
With this last observation, the proof of the proposition is complete. O

The germs X7, (f) share some properties with the (a,n)-jets K?,(f) from which they were constructed. For
example, suppose that m > n, and that N is large relative to m. Then if f belongs to C. n(G), both x’,(f) and
X7 (f) are defined. But ¢, (f) = K% (f) is the projection of ¢/ (f) = K (f) onto G2"(M, G). It follows that
X7 (f) is the projection of x7%(f) onto Z3, (M, G).

We can reformulate this property in terms of the dual pairing between D (M) and Z.(M). Recall that Z.(M, G)
is the subspace of W (M )-invariant elements in Z.(M). The pairing

(8.6) (0, ), o €D(M), ¢ € T.(M,G),

therefore identifies Z. (M, G) with the dual D, (M) w(ar) of the space De (M) (ar) of W (M )-covariants of De(M).
If o belongs to the finite dimensional subspace

Den (M) ={o € D(M) : deg(o) < n}

of D.(M) spanned by R, (M), the value
(0,0") = (0,9)
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depends only on the image ¢" of ¢ in Z7? (M, G). With this notation, we set

(8.7) <Gv Xﬂf(f» = <J7 XTJLM (f))? o€ DC(M)v Ie CC,N(G)v

for any n > deg(o) and for IV large relative to n. In view of the projection property above, the pairing (8.7) is
independent of the choice of n. It is defined for any NV that is large relative to deg(c).

Another property that xi,(f) inherits is the differential equation (6.6) satisfied by K (f). We shall state it in
terms of the pairing (8.7).

Lemma 8.2. Suppose that z € Z(G) and o € D.(M), and that N is large relative to deg(o) + deg(z). Then

(8.8) (0. x0m(2f)) = (2m0, X1 (f)),

for any f € Cc.n(G).

Proof. The assertion is an reformulation of Lemma 6.2 in terms of the objects x%,(f). Its proof, like that of
Lemmas 6.4 and 6.5, is quite straightforward. We can afford to be brief.

We choose positive integers n; > deg(c) and n > n; + deg(z), and we assume that N is large relative to n. If
f belongs to C. v (G), zf belongs to the space C. v, (G), where Ny = N — deg(z) is large relative to n;. We can
therefore take the pairing

(o xn(2f)) = {0, X4 (2))-
We can also form the pairing
(z2ma, xm (f)) = (z2m0, X34 (),

which can be written as
(0,0(h(2))x(f)) = (o, (B(h(2)) xR () ™),
since the action of 27 on D,(M) is dual to the action of d(h(z)) on Z.(M,G). We have to show that the difference

(0. x00(2£)) = (2o, xar (f)) = (o, X3k (2f) = (O(h(2)) X3 ()™)

vanishes.

Combining Lemma 6.2 with the various definitions, we see that

X (2f) = (O(h()) X ()"
= (=) = (O(h(2)) 3 ()"
(szf) O(h(2)) Ky ()™

L#M

=" (ki (zL)9f " (fac)m)™

L#M

We apply (5.3) inductively to the formal germs

95" (fadu = Y 97" (P)afalp), L # M,

PER(G)
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as in the proof of Lemma 6.5. Since N is large relative to n, we conclude that these objects all vanish. The equation
(8.8) follows. U

Finally, it is clear that x%,(f) inherits the symmetry property (6.9), relative to an isomorphism §: G — 0G over
R. If N is large relative to a given o € D.(M), we obtain

(8.9) (00, xonr (0.)) = (o, xa (f)),

for any f € C.n(G). This property will be of special interest in the case that ¢ belongs to the group
Aut(G, K, M, ¢) of automorphisms of the 4-tuple (G, K, M, c).

We shall now construct X s as an extension of the family of mappings {x7};}.
Proposition 8.3. There is a continuous linear mapping

(8.10) Y CG) — I (M,G)

that satisfies the restriction condition

(8.11) (o, XM (f)) = (o, xm (), [ €Cen(G),

for any o € D.(M) and N large relative to deg(o), the differential equation

(8.12) (o, XM (2f)) = (2o, X (f))s z € Z2(G), fec(G),

for any o € D.(M), and the symmetry condition

(8.13) (00, Xn (0F)) = (0, X0 (f)), fec@),

for any o € D.(M) and 0 € Aut(G, K, M,c).

Proof. Let
Dc,l (M) = Dc,G-harm (M)

be the space of G-harmonic elements in D.(M). This is a finite dimensional subspace of D.(M), which is
invariant under the action of W (M) and, more generally, the group Aut(G, K, M, c). (Here we are regarding c
as a W(M)-orbit in I'ys(M).) Choose a positive integer N; that is large enough that the pairing (8.7) is defined
forevery o in D 1(M) and f in C. n, (G). We thereby obtain a continuous linear map

XM,1 - Cc,N1 (G) - Dc,l(M)*v
which by (8.9) is fixed under the action of the group Aut(G, K, M, c). Let
(8.14) Xma i C(G) — Dea (M)

be any linear extension of this mapping to C(G) that remains fixed under the action of Aut(G, K, M, ¢). Since
Ce,n, (G) is of finite codimension in C(G), X1 is automatically continuous. With this mapping, we obtain a
pairing (o, Xar,1(f)), for elements o € D, 1(M) and functions f € C(G), that satisfies (8.11) and (8.13).

The extension of the pairing to all elements o € D.(M) is completely determined by the differential equations
(8.12). According to standard properties of harmonic polynomials, the map

Z2Q® 0 — zp0, z € 2(G), 0 € D1 (M),
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is a linear isomorphism from Z(G) ® D, 1(M) onto D.(M). Any element in D (M) is therefore a finite linear
combination of elements
0 =21,M01, 2162(0), ] E'DCJ(M).

For any o of this form, we define

(0, XM (f)) = (o1, Xn1(21f)), feca).

Since z1,ps is W (M )-invariant, the values taken by this pairing ata given f determine a linear form on the quotient
D.(M)w () of De(M). The pairing therefore defines a continuous mapping (8.10) that satisfies the differential
equation (8.12). The restriction condition (8.11) follows from (8.12), the associated differential equation (8.8) for
(o, xpm(f)), and the special case of 0 € D, 1(M) that was built into the definition. The symmetry condition
(8.13) follows from the compatibility of Aut(G, K, M, ¢) with the action of Z(G), and again the special case of
0 € D.1(M). Our construction is complete. O

Remarks. 1. The three properties of X s can of course be stated without recourse to the pairing (8.6). The
restriction condition (8.11) can be formulated as the commutativity of the diagram

Con(G) % (M, @)

)

Lo

CG) X5 T(M,G),
for any n > 0 and N large relative to n. The differential equation (8.12) has a dual version
X (2f) = 0(h(2)) Xa (), z€ Z2(G), fec(q),
that is similar to (1.2). The symmetry condition (8.13) is essentially just the equation
O0xn (f) = Xm(61), 0 € Aut(G, K, M,c), f €C(G).
2. The mapping X u is completely determined up to translation by an Aut(G, K, M, c¢)-fixed linear transformation
(8.15) C: C(Q)/Cc,n, (G) — D¢ g-harm (M)*.

The space of such linear transformations is of course finite dimensional.
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§9. Completion of the proof

We shall now complete the proof of Theorems 5.1 and 5.1*. We have to construct distributions (5.1) with L = M,
and formal germs (5.2) with L = G, that satisfy the conditions (5.3)—(5.9). The key to the construction is the

mapping
X+ C(G) — Te(M,G)

of Proposition 8.3.

The distributions (5.1) are in fact built into X;. If p belongs to R.(M), we simply set

Since X s is continuous, the linear forms
f—>‘]k[(p7f)7 pERC(M)v
are tempered distributions. We must check that they are supported on U, (G).

Suppose that fj is a function in C(G) that is compactly supported, and vanishes on a neighbourhood of U, (G).
As we noted near the end of the proof of Proposition 8.1, the definitions imply that the («a, n)-jet

Ki(fo) =Ji(fo) = D D> agxi"(pr)Julpr, fo)

L#M,G preR.(L)

vanishes for n > 0. Indeed, the weighted orbital integral J s (7, fo) vanishes for y near U, (G), while our induction
hypothesis includes the assumption that the distributions J1(pr, f) are supported on U (G). Given p € R.(M),
we choose any n > deg(p). Then

Jm(ps fo) = (p, Xne(fo)) = (p; X (fo))
= (p: X1 (f0)) = (p, Vs (fo))
= (p. Ky (fo)) = 0,

by (8.11), (8.7) and Proposition 8.1. The distribution Jys(p, f) is therefore supported on U.(G).

We have now constructed the distributions (5.1), in the remaining case that L = M. The required conditions
(5.4)—(5.6) (with L = M) amount to properties of s we have already established. The functorial condition (5.4)
concerns the (adically) convergent series

art (Tare(H) = > PV Tulp, )

pPER(M)

Observe that
p(g3t (Tare(£))) = Tn(p, £) = {p, Xna (f)),

for any p € R.(M). It follows that

9.2) ot (Jare(f)) = Xae (), fec(q).

Since Y/ (f) was constructed without recourse to the basis R.(M), the same is true of g% (J Me(f ))
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To check the variance condition (5.5), we note that for f € C(G) and y € G(R), the function f¥ — f belongs to
each of the spaces C., y(G). Given p € R.(M), we may therefore write

I f4 = f) = (o X (fY = £)) = (o, xna (f¥ = 1))
= (p, o (fY = £)) = (o, Kna(f¥ = f))

= > pah (nrs(faw))

QEFO(M)

= Z JM (P fQ.u),

QEFO(M)
by Lemma 6.1. The formula (5.5) follows.
The differential equation (5.6) is even simpler. If z € Z(G) and p € R.(M), we use (8.12) to write

Iu(p, 2f) = (p, Xn (1))
= (zmp, xm(f)) = Jm(zmp, f)-
This is the required equation.

To deal with the other assertions of the two theorems, we set

Ky (f) = Ku(f) — Xu(f) = Ene(f) — 93 (are( ).

Then f — K,(f) is a continuous linear transformation from C(G) to G.(M, @), which can be expanded in the
form

Ky (f) = Z Z 9x1(P) T (p, f)-

LELO(M) peR.(L)
Suppose that « is as before, a weight function that satisfies the conditions of Lemma 6.3. Then K, (f) lies in the
subspace Q\f‘ (M, @) of G.(M, G). For any n, K},(f) projects to the (a, n)-jet

K3 (f) = KR (f) = Xar(f)

in G (M, G), which in turn comes with a representative

Kty f) = K3y (v, f) X f)
*JM 77 Z Z gl\/[ 77 JL(pvf)

LeLo%(M) peRc(L)
in F%(V, G). We shall use the mappings Ky, to construct the remaining germs (5.2). The argument at this point
is quite similar to that of the p-adic case [A3, §9].

Since we are considering the case L = G of (5.2), we take p to be an element in the basis R.(G). If N is a large
positive integer, let f} denote a function in C(G) with the property that for any p; in the subset R n(G) of
R.(G), the condition

N _JL ifpr=p,
8:3) pcn) = {07 if p1 # p,

holds. Suppose that n > 0. Taking NV to be large relative to n, we define

(9.4) g5 (p) = K3r(£2).
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Then g5 (p) is an element in G&" (M, G). Suppose that N' is another integer, with N’ > N, and that f N "is a
corresponding function (9.3). The difference

A
then lies in C., x (G). From Propositions 8.1 and 8.3, we see that

SHEAESSHIARESSHIARS
= K5 (f0N) = X ()

= (PN X (YY) = 0.

It follows that the («, n)-jet ggf’"(p) depends only on p and n. It is independent of both N and the choice of
function f év .

Suppose that m > n, and that N is large relative to m. Then
G,m m
9m (p) = K;w (f,ﬁv)

is an element in G (M, G). Since the image of Ky;"(f2) in G&'™ (M, G) equals Ky (fY), by definition, the
image of g5;™ (p) in G2 (M, G) equals ¢5" (p). We conclude that the inverse limit

95 (p) = lim 937" (p)

n

exists, and defines an element in ég (M, G). This completes our construction of the formal germs (5.2), in the
remaining case that L = G. As we agreed in §4, we can represent them by asymptotic series

G,(n
950 = > g™ (),
n=0

where
G,(n Gn G,n—1
95 (v 0) = 95" () — 95 (),
and
(9.5) gu"(rp) = Kyt (v, fN) = Ky (9, f) = X (v, ).

Suppose that N is large relative to n, and that p lies in the complement of R, x(G) in R.(G). Taking f év =0in
this case, we deduce that

gv"(p) = K3 (fY) =0.

In other words, gfj" (p) vanishes whenever deg(p) is large relative to n. This is the property (5.3). It implies that
forany f € C(G), the series

g5i(fae) = g5 (Jae(£) = D gfi(p)fa.clp)

PER:(G)

converges in (the adic topology of) G.(M, G).
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Before we establish other properties of the formal germs g§;(p), let us first prove the main assertion of Theorem
5.1*. Having defined the series ¢§/(fa..), we set

Ku(f) = Ky (f) — g5 (fa.c)
=Ju(f) - a¥(p) I (p, f).
LEL(M) peRo(L)

Then f — K (f) is a continuous linear mapping from C(G) to G.(M, Q). For any n, Ky (f) projects to the
element

K2 (f) = Ky (f) — 95" (fae)

in G&™(M, G), which in turn comes with a representative

K3 (v, f) = K5p (0, ) = 95" (s fae)
=Kt (n )= Y. a5 () falp)

PER:(G)

in F&(V, G). We can also write

Ky =Jdu(v. /)= > > ai"(ne)ilp f)

LEL(M) peR(L)

in the notation (5.11). By construction, f — K}, (v, f) is a continuous linear mapping from C(G) to F&(V, G).
Theorem 5.1* asserts that the mapping actually sends C(G) continuously to the space 72, (V, G).

Given n, we once again choose N to be large. It is a consequence of (5.3) that the sum in the first formula for
K7 (v, f) may be taken over the finite subset R, n(G) of R.(G). It follows that

Ky(n, £ =Kt (n )= >, g5 (n.p)falp)

pER: N(G)
=Kt (n )= Y. Kt ) falp).
pER: N(G)

The mapping
f— K (00 f) = K3, ) = X (3, )

from C(G) to F&(V, G) is of course linear. Consequently,

K]T\fl(r% f) = K;\?(’Yv fc’N)v

where

fN=r= > folp)t).

PGRC,N(G)

Observe that the mapping

9.6) f— e, fecG),

is a continuous linear operator on C(G) that takes values in the subspace C. n(G) of C(G). In particular, the
function

K (v, f) = K (y, £9N) = X (v, 1)
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equals
Wi (7, F9N) = X O £,
by the restriction condition (8.11). Composing (9.6) with the mapping (8.1) of Proposition 8.1, we conclude that

is a continuous linear mapping from C(G) to ¢, (V, G). This is the main assertion of Theorem 5.1*.

We have finished our inductive construction of the objects (5.1) and (5.2). We have also established the continuity
assertion of Theorem 5.1*. As we noted in §5, this implies the assertion of Theorem 5.1 that the weighted orbital
integral J (f) represents the same element in G.(M, G) as the formal germ (5.10). We have therefore an identity

(9.7) 951 (Jae(N) = In(f) = D gir(Jeef))

LeLO(M)

of formal germs, which holds for any function f € C(G). According to our induction assumption, the summands
in (9.7) with L # M are independent of the choice of bases R.(L). The same is true of the summand with
L = M, as we observed earlier in this section. Since the other term on the right hand side of (9.7) is just the
weighted orbital integral Js(f), the left hand side of (9.7) is also independent of any choice of bases. We have
thus established the functorial condition (5.4) in the remaining case that L = G.

We can also use (9.7) to prove the differential equation (5.7). Suppose that z € Z(G). In §6, we established the
identity (6.2) as a consequence of the two sets of equations (5.6) and (5.7). Since we now have these equations for
any L # G, we can assume that (6.2) also holds for any L # G. It follows that

Z gif(JL«:(zf))

LeLo(M)

Z Z 931 (2595 (Jr.e(1)) 5

LeLO(M) Sect (M)

= Z Z 6M ZS)gS(JLaC(f))M'

SeL(M) LeLo(s)

We combine this with (9.7) (f being replaced by z f), and the differential equation (3.2) for Jas(zf). We obtain

JC\Z(JG,C(zf))
= Y o) (I — X dkn))
SeL(M) LELO(S)

> 0(29)98 (Jae(f)

SeL(M)

Z ( Z I3 (25)98 (p )]M)fG(p).

pERL(G)  SeL(M)

But

95r(JaczN) = DY afi0)=Halp) = Y 95iGEp)falp)-

PER.(G) PER(G)

Comparing the coefficients of fg(p) in the two expressions, we see that

Z Or(zs gs p)m p € R.(G).
SeL(M)
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This is the equation (5.7) in the remaining case that L = G.

It remains only to check the symmetry conditions (5.8), (5.9) and (5.9)*. Given an isomorphism 0: G — 6G over
R, we need to prescribe the mapping

Yoar : C(0G) — Ty (6M, 0G)

of Proposition 8.3 for the 4-tuple (G1, K1, M1,¢1) = (0G,0K,0M,0c) in terms of the chosen mapping X s for
(G, K, M, c). We do so in the obvious way, by setting

Xom (0.f) = Oxn(f), fec(@).

This mapping depends of course on (G4, K1, M7, ¢1), but by the symmetry condition (8.13) for G, itis independent
of the choice of 6. The conditions (8.11)—(8.13) for §G follow from (8.9) and the corresponding conditions for G.
Having defined the mapping Xgas, we then need only appeal to the earlier discussion of this section. If p belongs
to R.(M), we obtain
Jort (0p,0.f) = (Op, Xor (0£))
= (0p, X0 () = Jua(p, f),

from (9.1). This is the condition (5.8) in the remaining case that L = M. For n > 0, we also obtain

Gosi™ (07, 0p) = Kgr (07, fa) — Xna (07, f2))
_ Gn
=gr (V,0)s

from (9.5), (6.10) and the definition of Xgs (6 f) above. This is condition (5.9)* in the remaining case that L = G.
Finally, we observe that

. 0G,n
ggf;}(ep) = lingeM (0p)

n

= lim 0g5;" (p) = 0957 (p)-

This is the third symmetry condition (5.9), in the remaining case L = G.

We have now established the last of the conditions of Theorems 5.1 and 5.1*. This brings us to the end of the
induction argument begun in §6, and completes the proof of the two theorems.

We observed in §5 that the objects we have now constructed are not unique. The definitions of this section
do depend canonically on the mapping X s of Proposition 8.3, which is in turn determined by the mapping
XMm1 in (8.14). But Y1 is uniquely determined only up to translation by the Aut(G, K, M, ¢)-fixed linear
transformation C in (8.15). The coefficients ¢(par, pc) in (5.14), which were used in Proposition 5.2 to describe
the lack of uniqueness, are of course related to C. Suppose that the basis R.(M) is chosen so that the subset

Rc,G-harm (M) = RC(M) N Dc,G-harm (M)
is a basis of D¢, G-harm (M ). It then follows that
C(le PG) = <tcpk[7 pG>7 PM € Rc,G-harm (M)v PG € Rc,N1 (G)

For general pjs and pg, the coefficient ¢(par, pi) is determined from this special case by the relation (5.16).
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§10. Invariant distributions I/ (p, f)

Weighted orbital integrals have the obvious drawback of not being invariant. Their dependence on the maximal
compact subgroup K is also not entirely agreeable. However, there is a natural way to construct a parallel family
of distributions with better properties. We shall show that these distributions satisfy the same formal germ
expansions as the weighted orbital integrals.

As we recalled in §1, elements in Z(G) can be regarded as functions

fo: m™— fo(r) = tr(ﬂ(f)), fel(@), m € Lemp(G),

on Iliemp (G) (the set of irreducible tempered representations of G(R)), rather than I'teg (G) (the set of strongly
regular conjugacy classes in G(R)). The two interpretations are related by the formula

fa(m) = / o e DIDO)RO () £ €C(G), 7 € TG,

where O is the character of 7, and dy is a measure on I'yes (G) provided by the Weyl integration formula. We
have also noted that any invariant, tempered distribution I on G(R) factors through the space Z(G). In other
words, there is a continuous linear form I on 7 (@) such that

~

I(f) = 1(fe), fec(@).

This can be proved either by analyzing elements in Z(G) directly as functions on I'yes (G) [B2] or by using the
characterization [A5] of elements in Z(G) as functions on Iemp (G).

We fix a Levi subgroup M C G and a maximal compact subgroup K C G(R), as in §3. For each Levi subgroup
L € L(M), one can define a continuous linear transformation

or = ¢% : C(G) — I(L)

in terms of objects that are dual to weighted orbital integrals. If f belongs to C(G), the value of ¢ (f) at
7 € Iiemp (L) is the weighted character

oL(f,m) = tI‘(ML(?T7P)IP(7T7 f)), PeP(L),

defined on p. 38 of [A7]. In particular, Zp () is the usual induced representation of G(R), while

My (7, P) = lim Z Mo\, 7, P)0g (A )

A—0
QEeP(L)

is the operator built out of Plancherel densities and unnormalized intertwining operators between induced
representations, as on p. 37 of [A7]. Weighted characters behave in many ways like weighted orbital integrals. In
particular, ¢r,(f) depends on K, and transforms under conjugation of f by y € G(R) by a formula

(10.1) = > ¢ %(fau)

QeF(L)

that is similar to (3.1).
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The role of the mappings ¢r, is to make weighted orbital integrals invariant. One defines invariant linear forms

Lu(v, ) = I (v, f), v € Mg-eg(R), f € C(G),

on C(G) inductively by setting
Tu(n )= Y Ii(vec(f).

LeL(M)

In other words,

INI(’Y’f):JM(7>f)_ Z f]@('}/,¢L(f))

LeLo(M)
This yields a family of tempered distributions, which are parallel to weighted orbital integrals, but which are

invariant and independent of K. (See, for example, [A7, §3].) We would like to show that they satisfy the formal
germ expansions of Theorems 5.1 and 5.1*.

We fix the conjugacy class ¢ € I';5 (M), as before. We must first attach invariant linear forms to the noninvariant
distributions Jas(p, f) in (5.1). Following the prescription above, we define invariant distributions

IM(P»f):Iﬁ(paf)» pGRC(M)v fGC(G)a

inductively by setting

Ju(p, f) = Z fﬁI(P,QbL(f))-

LeL(M)

In other words,

Lu(p. f) = Julp. /) = > Th(p.orn(h).

LeLO(M)

The invariance of Ip/(7, f) follows inductively in the usual way from (3.1) and (10.1). As a general rule, the
application of harmonic analysis improves one property only at the expense of another. In the case at hand, the
price to pay for making Jys (p, f) invariant is that the new distribution I/ (p, f) is no longer supported on U.(G).

We have in any case replaced the family (5.1) with a family
(10.2) f—1c(p, ), L e L(M), p € Re(L),

of invariant tempered distributions. These new objects do have many properties in common with the original
ones. They satisfy the differential equation

(10.3) Ir(p, zf) = Ir(zLp, f),

for each z € Z(G). They also satisfy the symmetry condition

(10.4) Tor(0p,0f) = 1L(p, f),

for any isomorphism 0: G' — 0G over R. In addition, the distributions satisfy the transformation formula

(10.5.1) IL(p, ) =Y ac(p',p)ILip, f),

p

for {p'} and AL = {ar(p’,p)} as in (5.4.1). We leave the reader to check that these properties are direct
consequences of the corresponding properties in §5.
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It follows from (5.3) that the series

git(Tee(H) = > ax()IL(p, f)

pPER(L)

converges in (the adic topology of) Ge (M, L). The continuity of the linear forms (10.2) implies, moreover, that the
mapping
f— 91%4 (IL,c(f))

from C(G) to G. (M, L) is continuous (in the complex topology of Q\C(M , L)). Finally, (5.4.2) and (10.5.1) yield the
functorial property that for any L and f,

(10.5) g7 (Jr.c(f)) is independent of the choice of basis R..(L).

The distributions (10.2) play the role of coefficients in a formal germ expansion of the function I (7, f). Following
85, we set

(10.6) I (v, f ZZg %)L (p, ),

for any n > 0, and for fixed representatives gfj" (v, p) of g]LM’n (p) in F&(M, L) as in (5.11). We then obtain the
following corollary of Theorems 5.1 and 5.1%.

Corollary 10.1. We can choose the weight function « so that a(l) equals zero, and so that for any n, the
mapping
f— Ty, f) = I (v, ), fec(a),

is a continuous linear mapping from C(G) to the space F', (V,G). In particular, In(f) has a formal germ
expansion given by the sum

(107) Z g]u ILc Z Z gM IL P,f)
)

LelL(M LeL(M) peR.(L)

Proof. The second assertion follows immediately from the first, in the same way that the corresponding assertion
of Theorem 5.1 follows from Theorem 5.1*. To establish the first assertion, we write

as the difference between
I (v, ) = I f)

and
S (I (ren(h) = L (v o))
LELO(M)
The assertion then follows inductively from Theorem 5.1*. O

Corollary 10.1 tells us that the sum (10.7) represents the same element in Ge(M, @) as Iy;(f). In other words, the
invariant distributions attached to weighted orbital integrals satisfy asymptotic expansions

In(v, f ZZQM v )JL(p, f).
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The invariant distributions Ips(p, f) ultimately depend on our choice of the mapping X ;. Itis interesting to note
that this mapping has an invariant formulation, which leads to posteriori to a more direct construction of the
distributions. To see this, we first set

(108) TKum(f) = In(f) - > gk (Ie(f)), fec@).

{LeL(M): L£M,G}

Let o be a fixed weight function that satisfies the conditions of Lemma 6.3. Then
f — IKyp(f)is a continuous linear transformation from C(G) to G(M, G).

Lemma 10.2. Suppose that f belongs to C(G). Then
(10.9) f(M(f) - If(M(f) = g5 (Jare(f)) — gt (In,e(f)).

Proof. The proof is similar to that of Lemmas 6.1 and 6.2, so we shall be brief. The left hand side of (10.9) equals

ST (6n (D) = > gk (TF (61, (1)),

LIy
where the first sum is over Levi subgroups L1 € £°(M), and the second sum is over pairs L, L; € £(M) with
MCLCL; CG.
Taking the second sum over L; outside the sum over L, we obtain an expression
S (@ enw) - Y sk (T (6n()) + 9 (T (60, ()
L1eLO(M) LeLl1(M)

By Corollary 10.1, the formal germ

TK (60, () =I5 (b, (D)) = > gk (TEL (61, ()

LeLti(M)

vanishes for any L;. The left hand side of (10.9) therefore equals

> g (on.(h).

L,eLo%(M)
By definition, this in turn equals the right hand side of the required formula (10.9). O
The lemma implies that the mapping
f—)IK]\/I(f)_K]\/I(f)v fEC(G)a

takes values in the subspace Z.(M, Q) of G¥*(M,G). We shall use this property to give invariant versions of the
constructions of §8. For any n > 0, and N large relative to n, we can write Iv}, for the restriction of I K7}, to the
subspace C. n(G) of C(G). If f is a function in C. v (G), the (o, n)-jet

1Y (f) = i (f) — (K3 (f) — IK 3 (f))
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then belongs to the image of Z'(M, G) in G (M, G). This yields the invariant analogue of Proposition 8.1. In
particular, there is a uniquely determined, continuous linear mapping

IxXir : Cen(G) — I2(M, G)
such that for any f € C. n(G), the image of Ix%,(f) in G&™(M, G) equals 9%, (f). Following (8.7), we set

<J7IXM(f)> = <Uv IX’r]lM(f»’ o€ DC(M)v Ie CC,N(G)v

for any n > deg(c) and N large relative to n. Then
(o D () = o xaa () = (o Kua (f) = TR (f)-
Given the mapping X as of Proposition 8.3, we set

(10.10) I (f) = Xm(f) — (KEn(f) — IKum(f)), fec@).

Then I'Y ) is a continuous linear mapping from C(G) to i(M ,G) that satisfies the invariant analogue of the
restriction property (8.11). Moreover, it follows easily from the lemma that Iy s also satisfies the analogues of
(8.12) and (8.13). Conversely, suppose that I, is any continuous mapping from C(G) to Z.(M, G) that satisfies
the invariant analogues of (8.11)-(8.13). Then the mapping X (f) defined by (10.10) satisfies the hypotheses of
Proposition 8.3. Thus, instead of choosing the extension X s of mappings {x%,}, as in Proposition 8.3, we could
equally well choose an extension I’y s of invariant mappings {Ix%,}. To see the relationship of the latter with
our invariant distributions, we take any element p € R.(M), and write

In(p, ) = I (p, f)
:<Pa9% (In,e(f))) — <Pa9% (Jare(f)))
=(p, IKm(f) — Kn(f))
=(p, IXne(f)) — (ps Xas([f)),

by Lemma 10.2 and the definition (10.10). It follows from the definition (9.1) that

(10.11) In(p, f) = (o, IXm (f)), fec@).

The invariant distributions can therefore be defined directly in terms of the mapping IX ;.
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§11. Supplementary properties

There are further constraints that one could impose on the mapping X s of Proposition 8.3 (or equivalently, the
invariant mapping (10.10)). Any new constraint makes the construction more rigid. It puts extra conditions on the
families of coefficients (5.14) and linear transformations (8.15), either of which describes the lack of uniqueness
of the construction. A suitable choice of s will also endow our distributions and formal germs with new
properties.

The most important property is that of parabolic descent. Suppose that M is a Levi subgroup of M, chosen so
that a,z, is orthogonal to the Lie algebra of K. Any element y; in M1, g-reg(R) obviously maps to an element
v =M in MG-reg(R). The associated weighted orbital integral satisfies the descent formula

(11.1) Tu(y, )= > A5, (M, G5 (1, fa),
G1EL(My)

in the notation of [A4, Corollary 8.2]. The coefficient dfﬁ (M, G) is defined on p. 356 of [A4], while the section
Gl *)Ql :QG17 Gl S ‘C(Ml)v QGI GP(Gl)v

is defined on p. 357 of [A4]. We would like to establish similar formulas for our singular distributions and our
formal germs.

Suppose that c is the image in I';s (M) of a class ¢; € I'ss(M7). If L belongs to £(M), and L lies in the associated
set LL(M;), we shall denote the image of ¢; in T'ss(L1) by 1 as well. For any such L and Lj, there is a canonical
induction mapping o1 — ol from D,, (L1) to D.(L) such that

hi(or) = hr,(01), 01 € De,(L1), h € C(L).
Since we can view Jr, (-, f) as a linear form on D, (L), the tempered distribution

JL(UlL’f)a fEC(G)7

is defined for any 0. We also write ¢ — o, for the adjoint restriction mapping from D.(L) to D, (L), relative
to the bases R.(L) and R, (L1). In other words,

> dilpr)ole) = D dilp)elor),

pER(L) pP1ERc (L1)

for any linear functions ¢ and ¢ on D, (L1 ) and D.. (L), respectively, for which the sums converge. (The restriction
mapping comes from a canonical linear transformation
Z.(L) — I, (L) between the dual spaces of D.(L) and D¢, (L1). Its basis dependent formulation as a mapping
from D,.(L) to D,, (L1 ) is necessitated by our notation for the formal germs g%, (p).) We recall that as an element
in G.(M, L), g%, (p) can be mapped to the formal germ g%, (p) s, in Ge, (M | M, L).

Proposition 11.1. We can choose the mapping Xy of Corollary 8.3 so that for any My and c1, the distributions
(5.1) satisfy the descent formula

(11.2) Julpt, ) =Y d¥ (L,G1)JIF (p1, fou), Ly € LY(My), p1 € Re,(L1),
G1€L(L1)
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while the formal germs (5.2) satisfy the descent formula

(11.3) gll\l4(p)M1 = Z d%ﬁ (Mle)g]%jl (le)v p e RC(L)
LieLL(M,)

Proof. We have to establish the two formulas for any L € £L(M). We can assume inductively that for each M
and ¢;, (11.2) holds for L # M, and (11.3) holds for L # G. In particular, both formulas hold for any L in the
complement £(M) of {G, M} in £L(M). We shall use this property to establish a descent formula for the formal
germ

K (f)an = Jar(f)ar, — Z gﬁ(JL,c(f))Ml-

LeL(M)

The original identity (11.1) leads immediately to a descent formula

Tu(Fa, =Y dS, (M, Gh) IS} (fou)
G1eL(My)

for the first term in the last expression for Ku (f) a1, - We apply (11.2) and (11.3) inductively to the summands in
the second term

(114) Z gJI\‘J (JL,C(f))]\/jl .
LEL(M)

We obtain .
!]M(JL,c(f))M1
= > i@ Jilp f)
pPER(L)
= Y dig(M,L) Y gxi (pr) (e, f)
LieLL(M,y) pER.(L)
= Y Ay, (M Ly > gik (p)Ji(ots f)
LieLE(My) p1E€Rc, (L1)
= Y Y A MLLdE LG (Y e (e)IE (o fa)-
LieLE (M) Gi€L(Ly) p1€Rc1(L1)

Therefore (11.4) equals the sum over L € E(M ) of the expression

(11.5) > Y (di (M, L)dg (L, G))axt, (TE), (far)-

Lielt (M) Gi€L(L1)

We can of course sum L over the larger set £(M), provided that we subtract the values of (11.5) taken when
L=Mand L=G. IfL=M, d]LM1 (M, L) vanishes unless L; = M, in which case dﬁﬁ (M, Ly) = 1. The value
of (11.5) in this case is

(11.6) > dS, (M, GO (TS . (fa)).
GreL(My)

IfL=G, dgl (L, G1) vanishes unless G; = L1, in which case dgl (L,G1) = 1. The value of (11.5) in this case is

(11.7) ST dS, (M, Gh)gSE (JE ., (o).
G1EL(M,)
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Thus (11.4) equals the sum over L € £(M) of (11.5) minus the sum of (11.6) and (11.7). The only part of (11.5)
that depends on L is the product of coefficients in the brackets. We shall therefore take the sum over L inside the
two sums over Ly and G, which at the same time, we interchange. Then G, L; and L will be summed over
L(My), LG (M), and L(Ly) respectively. The resulting interior sum

> dfy, (M, Ly)d, (L, Gy)
Lecl(Ly)

simplifies. According to [A4, (7.11)], this sum is just equal to dgh (M, G4), and in particular, is independent of
L. We can therefore write (11.4) as the difference between the expression

o di (MG > gt (5 (f))

G1E€L(My) LyeL£G1 (M)

and the sum of (11.6) and (11.7). But (11.6) is equal to contribution to the last expression of L; = My, while (11.7)
equals the contribution of L; = G;. We conclude that (11.4) equals

SooodS (G Y g (T8 (f))-

G1€£(M1) L1€ZG1(M1)
We have established that M () equals

S d§,006) (TG e~ Y ek U5, a).

Gleﬁ(ﬂfl) L1€ZG1 (Ml)

Since the expression in the brackets equals K ICV?I (fo.), we obtain a descent formula
(11.8) Kv(fimy = > d§,(M,G)KS} (fq,).
G1eL(M1)

Suppose that n > 0, and that IV is large relative to n. The mapping x; of Proposition 8.1 then satisfies

X (Far, =% (an = K5 (f)an

= Y 4§, (M.G)KS " (fq,)
G1E€L(M,)

= > d§, (M, GOYSE (fau)

GreL(M7)

G1,1’L
= E dzcv;fl (M, Gl)XM1 (fQ.)s
G1eL(M7)

forany f € C. n(G). This implies that

(ooxm(f) = Y d§, (M, Gi){on, X5 (F@u))s f€Cen(G),
GreL(My)

for any induced element o = U{” with o1 € D, (M), and for N large relative to o;.

We are now in a position to choose the mapping

Yar : C(G) — To(M, G)
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of Proposition 8.3. More precisely, we shall specify that part of the mapping that is determined by its proper
restrictions Xz (f) s, - We do so by making the inductive definition

(11.9) (O xXu()y =" d5, (M, G1){o1, X5t (fa.)), feca),
G1EL(My)

for any properly induced element
o=o0y", o1 € D, (My), My C M,

in D.(M). The right hand side of this expression is easily seen to depend only on o, as opposed to the inducing
data (M, 01). In fact, using the grading (1.5) of D.(M ), we can choose (M7, 01) so that o1 belongs to D, en(M1).
The condition (8.11) of Proposition 8.3 follows from the formula above for (o, xas(f)). The conditions (8.12) and
(8.13) follow inductively from the corresponding conditions for the terms (o1, )zjcjfl (fo.)- The formula (11.9) thus
gives a valid definition of the linear form X (f) on the subspace D, par(M) spanned by elements in D (M)
that are properly induced. For elements o in the complementary subspace D, .ii(M ), we remain free to define
(o, X (f)) in any way that satisfies the conditions (8.12)—(8.13) of Proposition 8.3.

Having chosen X s (f), we have only to apply the appropriate definitions. The first descent formula (11.2), in the
remaining case that L = M, follows as directly from (11.9) and (9.1). Notice that (11.2) implies a similar formula

g (5t = D, dSn (M, GO (52 . (fa)))
G1eL(Mq)

for the formal germ g7 (JAC}’C( ). Notice also that

K]\/I(f)M1 = Z del(M7G1)Klel(fQ1)’
GreL(M7)

since both sides vanish by Theorem 5.1. Combining these two observations with (11.8), we see that

g5t (fae), = > dS, (M, G1)g5t (fQu.e)-
G1EL(M,)

Now as a linear form in f, each side of this last formula is a linear combination of distributions f¢(p) in the basis
R.(M). We can therefore compare the coefficients of f¢(p). The resulting identity is the second descent formula
(11.3), in the remaining case that L. = G. This completes the proof of the proposition. O

Corollary 11.2. Suppose that the mapping Xar is chosen as in the proposition. Then for any My and ¢y, the
invariant distributions (10.2) satisfy the descent formula

(11.10) I(pt, f) = Z df, (Lle)fLGll (p1, fer), Ly € LM(M), p1 € Rey(La).
GreL(Ly)

Proof. We can assume inductively that (11.10) holds for any L € £(M) with L # M, so it will be enough to treat
the case that L = M. This frees the symbol L for use in the definition

(ot ) = Tuel ) = > T (ot on(f))

LELO(M)
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from §10. We apply (11.2) to the first term Jys(p¥, f). To treat the remaining summands I L (plL, oL (f )), we
combine an inductive application of (11.10) to I%, (p}) with the descent formula

Sy = Y, df (L.G1)é7 (fo), Ly € LY (M),
G1€L(L1)

established as, for example, in [A2, (7.8)]. We can then establish (11.10) (in the case L = M) by following the
same argument that yielded the descent formula (11.8) in the proof of the proposition. (See also the proof of [A4,
Theorem 8.1].) O

For the conditions of Proposition 11.1 and its corollary to hold, it is necessary and sufficient that the mapping
XM = )Z% satisfy its own descent formula. That is,

Xvu(Pag =Y, d, (M GOXSE (o))
GreL(M)

for each M and c;. This in turn is equivalent to asking that the corresponding invariant mapping Ixn = IX$;
satisfy the descent formula
(o =Y dS, (M, GOIXG (fa),
G1eL(My)
again for each M7 and ¢;. Recall that X/ (f) can be identified with a W (M)-fixed linear form on D.(M). Its
value at any element in D.(M) is determined by the descent condition and the differential equation (8.12), once
we have defined X/ (f) as a linear form on the subspace

Dc,ell,G-harm (M) = Dc,ell(M) N Dc,G-harm (M) .
The mapping X as is then uniquely determined up to an Aut(G, K, M, c)-fixed linear transformation

C: C(G)/Ce,N(G) — De,ent,G-harm (M)™.

There is another kind of descent property we could impose on our distributions and formal germs. This is
geometric descent with respect to ¢, the aim of which would be to reduce the general study to the case of ¢ = 1.
One would try to find formulas that relate the objects attached to (G, M, ¢) with correspond objects for (G, M, 1).
This process has been carried out for p-adic groups. Geometric descent formulas for distributions were given in
Theorem 8.5 of [A3] and its corollaries, while the descent formula for p-adic germs was in [A3, Proposition 10.2].
These formulas have important applications to the stable formula. In the archimedean case, however, geometric
descent does not seem to play a role in the trace formula. Since it would entail a modification of our construction
in the case of ¢ # 1, we shall not pursue the matter here.

Finally, it is possible to build the singular weighted orbital integrals of [A3] into the constructions of this paper.
Suppose that 7, is a conjugacy class in M (R) that is contained in (M), and has been equipped with M (R)-
invariant measure. The associated invariant integral gives a distribution

h—>hM(’yc), hEC(M),

in D.(M). We write D, o,1,(M) for the subspace of D.(M) spanned by such distributions. Any element in
De,orb(M) is known to be a finite linear combination of distributions

h — hp(o), for triplets o = (T,9,0(u)) in Sc(M) such that u is M.-harmonic. Since W (M., T) is con-
tained in W(G, T), any M.-harmonic element is automatically G-harmonic. The space D, o, (M) is therefore
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contained in D. g-harm(M). The point is that one can define a canonical distribution Jys (o, f), for any o in
De,orb (M) [A3, (6.5)]. This distribution is supported on U.(G), and satisfies the analogue

(o ) =3 Ty (o fou), feC(G), y e GR),
QEF(M)

of (5.5). It follows from (5.13) that Jis (o, f) can be chosen to represent an element in the family (5.1) (and in
particular, is a tempered distribution). Otherwise said, the constructions of [A3] provide a canonical definition
for a part of the operator X of Proposition 8.3. They determine the restriction of each linear form X (f) to the
subspace D o (M) of D.(M). The conditions of Proposition 8.3 and [A3, (6.5)] therefore reduce the choice of
X to that of an Aut(G, K, M, ¢)-fixed linear transformation that fits into a diagram

Cc,Nl (G) — C(G) ﬂ) Dc,G-harm(M)* —_— Dc,orb(M)*v

in which the composition of any two arrows is predetermined. The mapping X is thus uniquely determined
up to an Aut(G, K, M, ¢)-fixed linear transformation

*

C: C(G)/Ce,n, (G) — (De,G-harm (M) /Deorn(M)) "

However, the last refinement of our construction is not compatible with that of Proposition 11.1. This is because
an induced distribution p = p} in D.(M) may be orbital without the inducing distribution p; being so. The
conditions of Proposition 11.1 and of [A5] are thus to be regarded as two separate constraints. We are free to
impose either one of them on the general construction of Proposition 8.3, but not both together. The decision of
which one to choose in any given setting would depend of course upon the context.
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